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Abstract. In the present study, dynamic analysis of laterally loaded vertical pile group is
carried out considering the three dimensional nature of the soil-pile system. Piles and soil
are modelled using three-dimensional finite element techniques treating them as linear
elastic. The interface of soil and pile under the lateral load has been accounted for by
incorporating interface elements in the modelling. The special type of transmitting
boundary using Kelvin element is used to transfer the propagating waves from near field
to the far field. Group of two piles in series and parallel configuration have been
considered for present study. Individual piles are considered monolithic with pile cap.
Parametric studies have been performed to examine the effects of pile spacing and soil
modulus on the response of pile group.
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1. Introduction

The behaviour of piles subjected to dynamic loads is a complex three-dimensional soil—structute interaction
problem mainly governed by the interaction between the pile and the soil. Several analytical methods have
been developed in the past for static analysis of laterally loaded piles, including the elastic continuum
approach [1, 2], finite element analysis [3], elastic subgrade reaction [4, 5, 6], and p—y |7, 8] methods.

Novak (1974) [9] was first to extend a Winkler model for the representation of soil in dynamic analysis
of laterally loaded pile in a visco-elastic material. Ghazzaly ef a/. (1976) [10] presented a rational approach in
which the pile response is represented by the vibrations of a beam on elastic foundation. Finite difference
technique is used to solve the governing fourth order differential equation. The semi-analytical solution of
the dynamic behavior of vertical pile group is presented by Ettouney ez @/ (1983) [11]. The solution
accounts for the pile-soil-pile dynamic interaction and is based on modeling the soil as a plane strain
continuum and the piles as a set of finite elements. Gazetas (1984) [12] presented a numerical study of the
dynamic response of end-bearing piles embedded in a number of idealized soil deposits and subjected to
vertically propagating harmonic S-waves.

Adopting Winkler assumption, a simple mechanical soil model is developed for the flexural response
analysis of dynamically loaded single pile by Nogami and Konagai (1988) [13]. Nogami ez a/. (1992) [14]
developed a hybrid near field/far field soil-pile interaction models for dynamic loading and formulated
solutions for axial and lateral response in the time and frequency domains, incorporating nonlinear soil-pile
response, degradation, gapping, slip, radiation damping, and loading rate effects. Gazetas e# al. (1993) [15]
presented seismic soil-pile-foundation structure interaction analysis based on Beam-on-Dynamic-Winkler-
Foundation (BDWF) simplified model and a Green's-function-based rigorous method are utilized in
determining the dynamic response of single piles and pile groups.

Naggar and Novak (1995) [16] presented a model for pile lateral response to transient dynamic loading
and to harmonic loading allowing for nonlinear soil behavior, discontinuity condition at the pile-soil
interface and energy dissipation through different types of damping. The approach is based on the Winkler
hypothesis. Badoni and Makris (1996) [17] given the macroscopic model that consists of distributed
hysteretic springs and frequency dependent dashpots to model the lateral soil reaction and a practical
method based on one-dimensional finite element formulation is developed to compute the nonlinear
response of single piles under dynamic lateral loads.

Nogami and Novak (1976) [18] studied the interaction between a soil layer and bearing pile in vertical
vibration. The pile was assumed to be elastic, vertical and bearing while the soil as linearly elastic,
homogenous and isotropic layer with material damping of the frequency independent hysteric type and
overlies rigid bed rock. Novak and Nogami (1977) [19] extended the same concept to investigate the
resistance of a soil layer to steady horizontal vibration of an elastic end bearing pile. Further Chau and Yang
(2005) [20] extended it to incorporate the effect of nonlinear soil-pile interaction subject to horizontal
shaking of a vertical circular pile embedded in a soil layer of finite thickness.

Cai ez al. (2000) [21] investigated more precisely the seismic response of interactive soil—pile— structure
systems; a three-dimensional finite element subsystem methodology with an advanced plasticity-based
constitutive model for soils has been developed. Maheshwari and Emani (2008) [22] and Emani and
Maheshwari (2009) [23] presented the dynamic impedances for the pile groups with caps embedded in
isotropic homogeneous elastic soils. A general three-dimensional finite element procedure is developed.
The system is sub-structured into bounded near-field and an unbounded far-field. The pile-soil system of
the near-field is modeled using solid finite elements, and the unbounded elastic soil system of the far-field is
modeled using the consistent infinitesimal finite element cell method (CIFECM) in the frequency domain.
Maheshwari and Emani (2008) [22] further carried out non linear seismic analysis of 2 X 2 pile group. A
work-hardening plastic cap model was used for constitutive modeling of the soil medium. The pore
pressure generation for liquefaction was incorporated by a two-parameter volume change model.

2. Problem Definition
In most of the methods of analyses presented so far, the soil mass is modelled either in the form of a
Winkler medium or a semi-infinite linear elastic half-space and very few researchers have considered three

dimensional nature of soil incorporating the effect of radiation damping. An attempt has been made to
study the response of group of two piles in series and parallel configuration under dynamic load. As shown
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in Fig. 1(b), when direction of loading is parallel to the line joining piles; it is considered as series
arrangement. In parallel arrangement direction of loading is perpendicular to the line joining piles. Three
dimensional finite element methods are used to model the soil-pile system. The supporting soil medium
domain is divided into two regions as near field and far field. The near field is within the range of 10D (D is
width of pile) from the edge of exterior pile along the width of domain on all sides of pile group. The near
field boundary is modelled as transmitting boundary. To the exterior boundary nodes of the near field
Kelvin Elements are attached in both the directions which are supposed to absorb the energy waves
propagating in horizontal and vertical directions and thus not allowing them to reflect back into the near
field. Beyond this, the soil domain represents the far field (4D from transmitting boundary. The Pile and
soil are treated as linear elastic. The soil considered in present study is medium clay which is partially
saturated due to capillary action. Figure 1 shows the details of soil pile system considered for present study.
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Fig. 1(c). Three-dimensional finite-element mesh for the soil-pile system.
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3. Methodology of Research

3.1. Finite Element Model for Analysis of Laterally Loaded Piles

A program is developed in FORTRAN which is capable of carrying out full three dimensional finite
element analysis incorporating transmitting boundary. Full three-dimensional geometric model is used to
represent the soil-pile system. Selection of the correct finite element to represent the medium is one of the
very important aspect in finite element analysis. In the soil pile system two materials viz. soil and reinforced
concrete are to be modelled. Both the materials show the different behaviours when subjected to loading,.
The failure of soil is dominated by its shear characteristics; whereas flexure dominated failure is shown by
the reinforced concrete. Therefore, to model the pile and pile cap 20 node solid finite elements are used.
This element has quadratic shape function which is well suited to model the medium with bending
dominated deformation. Eight node solid finite elements are used to model the soil which has linear shape
functions. These clements are suitable for the medium whose deformations are dominated by shear
strength. To maintain the continuity of displacement between these two types of the elements in the
discretised pile-soil domain, two more elements were formulated viz. 12 node and 9 node solid elements.
The shape functions of these two elements were formulated by degrading the shape functions of 20 node
solid elements. 12 node elements are used at the junction where 8 node and 20 node element meets. 9 node
elements are used at the junction of 8 node element and 12 node element. The shape functions of these
elements are derived by degrading the 20 node element. Each node of the elements has three translational
degrees of freedom, in the X, Y and Z coordinate directions. The interface between pile or pile cap and soil
is modeled using 16 node isoparametric interface elements with zero thickness [24]. These interface
elements are useful in simulating the mechanics of stress transfer along the interface of soil and pile. Piles
and soil are treated as linear elastic. A 20m long square piles of side 1m are considered for present study.
The piles are completely embedded in the soil.

3.2. Continuum Element

Relation between strains and nodal displacements is expressed as,

{el,=[B]{s}, 0
where {e}. is strain vector, {d}. is vector of nodal displacements, and [B] is strain displacement
transformation matrix. The stress-strain relation is given by,

{o}. =[Dl{z}, @

where, {}. is stress vectot, and [D] is constitutive relation mattix.
The stiffness matrix of an element is expressed as,

[K], = [[e]' [D][B] av ©)

v
3.3. Interface Element

Relative displacements (strains) between the surface of soil and structure induce stresses in the
interface element. These relative displacements are given as,

tey. =[B]; {9}, O
where, [B]r represents the strain displacement transformation matrix.
The element stiffness is obtained by the usual expression,

U 5
[K], =[B]; [D]; [B], ds ®)
S
where, [D]¢ is the constitutive relation matrix for the interface.
3.4. Equivalent Nodal Force Vector
The lateral force Fp, acting on pile cap, is considered as uniformly distributed force over the pile cap. The

intensity of this uniformly distributed force is, ¢ = Fu /A, where, A is the area of pile-cap. Equivalent
nodal force vector, {Q}., is then expressed as:
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(Q}, = Ja[N]" ¢a ©)

where [IN] represents matrix of shape functions. The properties of materials used in present study are
shown in the Table 1.

Table 1.  Properties of materials.

Pile Soil Interface
E, =25 GPa E, =10000 kPa, 20000 kPa, £s=1000 kN/m?3
7, = 0.30 30000 kPa, 40000 kPa £a=1.0%x106 kN /m?3

Width 1 m, Length 20 m v,= 0.40
Pile-cap thickness 0.5 m

E, and E; = Modnlus of elasticity for pile and soil respectively, vy and ve = Poisson's ratio for pile and soil respectively, ks
and k, = Tangential and normal stiffness for interface element.

3.5. Transmitting Boundary

The spring and dashpot constants of the Kelvin element in the horizontal directions are calculated using the
solution developed by Novak (1974) [9] as:
s 15, 0
In which, G is the shear modulus of soil, £,"is the complex stiffness and, R, is the radial distance of the
node where the Kelvin element is attached from the source of vibration. §; and JS,=dimensionless
parameters from closed-form solutions, /=imaginary unit=(-1. The real part of the above Eq. (7)
represents the stiffness and the imaginary part represents the damping.
The constants for the Kelvin element in vertical direction are given by
k;:;TD [Svl +i sz] <8)
The subscript » represents the vertical direction and the other parameters are the same as in Eq. (7).

3.6. Time History Analysis

Dynamic force equilibrium equation in incremental form
Mg j+[Cliag )+ [Kl{ag j={aF] ©)
In which {Aq}{Aq}, {Ag | are vectors of incremental displacement, velocity and acceleration, [K]
assembled stiffness matrix, [M] consistent mass matrix and [C] damping matrix.
The displacement at each time step can be evaluated by applying Newmark-Beta integration method.
After application of Newmark-Beta integration method, Dynamic force equilibrium equation in incremental
form is given as follows.

[t leh [ iaa) - an) o

BAt? BAt

_1
5 At

{leg[M ]+ At [;’ﬁ—lj [C]} {ti1)

The values of  and £ in above equation are taken as 0.5 and 0.25 respectively. Solution of the above

M1+ 40e] fa) "o

equation yields incremental displacement {A qi} from which displacements at current time step are

updated and Velocity and accelerations are evaluated. For next time step the values of
{Aqi+1}, {AQM}' {A%} are set as {Aqi}, {Aqi }, {Aqi} and analysis is performed for next dynamic load

increment.
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4. Parametric Study

A parametric study is carried out on the group of two piles in series and parallel configuration. The dynamic
load of the type Py sin(w?) (Po=1000 kN for present case) is applied, where the external frequency (w) is
varied between 0.5 to 40 rad/sec. All piles considered in the analysis are square concrete piles. In present
study L/D ratio is considered as 20 and spacing to width (s/D) ratio between piles is varied as 2, 3, 4,
5 and 7 (D is width of square pile). Top displacements in the pile considered for comparison of different
responses.

5. Results and Discussion

The response of pile group is presented in the form of normalized maximum amplitude verses
dimensionless frequency. The maximum amplitudes obtained are normalized by dividing them with
corresponding static deflection. The dimensionless frequency a is calculated using a0 = @d/ s (where, @ is
forcing frequency in rad/sec, 4 is width of square pile and 17 is shear wave velocity). The variations in
normalized maximum amplitude with dimensionless frequency at different pile spacing for piles in series
and parallel arrangement (£,=20000 kPa) is presented in Figs. 2 and 3, respectively.
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Fig. 2. Frequency-Amplitude Curve for two pile in series arrangement and E;=20000 kPa.
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Fig. 3. Frequency-Amplitude Curve for two pile in parallel arrangement and E=20000 kPa.
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When the external frequency is matching with natural frequency of the system, a clear peak in the
response is observed. The frequencies corresponding to first three prominent peaks are summarized in
Table 2. In case of series arrangement, the fundamental frequency corresponding to first peak at the pile
spacing of 2D is obsetved to be 9 rad/sec ( Es=10000 kPa), which is increasing with increase in soil
modulus and increased to value of 17 rad/sec for Es=40000 kPa. The same is obsetved to be decreasing
with increase in pile spacing and it is reduced from 9 rad/sec at 2D spacing to 8 rad/sec at 7D spacing
(Es=10000 kPa). At smaller pile spacing there is a reduction in the soil stiffness due to overlapping zone of
individual piles. Though overall stiffness of pile-soil system is increasing with increase in pile spacing,
fundamental frequency is observed to be decreasing. This may be attributed to the increase in the mass of
pile-soil system taking part in vibration at higher spacing. Similar effect of pile spacing and soil modulus is
observed for piles in parallel arrangement. But it is important to note that effect of pile spacing is marginal.
Almost no reduction or very little reduction in the frequency is noticed with increase in pile spacing for all
soil modulus. It is observed that frequency in parallel arrangement is higher than the corresponding
frequency in series arrangement. Maximum amplitudes and corresponding frequencies are reported in Table
3 for different configurations. It is observed that with increase in soil modulus maximum amplitudes are
decreasing and corresponding frequencies are increasing on account of higher soil stiffness. Generally in the
case of static analysis, top displacement is reducing with increase in the pile spacing, but such a definite
pattern is not observed in the dynamic analysis for maximum amplitudes in top displacement with different
pile spacing. Maximum amplitude is a complex phenomenon. It is not only a function of stiffness of pile
soil system, but is also dependent on the external frequency as well as natural frequency.

Table 2. Frequency corresponding to first three prominent .

Case E,kPa I Peak (rad/Sec) IT Peak (rad/Sec) III Peak (rad/Sec)
2D 3D 4D 5D 7D 2D 3D 4D 5D 7D 2D 3D 4D 5D 17D
10000 9 8 8 8 8 1212 12 11 11 15 14 14 14
20000 12 12 11 11 17 16 16 16 15 20 19 18 18
2P 30000 15 14 14 14 13 20 19 19 19 18 22 23 23 22 22
40000 17 16 16 17 15 22 22 21 21 20
10000 9 9 9 9 9 1212 12 12 11 15 14 14 14 14
PP 20000 13 13 13 13 13 17 17 17 17 17 20 19 19 19

30000 16 16 16 16 15 20 20 19 19 19 23 23 23 22 22
40000 18 18 18 18 17 20 20 20 23 23 23 22 22

Table 3. Maximum amplitudes and corresponding frequencies.

Maximum Amplitude (mm) Corresponding frequency (rad/sec)

2D 3D 4D 5D 7D 2D 3D 4D 5D 7D
10000 149.738 212.606 102.197 130.573 95.334 12 12 18 18 11
20000 48.296 67.853 93.918 82.657 46.342 17 16 16 24 12

Case E kPa

2PS 30000 94.353 50.137 59.854 55.722 57.324 20 28 28 19 19.5
40000 39.871 67.739 40.812 21.624 28.105 31 22 21 21 20
10000 94.033 144.236117.087 146.473 94.045 12 12 12 14 30

opp 20000 82.458 63.94 61.964 91.386 66.199 17 17 19 19 17

30000 76.964 68.446 23.832 41.939 38.813 20 23 19 19 19
40000 53.436 43.134 38.802 52.227 22.762 23 23 23 25 23
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Effect of soil modulus on non-dimensional frequency-amplitude response curve is presented in Figs. 4
and 5 for series and parallel arrangement respectively. It is observed that for parallel arrangement, the peaks
are observed at nearly constant non-dimensional frequency with variation in soil modulus. The average
non-dimensional frequencies corresponding to first three peaks are 0.243, 0.314 and 0.365. But in case of
series arrangement, the frequency ratios are observed to be decreasing with soil modulus.
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Fig. 4.  Effect of Soil modulus on Frequency-Amplitude response Curve for two pile in series
arrangement and s/ D=3.
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Fig. 5. Effect of Soil modulus on Frequency-Amplitude response Curve for two pile in parallel
arrangement and s/ D=3.

Effect of pile arrangement on non-dimensional frequency-amplitude response curve is presented in
Figs. 6 and 7. Comparisons at two different pile spacing 3D and 7D (E,=30000 kPa) are presented in Fig. 6.
It is observed that frequencies in the parallel arrangement are higher than those compared to series
arrangement. This suggests higher soil stiffness offered in case of parallel configuration. Similar comparison
at two different soil modulus (Es=10000 kPa and E=40000 kPa) for s/D=3 is presented in Fig. 7 which
also shows similar trend with respect to arrangement of piles.
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Fig. 6.  Effect of pile arrangement on Frequency-Amplitude response Curve for E,=30000 kPa.

16 -
" s/D=3
o 12 1 ——2Ps40000
3T 4 2PP40000
&2 | —2Pps10000
£ & 84 —2pP1oo0o
:
74 °1
s
2 -
O L] L] L] L] L] 1

0 0.1 0.2 0.3 0.4 0.5 0.6

Dimensionless Frequency

Fig. 7. Effect of pile arrangement on Frequency-Amplitude response Cutve for s/ D=3.

6. Conclusions

1) Fundamental frequency is decreasing with increase in pile spacing for piles in seties arrangement
whereas marginal reduction is observed for piles in parallel arrangement.

2) Maximum amplitude is a complex phenomenon and depends on stiffness of pile soil
system, the external frequency and natural frequency. Mass involved in vibration is major
governing factor.

3) The fundamental frequency increases with increase in the soil modulus.

4) It is observed that frequencies in the parallel arrangement are higher than those compared to series
arrangement.
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