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Abstract. The composites of fumed silica-filled polybenzoxazine at various nanofiller 

contents ranging from 0 to 10 wt% were fabricated. In this study, the rheological and 

thermomechanical analysis of neat polybenzoxazine and its nanocomposites were 

performed. The rheograms show the shear thinning behaviours of the melted 

nanocomposite compound. In addition, the complex viscosity of the nanocomposites 

revealed that the liquefying temperature of these molding compounds increased with 

increasing the amount of fumed silica, while the gel-point temperature was not changed 

even though the amount of nanofiller was increased. The DSC thermograms confirmed 

that fumed silica loading had neither retarding nor accelerating effect on the thermal 

curing reaction of the benzoxazine monomer. Furthermore, the flexural modulus and 

microhardness of the nanocomposites were increased with an increase of the nanofiller. 

DMA thermograms also revealed that the glass transition temperatures (Tg) of neat 

polybenzoxazine were shifted from 157
o
C to higher values from the presence of the 

fumed silica. 
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1. Introduction 
 

Polybenzoxazine is a newly developed class of thermosetting resins derived from ring-opening 

polymerization of their precursors. The polymer possesses various good properties such as high thermal 

stability, easy processability, low water absorption, near zero shrinkage after processing with excellent 

mechanical properties. The polymer can be synthesized using the patented solventless technology to 

yield a clean precursor without the need for solvent elimination or monomer purification [1]. 

Additionally; the polymer can be synthesized from inexpensive raw materials and does not release by-

products during polymerization, thus showing high potential for various applications [2]-[4]. Although 

this novel polymer renders a lot of advantages, the shortcoming of common-type polybenzoxazine 

(PBA-a), polymer of 6,6’-(1-methylethylidene)-bis-(3,4-dihydro-3-phenyl-2H-1,3-benzoxazine, is its 

moderate glass transition temperature (ca 150
o
C) which limits the use in a harsh condition [5].  

There are many researches reporting that compositing some thermosetting resins with inorganic 

nanofillers was able to improve the glass transition temperatures of the polymers, such as silica-vinyl 

ester [6], silica-epoxy [7]-[8], and silica-cyanate ester [9] nanocomposites to render higher glass 

transition temperature than neat polymers. Besides the glass transition temperature, inorganic 

nanoparticle-filled polymer composites have been classified as materials with the potential to 

significantly improve many properties over conventional microparticle-filled composites because the 

filler-matrix interface in these composites might constitute a much greater area and enhance the 

composite properties to a much greater extent at rather low filler concentration than microfillers [10]-

[13]. Filler-filled nanocomposites exhibit outstanding improvement on properties which include the 

increase in modulus, strength, thermal stability, solvent resistance and the decrease of gas permeability 

and flammability [14]-[18].   

Fumed silica, of which the specific surface areas typically range from 50 to 400 m
2
/g, is one of the 

most commonly used nanofillers for many applications such as in electrical engineering, electronics and 

consumer goods [19]. The addition of this kind of nanofiller has a potential to improve heat distortion 

temperature, decrease moisture uptake, increase stiffness and strength, and increase flame resistance 

due to the size in nano scale and outstandingly high aspect ratio. Because of many beneficial points, the 

nanocomposites between the nanofiller and various polymers, such as epoxy [8]-[9], polypropylene 

[10], polyethylene [20], polyethylene terephthalate [21], cyanate ester [22]-[23] and silylated polyester 

[24], are the point of interest at present. However, there has been no investigation about fumed silica 

filled polybenzoxazine. 

The objective of this study is to evaluate the effects of nanofiller contents on the thermal, 

rheological and thermo-mechanical properties of the polybenzoxazine/fumed silica nanocomposites. 

Furthermore, the effects on some mechanical properties such as flexural modulus, flexural strength and 

microhardness of the nanocomposites are also determined. 

 

2. Experimental 
 

2.1. Materials  
 
The materials in this research were benzoxazine monomer and fumed silica. Benzoxazine monomer is 

based on bisphenol-A, aniline, and formaldehyde. Thai Polycarbonate Co., Ltd. (TPCC) supplied 

bisphenol-A (commercial grade). Paraformaldehyde (AR grade) was purchased from Merck Company 

and aniline (AR grade) was obtained from Panreac Quimica SA Company. Fumed silica (Reolosil
®
 QS-

20), from Tokuyama Co., Tokyo, Japan was kindly supplied by Cobra International Co., Ltd. All 

chemicals were used without further purification. 

 
2.2. Benzoxazine Monomer Preparation 
 
Benzoxazine monomer (BA-a) was synthesized from bisphenol-A, aniline, and paraformaldehyde at a 

1:2:4 molar ratio. The mixture was stirred at 110 
o
C using the patented solventless technology [1],[25]. 

Normally, the monomer is solid powder at room temperature with yellow color. The powder was 

ground into fine powder and was kept in a refrigerator for further use without purification [2],[25],[26]. 
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2.3. Fumed Silica Characteristics 
 
The used fumed silica (nano-SiO2) was Reolosil

®
 QS-20 with the density of 2.2 g/cm

3
. It is fluffy, white 

powder of amorphous structure. The average diameter of the spherical primary particles was varied 

from 5 to 50 nm, with nominal surface area of approximately 200 m
2
/g. 

 
2.4. Fumed Silica-filled Polybenzoxazine Nanocomposites Preparation 
 

The samples were prepared with filler loadings of 0, 1, 3, 5, 7, and 10% by weight to yield molding 

compound. The fumed silica was firstly dried at 110 
o
C for 24 hours in an air-circulated oven until a 

constant weight was achieved and then kept in a desiccator at room temperature. Fumed silica was 

thoroughly mixed by hand with benzoxazine monomer in an aluminium container at about 120
 o
C and 

mechanically stirred to achieve good dispersion. Then, the compound was compression-molded by a 

hydraulic hot-press machine, in which the heating condition at 25 MPa was 160 
o
C for 2 hr and 180 

o
C 

for 2 hr. The thickness was controlled by using a metal spacer. After that, the specimens were post 

cured in an air-circulated oven at 200
 o
C for 4 hr. All samples were air-cooled to room temperature in 

the open mold before testing. The density of rendered composites was approximately 1.30 g/cm
3
. 

 

2.5. Characterization Methods 
 

2.5.1. Differential Scanning Calorimetry (DSC) 
 
Curing temperatures of fumed silica-filled polybenzoxazine composites were examined using a 

differential scanning calorimeter (DSC, model 2910) from TA Instruments. A 10 mg sample placed in a 

50  L aluminum pans was characterized at a heating rate of 10
o
C/min from 30

o
C to 300

o
C under 

nitrogen flux (50ml/min). 

 
2.5.2. Rheological Measurements 
 
Rheological properties of each alloy were examined using a Rheometer (Haake Rheo Stress 600, 

Thermo Electron Cooperation) equipped with parallel plate geometry. The measuring gap was set at 0.5 

mm. The melt viscosity of the molding compound was performed under shear sweep mode at 120 
o
C, 

with the shear rate range of 5-300s
-1

. 

 
2.5.3. Thermogravimetric Analysis (TGA) 
 
Thermal stability, degradation temperature (Td) and char yield of fumed silica-filled polybenzoxazine 

composites were studied using a thermogravimetric analyzer (TG/DTA thermogravimetric analyzer 

model SII Diamond) from Perkin Elmer. The scans were performed from 30 to 900 
o
C at heating rate of 

20 
o
C/min under oxygen flow (100 ml/min). The initial mass of a tested sample at around 20 mg was 

placed in a 70  L ceramic cup with cover provided with venting holes. The degradation temperature at 

5% weight loss and the char yield at 800 
o
C were recorded for each specimen. 

 

2.5.4. Flexural Property Measurements 
 
Flexural modulus and flexural strength of composite specimens were determined with a Universal 

Testing Machine (model 5567) from Instron Instrument with a 1 kN static load cell. The test method 

was a three-point bending mode with a support span of 32 mm and the crosshead speed of 1.2 mm/min. 

The dimension of the specimens was 50 mm x 25 mm x 2 mm. Five samples were used to determine the 

average property values. 
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2.5.5. Microhardness Testing 
 

Microhardness of compressed specimens was measured utilizing a Vickers microhardness tester (model 

FM-700C) from Future-Tech. A pyramidal diamond was applied to the surface of the composite under a 

load of 4.90 N for 15 s. Diagonal length of the indentation was measured through a micrometric 

eyepiece with objective lens (50x magnifications). Each sample was measured repeatedly for ten times. 

 
2.5.6. Dynamic Mechanical Analysis 
 
Dynamic mechanical analyzer (DMA) model DMA242 from NETZSCH was used to investigate the 

dynamic mechanical properties of the specimens, i.e. storage modulus (G'), loss modulus (G''), loss 

tangent (tan δ) and glass transition temperature (Tg). The dimension of each specimen was 50 mm  10 

mm  2 mm. The test was performed under bending mode. The strain was applied sinusoidally with a 

frequency of 1 Hz, and the specimen was heated at a rate of 5
o
C/min from 30 to 270

o
C. The glass 

transition temperature was reported as the maximum point on the loss modulus curve in the temperature 

sweep test. 

 
2.5.7. Morphological Observation 
 
The fractured surface of the composite specimen was observed with a JEOL JSM 6480LV scanning 

electron microscope at an acceleration voltage of 15 kV. All specimens were coated with a thin layer of 

gold using a JEOL ion sputtering device model JFC-1100E for 4 minutes to obtain a thickness of 

approximately 300 Angstroms. 

 

3. Results and Discussion 
 

3.1. Curing Condition 

 

 
Fig. 1. DSC thermograms of benzoxazine molding compound with various nanofiller contents: 

                   (●) benzoxazine monomer, (■) 1wt%, (♦) 3wt%, (▲) 5wt%, (▼) 7wt%,  (○) 10wt%. 
 
Figure 1 shows the curing exotherms of neat benzoxazine monomer (BA-a) and the nanocomposites at 

different nano-SiO2 contents. It reveals that the onset of curing was at 150
o
C.   The fumed silica filler is 

rather inert to the curing reaction.  Furthermore, the area under the curing peak was found to decrease 

with increasing nano-SiO2 content. That means the exothermic heat generated during curing decreases 

with decreasing the amount of benzoxazine monomer in the molding compounds. 
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3.2. Rheological Behavior 

 
Fig. 2. Viscosity of benzoxazine molding compound with different nano-SiO2 contents at 120 C:  

(▲) benzoxazine monomer, (○) 1wt%, (□) 3wt%, (♦) 5wt%, (●) 7wt%, (■) 10wt%. 

 
The relation between apparent shear viscosity and apparent shear rate of nano-SiO2 filled benzoxazine 

molding compound at various filler contents are shown in Fig. 2 in which the silica concentration were 

varied from 1 to 10 wt%, or expressed as volume fraction from 0.0054 to 0.0562. These volume fraction 

are based on the density of polybenzoxazine [28] (1.19 g/cm
3
) and nano-SiO2

 
[29] (2.22 g/cm

3
) It can be 

seen that the shear viscosity of nano-SiO2 filled benzoxazine molding compounds increases with 

increasing amount of nano-SiO2. The results were as expected since nano-SiO2 is common rheological 

filler used in many applications such as in the paint industry. In this study, the nano-SiO2 filled 

benzoxazine molding compound exhibited shear thinning behaviors, which could be clearly observed at 

high nano-SiO2 content, (i.e. 3 wt% or higher). Additionally, the viscosity of the compound at 10 wt% 

showed drastically decreased at the shear rate higher than 100 s
-1

. These rheological behaviors were also 

found in the fumed silica suspensions in the bisphenol E cyanate ester [30], which reported that the 

mechanism of the decreasing viscosity with an increase in the shear rate should be attributed to a 

reduction in the effective volume of the aggregated silica particles caused by rearrangement of the 

particles without change in the size rather than by breaking them down under shear flow [30]. 

 
Fig. 3. Relation between nano-SiO2 content and viscosity of benzoxazine molding compound  

 

The relation between the shear viscosities of nano-SiO2 filled benzoxazine molding compound and 

the filler contents was shown in Fig. 3. The results reveal that the shear viscosity increased with 

increasing nano-SiO2 content, which is attributed to the fact that the colloidal forces between nanofiller 

particles can become enormous. The results show that even at low concentration, viscosity can be 

increase more than an order of magnitude. Theoretically, when the volume fraction is higher than 0.01, 

particles increasingly enter the neighborhood of other particles. Therefore the multiple particles 

interactions and particle-molten polymer interactions play an important role in the viscosity of the 

melted polymeric compound. In this study, the viscosity could be estimated from volume fraction via 

Batchelor Model [31]. 
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Fig. 4. Processing window of benzoxazine molding compound with different nano-SiO2 contents: 

(●) 1wt%, (■) 3wt%, (♦) 5wt%, (▲) 7wt%, (▼) 10wt%. 

 
Figure 4 reveals the processing windows of nano-SiO2 filled benzoxazine molding compound. The 

complex viscosity of this molding compound at various nano-SiO2 contents was recorded as a function 

of temperature. At the first stage, all the uncured molding compounds were solid at room temperature. 

They were changed to soft solid when temperature increased to reach their softening point. At this point, 

the dynamic viscosity of all nano-SiO2 filled benzoxazine molding compound rapidly decreased. In the 

following stage, all molding compound became liquid, which possessed the lowest viscosity range. This 

period is informative because it is a processing window for a compounding process. In the final stage, at 

higher temperature all the nano-SiO2 filled benzoxazine molding compound underwent the interaction 

past the gel point thus resulting in a rapid increase in the viscosity beyond this transition [32]. 

As can be seen from the rheograms in Fig. 4, the complex viscosities of the fumed silica-filled 

benzoxazine molding compound tended to increase with increasing the amount of nano-SiO2. The 

liquefying temperature of these molding compounds also increased with increasing amount of nano-

SiO2. The lowest liquefying temperature of 70
o
C was showed for 1wt% of nano-SiO2, while the highest 

liquefying temperature of 90
o
C was exhibited at the 10wt% of nano-SiO2. In addition, the gel point of 

all molding compound was found to be constant at a temperature of 180C, even though the amount of 

nano-SiO2 was increased. Therefore, it can be concluded that nano-SiO2 had no effect on the gel point 

temperature.  
 
3.3. Thermogravimetric Analysis 
 

The relation between nano-SiO2 contents and char yield of nano-SiO2 filled polybenzoxazine 

nanocomposites is depicted in Figure 5. From the plot, the amount of residual weight at 800 C of the 

nano-SiO2 filled polybenzoxazine composites was close to the actual amount of added nano-SiO2 in 

composite. That is because the nano-filler, which has high thermal stability, starts to decompose at 

approximately more than 2000
o
C [29]. Thus nano-SiO2 filler do not experience weight loss in the 

temperatures of 30-900
o
C. When the temperature increased to 800

o
C, only the component of 

polybenzoxazine was almost decomposed. Therefore, the amounts of char in this case are able to 

correspond to the amount of nano-SiO2 presented in the composites. The inset of Fig. 5 depicts the 

5wt% loss degradation temperature of the nanocomposites as a function of nano-SiO2 contents. It could 

be seen that the degradation temperature of polybenzoxazine were found to significantly increase with 

the increase of nano-SiO2.  The 5wt% loss decomposition temperatures were in the range of 352-360
o
C 

comparing with that of 348
o
C of pure polybenzoxazine. The improvement of thermal stability was also 

found in similar systems between fumed silica and epoxy [33]. This phenomenon was attributed to the 

barrier effect of the inert nano-SiO2 filler.  
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Fig. 5. TGA thermograms of the nanocomposites with different nano-SiO2 contents: 

(●) neat polybenzoxazine, (■) 1wt%, (♦) 3wt%, (▲) 5wt%, (▼) 7wt%, (○) 10wt%. 

Inset of Fig. 5.  Degradation temperature at 5% weight loss of nano-SiO2 filled polybenzoxazine with 

various nano-SiO2 contents. 

 

3.4. Flexural Property Measurement 

 
Fig. 6. Relation between nano-SiO2 content and flexural modulus of nanocomposites. 

 
Fig. 7. Relation between nano-SiO2 content and flexural strength of nanocomposites. 

 

Flexural modulus and flexural strength of neat polybenzoxazine and fumed silica filled 

polybenzoxazine nanocomposite are illustrated as a function of nano-SiO2 contents in Fig. 6 and 7, 

respectively.  As shown in Fig. 6, the moduli of the nanocomposites were found to be substantially 

improved by the presence of nano-SiO2. The flexural modulus of the neat polybenzoxazine was 

determined to be 5.98 GPa. When the nano-SiO2 was
 
applied, the moduli of the nanocomposites were 
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increased in the range from 6.47 GPa (or 10% increase at 1wt% nano-SiO2) to 7.52 GPa (or 26% 

increase at 10wt% nano-SiO2). The increase in modulus could be attributed to the reinforcing effect, i.e. 

the addition of rigid particulate filler into the polymer matrix was able to improve the stiffness of the 

polymer composite. Additionally, the increase of flexural modulus followed the rule of mixture.  This 

phenomenon was similar to the mechanical properties of in the epoxy system was filled with nano-SiO2 

[34]-[35], Al2O3 and TiO2 [36]. 

Figure 7 shows the flexural strength of the nanocomposites at various nano-SiO2 contents, the 

results reveal that the nanocomposites render slightly lower flexural strength than the neat 

polybenzoxazine. Furthermore, the flexural strength of the filled polybenzoxazine was found to be 

relatively unchanged even though the filler contents were increased. It was postulated that the 

aggregation and agglomeration may present in the nano-SiO2, which cause void defects in the 

composites. Thus the flexural strength values were slightly lowered. These observed phenomena were 

also found in the epoxy-silica nanoparticle system [35]. 

 

3.5. Dynamics Mechanical Measurement 

 

Fig. 8. DMA thermograms of storage modulus with various nano-SiO2 contents:  

(●) neat  polybenzoxazine, (■)1wt%, (♦) 3wt%, (▲) 5wt%, (▼) 7 wt%, (○) 10wt%. 

 

Figures 8 and 9 illustrate the dynamic mechanical properties of their fumed silica-filled 

polybenzoxazine nanocomposites with various nano-SiO2 contents. As seen in Fig. 8, at room 

temperature the storage moduli (G') of the nanocomposites increased with increasing nano-SiO2 content. 

That is possibly due to the more rigid characteristics of nanofiller. Additionally, the storage modulus of 

neat polybenzoxazine (4.8GPa) was enhanced as the presence of fumed silica in the range of 5.2 GPa 

(at 1wt% nano-SiO2) to 7.4 GPa (at 10wt% nano-SiO2). It could be noticed that even only a small 

amount of nano-SiO2 content in the composite was added, the dynamic mechanical properties was 

highly increased. The increase of storage modulus was also observed in the system of fumed silica-

filled cyanate ester nanocomposite [23],[37] Moreover, the storage moduli values at high representative 

for the rubbery state increased remarkably as a result of the addition of nano-SiO2. The influence is 

possibly attributed to the load transfer in the nanocomposite which occurs mainly through the filler 

nanoparticles. The results also indicate that the reinforcing effect of the nanofiller was in both glassy 

and rubbery states, which implied strong interfacial bonding between the polymer and the reinforcing 

nanofiller. 

Figure 9 shows the loss moduli (G'') curves of fumed silica-filled polybenzoxazine as a function of 

temperature. The maximum peak temperature in the loss moduli curve was indicated as a glass 

transition temperature (Tg) of the specimen as seen in the inset of this figure. The Tg of neat 

polybenzoxazine (157C) was increased with increasing the amount of nanofiller. The Tg of the 

nanocomposite at 10wt% fumed silica was up to 167C. The results from DMA measurement 

correspond to those from DSC thermograms. The increase of Tg is possibly due to the presence of the 

silica that made the composite stiffer.  
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Fig. 9. DMA thermograms of loss modulus with various nano-SiO2 contents:  (●) neat polybenzoxazine, 

(■) 1wt%, (♦) 3wt%, (▲) 5wt%, (▼) 7wt%, (○) 10wt%. 

Inset of Fig.9. Glass transition temperature of nano-SiO2 filled polybenzoxazine nanocomposites with 

various nano-SiO2 contents. 

 
3.6. Micro-hardness Evaluation 
 

Surface hardness is generally investigated as one of the most important factors related to the wear 

resistance of materials. Figure 10 exhibits the Vickers microhardness (HV) values of the neat 

polybenzoxazine and nano-SiO2 filled polybenzoxazine composite at different nano-SiO2 contents. The 

surface hardness of the nano-SiO2 composite expectedly increased with increasing nano-SiO2 filler 

content. When the nano-SiO2 was applied, the HV value of neat polybenzoxazine (368 MPa) was raised 

from 375 MPa (at 1wt% nano-SiO2) to 481 MPa (at 10wt% nano-SiO2). Hence, the addition of nano-

SiO2 to polybenzoxazine was found to enhance the resistance of the polybenzoxazine deformation. This 

result was also found in the nano-SiO2 filled epoxy composite system [35]. Moreover, the 

polybenzoxazine nanocomposite had greater increase in Vickers microhardness than that of the epoxy 

nanocomposite. Therefore, the wear resistant behaviors of the polybenzoxazine nanocomposites are 

under investigation into its potential use as a high wear resistant coating material. 

 

Fig. 10. Relation between nanofiller content and micro Vickers hardness of nano-SiO2 filled 

polybenzoxazine. 
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3.7. Morphological Observations 
 

 

 

 

 

 

 

 

 

 

 

Fig. 11. SEM micrographs of fracture surface of the specimens with various nanofiller contents             

(x 500 magnification): (A) neat polybenzoxazine, (B) 3wt%, (C) 7wt%, (D) 10wt%. 
 

Adhesion at the interface of inorganic fillers and polymers is one of the main factors determining the 

properties of polymer nanocomposites. The interfacial adhesion between phases has been examined by 

Scanning Electron Microscope (SEM). Figure 11 shows the fracture surface at 500x magnification of 

the fumed silica-filled polybenzoxazine nanocomposites. As seen in Fig. 11(a), the fracture surface of 

the neat polybenzoxazine is much smoother than that of the nanocomposites. However, the roughness 

on the fracture surface was increased with the addition of nano-SiO2 as shown in Fig. 11(b) to (d). This 

suggested that the addition of fumed silica into polybenzoxazine matrix highly affects the fracture 

surface and brittle behavior of the composite matrix [38]. This phenomenon was similar to that occurred 

in the fumed silica- filled epoxy nanocomposite system [39]. 

 

4. Conclusions 
 

The fumed silica-filled polybenzoxazine nanocomposites were prepared with filler contents varied from 

1 wt% to 10wt%.  DSC thermograms revealed that fumed silica loading had no significant effect on the 

thermal curing reaction of benzoxazine monomer. The rheograms of the melted nanocomposites 

compound showed the shear thinning behaviours. Furthermore, the complex viscosity of the 

nanocomposites suggested that the liquefying temperature of these molding compounds increased with 

increasing amount of nano-SiO2, while the gel-point temperature was not changed even though the 

amount of nanofiller was increased. TGA thermograms revealed that the degradation temperatures of 

polybenzoxazine were significantly increased with an increase of the nano-SiO2. The flexural modulus 

and micro hardness of the nanocomposites were also enhanced with an increase of the nanofiller. 
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