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Abstract. The porous hydroxyapatite (HA) bioceramics were prepared through 

combination of sacrificial template and direct foaming techniques using PMMA 

granules (varied from 5 to 50wt% in content) as a template and H2O2 solution (varied 

from 5 to 30wt% in concentration) as a foaming agent, respectively. The effects of 

PMMA content and H2O2 concentration on final porosity, microstructure and 

mechanical strengths were studied. The porous samples using PMMA provided the 

porosity ranging from 52% to 75%, the samples using H2O2 had the porosity ranging 

from 82% to 85%, and the sample using both pore formers provided the porosity 

ranging between 84% and 90%. The higher content of PMMA and concentration of 

H2O2 led the porosity increased, leading to a decrease in the compressive and flexural 

strengths. Furthermore, this combination technique allowed interconnected pores 

having two levels of pore size, which came from PMMA and H2O2. The PMMA 

formed the small pores with the diameter ranging between 100 and 300 m, while H2O2 

provided the larger pores with the diameter ranging from 100 to 1,000 m depending 

on concentration. 
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1. Introduction 
 

Nowadays, porous bioceramics have an increasingly important role in biomedical application, such as 

bone filler, orbital implant and drug delivery carriers [1]. One of the most popular topic focuses on 

porous hydroxyapatite (HA). Since it has a chemical composition (Ca10(PO4)6(OH)2) identical to human 

bone and an excellent biocompatibility. Moreover, porous structure provides outstanding bone 

ingrowths, vascularization and an increased interfacial area between the implant and the tissues 

resulting in the stronger attachment [1, 2, 3]. 

A number of pore forming techniques on bioceramics have been proposed, which can be classified 

into 3 main techniques [4]. There are (1) replica technique, e.g. replamineform and PU impregnation [5, 

6];
 
(2) sacrificial template technique, e.g. starch consolidation, dual-phase mixing and camphene-based 

freeze casting [7, 8, 9]; and (3) direct foaming technique, e.g. foaming method and gelcasting [10, 11]. 

However, almost previous studies were based on using a single technique. A few works focused on 

porous fabrication using combination of these techniques. Padilla et al. studied on porous HA using 

combination of PU impregnation (replica) and gelcasting (direct foaming) techniques; and Batulli et al. 

studied on porous zirconia using polyethylene sphere as a sacrificial template and gelcasting techniques 

[12, 13]. In spite of these, it seems no study on fabrication of porous HA using combination of 

sacrificial template and direct foaming techniques. 

The purpose of this study was to characterize the porous HA samples fabricated through 

combination of sacrificial template and direct foaming techniques using PMMA granules and H2O2 

solution as a pore template and a foaming agent, respectively. Additionally, the effects of PMMA 

content and H2O2 concentration on the final porosity, microstructure, compressive strength and flexural 

strength of the samples were also investigated. 

 

2. Materials and methods 
 

2.1. Preparation of hydroxyapatite powder 
 

A stoichiometric HA was prepared using the precipitation reaction between 0.5 moles calcium 

hydroxide (Riedel-de-Haen, Germany) and 0.3 moles orthophosphoric acid (Merck, Germany). The 

precipitation reaction was performed at room temperature and the pH was controlled at 10.5 by the 

addition of ammonium hydroxide solution (APS Finechem, Australia) [14]. During mixing process, the 

acid solution was slowly dropped into the vigorously stirring suspension, using a peristaltic pump [15]. 

After complete mixing of the reactants, the suspension was aged overnight. The precipitate was filtered, 

dried at 80
o
C overnight and then ground to a powder by a pestle and mortar. Subsequently, the powder 

was sieved with the size of 100 m. 

 

2.2. Fabrication of porous hydroxyapatite 
 

The poly-methyl-methacrylate granules (PMMA) being commercial grade was applied as a pore former 

for sacrificial template technique, while hydrogen peroxide solution, (H2O2) was used as a foaming 

agent for direct foaming technique. 

The porous hydroxyapatite ceramics were prepared through three techniques, including sacrificial 

template, direct foaming and combination between sacrificial template and direct foaming. To fabricate 

the porous samples, the HA powder was homogeneously mixed with PMMA granule at various content 

(5, 10, 20, 30, 40 and 50wt%) and H2O2 solution at different concentration (5, 10, 20 and 30wt%), with 

the liquid to powder ratio (L/P ratio) of 1.3 ml/g. A series of sample name were listed in Table 1. To 

evaluate the effect of PMMA content and H2O2 concentration, the mixtures were prepared without 

addition of binder, deflocculant and other additives.  

After mixing, the paste was placed into removable molds, and kept at 60
o
C overnight. At this 

temperature, the decomposition of H2O2 produced the foaming of the paste. Afterwards, the green 

samples were removed from the molds and then heated at 400
o
C for 1 hour with the slowly ramp rate of 

1
o
C/min for burning out PMMA granules and to avoid the cracking. Finally, the samples were sintered 

at 1100
o
C for 2 hours with the ramp rate of 5

o
C/min and then furnace cooled. 
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Table 1. The experimental plan layout and feasible production range of porous HA samples (Hxx-Pyy 

was referred to the sample produced with xx concentration (wt%) of H2O2 solution and yy content (wt%) 

of PMMA granule, and “X” was referred to the handleless sample). 

 

H2O2 

concentration 

PMMA content 

(wt%) 

(wt%) 0 5 10 20 30 40 50 

0 H00-P00 H00-P05 H00-P10 H00-P20 H00-P30 H00-P40 X 

5 H05-P00 H05-P05 H05-P10 H05-P20 H05-P30 X X 

10 H10-P00 H10-P05 H10-P00 H10-P20 X X X 

20 H20-P00 H20-P05 H20-P10 X X X X 

30 H30-P00 H30-P05 H30-P10 X X X X 

 

 
 
2.3. Characterizations 
 

The Morphology of the synthesized HA powder and the as-received PMMA granule was characterized 

using laser particle size distribution analysis (LPD) and scanning electron microscope (SEM). In 

addition to the morphological study, SEM was also applied to observe the microstructure of the porous 

HA samples. 

The phase purity of the sintered HA powder was analyzed using X-ray diffraction (XRD) with 

CuKα radiation. The scanning range of 2 was between 20
o
 and 50

o
 at the scan speed of 0.5

o
/min. 

The decomposition temperature of the PMMA granules was determined by thermo-gravimetric 

analysis (TGA) using simultaneous thermal analyzer (STA) with the heating rate of 10
o
C/min. 

The porosities of the sintered samples were calculated from the bulk density of the sample (ρbulk) 

and the theoretical density of hydroxyapatite (ρHA = 3.156 g/cm
3
), by Eq (1). 

 

%1001 









HA

bulkPorosity



 (1) 

 

To examine the effect of PMMA content and H2O2 concentration on the porosity, the one-way 

analysis of variance (ANOVA) was performed at the significant level () of 0.05. In addition, such 

results were used to develop regression models to predict porosity. 

The compressive strength and three-point flexural strength of porous HA samples were 

characterized according to ASTM C773-88 and C1161-02c specification, respectively. 

 

3. Results and discussion 
 

3.1. Characteristics of the HA powder and PMMA granule 
 

Figure 1 showed particle size distribution of the HA powder and the PMMA granule. The distribution 

of the HA powder was a bimodal distribution with the peaks of approximately 4 m and 20 m in 

particle size, while that of the PMMA granules was an unimodal distribution with a peak of 

approximately 150 m. The average and standard deviation of mean particle sizes of the both were 

summarized in Table 2. The average mean particle sizes of the HA powder and PMMA granules were 

4.970.03 m and 150.750.15 m, respectively. 

Figure 2 exhibited SEM micrographs of the HA powder and PMMA granules. In Fig. 2(a), the HA 

powder had angular particles with various sizes. This may be due to the manually milling process 

through a pestle and mortar. This is similar to the results from previous investigation by Gibson et al 

[14]. The larger particles appeared to be the agglomeration of smaller particles during sintering process.  

In Fig. 2(b), the PMMA granules obviously had a spherical shape with various sizes, ranged from 10 to 

200 m. 
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Fig. 1. Particle size distribution of (a) the HA powder and (b) PMMA granules. 

 

 
Fig. 2. Particle morphology through SEM of (a) the HA particle sintered at 1100

o
C for 2 hr and (b) the 

as-received PMMA granules. 

 

Figure 3 displayed XRD spectra of the HA powder sintered at 1100
o
C. The spectra showed the 

single phase of HA, corresponding to the ICDD standard peak of stoichiometric hydroxyapatite 

(standard No.09-0432). Furthermore, this result agrees with a previous study in that sintering at high 

temperature resulted in the sharp and narrow diffraction peaks [16]. 

Figure 4 illustrated TGA curve of the as-received PMMA granules. A stable weight was attained at 

about 400
o
C, which indicates that the PMMA granules have been completely decomposed at about 

400
o
C. This results is similar to the previous report by Yao et al [17]. In order to let PMMA decompose 

completely and avoid the cracks in HA ceramics, the heating rate of the green HA body should be very 
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slow at sintering temperature below 400
o
C. This is why the heating rate of the samples was set at 

1
o
C/min. 

 

Table 2. Average and standard deviation of particle sizes of the prepared HA powders and the as-

received PMMA granules (d0.1, d0.5 and d0.9 were referred to the measured particle size of diameter at 

10, 50 and 90Vol% of the powder particles). 

 

Type 
Particle size (m) 

d0.1 d0.5 d0.9 

HA powder 1.12  0.01 4.97  0.03  26.31  0.19 

PMMA granule 82.69  0.27 150.75  0.15 222.95  0.49 

 

 
Fig. 3. XRD spectra of the synthesized HA powder sintered at 1100

o
C for 2 h. 

 

 
Fig. 4. TGA curve of the as-received PMMA granules. 

 

 

3.2. Effect of PMMA and H2O2 on porosity 
 

Table 1 showed the feasible production range of the porous HA samples in this study. The samples 

prepared using only PMMA at the content of over 40wt% were handless, while the samples mixed with 

H2O2 solution at the concentration of over 20wt% were very brittle. To prepare the samples using both 

PMMA and H2O2, a balance between the PMMA content and the H2O2 concentration must be 

considered as shown in Table 1. 

Figure 5 presented effect of PMMA content and H2O2 concentration on porosity of the HA samples 

performed by various techniques: (a) sacrificial template; (b) direct foaming; and (c) combination 

between sacrificial and direct foaming. Table 3 summarized P-value from analysis of variance 

(ANOVA) for porosity of the porous HA samples prepared by various forming methods (at  = 0.05). 
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Table 4 listed the regression models and R-square values from regression analysis for porosity of the 

porous HA samples prepared by various methods. 

 
Fig. 5. Effect of PMMA content and H2O2 concentration on porosity of the HA sample performed by 

various techniques: (a) sacrificial template using PMMA, (b) direct foaming using H2O2, and (c) 

combination technique using PMMA and H2O2. 

 

Figure 5(a) showed the final porosity of the specimens using PMMA granules as pore template. The 

porosity of the HA sample (H00-P00) was approximately 52%. Obviously, the porosity increased with 

an increasing content of PMMA used. This result agreed with a previous study by Yao et al [17]. By 

this technique, the porosity reached approximately 75% at the PMMA content of 40wt%. The relation 
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(b) Direct foaming using H2O2 

(c) Combination technique using PMMA and H2O2 
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between the porosity (P) and the content of PMMA (CP) was explained by the regression model (1) in 

Table 4  

Figure 5(b) exhibited the porosity of the samples using H2O2 solution as pore former. The porosity 

of the samples increased slightly from ~82% up to ~85%, when the concentration of H2O2 increased 

from 5wt% to 30wt%. To confirm the effect of H2O2 concentration on porosity, ANOVA test was 

performed. This statistical analysis confirmed that the concentration of hydrogen peroxide had a 

significant effect on porosity, with the P-value of 0.022, at 95% confident interval, as shown in Table 3. 

Furthermore, the porosity of the samples using H2O2 less than 5wt% could be predicted by the 

regression model (2) in Table 4.  However, compared to the sample H00-P00, adding H2O2 (5wt%) 

resulted in a dramatic increase in porosity of about 30%. This was because the addition of H2O2 into 

ceramic slurry produced gas voids when it was stored at 60
o
C, although a small amount of H2O2 was 

applied [10]. At elevated temperature, H2O2 could produce H2 and O2 gases, leading to the voids in 

ceramic bodies. The gas voids were driven out by heating during the liquid phase. After drying process, 

the gas voids remaining in the paste became the pores in porous dry bodies. 

Figure 5(c) illustrated the porosity of the porous samples prepared through combination technique 

using PMMA granule and H2O2 solution. It seemed a minor change in porosity was found, when both 

PMMA content and H2O2 concentration increased. From P-values in Table 3, the content of PMMA had 

a significant effect on porosity when the H2O2 concentration was at 5wt% and 10wt%, with the P-value 

of 0.001 and 0.003, respectively (at 95% confident interval). However, at 20wt% and 30wt% H2O2, the 

PMMA content showed an insignificant effect on porosity with the P-value of 0.066 and 0.061, 

respectively (at 95% confident interval). As expected, the samples using H2O2 with the concentration of 

over 20 wt% were hard to be prepared. So, mixing PMMA into these samples had barely affected on 

porosity. The porosity of the samples using both PMMA and H2O2 could be estimated by the regression 

model (3) in Table 4. 

From above results, it seemed that the porosity derived from PMMA granules was dominated by 

H2O2 solution. This was because PMMA granule formed pores by decomposition at above 400
o
C in 

solid state while H2O2 produced pores by expansion of gas voids in liquid phase, which provide the 

higher porosity than PMMA. 
 

Table 3. Analysis of variance for porosity of the porous HA samples prepared by various methods (at  

= 0.05). 

 

Method Factor P-value 

1. Sacrificial template using PMMA Content of PMMA < 0.001 

   

2. Direct foaming using H2O2 Concentration of H2O2 0.022 

   

3. Combination technique using PMMA and H2O2   

         3.1. at  5wt% H2O2  Content of PMMA 0.001 

         3.2. at 10wt% H2O2 Content of PMMA 0.003 

         3.3. at 20wt% H2O2 Content of PMMA 0.066 

         3.4. at 30wt% H2O2 Content of PMMA 0.061 

 

 



DOI:10.4186/ej.2011.15.2.1 

8                                         ENGINEERING JOURNAL Volume 15 Issue 2, ISSN 0125-8281 (http://www.ej.eng.chula.ac.th/eng/) 

Table 4. Regression analysis of the porous HA samples prepared by various methods (P was referred to 

the expected porosity (%), CP was referred to the content of PMMA (wt%), and CH was referred to the 

concentration of H2O2 (wt%), respectively). 

 

Method Regression Model  R-square 

1. Sacrificial template 

    using PMMA 
(1) P =  0.008CP

2
 + 0.204CP + 51.716 ; 0  CP  40 0.9960 

2. Direct foaming  

    using H2O2 
(2) P =  0.004CH 

2
 – 0.038CH + 82.387 ; 0 < CH  30 0.8855 

3. Combination technique 

    using PMMA and H2O2 
(3) P = -0.012CP

2
 + 0.538CP + 0.298CH + 80.2 

; 0  CP  20 

; 0 < CH  10 
0.9350 

 

 

3.3. Effect of PMMA and H2O2 on microstructure 
 

Figure 6 illustrated SEM micrographs of the HA samples prepared with different conditions, after 

sintering at 1100
o
C for 2 hours. The sintered HA or the sample of H00-P00 had a few small pores with 

less than 50 m in diameter, as shown in Fig. 6(a). These pores were derived from driving out of water 

during drying process. 

The porous samples prepared by 10wt% and 30wt% PMMA content were presented in Fig. 6(b) and 

6(c), respectively. From the samples, they were composed of two groups of pore size range. The large 

pore group had the diameter range of 100-300 m, arising from PMMA granules, which conformed to 

the particle size measured and corresponded to Yao et al [17]. However, it seemed that the small pore 

group had a similar pore size as seen in the H00-P00 sample.  Moreover, the more content of PMMA 

the higher amount of pores. 

The porous samples prepared using 10wt% and 20wt% H2O2 concentration were shown in Fig. 6(d) 

and Fig. 6(e), respectively. By direct foaming technique, the samples had a number of pores with the 

diameter larger than 100 m. Comparison between the sample H10-P00 and H20-P00 indicated that the 

amount of pores and pore size were increased when using a higher concentration of H2O2. However, it 

seemed there were a few pores derived from water. This result is agree with a previous study by 

Almirall et al [10]. 

The HA sample prepared through combination technique using 10wt% PMMA content and 10wt% 

H2O2 concentration was displayed in Fig. 6(f). It seemed that the sample consisted of the large pores in 

the ceramic body and the small pores in the ceramic wall. The large pore size was up to 1000 m in 

diameter, while small pore size ranged between 100 and 300 m in diameter. The large pores were 

possibly resulted from H2O2, while small pores might be from PMMA granules. Moreover, the 

interconnected pores were observed. The interconnected pores, pathways between pores, conduct cells 

and vessels between pores and thus favor bone ingrowth inside ceramics [18]. 

Based on previous studies, the minimum requirement for pore size is considered to be ~ 100 m 

due to cell size, migration requirements and transport. However, pore sizes over 300 m was favorable 

to enhanced new bone formation and cell regeneration [18, 19]. Therefore, the sample prepared by 

combination technique using both PMMA and H2O2 can provide the pores attaining these requirements. 
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Fig. 6. SEM micrographs of the sintered HA samples prepared with different conditions: 

(a) H00-P00, (b) H00-P10, (c) H00-P30, (d) H10-P00, (e) H20-P00 and (f) H10-P10. 

 

3.4. Effect of PMMA and H2O2 on mechanical strength 
 

Figure 7 showed the effect of PMMA content and H2O2 concentration on compressive strength of the 

HA samples performed by sacrificial template, direct foaming and combination between sacrificial 

template and direct foaming. In Fig. 7(a), the compressive strength of the samples prepared using 

PMMA granules dropped from approximately 25 MPa to 0.6 MPa when the template content used 

increased from 5wt% to 40wt%, while the HA cement (H00-P00) had the compressive strength of 

around 35 MPa. In Fig. 7(b), the compressive strength of the samples prepared using H2O2 solution 

decreased from approximately 0.3 MPa to 0.15 MPa when concentration of the foaming agent was 

increased from 5wt% to 30wt%. Compared to the sample H00-P00, an addition of H2O2 could affect on 

falling in compressive strength of the HA samples due to a dramatic increase in porosity [10]. Also, it 

seemed that H2O2 has a more influence on impairing the strength than PMMA, because H2O2 could 

cause higher porosity than PMMA. In Fig. 7(c), the samples prepared through combination technique 

(a) H00-P00 (b) H00-P10 

(c) H00-P30 (d) H10-P00 

(e) H20-P00 (f) H10-P10 
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showed a decrease in compressive strength when using higher PMMA content and higher concentration 

of H2O2. In other words, the compressive strength decreases with an increase of final porosity. 

 

 
Fig. 7. Effect of PMMA content and H2O2 concentration on compressive strength of the HA samples 

performed by various techniques: (a) sacrificial template using PMMA, (b) direct foaming using H2O2, 

and (c) combination technique using PMMA and H2O2. 

 

Figure 8 exhibited the effect of PMMA content and H2O2 concentration on flexural strength of the 

HA samples performed by sacrificial template, direct foaming and combination between both 

techniques. The flexural strength of the specimens prepared using PMMA decreased from around 5.5 

MPa to 0.7 MPa when the content of the pore template was raised from 5wt% to 40wt%, as shown in 
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Fig. 8(a). The flexural strength of the specimens prepared using H2O2 was diminished from 

approximately 0.5 MPa to 0.2 MPa when concentration of the foaming agent increased from 5wt% to 

30wt%, as illustrated in Fig. 8(b). As expect, this result is consistent with the compressive strength in 

that H2O2 had a more effect than PMMA on the strength. Finally, the specimens prepared through 

combination technique had a decrease in flexural strength when higher content of PMMA and higher 

concentration of H2O2 were added. 

 

 
Fig. 8. Effect of PMMA content and H2O2 concentration on flexural strength of the HA samples 

performed by various techniques: (a) sacrificial template using PMMA, (b) direct foaming using H2O2, 

and (c) combination technique using PMMA and H2O2. 
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Figure 9 and Figure 10 presented the effect of porosity on compressive strength and flexural 

strength, respectively, of the HA samples divided by forming technique, including sacrificial template 

using PMMA, direct foaming using H2O2, combination technique using PMMA and H2O2, and overall 

techniques.  

The samples prepared through sacrificial template using PMMA provided the widest range of 

mechanical strengths (35 to ~1 MPa in compressive strength and 6 to ~1 MPa in flexural strength), as 

shown in Fig. 9(a) and Fig. 10(a). 

The samples prepared by direct foaming using H2O2 showed a decrease in both strengths (from 0.3 

to ~0.1 MPa in compressive strength and from ~0.5 to 0.2 MPa in flexural strength) when porosity 

increased, as illustrated in Fig. 9(b) and Fig. 10(b).  

The samples using both PMMA and H2O2 also had a decrease in mechanical strengths (~0.2-0.05 

MPa in compressive strength and 0.4-0.1 MPa in flexural strength) when porosity rose, as exhibited in 

Fig. 9(c) and Fig. 10(c). 

 
Fig. 9. Effect of Porosity on compressive strength of the porous HA samples divided by forming 

techniques: (a) sacrificial template using PMMA, (b) direct foaming using H2O2, (c) combination 

technique using PMMA and H2O2 and (d) overall technique. 

 

It seemed that both compressive strength and flexural strength decreased with an increasing 

porosity for all forming techniques, as summarized in Fig. 9(d) and Fig. 10(d). These results agreed 

with previous research that the mechanical strength of the sample was conversely relative to the amount 

of pore former used and final porosity [9, 10, 17]. Furthermore, the samples with the porosity higher 

than 80% showed a fluctuation in strength, particularly flexural strength. On the other hand, the samples 

using H2O2 (i.e. direct foaming and combination technique) provided high variation in strength more 

(a) Sacrificial template using PMMA (b) Direct foaming using H2O2 

y = 582941e
-0.1905x

R
2
 = 0.9892

0

5

10

15

20

25

30

35

40

50 55 60 65 70 75 80

Porosity (%)

C
o

m
p

re
s

s
iv

e
 S

tr
e

n
g

th
 (

M
P

a
) Sacrificial Template

Expon. (Sacrificial Template)

(c) Combination technique using 

PMMA and H2O2 

(d) Overall 

y = 2E+09e
-0.2708x

R
2
 = 0.578

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

80 85 90 95

Porosity (%)

C
o

m
p

re
s

s
iv

e
 S

tr
e

n
g

th
 (

M
P

a
)

Combination

Expon. (Combination)

y = 112254e
-0.1609x

R
2
 = 0.9708

0

5

10

15

20

25

30

35

40

50 60 70 80 90 100

Porosity (%)

C
o

m
p

re
s

s
iv

e
 S

tr
e

n
g

th
 (

M
P

a
) Sacrificial Template

Direct Foaming

Combination

Expon. (All samples)

y = 2E+09e
-0.2718x

R
2
 = 0.903

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

80 85 90 95

Porosity (%)

C
o

m
p

re
s

s
iv

e
 S

tr
e

n
g

th
 (

M
P

a
)

Direct Foaming

Expon. (Direct Foaming)



DOI:10.4186/ej.2011.15.2.1 

ENGINEERING JOURNAL Volume 15 Issue 2, ISSN 0125-8281 (http://www.ej.eng.chula.ac.th/eng/)                                          13 

than those using PMMA. This was because the porosity obtained from H2O2 could not be effectively 

controlled. 

Nevertheless, the mechanical strengths of the samples in this study were lower than the minimum 

strength of cancellous bone. The minimum compressive strength and flexural strength of human 

cancellous bone were approximately 2 MPa and 10 MPa, respectively [20]. The pore size favorable to 

bone formation and cell regeneration was over 300 m [19]. As well as the interconnected pores favors 

to cell ingrowth inside the pore [18]. But, there are no report on suitable porosity for these applications. 

As a result, such samples were not applicable for a scaffold in bone restoration due to the lack of 

strength. However, these materials could be applied for fabrication of an eye ball in orbital implant 

being porous bioceramics. 

Furthermore, the low mechanical strengths of porous hydroxyapatite prepared by this combination 

technique using PMMA and H2O2 could be developed by adding some additives; such as binder, 

deflocculant or surfactant. Additionally, using hydrogen peroxide less than 5wt% concentration might 

be another way to improve the strength of the porous samples. 

 

 
Fig. 10. Effect of Porosity on flexural strength of the porous HA samples divided by forming 

techniques: (a) sacrificial template using PMMA, (b) direct foaming using H2O2, (c) combination 

technique using PMMA and H2O2 and (d) overall technique. 

 

4. Conclusion 
 

This study investigated the characteristics of the porous HA prepared by three different methods and the 

effect of pore former on their mechanical properties, summarized as follows: 

(1) An increasing porosity of the hydroxyapatite samples resulted in a decrease of both 

compressive strength and flexural strength. 
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(2) For sacrificial template, the more PMMA content had a significant effect on the higher porosity 

of the HA samples whereas the lower compressive strength and flexural strength. These samples had 

the pore size ranged between 100 and 300 m. 

(3) For direct foaming, the higher concentration of H2O2 resulted in an increase in porosity and 

pore size, while a decrease in the both mechanical strength. The pore size of these samples ranged from 

100 to 1000 m. 

(4) There were hard to prepare the porous HA using PMMA content over 40wt% for sacrificial 

template and H2O2 concentration over 20wt% for direct foaming when L/P ratio was controlled at 1.3 

ml/g. 

(5) For combination between sacrificial template and direct foaming, an increasing use of PMMA 

and H2O2 caused a rise in porosity and a drop in both compressive and flexural strengths. 

(6) The HA samples prepared through sacrificial template provided the porosity ranged between 

52% and 75%, while the samples produced by direct foaming and combination technique provided the 

porosities ranged from 82% to 85% and from 84% to 90%, respectively. 
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