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ABSTRACT  
 
We propose that pseudometric, a subadditive distance measure, has sufficient 
properties to be a good structure to perform nearest neighbor pattern 
classification. There exist some theoretical results that asymptotically 
guarantee the classification accuracy of k -nearest neighbor when the sample 
size grows larger. These results hold true under the assumption that the 
distance measure is a metric. The results still hold for pseudometrics up to 
some technicality. Whether the results are valid for the non-subadditive 
distance measures is still left unanswered. Pseudometric is also practically 
appealing. Once we have a subadditive distance measure, the measure will 
have at least one significant advantage over the non-subadditive; one can 
directly plug such distance measure into systems which exploit the 
subadditivity to perform faster nearest neighbor search techniques. 
 
This work focuses on pseudometrics for time series. We propose two 
frameworks for studying and designing subadditive distance measures and a 
few examples of distance measures resulting from the frameworks. One 
framework is more general than the other and can be used to tailor distances 
from the other framework to gain better classification performance. 
Experimental results of nearest neighbor classification of the designed 
pseudometrics in comparison with well-known existing distance measures 
including Dynamic Time Warping showed that the designed distance 
measures are practical for time series classification.  
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I .  Introduction  
 
Since its inception in the 1950s ([1], [2]), k -nearest neighbor ( -NN) still receives regular 
interest among researchers; both in the theoretical aspect and the practical aspect. Its 
discrimination procedure is simple but powerful and needs virtually no modification to handle 
multi-class problems, i.e. it just obeys the majority vote for the classes among the k  nearest 
neighbors of the sample being considered. k -NN decision rules gained theoretical 
acceptance since its early age of development;  [1] developed their notions of consistencies 
between sequences of decision functions and showed that a formulation of k -NN is 
consistent with a reference decision rule. Many notable points are worth mentioning in their 
work. They initiated the field of nonparametric classification, the distribution generating the 
examples need not be assumed to be Gaussian or any other parametric distributions. The 
reference decision rule mentioned in their work as the ''likelihood ratio procedure'' [3] is 
closely related to what is known today as the Bayes classifier. The Bayes classifier is the 
best classifier that will yield the lowest possible expected misclassification given that we 
know the distribution of the data; it will be discussed in detail later. They established that 
whenever the number  of available examples approaches infinity and  are dependent of 

 such that  and , the decision of nk NN will get arbitrarily closer to that of 
the likelihood ratio procedure with high probability. For example, one may choose nk  t be 

log⎡ ⎤ ater, [4] showed that simpler rules also possess good asymptotic properties; for 
a fixed k  t e error probability of k - N will be at most twice that of the Bayes classifier in 
the limit as the number of examples grows to infinity. The link between k -NN error and 
Bayes error provides ways to estimate the theoretical limit one can achieve. Lower bounds of 
the Bayes error relative to errors of modified versions of k -NN rules are also studied. 

k
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More recently, various attempts to learn a good metric to use in k -NN classification have 
been proposed  [5],[6],[7],[8]. Most of them learn the so called ``Mahalanobis distance'', 
which can be perceived as a Euclidean distance in a linear transformation of the original 
vector space of examples. Several objectives had been proposed and optimized in order to 
find the best linear transformation, and most of the proposed objectives are formulated to be 
able to be solved by convex optimization or the spectral method, where the optimum is 
guaranteed to be global. Some of them are optimized for local minimum by gradient descent 
algorithms or other non-convex optimization techniques. The common goal, however, is to 
optimize a quantity that are related to classification performance of -NN; the learned metric 
is used in k -NN. In their experiments, k -NN with the learned metric even outperforms the 
current state of the art learners such as support vector machines for some datasets [6]. 

k

 
The naïve version of the k -NN algorithm is easy to implement by computing the distances 
from the test sample to all stored vectors, but it is computationally intensive, especially when 
the size of the training set is large. From the practical point of view, large scale k -NN 
classification scenarios face the problem of speed. Several distance measures are ideated to 
augment existing well known basic distances such as the Euclidean distance and the  
distances and in many cases the new distance measures outperform existing ones in terms 
of classification accuracy. However, more accurate distances come with their price; they 
usually need more time to compute. A well known example of such event is the DTW 
distance whose running time grows like the square of time series lengths, while the  
distance takes linear time of time series lengths. The distance measures in use nowadays 
may be classified exclusively into two different kinds, namely   

p

p

 1. subadditive distance measures: by definition a distance d  is subadditive if 
 for every ( , ) ( , ) ( , )≤ +d x z d x y d y z , ,x y z , and the inequality is called the triangle 

inequality or the triangle law,  

 2.  non-subadditive distance measures, which is the complement of the first kind.  

 
Subadditivity is useful in avoiding the need to compute every distance when the nearest 
neighbor is to be searched. A simple technique [9] to prune unnecessary computation of 
distance between some pair of items when doing nearest neighbor queries is to select an 
item from the pool of candidates which will be used as the reference item. The distance 
between the reference item and each of the candidates will be computed and stored in 
advance. Together with the distance between the reference item and the query item, those 
stored values can be used to lower bound the distance of the query item from each 
candidate item in constant time. If the lower bound distance from the query item to candidate 
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x  is greater than the  closest so far distance, then x  can be safely abandoned without 
having to compute its distance from the query item. Various works that take the advantage of 
this fact exists ([9],[10],[11],[12]); most of the works were done by database researchers and 
can be used instantly if only the distance measure we use is subadditive. 
 
Although the DTW distance cannot be lower bounded using the triangle inequality, one can 
compute the lower bound of the DTW distance between each pair of time series instead and 
such bounds can be similarly used to prune out futile computations of actual DTW distances. 
The best known strategy to lower bound the DTW distance is due to Keogh and 
Ratanamahatana [13]. Their lower bound can be computed in linear time. 
 
A few questions arise naturally. Are the theoretical results regarding the asymptotic 
properties of k -NN applied for every distance in use today? Which of the widely used 
distances is of the first kind and which is not? What is a good distance for doing k -NN 
classification? 
 
It may be unfair to the first question but we will answer the second first. Some widely used 
distances are not subadditive; examples are DTW and Shape Context Distance [14]. The 
distances that are of the first kind are the well known Euclidean and  metrics, and 
instances of the less commonly known ones are Levenshtein distance or edit distance [15] 
and Edit Distance with Real Penalty (ERP) [16], for example. 

p

 
The answer to the first question is, unfortunately, negative. All of the nice asymptotic results 
for -NN require that the distance measure be either the Euclidean metric [1], a norm metric 
[17](chap. 5) or a metric with some assumptions [4]. Perhaps the least restrictive result, 
when considering only the conditions imposed on the distance used by k -NN, is in the work 
of [4], where the distance has to be a metric in a separable metric space, but since a non-
subadditive distance fails to be a metric in the first place, k -NN with the second kind 
distances does not enjoy the existing results. Whether the results can be extended to cover 
non-metrics is still unknown. Although this does not necessarily imply that extensions of 
these nice results to non-metrics are impossible, it does indicate that more work has to be 
done in order to justify non-metrics k -NN theoretically. More precise statement regarding 
these asymptotic results will be formally given in Section 2. 

k

 
As common sense and the formalized concept of ``no free lunch'' suggest [17](chap. 7), a 
good distance is inevitably dependent on the problem at hand. For the last question we will 
not try to give a clear cut answer. Instead, we give a partial answer by a list of desirable 
properties. For a given set of examples, if a distance measure has the following properties,   

 1.  it is a pseudometric,  

2.  it gives good accuracy for the particular set of examples,  

then we say that it is a good distance for doing k -NN, with respect to the examples. The 
exact definition of pseudometric will be given in Section 2. It is briefly a symmetric 
subadditive distance measure. The first property has twofold advantages. First, it ensures us, 
up to some assumptions, that our classifier has the potential to perform incrementally better 
when we have more observed examples in the future (a pseudometric can be regarded as a 
metric in a technically adjusted space). Second, subadditivity is useful to hasten nearest 
neighbor searches and we can plug a pseudometric into existing systems that take 
advantage of the triangle law if we want k -NN to be faster. So pseudometrics are both 
theoretically and practically salient. The existing asymptotic results, at least the work by [4], 
still hold for a pseudometric given that the underlying space is separable. The second 
property is vital in its own right. 
 
Generalizing from Euclidean and  spaces to metric and pseudometric spaces is somehow 
a sensible next step of development since metric spaces bear some relationship with  
spaces. Metric spaces are well studied. For example, it is well known that metric spaces are 
Hausdorff, implying that every convergent sequence has a unique limit, and any metric 
spaces can be embedded isometrically into a Banach space [18]. Several fixed point 
theories for metric spaces are in the mathematical literature [19]. Other than speed gains for 
the nearest neighbor algorithm, more interesting results may be discovered for 
pseudometrics -NN or related algorithms as well. 

p

p

k
 
This work is restricted to pseudometrics for univariate time series, although it will be seen 
that some results in our work hold for more abstract structures than just time series. We 
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attempt to study pseudometrics for time series first because time series are slightly different 
from vectors. We will be well equipped with tools and structures in linear spaces to work with. 
 
In the remaining sections, we will make the problem setting more precise after the 
introduction of notations used throughout our expositions, followed by the main work 
corroborated with the experiments. Sufficient backgrounds and pointers to relevant 
references are in Section 2, one should be familiar with in order to follow the development. In 
Section 3, we introduce a concept called condensation to be used as a guideline for 
designing new distances. As a by product, we discover an alternative characterization of the 
DTW distance. The second distance construction guideline called ``shortcut distance'' will 
also be discussed in Section 3 and we will demonstrate how it can be used to fine tune 
distances to yield better empirical classification performance. Numerical results are in 
Section 4. Conclusion and future work are given in Section 5. 
 

ll.  Background 
 
2.1 Conventions 
 

Random variables are uppercase characters such as X , Y , and Z . We usually 
denote a time series or a finite dimensional vector by a boldface letter such as s , and 
its length by #  or just  when the mentioned time series is obvious. The i -th value 
of the time series  is written  or , and by  and  we mean the same 
thing. 

s l
s is i〈 〉s s 1[ , ,… ]ls s

 
The time series  is called the  tail of s , denoted by s . 0  and []  are [0  
and the time series of length zero, respectively. There is one and only one place, in 
Section 2.4, where the square brackets enclosing a letter [

2[ , , ]ls s… ∼ ]

]x  will be used to denote 
the equivalence class of x  and we do not mention time series there. 
 
Functions that change a vector or time series or one object to another, called morphs, 
are denoted by Greek letters using prefix notation. For example, ( )μ x  or μx  is 
understood as the morphed object from x  by the morph μ . Compositions of functions 
such as ( ( ))μ ν x  may be written as μν x  or μ ν x . I  denotes the identity map. 
 
Calligraphic scripts such as , G  and are used to denote sets of functions. For a 
set  of functions on a space Ω  and 

F M
F ∈Ωx , we let ( )F x  be the set { }( ) | ∈Ff x f . 

 
We denote infinite sequences by the list of its elements enclosed in a parentheses e.g. 
(1 ) Depending on the context, sometimes we regard a finite sequence as an 
infinite sequence entailed with zeros, or as an infinite sequence entailed with a 
constant sequence of its last element. For example, we may think of [0.5  as 

 or , subject to the context. 

,2,3,4,...

(0.5,1,0,0,0
,1]

,...) (0.5,1,1,1,...)
 
Given a finite sequence s  and another sequence t , the concatenation of s  and  is 
written as , and  is the same as  and  is defined recursively as 

t
st 1s s sn 1−ssn . 

 
2.2 Classification Problem Settings 
 

We follow the same setting as in the work of [17]. The -class classification problem 
in a probabilistic setting is formalized as follows. Let ( ,  be a pair of random 
variables taking values in the Cartesian product 

c
)X Y

Ω×Λ  of a metric space Ω  of all 
possible examples and the class labels { },c= 1,…Λ . A function :f Ω → Λ  deciding 
the class label based solely on the observation of examples from Ω  is called a 
classifier. A rule, upon a given finite set of i.i.d. pairs of values observed from the 
random pair ( , , constructs a classifier. For example, in the case of 1-NN rule, 
given {

)X Y
), ,( }1 1( , , )n nx y x… y , it constructs the decision function  
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( ) = ,n kg x y  
where kx  is closest to x . 
 
An error occurs if ( )f X Y≠ , and the probability of error for a classifier  is  f

{ }( ) = ( ) .L f f X Y≠P  
 
For a fixed rule, the classifier  constructed according to  observations from the 
random pair ( ,  depends randomly on the data sequence, so as the conditional 
probability of error  

nf n
)X Y

 
{ }1 1= ( ) = ( ) | , , , , .n n n n nL L f f X Y X Y X Y≠P …  

 
2.3 Bayes Classifier 
 

The Bayes classifier is the following decision function  
 

{ }* ( ) = =1| = .argmax
i

g x Y X x
∈Λ

P  

 
It can be shown [17](chap. 2) that for any classifier , g
  

{ } { }* *= ( ) ( )L g X Y g X Y≠ ≤ ≠P P .  
 
2.4 Distance, Metric and Norm 
  

The asymptotic results of k -NN contains different assumptions on the distance 
measure and the probability distribution of the data. In order to get a good grasp of the 
different assumptions on the distance measures, we begin with the definition of metric 
space and its relatives. 
 

Definition 1. A  metric space ( , )dΩ  is a set Ω  together with a non-negative 
extended-real-valued function d : [0, ]Ω×Ω → ∞  (called a  metric) such that, for every 

,   , ,x y z∈Ω

(1)  ,  ( , ) = 0d x x
(2)   implies ( , ) = 0d x y x y= ,   
(3)  ,   ( , ) = ( , )d x y d y x
(4)  ( , ) ( , ) ( , )d x z d x y d y z≤ + .   

 

If the condition (2) is omitted then we have a  pseudometric space and d  will be 
called a  pseudometric. If the conditions (2) and (4) are dropped, we have a  distance 
space and call d  a  distance.  

Note that we allow d  to take the value ∞  so that the definition of a metric and its 
relatives are technically applicable in a wider situation. For example, if some pair of 
elements in Ω  are not comparable, we let their distance be . ∞
 
Pseudometric space is a salient structure to perform nearest neighbor queries. For a 
pseudometric space, numerous techniques [9],[10],[11],[12],[20] could be readily 
applied to speed up nearest neighbor queries, and sometimes k -means algorithms. 
Those works are based on the following bounding scheme or their variants, each of 
them is derivable from the triangle law,  
 

( , ) | ( , ) ( , ) |,d x z d x y d y z≥ −  
1 1( , ) ( , ) | ( , ) ( , ) | .
2 2

d x y d x z d y z d x z≥ − −  
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Examples of pseudometric spaces are, the real numbers with absolute difference, 
vector spaces with the Euclidean distance, a set of strings with edit distance, etc. 
Having a pseudometric space ( , )ρΩ  with a pseudometric ρ , we can always have a 
metric space by gluing together elements in Ω  that are zero distance apart together. 
Precisely, we construct a quotient space of it using the equivalence relation  
 

iff ( , ) = 0.x y x yρ∼  
 
Then we can think of an equivalence class as one point in the new space and define a 
new metric in the space ( / )Ω ∼  of equivalence classes,  
 

([ ],[ ]) = ( , ).x y x yρ ρ  
 
The new space  is a metric space. /Ω ∼
 
It is not uncommon that one encounters norms when working with vector spaces. 
Since we may think of a set of time series as a vector space of number sequences, 
norms are involved naturally. Some of the asymptotic results for k -NN hold for norms 
metrics. They will also be mentioned later in Section 3. 
 
Definition 2. Let V  be a vector space. A function : [0,V )⋅ → ∞  is a norm on V  iff 
for every ,x y ∈V    
    (1)   iff ,  = 0x  0x =
    (2)  =| |x xα α  for any α ∈R ,  
    (3)  x y x y+ ≤ + .  

Having a normed space, the function ( , )x y x y−  is always a metric. Well known 
norms for the space of number sequences are the  norms defined by p

1

=1
= { | | }l p p

p ii
x∑x , for  and [1, )p∈ ∞ = max i | i |x∞x

p

. The latter is called the  

supremum norm. The metrics induced by  norms are called  metrics. p

 

2.5 Asymptotic Behavior of Metric Based k-NN 

In terms of generality, there are two major asymptotic results; the first holds for 
separable metric spaces but with a usual assumptions on the distribution. 

Theorem 1 [4].  Let Ω  be a separable metric space and ( ),X Y  admits class 
conditional densities. Let f  be probability densities such that 

 and  is continuous almost everywhere for each 
1 c, ,f…

{ }( ) = = | =f x X x Y y fi P i { }1, ,∈ …i c . 

Then the -NN probability of error L  has the bounds  k
*

* *lim 2 2 .
1nn

cLL L L
c→∞

⎛ ⎞
≤ ≤ − ≤⎜ ⎟−⎝ ⎠

E *L  

These bounds are as tight as possible.  
 
The second major result holds for every possible distribution but the distance is 
assumed to be a norm metric [17](prob. 5.1, chap. 5).  

Theorem 2 [17](chap. 5). Let the random pair ( ),X Y  take values in { }1,2d ×R . Then 
the norm-metric based -NN probability of error L  has the bounds  k

( )2L L−* * *lim 2 2 .nn
L L

→∞
≤ ≤ ≤E *L  
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Since our pseudometrics in Section 3 are not norm metrics we have to hinge on the 
former theorem and assume the regularity of the distributions. Note that a quick 
argument that the set of all time series with all rational values serves as a countable 
dense subset will be sufficient to establish that all of the pseudometric spaces of time 
series in Section 3 are separable. Such argument ensures that the space of time 
series equipped with DTW as the distance is a separable distance space, although not 
a metric space. 

2.6 Admissibility of 1-NN 

[4] showed in their paper that 1-NN is admissible in the sense that there is a 
distribution of data such that k -NN will be strictly worse than 1-NN in terms of 
probability of misclassification for every .They also give an example of such 
distribution in the paper and noted that if the between-class distances are always 
greater than the within-class distances then1-NN is strictly better than any other k -NN.  

1k >

 
2.7 DTW  Distances 
 

In computing the DTW distance, one searches for a warping path with the lowest 
possible associated cost. Given two finite sequences of real numbers s  and , a 
warping path between s  and  is a sequence of pairs  

t
t

 

           (1) 1 1 2 2( , ),( , ), ,( , )N Ni j i j i j…

 Where , , , and ( ,  must be one of 
 or  for all 2

# #N ≤ + −s t

1),( , )k ki j− ( ,
1 1 1( , ) = (1,1)i j

1)k ki j −

( , ) = (# ,# )N Ni j s t
k N

)k ki j

1 1( ,k ki j− − ≤ ≤ . 
 
One may perceive a warping path as a continuous monotonic sequence of 
coordinates whose start and end are fixed in a two dimensional grid. The cost 
associated with a warping path in Equation (1) is , where d  is any 

distance measure – common choices are absolute difference and squared difference.  
=1

(N
i jk k k

d s t−∑ )

 
 

 
 

Figure 1 
A visualization of a 
warping path, which is 
also an optimal 
warping path whose 
associated cost is 1. 
The path is 

 

cost of the optimal 
warping path.  

 
 
 
 (1,1),(2,1),  

from bottom 
On the 

[1,2,0]  
and other in solid line 

. On the right, 

[1,2,0,0] , 
stretch (see 

[1,2,0]
] ([1,2,0])∈S

0,0] , which 
[1,1,0] . 

distance 
,2,0,0]  and 

 is equal to the 

(3,2),(3,3)
left to top right. 
left, the dotted line is 
the sequence 

is the sequence 
[1,0,0]
the dotted line is the 
sequence 
which is a 
Definition 6) of 
i.e. [1,2,0,0
The solid line on the 
right is [1,1,
is a stretch of 
Note that the 
between [1
[1,1,0,0]

;
. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

www.ej.eng.chula.ac.th                   ENGINEERING JOURNAL  : VOLUME 13 ISSUE 2 ISSN 0125-8281 : ACCEPTANCE DATE, APR. 2009    25 



doi:10.4186/ej.2009.13.2.19 
 

26     ENGINEERING JOURNAL : VOLUME 13 ISSUE 2 ISSN 0125-8281 : ACCEPTANCE DATE, APR. 2009                   www.ej.eng.chula.ac.th 

Figure 1 shows an example of the optimal warping path of two time series [1,0,0]  and 
[1,2,0] ; the path is (1,1),(2,1),(3,2),(3,3)  from the bottom left of the grid to top right. 
Suppose for concreteness that d  is absolute difference. The DTW distance can be 
expressed in terms of its partial solutions as,  
 

1 1

( , ),DTW
( , ) =| | min ( , ),DTW DTW

( , ).DTW

ps t
⎧
⎪− + ⎨
⎪
⎩

s t
s t s t

s t

∼ ∼

∼

∼

 

Where #
1 1 1=1

([ ], ) = ( ,[ ]) = | |DTW DTW p
ii

s s s t−∑ tt t  for the base cases and p  is usually 

1 or 2 as mentioned above. ( , )DTW s t  can be computed in (# # )O s t  time. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
By the expression above, the DTW distance can be computed by dynamic 
programming paradigm. Pseudocode of the DTW algorithm is shown in Figure 2. More 
detailed treatment of the subject can be found in other sources [21],[22],[23],[24]. 

 
2.7.1 Non-Subadditivity of DTW 
 
To see that the DTW distance is not a pseudometric, consider the following trivial 
example. Let = [1,1]s  and = [1,1,1]t , then ( , ) ( , ) = 2 0 = 2DTW DTW+ +0 s s t , while 

( , ) = 3DTW 0 t . Another interesting example is when = (1,0,0), = (1,2,0)u v . We have 
( , ) = 3 > 2 = ( , ) ( , )DTW DTW DTW+0 v 0 u u v . These demonstrate that the DTW distance 

is not subadditive, and hence not a pseudometric. 
 

 
2.8 Levenshtein Distance 
 

The Levenshtein distance is a metric used to measure difference between two strings. 
The following relation may be taken as its definition  
 

1 1

( , ),Lev
( , ) = ( , ) min ( , ),Lev Lev

( , ).Lev
s tρ

⎧
⎪+ ⎨
⎪
⎩

s t
s t s t

s t

∼ ∼

∼

∼

 

 
Where the function ( , )x yρ  is the discrete metric taking value 0 if x  equals y  and 1 
otherwise. ([ ],[ ]) = 0Lev  and 1([ ],[ ]) = 1Lev s  for the base cases. 
 
The Levenshtein distance between two strings is the minimum number of operations 
needed to transform one string into the other, where an operation is an insertion, 
deletion, or substitution of a single character. 
 
The distance is subadditive, indeed it is a metric, and one way to see this is by the fact 
that the distance is the minimum number of operations needed to transform one string 

0
[0][1.. ], [1.. ][0]

1 
 1  

min{ [ ][ 1], [ 1][ ], [ 1][ 1]}

     [ ][ ]

DTW-Distance( [1.. ], [1.. ]

| [ ] [ ] |
 [ ]

)
[0][0]

[ ]

p

W m W n
i n

i m
d W i j

A

W i j W i j

W

n B

i j A i B j

m

n m

W

d
W

←
← ∞

←
←
← − − − −

← − +

for to
do for to

do

return

 
 
 
 
 
 
 
 
 
 
 
Figure 2 
Pseudocode of the 
DTW algorithm. 
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to the other. For strings ,  and u , the sum  is the number of an 
operation sequence that transforms s  to  (by changing  to u  and then to t ), but 
that number is never greater than Lev  which is the minimum the length of such 
operations. 

s t ( , ) ( , )Lev Lev+s u u t
st

)s t( ,

 
2.9 Edit Distance with Real Penalty 
 

Edit Distance with Real Penalty (ERP) [16] is adapted from the Levenshtein distance. 
It is subadditive via a result for edit distance by  [25]. 
 
 For a real valued γ  called ``gap'' ERP is defined by  
 

        (2) 
1 1

1

1

| | ( ,ERP
( , ) = min | | ( , ),ERP ERP

| | ( ,ERP

s t
t

s
γ

γ

− +⎧
⎪ − +⎨
⎪ − +⎩

s t
s t s t

s t

∼ ∼

∼

∼

),

).

Where  for the base cases. 
=1

([ ], ) = ( ,[ ]) = | |ERP ERP
l

ii
sγ −∑s s

  
The value γ  of the gap can be thought of as the default value in the sense that the 
constant sequence of γ , ( , , )γ γ …  is the null signal. It usually makes sense that the 
gap value is set to zero in practice because we usually perceive the null signal as a 
sequence of zeros. A side benefit is that we do not need to compute the difference of 
the gap value and the element of another sequence if the gap is zero. 

  
Ill. Pseudometrics for Time Series 
 
In this section we propose two guidelines and examples of applications of the guidelines. 
 
3.1 Condensations of Distances 
 

First of all, our notion of distance condensation should not be confused with the 
concept condensing by  [17](chap. 19), where the data points are eliminated such that 
the classification is kept unchanged. Having a set of structured data, we usually have 
a simple distance measure that is easy to compute but gives undesirable classification 
accuracy when used with the nearest neighbor algorithm. Sometimes we want to allow 
variations of the two objects in a controllable manner so that they become more 
similar before we decide how different the two objects are. For example, two signals 
whose shapes are almost the same but one arrives a second later than the other 
should be considered almost the same without taking the time shift into account. 
 
With a set of  morphs allowed to be made to objects before being compared, we can 
always define another distance function. 

 
Definition 3. Let Ω  be a distance space with the distance , and  be a set of 
functions from  to 

d M
Ω Ω . The distance  

 

, ,
( , ) := ( , ),inf

d
x y d x

μ ν
yμ ν

∈
Δ
M M

 

 
is called the  condensation of d  with respect to M .  
 
Note that the value of  is never greater than d . The idea of condensation is 
depicted in Figure 3; one may think that each point 

,dΔ M

x  in the space Ω  is mapped to 
{ }|xμ μ ∈M , the set of its all possible morphs by functions in M , and the new 
distance is the distance between such sets (the distance between sets in this sense is 
the distance between their closest elements). 
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For a set of objects, two main components constitute a good distance measure; a 
base pseudometric and a set of morph operations of the objects with desirable 
properties. We give the definition of such morph operations below. 
 
Definition 4. Let M  be a set of functions from Ω  to Ω . M  is said to be  complete  
when,   
 
 (1)  the identity map is in M ,  
 (2)  for each ,μ ν ∈M , the composition νμ  is in M ,  
 (3)  for each 1 1,μ ν ∈M , there are 2 2,μ ν ∈M  such that 2 1 2 1=μ μ ν ν .   
  
We write an application of a function μ  in M  to an element x  using the prefix 
notation xμ . Compositions are read from right to left i.e. 2 1xμ μ  is the result of an 
application of 2μ  to 1xμ . 
 
Condition (3) in the definition above is weaker than the requirement that the 
composition of functions in M  is commutative, i.e. =νμ μν  for every ,μ ν  in M . It is 
also weaker than requiring that every function in M  has an inverse. So if a set of 
functions over Ω  is a group, it is always complete in this sense. 
 
Intuitively, with a complete set of morphs, two objects morphed from the same object 
remains similar, in a sense that they are the same up to some further morphing. Time 
shift is an example of a complete set of operations. 
 
The following definitions are based on how a whole set of objects change their 
distance among each other when an operation is applied to the whole set. 

 
Definition 5. Let Ω  be a pseudometric space equipped with a pseudometric d , and 
M  be a set of functions from Ω  to itself. We say that M  preserves d  if and only if,  
 

, ( , ) = ( , ),x y d x y d x yμ μ μ∀ ∈Ω ∀ ∈M  
M  contracts d  if and only if, 

, ( , ) ( , ),x y d x y d x yμ μ μ∀ ∈Ω ∀ ∈ ≤M  
M  expands d  if and only if, 

, ( , ) ( , ).x y d x y d x yμ μ μ∀ ∈Ω ∀ ∈ ≥M  
 

We may say that M  is contractive or expansive when the associated distance is 
implicitly known.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 
The condensation dΔ  
measured between 
points x  and y  when 
M  preserves d , 0μ  
is a function in M . 
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In Figure 3 we illustrate that 0μ  preserves the distance d . One may perceive d  as 
the spatial distance on the paper and 0μ  as the translation by a certain amount to the 
southeast direction, and translating two points at the same time keeps their distance. 
It turns out that if we want a subadditive condensation distance wrt.complete morphs, 
we should focus our interest on  contractive ones. 
 
Theorem 3.  Let ( , )dΩ  be a pseudometric space and M  be a complete set of morph 
operations on Ω . Then the condensation of d  wrt.  is a pseudometric if M  
contracts .  

M
d

 
Proof. For brevity we write Δ  to denote the condensation of d  wrt.  throughout the 
proof. 

M

 
Assume that ( ,  is a pseudometric space and M  is a complete set of morph 
operations on contracting d . Obviously, 

)dΩ

( , ) = 0x xΔ  for every x  in Ω . The symmetry 
of  follows from the symmetry of d . Let Δ , ,x y z∈Ω , > 0ε . By definition of Δ  there 
are some 1 2 1, , , 2μ μ ν ν ∈M  such that the following hold,  

     1 2( , ) < ( , )
2

d x y x y ,εμ μ Δ +      (3) 

     1 2( , ) < ( , )
2

d y z y z .εν ν Δ +      (4) 

 
Since M  is  complete , there are 0 0,μ ν ∈M  making 0 2 0 1=y yμ μ ν ν . By definition,  
 

         

0 1 0 2

0 1 0 2 0 1 0 2

1 2 1 2

( , ) ( , )
( , ) ( ,
( , ) ( , )

< ( , ) ( , ) .

x z d x z
d x y d y
d x y d y z

x y y z

μ μ ν ν
μ μ μ μ ν ν ν ν
μ μ ν ν

ε

Δ ≤

≤ +

≤ +

Δ + Δ +

)z

 
The second inequality follows from 0 2 0 1=y yμ μ ν ν , the equality is by the assumption 
that  contracts , and the last inequality follows from (3) and (4). M d
 
This is true for arbitrary > 0ε , so ( , ) ( , ) ( , )x z x y y zΔ ≤ Δ + Δ . 
 
3.1.1 Examples 

  
A simple and trivial example of this kind of pseudometrics is the condensation of the 
Euclidean distance in a vector space wrt. arbitrary rotations about the origin. The 
resulting metric is just the difference between the lengths of its two arguments. 
 
As another example, we construct a condensation of the  metric wrt. the  stretch 
operations defined below 

∞

 
Definition 6.  Let V  be the set of all finite sequences. For each  define ,k ∈ ∈xN V

:k V Vσ →  by,  

    
1 1

1

1 , , , ,[ , ] if ,
= [ ,

.

, ,
, , , ] if ,

l

k l

k k k k

k l l

x x k
x

x x x

othe

x
x x x k

r ise
l

w
σ

− +

−

… <…

… =
⎧
⎪
⎨
⎪
⎩

x
x

l
 

 
Let  be the set containing every finite compositions of morph operations in S
{ }k k { }σ ∈N ∪ I .  
 
One can verify that S  preserves ∞  metric. Figure 4 shows how stretches of a time 
series may look like. 
 
 
 
 

www.ej.eng.chula.ac.th                   ENGINEERING JOURNAL  : VOLUME 13 ISSUE 2 ISSN 0125-8281 : ACCEPTANCE DATE, APR. 2009    29 



doi:10.4186/ej.2009.13.2.19 

As a consequence, the following function is a pseudometric on V ,  
 
     1

,
( , ) = .inf

μ ν
δ μ ν ∞

∈
−x y x y

S
    (5) 

 
Where  is implicitly defined to be ∞−x y ∞  when # #≠x y . 
 
Similar to DTW, the distance above can be written in terms of its partial answers.  
 

       (6) 

1

1
1 1 1

1

( , ),
( , ),

( , ) = max | |,min ,
( , )

s t

δ
δ

δ
δ

⎛ ⎞⎧
⎜ ⎟⎪

⎪⎜ ⎟− ⎨⎜ ⎟⎪⎜ ⎟⎜ ⎟⎪⎩⎝ ⎠

s t
s t

s t
s t

∼ ∼

∼

∼

 
where 1 1 1 1 1 1 1([ ], ) = ( ,[ ]) = max{| |, ,| |}ls s s t s tδ δ − −t t …  for the initial cases. 1( , )δ s t  can 
be computed in . (# # )O s t
 
By Equation (6), one can be convinced that the distance function above is computed 
by the algorithm in Figure 5. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 
A visualization of a 
time series and its 
possible stretches. 
The original time 
series of length 91 is 
the top-left. The rest 
are some of its 
possible stretches to 
twice the original 
length. 

 

 

 

  
 
 
 
 

 
 
 
 
 
 
 
 

Figure 5 
The algorithm 
computing  1δ

 
 

| [1] [1] |
[0][1.. ], [1.. ][0]

1 
 1  

 min{ [ 1][ ], [ 1][ 1], [ ][ 1]}
     [ ][ ]

Delta1( [

max{| [ ] [ ] |, }

1.. ], [1.. ])
[0][0

 [ ][ ]

] S T
W m W n

i n
i m

W i j W i j W i j
W i j S i T j

W n m

S n T m
W

μ
μ

← −
← ∞

←
←
← − − −

← −

for to
do for to

do

return

−
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The following lemma will aid our further discussion. Via the lemma we will show, by a 
proof sketch motivated by examples, that the quantity in Equation (5) is equal to the 
quantity defined recursively in Equation (6). The proof of the lemma will be deferred 
until we end the proof sketch.  
 
Lemma 1. Let  and t  be two finite sequences. If s ′s  and  are stretches of s  and 

 respectively, i.e. 
′t

t ( )′ ∈ Ss s  and ( )′ ∈ St t , such that # = . Then 
there are  and 

# > # #′ ′ + −s t s t 1
′′s ′′t  such that ( )′ ∈ Ss s , ( )′′ ∈ St t ,  and 

. Where 
# = # < # =′′ ′′ ′s t s # ′t

p p′′ ′′ ′− ≤ −s t t′s [1, ]p∈ ∞ .  
 
The two quantities in Equations (5) and (6) will be called the LHS and the RHS 
respectively. 
 
1)  Similar to DTW, after solving for the RHS, we have an optimal  warping path,  

 
           (7) 1 1 2 2( , ),( , ), ,( , ).N Ni j i j i j…
 
 The restrictions of the optimal path is the same. The only difference is the 

associated cost. In this case the cost associated with the warping path is  
 

{1, , }
| |max i jk kk N
s t

∈
.−

…
 

 
2) From the warping path we can construct two  stretched time series whose lengths 

are equal and not greater than # # 1+ −s t . Furthermore, their distance as 
computed by ∞  metric is equal to its associated cost. The two time series 
constructed are 

1
[ , , ]i iN

 and 
1

[ , , ]j jN
t t… . For example, from the warping path in 

Figure 1 we construct [1,1,0,0]  and [1,2,0,0] , which are stretches of [1,0,0]  and 
[1,2,0]  respectively. 

s s…

 
3) Conversely, for each pair of  stretched s  and t  whose lengths are equal and do 

not exceed # # 1+ −s t , we can construct a warping path with the associated cost 
equal to the ∞  distance between those two stretched time series. For example, 
suppose s  and t  are [1,2,0]  and [1,0,0] , the stretched time series ′s  and ′t  are 
[1,2,0,0]  and [1,1,0,0] . Noticing that ′s  and ′t  are  and 1 1 2 3[ , , , ]t t t t , we 
can construct the warping path (1,1),  having the desired 
associated cost. 

1 2 3 3[ , , , ]s s s s
,2),(3,3)(2,1),(3

 
4) Therefore the set of all possible costs associated with a warping path of s  and t  

is the same as the set of all possible ∞  distance between ( )′ ∈ Ss s  and ( )′ ∈ St t  
of equal lengths not exceeding # # 1+ −s t . We conclude that RHS can be viewed 
as the minimum cost among all distances of such pair of stretched time series. 

 
5) So by Lemma 1, we have LHS ≥  RHS. On the other hand, since LHS is an 

infimum taken over bigger set than that of RHS, LHS ≤  RHS. Hence LHS equals 
RHS. 

 
 
Now we proof the lemma.  
 
Proof of Lemma 1. We will prove by induction on the lengths of s  and , the base case 
when  can be readily checked. 

t
# ,# 2≤s t

 
Assume that the statement holds for every s  and  such that  and t # 1M≤ −s # N≤t

Nv
, it 

remains to show that the statement is true for any u  and  such that  and # = . t # = Mu
 
Let ( )′ ∈ Su u , , ( )′ ∈ Sv v # = # > # # 1′ ′ + −u v u v . Then ′u  can be written as ′ ′h tu u  where 

every element of  equals  and the first element of ′hu 1u ′tu  equals . Since 2u ′v  is a stretch 
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of ,  must be some element in v , say . There are two possibilities of 
. For the case ,  and 

v
〈v u

# ′′〈 hv u
1′ + 〉

〉 kv
#′ h # 1 = kv′′〈 + 〉hv u ′u ′v

2,u
′ ′

… …
u uh t

,v
′ ′

… …
v vh t

tv

 are aligned as,  
 

1 1 ,u u

,

= [′u

1= [′v

1 2[ , ,v v …
(′ ∈ Stu ∼

, ,

, ,v v

, ]kv
)u

, ]Mu

].Nv

( )

 

,k k  

  
Define  as the the sequence  and  as the tail of v  from the -th element 
onwards. One can check that  and 

hv k
′ ∈ Stv tv . Since # 1M≤ −∼u  and , 

by the assumption, there are 
# N≤tv

′′tu ′′tv

# = # #
= (# 1) (
= # # k

′′ + −

− +
+ −

t tu v u v

u v

∼

p pt 1= [ ]u′′

 and  such that  
 

    
# =

1
′′

−

1
#

1−

t

u v

k ′′tu u

1)+
,
k−

  
and . Write  and ′′ ′′− ≤t tu v ′ ′−tu v =′′ hv v ′′tv . It is easy to see that ( )u′′ ∈ Su  
and .  ( )v′′ ∈ S

′′

v
 
Furthermore,  and  = =′′u v # # 1+ −u v

= [u

u

′′
 

1

#
1

]

[ ]

p k

′

− −

= ,p
p

p ′′ p
p−p p

p p
p

′′ ′′+

′ ′ ′+ −

t

h t

v

v≤ −

′ ′

v

1

1

[

[

u

u

−

uh

u v

ax

x

h tu

v u

∞ ∞

t

∞

u v

= m

ma #

]k

′

   

for , and,  [1, )∈ ∞p
 

( )
( )

,

] ,

= .
∞ ∞

′′ ′′ ′′

′ ′ ′

h t t

h t t

u v

v u v

∞′ ′

′′u v

1= kv +〉
)

− −

≤ −uh

−

−

2

−u v

v

 

 
So . p p′ ′−u v′′ ′′− ≤u v

′

( )u

 
For the case , we can proceed through a similar argument and have 

 and  whose lengths are equal to 
# 1′〈 +hv u

(v′′′ ∈ Sv′′ Su ′ ∈ # #+ −u v  and 
.            p ′ ′−u v ■p

( , ) =W

′′′ ′′′− ≤u v

[1,p∈

 
As a by-product of the previous discussion we have an alternative characterization of the 
DTW, for ,  )∞
 
     DT

,
inf
μ ν

.pμ ν
∈

−
S

∞

x y x y      (8) 

 
Where  is implicitly defined to be  when # #p−x y ≠x y

)

. 
 
Indeed, DT  is the condensation of  metric wrt. the set of stretch operations S , but 

since  does not preserve the  metric for 
W

S

p

p [1,p∈ ∞  Theorem 3 will not guarantee that 
 is subadditive and it is actually not subadditive as we have seen in Section 2. DTW

 
The next example is the condensations of  metrics wrt.  gap insertions. p
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Definition 7. Let γ  be a real number and W  be the set of sequences with constant tail γ , 
i.e. the sequences of the form 1( , , , , , )lx x γ γK K . Define the map 0 : W Wι →  by,  
 

0 1 2= ( , , , ).x xι γ Kx  
 
For k ∈N  define :k W Wι →  by,  
 

1 1= ( , , , , , ).k k kx x xι γ +K Kx  
 

Precisely, 1 =k kι γ〈 + 〉x , =k i iι 〈 〉 〈 〉x x  for 1 i k≤ ≤ , and = 1k j jι 〈 〉 〈 − 〉x x  for 2j k≥ + . 
 
Let γI  be the set of all finite compositions of operations in 0{ } { }k kι ≥ ∪ I . We sometimes write 

γI  as I  when there is no need to specify the value γ .  
 
W  can be thought of as either a set of infinite sequences with constant tails as in the 
definition above or as a set of finite sequences and let the distance between sequences of 
different lengths be ∞  and use the lp  metric as the distance if the sequences are of the 
same length. 
 
An illustration of gap insertions is in Figure 6. One can check that I  is complete and it 
preserves lp  metrics. Hence, the condensation of lp  metrics wrt. I ,  
 
      2

,
( , ) = ,infp

p
ι κ

δ ι κ
∈

−
I

x y x y      (9) 

 
is a pseudometric. It can be computed by dynamic programming using the relation below,  
 

    
1 1 2

2 1 2

1 2

| | ( , ) ,
( , ) = min | | ( , ) ,

| | ( , ) .

p p p

p p p p p

p p p

s t
t

s

δ
δ γ δ

γ δ

⎧ − +
⎪ − +⎨
⎪ − +⎩

s t
s t s t

s t

∼ ∼

∼

∼

     (10) 

 
Where δ δ γ −∑2 2 =1

([ ], ) = ( ,[ ]) = | |lp p p p p
ii

ss s  for the base cases. 2( , )δ s t  can be computed in 

(# # )O s t . 

 

  

  
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 
A visualization of a 
time series and its 
possible results after 
insertion operations 
with functions in the 
class I . The original 
time series is the top-
left. The rest are some 
of its possible results 
after gap insertions. 
The gap value is 0. 
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The fact that the recurrence relation solves the distance defined in Equation (9) follows from 
an argument similar to that used to explain the case of δ1 . However, note that the recurrence 
relation computes ,inf p

pι κ ι κ∈ −I x y . Since pa  is strictly increasing when a  is nonnegative, 

it is possible to minimize p
pι κ−x y  instead of pι κ−x y . Indeed one can check that  

 
1

2
, ,

( , ) = = .inf inf
pp p

p p
ι κ ι κ

δ ι κ ι κ
∈ ∈

⎛ ⎞− −⎜ ⎟
⎝ ⎠I I

x y x y x y  

 
 
Mark that the value of p  can be any real number, but 2δ  will be subadditive if [1, )p∈ ∞  
because then the pl  distance will be subadditive and 2δ  will be a condensation of a metric. 
For the particular case of = 1p , this is the distance function known as ERP [16] that we 
mentioned in Subsection 2.9. 
 
Consider the case when = 2p  and = 0γ , in computing the distance 2

2δ  between x  and y . 
The quantity 2ι κ−x y  is minimized over all possible insertions ι  and κ  in 0I . Recalling 
that the square function is strictly increasing when the domain is positive, it is possible to 
minimize 2

2ι κ−x y  instead, and by the polarization identity,  
 

2 2 2
2 2 2= 2 .ι κ ι κ ι κ− + − ⋅x y x y x y  

 
 
Since = 0γ  gap insertions keep the norm of time series unchanged, i.e. ιx  for every ι  in 

0I  and x  in W . Therefore we have  
 

2 2 2
2 2 2= 2 .ι κ ι κ− + − ⋅x y x y x y  

 
 
So minimizing the quantity above over all ι  and κ  in 0I  is the same as maximizing the dot 
product ι κ⋅x y  in the right hand side of the above equation over all ι  and κ  in 0I . 
 
To summarize, for the case when = 2p  and γ = 0  the distance δ 2

2  between x  and y  can 
be viewed as the l2  distance between the inserted time series ιx  and κy  derived from x  
and y  such that their similarity as measured by their dot product ι κ⋅x y  is maximized. 
Inspired by the above discussion, we propose another subadditive condensation based on 
the idea of maximizing similarity. We first introduce the distance function  
 
 

2 2

( , ) = arccos ,
⎛ ⎞⋅

∠ ⎜ ⎟
⎝ ⎠

x yx y
x y

 

 
 
whose geometric interpretation is the measure of the angle between two vectors. One can 
check that ∠  is a pseudometric. 
 
Now we condense the distance function wrt. the insertions 0I  defined above with the gap 
value γ = 0 , giving the condensation  
 

3
, 0

, 0 2 2

, 0 2 2

( , ) = ( , )inf

= arccosinf

= arccos .inf

ι κ

ι κ

ι κ

δ ι κ

ι κ
ι κ

ι κ

∈

∈

∈

∠

⎛ ⎞⋅
⎜ ⎟
⎝ ⎠
⎛ ⎞⋅
⎜ ⎟
⎝ ⎠

I

I

I

x y x y

x y
x y

x y
x y
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The third equality follows from the fact that insertions of zero gaps preserves the norms. 
When the gap value γ  is zero, it can be checked that the insertions of gaps preserve the 
distance ∠ . Hence it follows that 3δ  is a pseudometric. 

 

For every real number > 0α  and every pair of time series s  and ′s  such that 

1
= = [ , , ]

l
s sα α α′ Ks s  we have 

3
( , ) = 0δ ′s s . To justify this intuitively, if we have a time series 

s  and another one with the same shape but of different scales, then they are not different 

when measured with the distance δ
3
. 

 

Next we briefly discuss a way to compute δ
3
. First note that the arccos  function is strictly 

decreasing, this fact can be used to show that  
 

3
, 2 20

( , ) = cos .sup
ι κ

ι κ
δ

∈

 ⋅
  
 I

x y
x y

x y� � � �
 

 

So one can maximize the quantity ι κ⋅x y  over all possible ι  and κ  in 
0
I  instead. Writing 

the quantity 
,

0
supι κ ι κ∈ ⋅

I
x y  as δ ( , )

iii
x y , we can then compute the distance δ

3
 by  

 

( )δ δ3 2 2( , ) = cos ( , )/iiix y x y x y� � � � . 

 

δ
iii
 can be computed using the recurrence relation  

 

1 1 ( , ),

( , ) = max ( , ),

( , ).

iii

iii iii

iii

s t δ
δ δ

δ

+





s t

s t s t

s t

∼ ∼

∼

∼

 

 

Where ([ ], ) = ( ,[ ]) = 0
iii iii
δ δs s  for the base cases. 

 

Again, ( , )
iii
δ s t  can be computed in (# # )O s t  time. Since 

3
δ  can be computed from 

iii
δ  in 

constant time, 
3
δ  can also be computed in (# # )O s t  time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
Figure 7 
The interpolation 
between two time 

series wrt. δ 1
2
. The 

value γ  is set to 

zero. When θ  is 
closer to 1 the 
interpolated time 
series is closer to the 
bottom time series 
when measured with 

δ 1
2
. 
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3.1.2 Interpolation of Time Series 
  
If a condensation is well defined in the form  
 
 

, ,
( , ) = ,D min

d
x y x y

μ ν
μ ν

∈
−

M M
 

 
or, to put it differently, if the pair of morph operations yielding minimal distance always 
exists and the base distance is a norm metric, then we can do interpolation of objects 
in a certain way. δ1  and δ2  are examples of this type of condensation. 
 
Proposition 1. Let ,a b  be vectors in a vector space V  with a norm ⋅ . Let M  be 
a complete set of morph operations on V  preserving the ⋅ -metric. If 

,( , ) = min x yμ ν μ ν∈Δ −Mx y  is well defined, then for any [0,1]θ ∈  there is ∈Vc  
satisfying ( , ) = ( , )θΔ Δa c a b  and ( , ) = (1 ) ( , )θΔ − Δb c a b .  
  
 
Proof.   By assumption there are 0 0,μ ν ∈M  yielding 0 0 = ( , )μ ν− Δa b a b . Write 

0= μ′a a  and 0=ν′b b . Let = (1 )θ θ′ ′− +c a b , then  
 

( , ) = = ( , ),
( , ) = (1 ) = (1 ) ( , ).

θ θ
θ θ

′ ′ ′Δ ≤ − − Δ
′ ′ ′Δ ≤ − − − − Δ

a c a c a b a b
c b c b b a a b

 

 
 
Since Δ  is subadditive (by Theorem 3), and by the two inequalities above,  
 

( , ) ( , ) ( , )
( , ) (1 ) ( , ) = ( , ).θ θ

Δ ≤ Δ + Δ
≤ Δ + − Δ Δ

a b a c c b
a b a b a b

 

      
 
This implies that ( , ) ( , )θΔ ≥ Δa c a b  and ( , ) (1 ) ( , )θΔ ≥ − Δb c a b . Together with the first 
two inequalities, we conclude that ( , ) = ( , )θΔ Δa c a b  and ( , ) = (1 ) ( , )θΔ − Δb c a b . ■  
 
 
The proposition says that a way to interpolate between two time series s  and t  wrt. 

,dΔ M  is by doing linear interpolation between the closest pair of time series among all 
possible pairs such that one of the pair can be morphed from s  and the other can be 
morphed from t . Figure 7 shows an example of interpolations between two time 
series wrt. the distance δ2 . 
 

 
3.2   Shortcut Distance 
 

Lemma 2.  Given a set Ω  and a nonnegative function : [0, ]d Ω×Ω → ∞  such that 
( , ) = 0d x x  for every x  in Ω . The function : [0, ]dΞ Ω×Ω → ∞  defined by,  

 

1 0 0
=1

( , ) = inf ( , ) | , , , , = , =
N

d i i n n
i

x y d x x x x N x x x y−

⎧ ⎫
Ξ ∈Ω ∈⎨ ⎬

⎩ ⎭
∑ K N  

 
is subadditive. dΞ  is called the  shortcut of d .  
 
Proof. Let , ,p q r  be any points in Ω . For a fixed ε > 0 , by definition there are 

0 0{ = , , = = , , = }M Np p p q q r q ⊆ ΩK K  such that,  
 

1 1
=1 =1

( , ) ( , ) ( , ) ( , ).
M N

d d i i j j
i j

p q q r d p p d q qε − −Ξ + Ξ + ≥ +∑ ∑  
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Rename the points 1, , Nq qK  to 1, ,M M Np p+ +K  respectively. Noting that 0( , ) = 0Md p q , 
we can write the above inequality as,  
 

1
=1

( , ) ( , ) ( , ) ( , ).
M N

d d i i d
i

p q q r d p p p rε
+

−Ξ + Ξ + ≥ ≥ Ξ∑  

 
The second inequality holds by definition. Since this is true for arbitrary > 0ε  we 
conclude that dΞ  is subadditive.         ■  

 
 

One can check that if d  is symmetric, then dΞ  is also symmetric. By the lemma, we 
can always construct a pseudometric from a symmetric distance function by defining 
its shortcut. Even if the distance function d  we have is not symmetric, we can create 
a symmetric distance function first and use the new symmetric distance. For example, 

the functions 1 1( , ) ( , ) ( , )
2 2

x y d x y d y x+a  and ( , ) max{ ( , ), ( , )}x y d x y d y xa  are 

always symmetric, and they will be subadditive if d  is subadditive. In fact, however, 
symmetry is not a vital property because one can do nearest neighbor anyway by 
explicitly specifying the direction when comparing distances. 
 
Note that a subadditive distance function is always a shortcut of some distance 
function since it is always a shortcut of itself. Together with the lemma this suggests a 
vague intuition that every metric measures the minimum cost of finite gradual changes 
from one object to another. In a sense, the shortcut is the length of the  shortest path 
between objects, and for subadditive distances, the shortest path is always the  direct 
one. 
 
The question of what is the shortcut of DTW is an open question; once the shortcut of 
DTW is known, the way to efficiently compute it and its classification performance are 
the next to be enquired. 

 
 

3.2.1  Examples 
 

By inspecting the expression in Equation (10) of 2δ  (ERP) with the assumption that γ  
in the equation is zero and the base metric is the 1l  metric, it can be shown that 

1
2( , )δ x y  is the minimum cost of the sequence of the following transformations leading 

x  to y ,   
 

- delete ix  from x , resulting a shorter time series, costs | |ix ,  
- insert a number r  into x , resulting a longer time series, costs | |r ,  
- change the value of ix  to v , costs | |ix v− .  

 
The right hand side of Equation (10) chooses the minimum among three choices. We 
can think of the first choice as the cost we have to pay in order to transform s  to t  by 
changing the value 1s  of the first element of s  to match 1t  and do the best we can for 
the rest. The second choice is the lowest cost we need to pay if we insert 1t  at the 
head of s  first. The third choice is for the case of deleting the first element of s  first. 
 
Observe that the minimum cost of transformations from x  to y  is equal to the cost of 
transformations from y  to x . This is because there is a sequence of transformations 
from y  to x  with cost c  for each sequence that transforms x  to y  whose cost is 
also c . Suppose we have a sequence of transformations making x  become y , we 
can reverse the order of that sequence and substitute each deletion with an 
appropriate insertion and vice versa as well as reversing the changes of values. The 
new sequence of transformations will have equal cost and change y  to x . 
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For > 0π , the minimum cost of the sequence of the following morphs leading x  to y  
is another pseudometric   
 

- delete ix  from x , costs | |ix π+ , 
- insert a number r  into x , costs | |r π+ ,  
- change the value of ix  to v , costs | |ix v− .  

 
The distance above is more general than the ERP distance because it reduces to ERP 
when π  is zero. The value π  can be thought of as the penalty needed to be paid for 
each insertion, and deletion. 
 
The minimum cost can be found by dynamic programming using the relation below. 
 

1 1 4

4 1 4

1 4

| | ( , ),
( , ) = min | | ( , ),

| | ( , ).

s t
t
s

δ
δ π δ

π δ

− +⎧
⎪ + +⎨
⎪ + +⎩

s t
s t s t

s t

∼ ∼

∼

∼

 

 
Where 4 4 =1

([], ) = ( ,[]) = | |l
ii

l sδ δ π +∑s s  for the initial cases. 4 ( , )δ s t  can be computed 

in (# # )O s t  time. 
 
In fact we can have a more general form  
 

1 1 4

4 1 4

1 4

| | ( , ) ,
( , ) = min | | ( , ) ,

| | ( , ) .

p p

p p p p

p p

s t
t
s

δ
δ π δ

π δ

⎧ − +
⎪ + +⎨
⎪ + +⎩

s t
s t s t

s t

∼ ∼

∼

∼

 

 

Where ( )δ δ π +∑
1/

4 4 =1
([], ) = ( ,[ ]) = | |

plp p p
ii

l ss s  for the initial cases. 

 
We can show that 4 ( , )pδ x y  computes the p -th root of the minimum cost of the 
sequence of the following transformations leading x  to y ,   
 

- delete ix  from x , costs | |pix π+ ,  
- insert a number r  into x , costs | |pr π+ , 
- change the value of ix  to v , costs | |pix v− .  

 
Using the fact that 1/ 1/ 1/( ) p p pa b a b+ ≤ +  for , 0a b ≥  and 1p ≥ , one can check that the 
distance 4

pδ  is subadditive for every 1p ≥ . 
 
As a final remark, we note again that the argument that the set of all time series with 
all rational values is a countable dense subset will suffice to establish that all of the 
pseudometric spaces of time series in this section are separable. Consequently, 
Theorem 1 about asymptotic properties applies to k -NN in these pseudometrics. 

 
 

IV. Numerical Results 
 

We compare the performance of our distance measures with the Euclidean distance and 
DTW using the datasets from the UCR time series classification/clustering homepage [26]. 
The experimental setting is done as in the UCR dataset homepage. The 1-NN algorithm was 
used to perform classification tasks. Each of the datasets is already split as the training set 
and the testing set. Numbers shown in each column of distance measure are the error rates 
as classified by the 1-NN algorithm using that distance function as the dissimilarity measure. 
The results are shown in Table 1. 
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Every time series in each dataset was already pre-scaled to the same length if needed so 
that the 1l  distance and the Euclidean distance can be computed between every pair of time 
series in each dataset. 
 
The distance 1δ  was incompetent because its base distance, the ∞l  metric is usually very 
sensitive to little variations or noise in time series. Other than 1δ , our proposed subadditive 
distances did relatively well. The results also showed that the value of π  and p  had 
influence on the classification accuracy of 4δ . 
 
Nonetheless, it is interesting to note that the trace dataset can be classified with zero error 
rate by DTW  and 1δ . The identical property shared by the two distances is that they are  
condensations whose morphs are the stretch operations S  (cf.Equation (5) and Equation 
(8)). While the condensations 2 4δ − , whose morphs are the gap insertions I , gave relatively 
poor performance. A plausible explanation of the phenomenon is that the stretches are more 
suitable as morph operations than gap insertions for this particular dataset. It seemed, 
though, that some datasets have no preference of either the stretches or the insertions over 
the other, the two patterns dataset can be classified by 1-NN with zero error rate with each 
condensation regardless of the morphs involved in the condensation. 
 
It is noticeable that the results of the distance 2

2δ  and the distance 3δ  are the same or 
almost the same in many datasets. This is due to the fact that if the 2l  norm of every time 
series in a dataset is the same, then the nearest neighbors of a time series as measured by 

2
2δ  will also be the nearest neighbors as measured by 3δ  and vice versa. Those datasets 

whose time series have small variation among their 2l  norms yielded the same error rates 
for 2

2δ  and 3δ . For those datasets whose time series have large variation among their 2l  
norms the results were different. The time series in the coffee dataset have very large 
variation of the 2l  norms and the distance 3δ  performed significantly better than other 
distances including 2

2δ . 
 
 

V.   Conclusion 
 

Pseudometrics or subadditive distances are both theoretically and practically appealing. 
Asymptotically, pseudometric based k -NN has the chance to have error no more than twice 
that of the Bayes classifier, and several implementations can be used to accelerate 
pseudometric based k -NN. We provide two frameworks for designing subadditive distance 
measures for time series, namely the condensation framework and the shortcut distance 
framework. 
 
Condensation of a distance is a new distance based on an existing one, the base distance. 
In the condensation framework one can get a subadditive distance by choosing an 
appropriate set of morph operations wrt. the base distance. In order to have a subadditive 
condensation of a distance d  wrt. a set M  of morph operations, one need to check that the 
three following conditions are valid,   
 

1.  the base distance d  is subadditive,  
2.  the morphs M  is complete,  
3.  M  contracts d .  

 
DTW can be regarded as a condensation, but since the morph operations involved are not 
appropriate, DTW is not subadditive. An existing pseudometric called ERP and its 
generalization can be constructed in this framework. For norm metric based condensations, 
one can do interpolation between time series in a way similar to linear interpolation. 
 
By two tools we proposed, Theorem 3 and Lemma 1, we designed our example 
pseudometrics in a somewhat modular fashion. The condensations were developed and we 
just checked the three conditions of Theorem 3 without worrying that some expression 
involving infinity may trouble the possibility of real implementation. By Lemma 1, and maybe 
its modifications, for some well-behaved morphs we can reduce computations involving 
infinity to finite ones, and fortunately all the morphs in our example condensations are such 
well-behaved. 
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The second framework based on shortcut distances is more general. Any shortcut of a 
distance is always subadditive. Moreover, any subadditive distance is an edit distance 
in disguise. A concrete definition of the shortcut of DTW and its algorithm are currently 
unknown. A more general form of an existing distance called ERP can also be 
constructed in the second framework. We fine tuned it by adding a penalty value to 
prevent too much  morphs to match another time series. The fine tuned distance has 
potential to yield better classification results. All of the proposed distances can be 
computed in ( )O mn  time like DTW. Numerical results showed that they are useful 
alternatives to DTW. 
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Table 1 
Numbers whose value 
is minimal in its row 
are typeset bold. The 
second column shows 
the standard 

deviations of the 
2l  

norms of the time 
series samples in the 
training set of each 
dataset. 
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