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Summary: We propose a novel Bayesian hierarchical structure of state-space surplus production models that accommodate 
multiple catch per unit effort (CPUE) data of various fisheries exploiting the same stock. The advantage of this approach 
in data-limited stock assessment is the possibility of borrowing strength among different data sources to estimate reference 
points useful for management decisions. The model is applied to thirteen years of data from seven fisheries of the lebranche 
mullet (Mugil liza) southern population, distributed along the southern and southeastern shelf regions of Brazil. The results 
indicate that this modelling strategy is useful and has room for extensions. There are reasons for concern about the sustain-
ability of the mullet stock, although the wide posterior credibility intervals for key reference points preclude conclusive 
statistical evidence at this time.

Keywords: hierarchical models; MCMC; multiple fisheries; data-limited; stock assessment; Mugil liza.

Modelos bayesianos espacio-temporales con datos múltiples de CPUE: el caso de una pesquería de lebranche

Resumen: Proponemos una nueva estructura jerárquica bayesiana para modelos de producción excedente espacio-tempo-
rales que permite incorporar datos de captura por unidad de esfuerzo (CPUE) de diversas fuentes para varias pesquerías 
que explotan el mismo stock. La ventaja de este enfoque en la evaluación de stocks con datos limitados es la posibilidad de 
reforzar las estimaciones a partir de diferentes fuentes de datos para estimar puntos de referencia útiles para las decisiones 
de gestión. El modelo se aplica a trece años de datos de siete pesquerías de la población meridional de lebranche (Mugil 
liza), distribuidas a lo largo de las regiones sur y sudeste de Brasil. Los resultados indican que esta estrategia de modelado es 
útil y puede formar la base de futuras extensiones. En cuanto a la sostenibilidad del efectivo de lebranche, hay razones para 
preocuparse, aunque los amplios intervalos de credibilidad posterior en los puntos clave de referencia excluyen evidencia 
estadística concluyente en este momento.

Palabras clave: modelos jerárquicos; MCMC; pesquerías múltiples; datos limitados; evaluación de stocks; Mugil liza.
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INTRODUCTION

Stochastic versions of biomass dynamic models 
are called state-space models. These models have a 
hierarchical structure which simultaneously accounts 
for uncertainties in the time and space dynamics of 

biomass production and for errors in the observational 
process of some abundance indices (e.g. Catch per Unit 
Effort, CPUE) that relate data to the (unknown or la-
tent) biomass.

Surplus Production (SP) models are simple but ro-
bust non-linear models for stock assessment that are 
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widely used to model biomass dynamics in state-space 
models for exploited fish populations (Millar and Mey-
er 2000). A useful feature of SP models is that they do 
not require analytic detailing about specific biological 
characteristics of target stocks under survey (Gulland 
1983). This is important because detailed information 
about population dynamics may not be available for 
analysis of stock sustainability (Hilborn and Walters 
1992, Chen and Andrew 1998). Furthermore, applica-
tion of SP models seeks to determine optimal levels of 
fishing effort that can reach predefined goals within a 
scenario of sustainability (Gulland 1983, Hilborn and 
Walters 1992, Sparre and Venema 1997).

The search for improvements in SP models has 
grown over the last few years. Revisions have pointed 
towards limitations related mostly to nonconformities 
in utilized data rather than the predictive capability 
of the underlying model (Hilborn and Walters 1992). 
Hilborn (1979) observed that the disparity between 
fishing effort and stock abundance, often caused by 
problems in data gathering, increased the uncertainties 
in analyses with SP or more elaborate age-structured 
models. However, SP models have been shown to be 
capable of providing better estimates of relevant ref-
erence points than analyses based on age-structured 
models, even when important growth and vulnerability 
parameters are known in advance (Ludwig and Walters 
1985, 1989).

It is an essential premise in the observational 
component of state-space models that CPUE has a 
known proportionality relation to stock biomass. 
However, stock concentration profile, changes in 
fishing power, gear type, season and fishing ground 
can all affect this relation over time and space and 
seriously bias biomass dynamic predictions if not 
properly accounted for (Clark 1985). Standardization 
of CPUE is one recommended path to reconcile data 
(Hilborn and Walters 1992), but this requires data to 
be collected at the same time and location to make 
transformations possible. 

Another path has been to ignore fishing effort all 
together and rely on catch-only data (Vasconcellos 
and Cochrane 2005). Although very attractive, this 
approach needs to replace missing effort information 
with strong premises about effort patterns over time.

One motivation for this study is to try a new alterna-
tive for dealing with fisheries assessment in data-limit-
ed situations. It consists in retaining CPUEs of various 
fishing fleets (characterized by differences in gear type, 
fishing operation and fishing ground) and model them 
simultaneously as multiple but integrated observation 
models. The only requirement is that all fleets exploit 
the same stock biomass, even if time-windows within a 
year or over time do not coincide.

The Bayesian approach to perform inference in 
fishery assessment and management is very appealing 
because, conditional on the proposed model, it provides 
direct estimates of biological reference points while 
automatically retaining and integrating all sources of 
(data and process) uncertainties (Kinas 1996). This is 
achieved by presenting the output of estimation and 
prediction in the form of posterior distributions which 

are usually easy to read and very convenient elements 
in the process of decision making under uncertainty—
an essential premise in effective risk analysis. Since the 
state-space model is structured as a hierarchical Bayes-
ian model, posterior distributions can be obtained 
with relative ease using Markov Chain Monte Carlo 
(MCMC) stochastic simulation.

The lebranche mullet Mugil liza is a pelagic species 
that is abundant in coastal marine and estuarine envi-
ronments and sometimes aggregates into dense schools 
(Menezes et al. 2003). A population of M. liza geneti-
cally identified as the “southern population” (Mai et al. 
2014) is distributed from the coast of the State of São 
Paulo to Argentina but most catches occur off the Bra-
zilian States of Rio Grande do Sul and Santa Catarina 
(Vieira 1991). This species is often considered to be 
catadromous, owing to its predictable migrations from 
freshwater and estuarine habitats into marine spawn-
ing areas, with its reproductive period from April to 
July and peak spawning in June in the southern states 
of Brazil (Santa Catarina and Paraná) (Vieira and 
Scalabrin 1991, Lemos et al. 2014). 

This is also one of the most frequent and abun-
dant fish species in the south and southeast regions of 
Brazil, representing an important cultural and histori-
cal artisanal fishery for this region (Seckendorff and 
Azevedo 2007, Vieira et al. 2008, Lemos et al. 2014). 
Because of the high value of mullet gonads in the in-
ternational market, the industrial and artisanal fisheries 
have directed their fishing effort towards supplying 
these markets (Pina and Chaves 2005, Miranda et al. 
2006, 2011). Furthermore, these efforts are mainly 
applied on highly aggregated schools during the re-
productive migration (Vieira et al. 2008, Garbin et al. 
2014), thus posing a significant threat to conservation 
and sustainability. 

Since 2004 the species has been classified as over-
exploited by the Brazilian Government (MMA 2004). 
However, the current management plan for M. liza is 
controversial due to lack of basic information (Lemos 
et al. 2016), which is available only in the form of time-
discontinuous official landings and unreliable informa-
tion about the overall fishing effort directed at this 
resource. Given these multiple sources of uncertainty, 
it is important to collect all available data, integrat-
ing them as effectively as possible with other relevant 
knowledge so that appropriate biological reference 
points can be estimated as well as possible. We believe 
that this strategy currently seems to be the fastest and 
most feasible path to producing useful recommenda-
tions for the management of this important fishing 
resource in the short term.

This paper assesses the current status of the leb-
ranche mullet southern population distributed along the 
southern and southeastern shelf regions of Brazil, using 
hierarchically structured Bayesian state-space models. 
Given the need to integrate various data sources within 
a single structure, we divide this goal into three steps: 
(i) develop a robust hierarchical Bayesian state-space 
biomass model capable of integrating multiple CPUEs; 
(ii) use this model to estimate the reference points to-
gether with the associated uncertainties; and (iii) pro-
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vide a modelling structure to make predictions that can 
help integrate management actions among all fisheries 
targeting the mullet (Mugil liza).

MATERIALS AND METHODS

Model structure

The proposed state-space models were based on 
the Bayesian approach, considering the integration of 
uncertainties involved in the latent process dynamic 
(biomass) and errors associated with the observational 
component consisting of various CPUE data collected 
from a multitude of fishery statistics (see Meyer and 
Millar 1999).

The deterministic component of the process dy-
namic was defined in discrete time (annual) variation, 
where the biomass (Bt) at the start of year t, is a known 
function of the previous year’s biomass (Bt−1) and total 
catch (Ct−1), parameterized by the intrinsic population 
growth rate (r), the average unfished stock size or sup-
port capacity (K) and a shape parameter (z).
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This equation is known as the Pella and Tomlinson 
SP model (Pella and Tomlinson 1969). If z=1, the equa-
tion reduces to the classic Schaefer (1957) SP model. 
Parameter (z) determines the level of asymmetry in the 
SP function, and is interpreted as a measure of density-
dependence of the population (Chaloupka and Balazs 
2007). A value of z between 0 and 1 (0<z<1) causes the 
SP to reach its maximum at some biomass below half 
the support capacity K/2. A z>1 shifts this maximum to 
values above K/2.

For computational convenience and to reduce pa-
rameter confounding, the model was reparametrized in 
terms of relative abundance (B/K=P) (Meyer and Mil-
lar 1999, Brodziak and Ishmura 2011). This maximizes 
the efficiency of the MCMC algorithm that will be used 
to estimate model parameters. Stochastic components 
µt were further included as independent, identically 
distributed (iid) Gaussian random variables with mean 
zero and process variance σµ
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The observational component in the state-space 
model was kept explicit for the CPUE (Iti) information 
provided by each fishery i in year t. These fisheries, 
each with a specific gear and fishing strategy but all 
exploiting the same stock biomass, were classified in 
terms of gear (purse seine and bottom gill nets), area of 
operation (estuaries and sea), and type of labour rela-
tion (artisanal and industrial). Hence, it was assumed 
that all observed CPUEs relate to the same overall 
stock, Bt, but each with a fishery-specific catchability 
coefficient, qi, for i = 1, 2, ..., F, where F is the total 
number of fisheries.

	 ( )=I q B ev
ti i t

ti 	

A stochastic component was further included with 
the random quantities vti which, conditional on Bt, are 
assumed iid Gaussian with mean zero and process vari-
ance σ2. The lognormal multiplicative structure used 
in both process and observation models has been used 
in this form by other authors as well (McAllister and 
Kirkwood 1998, Meyer and Millar 1999, Brodziak and 
Ishmura 2011).

All model parameters were estimated using MCMC 
implemented in BUGS code, using the rjags package 
(Plummer 2013) in the R statistical computing environ-
ment (R Core Team 2015). Reference points for the 
Schaeffer model were estimated based on Hilborn and 
Walters (1992) and generalized to the Pella and Tom-
linson model by Brodziak and Ishmura (2011). Models 
were compared with the deviance information criterion 
(DIC) (Spiegelhalter et al. 2002), with smaller values 
indicating a better fit.

Data sources

All information considered is composed of data 
gathered from official and unofficial bulletins pub-
lished by governmental and private research agencies, 
as follows: the Research and Management Centre of 
Fishing Resources in South and Southeast Coastline 
(CEPSUL/ICMBio), the Federation of Fishermen of 
Santa Catarina (FEPESC), the Research and Manage-
ment Centre of Estuary and Lagoon Fishery Resources 
(CEPERG), the Fishery Institute of São Paulo (IP/SP), 
the Fishery Studies Group from the University of Vale 
do Itajaí (UNIVALI/GEP) and the IBAMA Regional 
Office of Rio de Janeiro (IBAMA/RJ).

The time window for this study covers an overall 
period of 13 years, from 2000 to 2012. Annual total 
catches come from different fishing methods in in-
dustrial (purse seine and bottom gill net) and artisanal 
(bottom gill net) fisheries. Based on reliability con-
siderations, we only used data from the industrial and 
artisanal fishery landings monitored in the states of 
São Paulo and Santa Catarina as follows: A, industrial 
purse seine fleet from Santa Catarina State; B, Indus-
trial fishery fleets from Santa Catarina State (except 
purse seine); C, all industrial and artisanal fishery fleet 
from São Paulo State (except the fleet classified as D); 
D, all the industrial and artisanal fishery fleet from São 
Paulo State that operates only off the southeastern and 
southern coast of Brazil; E, the artisanal fishery fleet 
from São Paulo State that operates only in estuarine 
waters (except the fleet classified as G); F, the indus-
trial and artisanal gill net fleet from São Paulo State 
that operates only off the southeastern and southern 
coast of Brazil; and G, the Artisanal gill net fleet from 
São Paulo State that operates only in estuarine waters.

Prior distributions

A key component in a Bayesian analysis is the in-
clusion of previous knowledge about model parameters 
in the form of informed prior distributions. Regarding 
the SP model parameters, the required priors consist 
of the probability distribution for the support capac-
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ity (K), the maximum intrinsic growth rate (r) and 
the shape parameter (z). Based on recommendations 
by McAllister and Kirkwood (1998) and Millar and 
Meyer (2000), vague priors for all parameters of the 
model were assumed, as shown in Table 1. A vague 
prior is a probability distribution carrying very little 
information, which is selected primarily for structural 
convenience (e.g. Gaussian) to warrant model stability 
and convergence rather than convey strong influence 
over the posterior distribution.

The prior distribution for K has its lower limit fixed 
at 15000 t, since this is close to the historical maximum 
reported landings of 13375 t. A prior 95% credibility 
interval ranging from about 15500 to 60400 t (and a 
mean at 28600 t) covers the range of most plausible 
support capacity from a biological standpoint.

Similarly, for r, the proposed prior 95% credibility 
intervals ranges from about 0.6 to 3.9 (with a mean 
about r=1.7) and covers all reasonable growth rates for 
this species. The uniform priors for qi only establish 
the order of magnitude for the relation between CPUEs 
(measured in tonnes per unit effort) and biomass 
(measured in thousands of tonnes). Finally, uniform 
prior distributions are defined for the precision param-
eters rather than variances (i.e. precision = 1/variance) 
because this is the parameterization used in JAGS. In 
all cases, posterior estimates remained well within the 
prior windows, away from the extremes, suggesting 
that these prior specifications did not conflict with in-
formation provided by the data likelihood.

RESULTS

The Schaefer (1957) and Pella and Tomlinson (1969) 
SP models were both adjusted to evaluate their predic-
tive performance and sensitivity to the partially informa-
tive priors. Overall, both models showed rather similar 
behaviours, with close values of DIC (∆DIC<2) and 
with pD changing less than half a unit when the shape 
parameter z is included (Table 2). Differences this small 
indicate that the Pella and Tomlinson generalization is 
unable to substantially improve the model fit. Therefore, 
we concentrate further descriptions mostly on the con-
ventional Schaeffer model only, but retain both outputs 
in tables and figures for comparison.

The documented time series of lebranche mullet 
catches is summarized in Figure 1, which shows an 
increasing trend until its maximum in 2007, followed 
by a decreasing trend from then. Analysing the time 

history of CPUE for all seven fisheries (Fig. 2), we 
observe a reduction between the first and last reported 
year in five fisheries (C, D, E, F and G), while two (A 
and B) show no apparent trend.

In Figures 3 and 4, some convergence diagnostics 
are displayed to show that acceptable convergence 
criteria have been met. After some preliminary tests, 
we settled on running the MCMC algorithm with 4 
(250000) parallel chains using a burn-in of 5000 steps 
to eliminate the influence of starting values. A thinning 
of 50 steps was chosen to reduce autocorrelation in the 
posterior sample.

Posterior predictions of CPUE (Fig. 5) help to fur-
ther evaluate model performance. In line with DIC, 
the distinction between the two models is minimal and 
of no practical relevance. In terms of coverage by the 
predictive 95% credibility intervals, the overall per-
formance is acceptable for all fisheries, but only for E 
and G is this coverage complete. In all other cases, the 
models were unable to produce accurate predictions for 
most extreme data points.

Posterior distributions for model parameters (Fig. 6, 
Table 3) show strong agreement for the virgin biomass, 
K, in both models, while the intrinsic growth rate, r, fa-
vours somewhat larger values for the Schaeffer model. 
The Pella and Tomlinson model is incapable of giving 
a precise estimate for the shape parameter z; however, 

Table 1. – Summary of prior distributions for all model parameters in the Schaeffer and Pella-Tomlinson Bayesian state-space surplus produc-
tion models.

Model Parameter Description Prior

Schaeffer

K Carrying capacity Lognormal (10, 0.5)I(15000,)
r Intrinsic growth rate Lognormal (0.4, 0.5)
qi Catchability Uniform (0, 0.00001)

Process error variance Inverse-Uniform (0, 5)
Observation error variance Inverse-Uniform (0, 5)

Pella-Tomlinson

K Carrying capacity Lognormal (10, 0.5)I(15000,)
r Intrinsic growth rate Lognormal (0.4, 0.5)
z Shape parameter Uniform (1, 5)
qi Catchability Uniform (0, 0.00001)

Process error variance Inverse-Uniform (0, 5)
Observation error variance Inverse-Uniform (0, 5)

Table 2. – Deviance information criteria (DIC) and effective num-
ber of estimated parameters (pD) for the Bayesian state-space sur-

plus production models

Model DIC pD

Schaeffer –150.815 25.437
Pella-Tomlinson –150.158 25.870

Fig. 1. – Time series of mullet (Mugil liza) total landings off the 
southeastern and southern coast of Brazil. 
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Fig. 2. – CPUE time series of the mullet (Mugil liza) from different fisheries operating off the southeastern and southern coast of Brazil. A, 
industrial purse seine fleet from Santa Catarina State (t/fishing day); B, industrial fishery fleets from Santa Catarina State (except purse seine) 
(t/fishing trip); C, all industrial and artisanal fishery fleet from São Paulo State (except fleet classified as D) (t/fishing trip); D, all industrial 
and artisanal fishing fleets that operated in the coastal zone and landed on the coast of São Paulo (t/fishing trip); E, all artisanal fishing fleets 
that operated and landed only in estuarine waters from São Paulo State (t/fishing trip); F, industrial and artisanal fishing fleet of gillnets that 
operated in the coastal zone and landed on the coast of São Paulo (t/fishing day); G, artisanal fishing fleet of gillnets that operated and landed 

only in estuarine waters of São Paulo State (t/fishing day). 

Fig. 3. – Trace plot diagnostic for assessing convergence of MCMC Chains for the two Bayesian state-space surplus production models. Top, 
Pella-Tomlinson model; bottom, Schaeffer model. 
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Fig. 4. – Gelman plot diagnostic for assessing convergence of MCMC Chains for the two Bayesian state-space surplus production models. 
Top, Pella-Tomlinson model; bottom, Schaeffer model. 

Fig. 5 – Fitted values (dashed line) and 95% credibility region for CPUE of seven fisheries for two Bayesian state-space surplus production 
models. Top, Pella-Tomlinson model; bottom, Schaeffer model. From left to right: A, industrial purse seine fleet from Santa Catarina State (t/
fishing day); B, industrial fishery fleets from Santa Catarina State (except purse seine) (t/fishing trip); C, all industrial and artisanal fishery fleet 
from São Paulo State (except fleet classified as D) (t/fishing trip); D, all industrial and artisanal fishing fleets that operated in the coastal zone and 
landed on the coast of São Paulo (t/fishing trip); E, all artisanal fishing fleets that operated and landed only in estuarine waters from São Paulo 
State (t/fishing trip); F, industrial and artisanal fishing fleet of gillnets that operated in the coastal zone and landed on the coast of São Paulo (t/

fishing day); G, artisanal fishing fleet of gillnets that operated and landed only in estuarine waters from São Paulo State (t/fishing day). 
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the mode near unity suggests high plausibility for the 
Schaeffer model. Estimated reference points are ob-
tained in the form of marginal posterior distributions, 
which are summarized and listed in Table 3. While the 
support capacity (K) is estimated to be around 30000 t, 
the maximum sustainable yield (MSY) is close to 7000 
t. Estimates are, however, highly uncertain, as can be 
seen from the wide 95% credibility intervals or high 
coefficients of variation (CV): 0.36 for K and 0.45 for 
MSY (Schaeffer model).

To assess the impact of all fisheries combined on 
the historic evolution of the stock, the time dynamics 
of the ratios Bt/BMSY (Fig. 7) and Ft/FMSY (Fig. 8) are of 
central interest. The first ratio is of concern whenever 
it falls below one, while the second is of concern when 

values are above unity. Regarding the biomass ratio 
(Fig. 7), both models show a decreasing trend from 
2007. While posterior biomass was estimated to be be-
low BMSY from 2010 for the Pella and Tomlinson mod-
el (posterior means as point estimates), the threshold is 
estimated to have been crossed only in the last year of 
the observed series for the Schaeffer model. However, 
there are wide credibility intervals covering the thresh-
old line in both cases. This indicates high uncertainty 
and weak statistical evidence to support this conclusion 
in either of them. Regarding the estimated exploitation 
rate, both models suggest that in recent years these ra-
tios are lower than one. However, these conclusions are 
also weak since marginal credibility intervals are wide 
and do not support conclusive statistical evidence.

Table 3. – Posterior mean, standard deviation and selected percentiles of parameters and management reference points for the Bayesian state-
space surplus production models.

Model Parameter Mean Std. deviation 2.5% 50% 97.5%

Schaeffer

K 30139.53 10932.14 18222.95 27328.04 58910.14
r 1.009 0.552 0.198 0.917 2.328

BMSY 15069.77 5466.07 9111.48 13664.02 29455.07
FMSY 0.505 0.276 0.099 0.459 1.164
MSY 6903.21 3114.61 1640.01 6594.10 13889.35

Pella-Tomlinson

K 29765.57 10588.31 18081.71 27088.99 57586.30
r 0.634 0.357 0.143 0.565 1.532
z 2.724 1.156 1.064 2.586 4.859

BMSY 18059.22 6694.32 10392.98 16440.87 35483.47
FMSY 0.432 0.215 0.102 0.400 0.936
MSY 7148.15 3087.48 2037.94 6829.71 14194.20

Fig. 6. – Posterior distribution for the Pella-Tomlinson (dark grey, solid line), Schaeffer (light grey, dashed line) and priors (white, dotted 
line) for the Bayesian state-space surplus production model parameters. K, support capacity; r, intrinsic growth rate; z, shape parameter 

(Pella-Tomlinson only). 

Fig. 7. – Time series of ratios between estimated biomass and biomass at maximum sustainable yield (Bt/BMSY) for two Bayesian state-space 
surplus production models. Left, Pella-Tomlinson model; Right, Schaeffer model. 
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DISCUSSION

Hilborn and Walters (1992) alert to the fact that 
estimates of reference points with biomass dynamic 
models can be misleading when the available time 
series of data is statistically uninformative. For CPUE 
data, lack of information can have multiple sources. 
For instance, it can originate from short time series and 
from changes in fishing power over space or time that 
are not accounted for. In fitting state-space models, 
an especially difficult feature arises when, over time, 
fishing data show a steady increase in effort linked to 
a steady decrease in CPUE. This “one-way-trip” time 
series is, however, very common with fishing data 
since this is the usual way in which almost any fishery 
evolves.

Analysing the plots of CPUE versus effort for the 
seven fisheries (not shown), we might identify weak 
one-way-trip–type behaviour in fisheries E, F and G, 
while in fisheries A and B no such pattern is apparent. 
This evaluation is, of course, quite subjective. It would 
further be hard to justify among stakeholders why data 

from some particular fisheries should by ignored in any 
assessment exercise.

To partially circumvent limitations due to the rela-
tively short time window (13 years) and also to mini-
mize unreliability in estimation due to the one-way-trip 
phenomenon, we chose to incorporate seven different 
fisheries simultaneously into a single model. Although 
all these fisheries explore the same stock, each has its 
own characteristics, so the impact of some of the un-
wanted features is expected to be diminished.

For illustrative purposes, let us suppose for a mo-
ment that the requirements for a regression-based 
CPUE standardization among fisheries are not met. 
Furthermore, let us suppose that a preliminary visuali-
zation of all available CPUE series shows a decreas-
ing pattern over time for many, while some are stable 
and a few others show a reversed increasing pattern. 
Which CPUE series should we select for assessment? 
This would be a difficult call to make and to justify 
politically.

By simply including all CPUEs, as we did in our 
proposed model, the dominant pattern will eventually 
drive the fitting process and biomass dynamic predic-
tions. Discrepancies among different CPUE patterns 
will affect the uncertainties (i.e. posterior variance) for 
estimated parameters and derived reference points such 
as MSY. The more discrepancies, the larger posterior 
variances will become, and vice-versa. All very much 
in line with what common sense would dictate.

The historic development of lebranche mullet ex-
ploitation is summarized with the phase plot in Figure 
9, starting with a large biomass (Bt>BMSY) and a low 
exploitation rate (Ft<FMSY) in year 2000. With the 
exception of 2001 and 2002, when biomass showed a 
sudden (unexpected) decrease, the stock continued to 
display a large biomass until 2009, while the exploita-
tion rate increased steadily. From 2009 to 2012, bio-
mass stayed below BMSY, with the exploitation rate re-
maining high (Ft>FMSY) until 2012, when it fell below 
FMSY. This suggests that this reduction in exploitation 
rate was possibly linked mostly to economic consid-
erations rather than to low stock density. Otherwise, 
since stock density has been falling, one would expect 
a still further increase in the exploitation rate in order 
to sustain catches. The phase plot suggests that care 
must be taken to guarantee sustainability for the leb-

Fig. 8. – Time series of ratios between estimated exploitation rates and exploitation rate at maximum sustainable yield (Ft/FMSY) for two 
Bayesian state-space surplus production models. Left, Pella-Tomlinson model; Right, Schaeffer model. 

Fig. 9. – Phase plot for the mullet (Mugil liza) fishery off the south-
eastern and southern coast of Brazil, considering only the Pella-

Tomlinson model and the seven fisheries simultaneously. 
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ranche mullet stock. If low exploitation rates could be 
maintained for a longer period, one might expect stock 
biomass to gradually move again towards the region in 
the graph were it was in the year 2000.

Since mullet performs reproductive aggregations at 
the time of its fishing season, CPUE can remain arti-
ficially stable while the stock is in fact being fished 
down. This phenomenon, known as hyperstability, can 
misinform about the stock status. It becomes a risk for 
stock collapse in cases where the density of stock ag-
gregation remains above the economic threshold (Rose 
and Kulka 1999, Erisman et al. 2011). It is important 
to consider that hyperstability may be occurring when 
M. liza stock is assessed. For instance, this might be 
the occurring in a very efficient fishery aiming mostly 
at high-valued mullet roe but less so in other fisheries 
targeting the fish for local consumption. The erratic 
behaviour of CPUE mentioned above for fisheries A 
and B could be an expression of some level of hyper-
stability, whereas it is absent from the other fisheries.

Once again, our attempt to prevent hyperstability 
from contaminating the estimates reinforces the argu-
ment for including CPUEs for different fisheries simul-
taneously into the model. After all, if we combine sev-
en mullet fisheries from various regions, some using 
different gears, fishing practices and fishing grounds 
but all exploring the same stock, a Bayesian hierarchi-
cal model becomes a very handy tool for integrating 
them all into a single, consistent structure for estimat-
ing biomass time dynamics. By doing so, we expect to 
be able to produce more robust and reliable reference 
point estimates to guide fisheries management. In this 
specific case study, the wide posterior credibility inter-
vals on key reference points indicate that conclusive 
evidence cannot be drawn yet, although the estimated 
trends suggest reasons for concern.
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