RECENT ADVANCES IN THE STUDY OF SCIENTIA MARINA 70S2
FISH EGGS AND LARVAE October 2006, 67-78, Barcelona (Spain)
M.P. Olivar and J.J. Govoni (eds.) ISSN: 0214-8358

First data on growth and nucleic acid and protein
content of field-captured Mediterranean bluefin
(Thunnus thynnus) and albacore (Thunnus alalunga)
tuna larvae: a comparative study

ALBERTO GARCIA !, DOLORES CORTES !, TEODORO RAMIREZ!,
RAFIKA FEHRI-BEDOUI 2, FRANCISCO ALEMANY 3, JOSE M. RODRIGUEZ 4,
ANGEL CARPENA'! AND JUAN P. ALVAREZ!

!Instituto Espanol de Oceanografia, Aptdo. 285, 29640 Fuengirola, Malaga, Spain. E-mail: agarcia@ma.ieo.es
2Unité de recherche de Biologie, Ecologie et de Parasitologie des Organismes Aquatiques, Département de Biologie,
Faculté des Sciences de Tunis, 2092 El Manar, Tunis, Tunisie.

3 Instituto Espanol de Oceanografia, Muelle Pelaires, Palma de Mallorca, Spain.

4 Instituto Espaiol de Oceanograffa, Gijon, Asturias, Spain.

SUMMARY: The waters surrounding the Balearic archipelago are considered to be prime spawning habitats of the bluefin
tuna (Thunnus thynnus) and other tuna species such as albacore (7. alalunga) in the Mediterranean. During the 2003 bluefin
and albacore spawning season, a tuna larval survey (TUNIBAL 0703) was carried out to assess the distribution of bluefin
larvae in relation to hydrographic mesoscale features. Tuna larvae were collected by means of surface plankton tows with a
bongo gear with a quadrangular mouth measuring 1 m diagonally. The otolith microstructure of 157 and 71 field-captured
larvae of Mediterranean bluefin and albacore, respectively, were analyzed to estimate the daily growth pattern. Furthermore,
biochemical analysis to estimate DNA, RNA and protein content was done on another batch of 114 bluefin and 132 albacore
larvae. The size range included pre-flexion to post-flexion larvae, from 2.8 to 8.6 mm in body length. bluefin and albacore
larvae grew linearly in standard length (0.35 and 0.33 mm/day, respectively) and potentially with respect to dry weight. No
significant differences between species were observed in the size-weight relationship, or in the allometric relationship of
body size and weight to otolith radius. However, the relationship of DNA and RNA to body size and weight showed a sig-
nificant difference between species. Bluefin tuna larvae showed a greater nucleic acid content than albacore larvae. Protein
content showed no significant differences with respect to body length.

Keywords: bluefin tuna, albacore tuna, larvae, Mediterranean, growth, RNA/DNA, proteins.

RESUMEN: CRECIMIENTO Y CONTENIDO DE LARVAS DE ATUN ROJO (THUNNUS THYNNUS) Y ATUN BLANCO (THUNNUS ALALUNGA).
— Las aguas de las Islas Baleares representan una de las zonas mas importantes de puesta del atin rojo (Thunnus thynnus) y
de otras especies asociadas, como el atlin blanco albacore (7. alalunga). En julio del 2003, época de puesta del attin, se rea-
liz6 la campana TUNIBAL, con el fin de delimitar las zonas de puesta del atiin rojo, asi como su relacion con el modelo de
circulacion en el area. Las larvas de atunes se muestrearon mediante arrastres superficiales con una red Bongo de boca cua-
drangular (1 m en diagonal). Para el estudio del crecimiento diario, 157 larvas de atin rojo y 71 larvas de atin blanco fue-
ron analizadas. Para el estudio de la condicion larvaria (DNA, RNA y proteinas), 119 larvas de atiin rojo y 138 larvas de atiin
blanco fueron analizadas. Se analizaron larvas desde estados de pre-flexion a post-flexion, desde 2.8 a 8.6 mm de longitud
estandar. Las larvas de atin rojo y attin blanco crecen linealmente en longitud estandar (0.35 y 0.33 mm/dfa respectivamen-
te) y potencialmente en peso seco. No se encontraron diferencias significativas en la relacion talla-peso, o en la relacion del
radio del otolito con talla o peso. Sin embargo, la relacion entre DNA y RNA con talla o peso mostrd diferencias significa-
tivas entre especies, siendo el atln rojo el que mostré6 mayores contenidos en acidos nucleicos. No obstante, el contenido en
proteinas no mostr6 diferencias significativas con la talla entre especies.

Palabras clave: atan rojo, attn blanco, larvas, Mediterraneo, crecimiento, RNA/DNA, proteinas.
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INTRODUCTION

The high economic value of the North Atlantic
bluefin tuna (BFT), (Thunnus thynnus, Linnaeus,
1758) has led the species to a major decline, partic-
ularly during the 1990s, possibly due to fishery
overexploitation (Anon., 2003). This led the Spanish
Institute of Oceanography (IEO) to carry out a year-
ly sampling programme (TUNIBAL) aimed at char-
acterising the BFT spawning habitat off the Balearic
Sea, historically known as an important tuna spawn-
ing area (Dicenta, 1975, 1977).

The Balearic archipelago, a transitional region
between Atlantic and Mediterranean water masses,
is one of the most important spawning grounds of
the BFT. The encounter of two distinct water mass-
es, the lighter inflowing Atlantic waters and the
saltier southward Mediterranean water mass, is
responsible for the formation of intense frontal
structures and for the intense geostrophic circula-
tion of water masses (Pinot et al., 1995; Lopez-
Jurado et al., 1995; Vélez-Belchi and Tintoré,
2001). This hydrographic scenario is not only suit-
able for spawning of BFT, but also of a number of
apex fish species, among which frigate tuna (Auxis
rochei, Risso 1810) and albacore (7. alalunga,
Bonnaterre, 1788) are the most abundant. Other
tuna species, such as Sarda sarda (Bloch, 1793),
Euthynnus alleteratus (Rafinesque, 1810) and
Katsuwonus pelamis (Linnaeus, 1758), have also
been recorded among tuna larval species, as well as
a species of the Xiphidae family, the swordfish
(Xiphias gladius, Linnaeus, 1758) (Garcia, IEO
unpublished data).

Consequently, species of a different origin such
as the Atlantic BFT may compete in their early life
stages with other tuna species that show a greater
Mediterranean  affinity, acclimated to the
Mediterranean environmental conditions, such as
albacore (ALB) and frigate tunas.

The reproductive seasonality between BFT and
ALB show some differences. While BFT spawns
from June to mid-July (Padoa, 1956), ALB spawns
from July to September, peaking in August (Padoa,
1956; Alemany, 1997). In 2003, the spawning
grounds of each species were spatially differentiated
and associated with particular Atlantic and
Mediterranean water masses (Garcia et al., 2003a).
Each water mass corresponds to specific environ-
mental and bio-physical characteristics. The differ-
ences in the predominant environmental conditions
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during the early life stages of these species and the
great morphological resemblance throughout their
development led us to carry out a comparative study
between BFT and ALB, focusing on their larval
growth and nutritional condition.

Larval daily growth and nutritional condition
are highly influenced by surrounding environmen-
tal conditions at early life stages. The joint analy-
ses of daily growth by otolith microstructure
examination and the larval content of DNA, RNA
and protein (PROT), together with their corre-
sponding condition indices, are effective tools for
probing environmental effects on larval mortality.
Daily growth studies of BFT began with the work
of Brothers et al. (1983), focusing on juvenile
BFT. However, studies of this type on BFT larvae
are quite limited. Many daily growth studies have
focused on the validation of daily periodicity of
increment deposition, by using cultured specimens
(Itoh et al., 2000; Miyashita et al., 2001; Wexler et
al., 2001), by using field-captured juveniles to
analyse age and growth rates (Jenkins and Davis,
1990; La Mesa et al., 2005) or by performing
chemical tagging and recapture experiments
(Radke, 1983; Laurs et al., 1985; Wexler, 1993).
Another study on Atlantic BFT refers to the chem-
ical composition of their otoliths (Radke and
Morales-Nin, 1989).

A review on biochemical analyses to estimate
nucleic acid content or proteins at early life stages of
tuna yields even less information. Most studies have
used histological methods to track the nutritional
status of tuna larvae (Margulies, 1993; Kaji et al.,
1996, 1999). The only study in which nucleic acid
and protein content was analysed refers to the
species T. maccoyi (Carter et al., 1998), for which
the differences of specific growth rates and nutri-
tional status in farmed juveniles subject to diet vari-
ations were assessed. Biochemical indices in numer-
ous studies have provided insight into the analysis of
environmental forcing acting in the planktonic
domain (Berdalet and Estrada, 1993), specifically
addressing early life history of fish (Clemmesen et
al., 1997; Chicharo et al., 2003).

The comparative study of the two tuna species
presented in this paper was to examine differences
in larval growth patterns despite their morpholog-
ical resemblance throughout their larval develop-
ment bearing in mind that they occupy differenti-
ated environmental niches from the bio-physical
standpoint.
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FiG. 1. — Station mapping of the TUNIBAL 0703 larval tuna survey. CTD stations are indicated with white squares and plankton hauls (Bongo
90) with dark dots. The number of larval tuna used for the analysis originate where major abundances of each species occurred. Proportionally
sized white circles represent albacore larval samples while gray circles represent bluefin larval samples analysed in this study.

MATERIALS AND METHODS
Field sampling

The TUNIBAL survey was carried out on board
the R/V Cornide de Saavedra from July 4 to 30, 2003.
A 10 x 10 nm grid of hydrographic stations was set up
for the hydrographic characterisation of the survey
area (Fig. 1), with a total of 211 CTD (Seabird 25)
casts over the survey area. At each hydrographic sta-
tion, a vertical plankton tow to 70 m depth was per-
formed with a CalVET plankton net whose mesh size
was 55 mm. Along the navigational path of the grid,
a total of 236 sub-surface plankton tows, each one 10
miles apart, were carried out to collect larval tuna for
daily growth and condition analyses. The number of
tuna larvae used for the growth study of each species
is shown in Figure 1. The plankton sampling gear
used for this study was a squared mouth bongo frame
measuring 1 m diagonally, equipped with a 500 mm
mesh. The plankton tows lasted 10 minutes. Larval
tuna were immediately sorted from glass trays, count-
ed and dry frozen in liquid nitrogen.

The CalVET 55 mm mesh sample was sieved
through 200 and 55 mm filters to separate the meso-
zooplankton fraction from the microzooplankton
fraction. The filtered fraction was frozen to estimate

its dry weight and to quantify protein and carbohy-
drate content through biochemical analysis.

Laboratory procedures
Orolith preparation and analysis

Tuna larvae of both species were selected from
the stations where these were most abundant. The
conserved tuna larvae were transferred from the liq-
uid nitrogen containers to a — 80°C freezer until the
moment of otolith extraction. Randomly selected
vials containing larvae (from 1-5) were removed
from the freezer and thawed at room temperature.
Larvae for otolith extraction and biochemical analy-
sis were evenly distributed for each technique. The
defrosted larvae were measured for standard length
(SL) using NIH image analysis (US National Health
Institute). To test differences between the relative
body proportion between species, the maximum
cephalic height (CH), or head depth, and preanal
length (PL) (snout to anus) were also measured.
After measuring, the larvae were dehydrated in a dry
freezer for 24 hours.

Larvae were then dry weighed on a precision
balance with a precision of 1 ug. After dry weigh-
ing, larvae were re-hydrated with distilled water to
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facilitate otolith extraction. By means of a small
fine scalpel, a cut on the dorsal side of the larva’s
head was performed to allow the otoliths to be
extracted with fine needles. This procedure was
done on a slide so that otoliths were moved away
from the head. All the extracted otoliths were
cleansed with a drop of distilled water and, once
dry, fixed onto the slide with nail lacquer. The
sagitta were only differentiated from the lapillus by
light microscopy under 1000x magnitude due to
their very small size difference in younger larvae,
as observed by Wexler et al. (2001) in yellowfin
tuna larvae (7. albacares).

Increments were counted along the largest axis of
the sagitta using the OTO program designed by
Andersen and Moksness (1988). Daily increment
formation in the Pacific BFT was validated by
Foreman (1996), as in the North Pacific albacore, 7.
alalunga (Laurs et al., 1985). The program runs on
a Macintosh platform connected to a HEI digitiser
and a high-resolution camera that projects the otolith
on a video monitor. Sagittae with indistinct
microstructures leading to conflicting age estimates
were discarded.

The short life span of the sampled tuna larvae fit-
ted well to linear models of size at age data. Otoliths
showed petential growth. In the allometric relation-
ships, such as otolith radius to larval size or larval
size to weight, power models were more explicative.

ANCOVA was used to test the difference
between somatic and otolith growth or allometric
relationships between species. Previous to statistical
analysis, some non-linear regression data were
transformed to natural logarithms (Ln).

Condition analysis by RNA, DNA and PROT
content quantification

Tuna larvae were homogenised by means of
ultrasonic pulses (2x10 s) at 0°C in 700 ml of Tris-
buffer (0.05 M Tris, 0.1 M NaCl, 0.01 M EDTA, pH
8.0) containing SDS 0.01% (final concentration).
The homogenate was centrifuged at 6000 rpm for 8
min at 4°C. The DNA concentration in the super-
natant was determined by fluorescence after incuba-
tion of one aliquot (100 ml) with RNAase 0.02 mg
ml (final concentration) at 37°C for 30 min. A sec-
ond aliquot of supernatant (100 ml) was transferred
to another vial for total nucleic acid (RNA+DNA)
determination. The fluorescent dye, ethidium bro-
mide, was used for quantification of nucleic acids.
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Fluorescence of samples was measured at exc: 360
nm, em: 590 nm against a blank. Calibration curves
were made with DNA Type I from calf thymus and
RNA Type III from baker’s yeast (all from SIGMA).
The standard curve slope ratio of RNA/DNA is
0.400-0.405 (mean=0.402; sd=0.0025). Detailed
information on analytical procedures is provided in
Belchier et al. (2004).

Protein content in the supernatant was deter-
mined in 200 ml aliquots following the method of
Lowry et al., (1951). Bovine serum albumin was
used to make calibration curves.

The assignment of estimated ages to both tuna
larval species subject to biochemical analysis was
based on the frequency of increment counts within a
determined larval size and weight range that had
appeared in the aged larval populations. A propor-
tional criterion in attributing increment counts to
different size and weight categories was set.

Microzooplankton analysis

Microzooplankton analysis was determined after
drying the samples in an electric oven to a constant
weight at 60°C (Rao and Krupanidhi, 2001; Rao and
Kumari, 2002). Samples were weighed to the near-
est 0.1 pug. Subsequently, each sample was
homogenised at 0°C in 1 ml of Tris-buffer (0.05 M
Tris, 0.1 M NaCl, 0.01 M EDTA, adjusted to pH 8.0
with HCI) by means of ultrasonic pulses (2x10 s).
Afterwards, 15 pul sodium-dodecylsulphate SDS
(0.7%) was added to the homogenate. The
homogenate was centrifuged at 6000 rpm for 8 min
at 4°C. An aliquot of 50 ul from the supernatant was
taken for protein analysis. Protein content was deter-
mined by the method of Lowry et al. (1951). The
relative proportion of protein content in the total
biomass of the microzooplankton, as measured by
dry weight, was used as an index of relative quality
of microzooplankton, as variations in biomass and
biochemical constituents are influenced by the
species composition of the sample (Rao and
Krupanidhi, 2001; Rao and Kumari, 2002).

RESULTS
Basic tuna larval sample statistics

Most BFT larval samples were caught at two
locations: a larval patch found south of Ibiza and a
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FiG. 2. — Size-frequency distribution of bluefin and albacore larval
samples for the daily growth and condition analysis.

station south of the Mallorca channel (see Fig. 1).
The ALB larvae originated from a series of stations
along the southeastern part of the survey area. The
stages of the tuna larvae varied from pre-flexion lar-
vae to post-flexion larvae.

A total of 157 and 138 BFT larvae were analysed
for the otolith microstructure and condition analysis,
respectively. Their SL was 2.8-8.7 mm and 3.5-8.5
mm, with a mean SL of 5.4 mm (sd=1.223) and 5.5
mm (sd=0.972), respectively. The total ALB larvae
sampled for the daily growth study and condition
analysis was 71 and 119, respectively. Their SL was
2.9-8.1 and 2.9-6.8 mm, with a mean SL of 5.00 mm
(sd=1.072) and 4.8 mm (sd=0.89), respectively. The
size frequency of both species for both analyses
showed normal distributions (Fig. 2).

The dry weight (DW) of BFT larvae was 0.042-
2.868 mg (mean=0.615; sd=0.566) for the otolith
study and 0.058-2.646 mg (mean=0.614; sd=0.453)
for the condition analysis. The DW of ALB was
0.063-1.708 mg (mean=0.354; sd=0.346) for the
otolith study and 0.034-1.901 mg (mean=0.329;
$d=0.269) for the condition analysis.

Morphometric analysis

The morphological resemblance between BFT
and ALB larvae is prominent. Under visual exami-
nation, the only distinguishing feature between the
species lies in the absence of melanophores in ALB
larvae along the trunk, while BFT has at least one
melanophore on the dorsal side in the mid-section of
the trunk. The allometric relationships of SL vs CH
and PL are shown in Figure 3. The LnPL and LnCH
did not show significant differences between the two

PL =-0.850+ 0.654*SL; r’=0.95 (BFT) +
PL =-0.576+ 0.601*SL; r’=0.92 (ALB)

CH (mm)

s
CH =-0.309 + 0.336*SL; r’=0.95 (BFT)
CH =-0.077 +0.297*SL; r*=0.87 (ALB)

3 4 5 6 7 8 9
SL (mm)

FI1G. 3. — Preanal length (PL) and maximum head depth (CH) vs SL
relationship between BFT and ALB larvae.
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FiG. 4. — SL and DW vs age relationship of BFT and ALB larvae.

species, using LnSL as a covariate (ANCOVA,
F, ,,,=2.3079, p>0.05; F, ,,,=3.2158, p>0.05).

Somatic and otolith growth vs age

The somatic growth of both species was linear in
the case of SL vs age (Fig. 4). However, somatic
growth, when referred to DW, showed potential
growth with age (Fig. 4). The intercept of the size-
at-age model, which would represent size at hatch,
as well as the slope representing the population
growth rate, do not show great disparities between
species. In the samples used for the growth study,
ANCOVA did not show significant differences in
LnSL and LnDW with LnAge as a covariate
between species (F, ,,;=0.05332, p>0.05;
F, ,,5=0.04024, p>0.05 respectively). Likewise, the
larvae used for biochemical analysis did not show
significant differences between species in LnSL and
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TABLE 1. — Somatic and otolith growth vs age, SL, DW of BFT and ALB larvae.

Species Somatic and otolith growth vs age r? Somatic and otolith growth vs SL and vs DW r?
T. thynnus DNA = 0.09139*age 21! 0.81 DW=0.00764*SL 37! 0.92
RNA = 0.16579*age 2223 0. 86 OR=0.5124*SL 2268 0.89
PROT = 0.89815 *age 2% 0.85 OR=0.0045*DW !4 0.92
T. alalunga DNA = 0.08674*age %! 0.75 DW =0.00682*SL 3807 0.88
RNA = 0.16265*age 2120 0.74 OR=0.7700*SL 2018 0.84
PROT = 0.93396*age 2903 0.69 OR=0.00213*DW 1669 0.92

LnDW with the estimated LnAge as a covariate
(F, 2=2.0688, p>0.05; F, ,,,=1.5252, p>0.05).

Somatic growth expressed by the amount of
DNA, RNA and PROT content used as proxies of
body size in the larval populations assigning esti-
mated ages according to size and weight frequen-
cies of the aged larval populations showed potential
growth (see Table 1) in the whole size range of the
sampled population. To avoid bias due to the greater
number of larval sizes/weight of BFT, ANCOVA
were limited to a maximum SL of 6 mm. Within this
range of SL, the amount of LnDNA and LnRNA
between species showed significantly higher values
in BFT larva (ANCOVA, F, ,,, = 4.826; p<0.001:
ANCOVA, F, ,,, = 19.521; p<0.001) with LnAge as
a covariate. The comparison between LnPROT con-
tent did not show significant differences with esti-
mated LnAge (ANCOVA, F, |, = 2.168; p>0.05).

With respect to otolith growth, power fits explain
their growth with age, considering the average size of
otolith core as the size at hatching for each species
(6.8 mm and 7 mm for BFT and ALB, respectively
(Fig. 5). The OR vs age relationship does not show
significant differences between the two larval species
(ANCOVA, F, ,,; =2.285; p>0.05).

100
OR =6.8+0.857*AGE "*%*; r?=0.96 (BFT)
80 | OR =7+0.7969*AGE 1529 .+ 220,86 (ALB)

60 |

40 ¢

Otolith radius (um)

201
W BFT
“o. ALB

0 2 4 6 8 10 12 14 16 18 20

DI: Daily increments

F1G. 5. — Otolith radius vs age relationship of BFT and ALB larvae.
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Somatic and otolith growth vs size

The DW vs SL relationship followed power
functions (Table 1) for the sampled population of
both species. The linear relationship of LnDW vs
LnSL of all the sampled larvae showed a significant
difference between species (ANCOVA, F, . =
4.4725; p<0.05) in favour of BFT. Since BFT larvae
have a greater range of SL and DW, ANCOVA
excluding SL above 6 mm maintained a significant
difference in favour of BFT, although in the limit of

DNA =0.0192*SL >5%; = 0.75 (BFT) a
DNA =0.0095*SL 3%%2; r2=0.79 (ALB)

24

18

12

DNA (ugllarva)

oF
3.0 35 40 45 50 55 6.0 65 7.0 7.5
SL (mm)
24 T
DNA = 13.9565*DW %35; r>=0.80 (BFT) b
DNA = 14.4343*DW %52, 2=0.93 (ALB) . e 1

DNA (upg/larva)

06 0.8 1.0 1.2 1.4

DW (mg)

FIG. 6. — a) DNA content vs SL relationship of BFT and ALB lar-
vae; b) DNA content vs DW relationship of BFT and ALB larvae.
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FiG. 7. — a) RNA content vs SL relationship of BFT and ALB lar-
vae; b) RNA content vs DW relationship of BFT and ALB larvae.

significance level (F, 3,,=3.9000, p=0.049).

Larval otoliths showed potential growth with SL
(Table 1). No significant differences between
species were observed in LnSL vs LnOR (ANCO-
VA, F, 5 = 4.5421; p>0.05). Otoliths showed
potential growth increase with DW. No differences
were observed in LnDW vs LnOR (ANCOVA, F ,;
=0.41958; p>0.05).

Concerning the biochemical parameters, DNA
and RNA showed potential growth increase with SL
and DW (Figs. 6a-b and 7a-b respectively). The
relationship of LnDNA vs LnSL, excluding SL
above 6 mm, showed significantly higher DNA con-
tent in BFT (ANCOVA, F | ,,, = 4.993; p<0.05). The
relationship of LnDNA vs LnDW showed signifi-
cant differences when the range of DW was limited
to a maximum DW of 0.8 mg, common to both
species (ANCOVA, F| ,,, = 3.9714 p<0.05).

With respect to RNA content, a significantly
higher increase of LnRNA with LnSL occurred in
BFT (ANCOVA, F, ,,, = 18.335; p<0.001), exclud-

600 I bRoT = 0.1628*SL “°%; 2=0.61 (BFT) a ,
PROT = 0.1446*SL *'?'; ’=0.77 (ALB)

PROT (upg/larva)

25 3.0 3.5 40 45 50 55 6.0 65 7.0 7.5

SL (mm)
600 | PROT =362.054*DW "?'; r’=0.76 (BFT) + b
PROT =381.124*DW "3%; r?=0.93 (ALB) /
? + + -, 7
> 450 + .
8 R
e oo/
2 300 o+ B2 .
-~ + O,
'5 ¢ e;@ﬁg’tg °s %
X 450 0, or
o 02 G Tt
0 00 W BFT
0 o ", ALB
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
DW (mg)

FiG. 8. — a) PROT content vs SL relationship of BFT and ALB lar-
vae; b) PROT content vs DW relationship of BFT and ALB larvae.

ing SL higher than 6 mm. Significantly higher
LnRNA in BFT larvae was also observed in relation
to LnDW (ANCOVA, F, ,,, = 28.782; p<0.001),
excluding DW over 0.8 mg.

Lastly, PROT content fitted power functions in
both species with SL. and DW (Fig. 8a-b). The rela-
tionship of LnPROT with LnSL did not show signif-
icant differences between species (ANCOVA, F, o,
= 1.829; p>0.05), excluding SL over 6 mm.
However, the relationship of LnPROT vs LnDW for
ALB showed significantly higher PROT content
than for BFT (ANCOVA, F, ,,, = 8.4646; p<0.01)
when the range of DW was limited to 0.8 mg. The
relationship of PROT vs RNA is shown in Figure 9,
denoting the fact that the ALB for the same RNA
content yielded higher PROT.

RNA/DNA ratios

Figure 10 shows the distribution of RNA/DNA
ratios of both species by increasing size categories.
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The RNA/DNA ratios do not seem to follow any sig-
nificant trend with size or weight.

The RNA/DNA ratios for BFT larvae varied
from 0.88 to 3.27 (Mean=1.97; sd = 0.35), while for
ALB they varied from 1.00 to 3.18 (Mean = 1.74; sd
=0.39). The BFT larvae recorded significantly high-
er RNA/DNA ratios (ANCOVA, F, ,;, = 17.400;
p<0.001) (Fig. 10).

Spawning habitat conditions

The hydrographic conditions in which BFT and
ALB were sampled are clearly differentiated. The
BFT larvae analysed were associated with Atlantic
water masses (<37.00 PSU), while the ALB larvae
were associated with Mediterranean water masses
(>37.5 PSU) (Fig. 11a). The temperature regime of
these water masses showed surface temperature dif-
ferences over 2°C (Fig. 11b).
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PROT/DW ratios of microzooplankton samples
varied from a minimum value of 0.03 to a maximum
value of 3.5. The PROT/DW ratio showed higher
values in the water masses of Atlantic origin than
those observed in Mediterranean water masses (Fig.
11c¢).

DISCUSSION

Growth studies in the early ontogenic stages
are crucial to the understanding of early life histo-
ry dynamics and the environmental forces that
drive them. Recruitment variability is highly
dependent on early larval and juvenile growth
(Houde, 1987, 1989).



DAILY GROWTH AND CONDITION OF TWO THUNNUS SPECIES LARVAE ¢ 75

Environmental conditions of a biotic and abiotic
nature show a strong influence on the growth and
condition of fish larvae. Changes of temperature can
show strong effects on growth rates, and conse-
quently on mortality (Chambers and Legget, 1987;
Houde, 1989). Another source of mortality may be
induced by starvation and predation (May, 1974;
Bailey and Houde, 1989), which are inter-related
since starvation leads to decreased growth rates
(Buckley, 1984), and consequently greater vulnera-
bility to predation (Folkvord and Hunter, 1986;
Purcell et al., 1987).

Daily growth studies on tuna larvae are relative-
ly scarce and field-oriented studies are even scarcer.
The first BFT daily growth study was made by
Brothers et al. (1983) on Thunnus thynnus field-col-
lected larvae and juveniles, assuming daily incre-
ment formation. Different researchers have validat-
ed the daily periodicity of increment deposition on
different tuna species. Itoh et al. (2000) and
Foreman (1996) validated the daily periodicity of
increment formation on BFT larvae. Validation of
increment formations have also been confirmed on
North Pacific albacore (7. alalunga) by Laurs et al.
(1985), on yellowfin tuna (7. albacares) by Wexler
et al. (2001), and on small tuna species (e.g.
Euthynnus) by Radke (1983) and Wexler (1993).

In studies focusing on the analysis of nutritional
status of tuna larvae, the existing techniques have
tended towards histological methods, mainly focus-
ing on histological characteristics and appearance of
the digestive tract (Margulies, 1993; Kaji et al.,
1996, 1999). However, nutritional condition studies
by nucleic acid and protein content estimation are
practically lacking in larval tuna.

In this survey, clear salinity signatures of Atlantic
water masses at surface were observed south of
Ibiza and its channel. The Atlantic intrusion extend-
ed midway towards the Mallorca channel and its
southern area (Fig. 11a). Mediterranean water mass-
es covered the northern coasts of Mallorca and the
surrounding water masses of Menorca. A previous
study carried out in the same area during the 2002
BFT spawning season showed that the PROT/DW
was correlated with the nature of water masses
(Garcia et al., 2003a): it was negatively correlated
with surface salinity and positively correlated with
surface temperature.

Major abundances of BFT larvae were found in
the southern part of the 2003 survey area, south of
Ibiza and the Mallorca channel (Garcia et al.,

2003a). On the other hand, ALB larvae were mostly
located in the southern part of the Mediterranean
water masses (Garcia, IEO unpublished data) and its
transitional waters, indicating their acclimation to
Mediterranean conditions.

The larval tuna species considered in this study
show strong similarities in their morphological
development at the analysed range of SL (see Fig.
3). Consequently, no significant differences were
observed in PL and CH vs SL. With regard to the
morphological development and growth of 7. thyn-
nus, the sampled population agrees with the
description given by Miyashita et al. (2001) on the
Pacific BFT.

The minimum sizes of the sampled BFT larvae
(2.8 mm) correspond to pre-flexion larvae that were
not newly hatched because no remnants of yolk
presence were observed and their mouths were fully
functional. This body size difference can be
accounted for by larval shrinkage that was not esti-
mated because no shrinkage factors for this species
are available for the conservation agent used, liquid
nitrogen.

The daily growth rate of BFT in this study (0.35
mm/day) is similar to those reported by Miyashita ez
al. (2001) and Jenkins and Davis (1990) for the
Pacific BFT and the southern BFT (7. maccoyii) lar-
vae, respectively.

BFT and ALB larvae showed SL vs age linear
relationships and power functions with respect to
DW vs age. For a given SL of BFT larvae, the size
at age 10 would yield larvae of 6.3 mm, in agree-
ment with the study of Miyashita er al. (2001).
These authors report that rapid growth in tuna
occurs after 20 days (9.34 mm), when larvae begin
metamorphosing into juveniles.

In this comparative study, no significant differ-
ences were observed in the SL and DW vs age
between species. Likewise, otolith growth did not
show significant differences between species.
However, BFT larvae showed significantly higher
DNA and RNA content vs age than ALB larvae,
within the SL range common to both species (<6
mm). With respect to the relationship of PROT con-
tent vs age, no significant differences between
species were observed in the <6 mm SL range.

The allometric relationship of DW vs SL within
the same size range of the sampled population (<6
mm) showed significantly higher DW in BFT larvae
than in ALB larvae. The fact that DNA and RNA
also show significantly higher content in BFT larvae

SCI. MAR., 70S2, October, 2006, 67-78. ISSN: 0214-8358



76 » A. GARCIA et al.

is made evident by their greater somatic mass
expressed as DW.

Nonetheless, PROT content showed no signifi-
cant difference with respect to SL, yet when PROT
content was referred to DW, ALB showed signifi-
cantly higher PROT content within the DW range
below 0.8 mg. The cellular rate of protein synthesis
is a function of the number of ribosomes (Nomura et
al., 1984), although their activity is highly influ-
enced by temperature (Lied et al., 1983). ALB lar-
vae showed that for the same amount of RNA, a
greater amount of PROT was synthesised (see Fig.
9), which may be explained by the higher tempera-
ture regime at which ALB larvae were sampled.

The Mediterranean BFT spawners have been
reported to be associated with frontal structures and
anticyclonic gyres by Platonenko and de la Serna
(1997). BFT larval distributions off the Balearic
archipelago seem to sustain this hypothesis (Garcia
et al.,2003a,b). The area south of Ibiza where major
BFT larval concentrations occurred was subject to
the influence of two adjacent anticyclonic gyres
(Garcia et al., 2003a), made evident by surface tem-
perature satellite imagery corresponding to the lar-
val tuna sampling dates (Fig. 12). The convergence
of neighbouring waters with different hydrographic
characteristics tends to accumulate biotic and abiot-
ic particles in the frontal region, thus enriching, con-
centrating and retaining phytoplankton and zoo-
plankton in the frontal region (Bakun, 1996). Garcia
et al., (2003a) reported highest PROT/DW ratios
and chlorophyll @ values in the southern region of
the survey area.

Although bio-physical differences of the Atlantic
and Mediterranean water masses include tempera-
ture differences (2-3°C) and larval food availability,
larval somatic growth of BFT and ALB larvae with-
in their early ontogenic development, expressed as
size and weight gain, and concurrently otolith
growth, did not show significant differences
between species.

With respect to the RNA/DNA ratios, BFT
showed significantly greater values in relation to lar-
val sizes (see Fig. 10). A negative relationship
between the RNA/DNA ratios and temperature has
been reported by several authors (Buckley, 1982;
1984; Goolish et al., 1984; Ramirez et al., 2004), in
such a way that higher RNA/DNA estimates are
found in fish acclimated to colder waters. A differ-
ence of around 2°C can account for significant effects
on the RNA/DNA ratios (Buckley et al., 1999).
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Fic. 12. - NOAA/AVHRR infrared sensor of SST satellite image

downloaded from German Remote Sensing Centre web site corre-

sponding to July 11, 2003, in which most bluefin larval samples off

south Ibiza were collected. Arrows are superimposed on the
adjacent anticyclonic gyres.

In conclusion, this study attempts to make evi-
dent the close relationships between BFT and ALB
at the morphological level in their early life history,
also shown in their growth trajectory as expressed
by SL and DW with age. Despite this similarity, dif-
ferences were manifested in the greater DNA and
RNA content vs SL. and DW, which may be respon-
sible for the greater DW vs SL relationship in BFT.
On the other hand, a lower PROT content was
observed in BFT. Such differences may be caused
by either the particular environmental differences in
which each species was sampled or particular inher-
ent biological differences between the two species.

ACKNOWLEDGMENTS

The authors would like to thank the Spanish
Science and Technology Commission, which pro-
vided the funding for the TUNIBAL project (REN
2003-01176/MAR).

REFERENCES

Alemany, F. 1997. — Ictioplancton del Mar Balear. Ph.D. thesis,
Univ. Islas Baleares, Palma de Mallorca.

Andersen, T. and E. Moksness. — 1988. Manual for reading daily
increments by use of computer programme. Flpdevigen Meld.,
4:1-37.

Anonymous. — 2003. Report of the 2002 Atlantic bluefin tuna stock
assessment session. Col. Vol. Sci. Pap. ICCAT., (3): 710-937.

Bailey, K.M. and E.D. Houde. — 1989. Predation on eggs and larvae
of marine fishes and the recruitment problem. Adv. Mar. Biol.,
25: 1-83.

Bakun, A. — 1996. Patterns in the Ocean: Ocean processes and



DAILY GROWTH AND CONDITION OF TWO THUNNUS SPECIES LARVAE « 77

Marine Population Dynamics. University of California Sea
Grant Program, San Diego, California, USA in co-operation
with Centro de Investigaciones Biologicas del Noroeste, La
Paz, Mexico.

Belchier, M., C. Clemmesen, D. Cortés, T. Doan, A. Folkvord, A.
Garcia, A. Geffen, H. Hgie, A. Johannessen, E. Moksness, H.
de Pontual, T. Ramirez, D. Schnack, and B. Sveinsbo. — 2004.
Recruitment studies: Manual on precision and accuracy of
tools. ICES Tech. Mar. Environ. Sci., 33: 35 pp.

Berdalet, E and M. Estrada. — 1993. Relationships between nucleic
acid concentrations and primary production in the Catalan Sea
(Northwestern Mediterranean). Mar. Biol., 117(1): 163-170.

Brothers, E.B., E.C. Prince and D.W. Lee. — 1983. Age and growth
of the young of the year bluefin tuna Thunnus thynnus, from
otolith microstructure. NOAA Tech. Rep. NMFS., 8: 49-59.

Buckley, L.J. — 1982. Effects of temperature on growth and biochem-
ical composition of larval winter flounder Pseudopleuronectes
americanus. Mar. Ecol. Prog. Ser., 8: 181-186.

Buckley, L.J. — 1984. RNA-DNA ratio: an index of larval fish
growth in the sea. Mar. Biol., 80: 291-298.

Buckley, L.J., E. Calderone and T.L. Ong. — 1999. RNA-DNA ratio
and other nucleic acid-base indicators for growth and condition
of marine fishes. Hydrobiology, 401: 265-277.

Carter, C.G., G.S. Seeto, A. Smart, S. Clarke and R.J. van
Barneveld. — 1998. Correlates of growth in farmed juvenile
southern bluefin tuna Thunnus maccoyii. Aquaculture, 161(1-
4): 107-119.

Chambers, R.C. and W.C. Leggett. -1987. Size and age at meta-
morphosis in marine fishes: an analysis of laboratory-reared
winter flounder (Pseudopleuronectes americanus) with a
review of variation in other species. Can. J. Fish. Aquat. Sci.,
44:1936-1947

Clemmesen, C., R. Sanchez, and C. Wongtshowski. — 1997. A
regional comparison of the nutritional condition of SW Atlantic
anchovy larvae, Engraulis anchoita, based on RNA/DNA
ratios. Arch. Fish. Mar. Res., 45(1): 17-43.

Chicharo, M.A. E. Esteves, A.M.P. Santos, A. dos Santos, A. Peliz,
and P. Re. — 2003. Are sardine larvae caught off northern
Portugal in winter starving? An approach examining nutrition-
al conditions. Mar. Ecol. Prog. Ser., 257: 303-309.

Dicenta, A. — 1975. Identificacion de algunos huevos y larvas de
tinidos en el Mediterraneo. Bol. Inst. Esp. Oceanogr., 198:1-22.

Dicenta, A. — 1977. Zonas de puesta del atan (Thunnus thynnus) y
otros tunidos del Mediterraneo Occidental y primer intento de
evaluacion del stock de reproductores de atun. Bol. Inst. Esp.
Oceanogr., 11: 313-319.

Folkvord, A. And J.R. Hunter. — 1986. Size specific vulnerability of
northern anchovy (Engraulis mordax) larvae to predation by
fishes. Fish. Bull. US., 84: 859-869.

Foreman, T. — 1996. Estimates of age and growth, and an assess-
ment of ageing techniques, for northern bluefin tuna (Thunnus
thynnus) in the Pacific Ocean. Bull. IATTC., 21(2): 74-123.

Garcia, A., F. Alemany, P. Velez-Belchi , J.L. Lopez Jurado, D.
Cortés, J.M. de la Serna, C. Gonzalez Pola, J.M. Rodriguez, J.
Jansa and T. Ramirez. — 2003a. Characterization of the bluefin
tuna spawning habitat off the Balearic Archipelago in relation
to key hydrographic features and associated environmental con-
ditions. ICCAT., SCRS/2003/76.

Garcia, A., F. Alemany, P. Velez-Belchi, J.L. Lopez Jurado, J.M. de
la Serna, C. Gonzélez Pola, J.M. Rodriguez and J. Jansa. —
2003b. Bluefin tuna and associated species spawning grounds
in the oceanographic scenario of the Balearic archipelago dur-
ing June 2001. Col. Vol. Sci. Pap. ICCAT., 55(1): 138-148.

Goolish, E.M., M,G. Barron and I.R. Adelman. — 1984.
Thermoacclimatory and response of nucleic acid and protein
content of carp muscle tissue: influence of growth rate and rela-
tionship to glycine uptake by scales. Can. J. Zool., 62: 2164-
2170.

Houde, E.D. — 1987. Fish early life dynamics and recruitment vari-
ability. Am. Fish. Soc. Symp., 2: 17-29.

Houde, E.D. — 1989. Subtleties and episodes in the early life of fish-
es. J. Fish. Biol., 35(Suppl A):29-38.

Itoh, T., Y. Shiina, S. Tsuji, E. Fuminori and T. Nobuhiro. — 2000.
Otolith daily increment formation in laboratory reared larval
and juvenile bluefin tuna Thunnus thynnus. Fish. Sci., 66(5):
834-839.

Jenkins, G.P. and T.L.O. Davis. — 1990. Age, growth rate, and

growth trajectory determined from otolith microstructure of
southern bluefin tuna Thunnus maccoyii larvae. Mar. Ecol.
Prog. Ser., 63(1): 93-104.

Kaji, T., M. Tanaka, M. Oka, H. Takeuchi, S. Ohsumi, K. Teruya
and N. Ishibashi. — 1996. Preliminary observations on develop-
ment of Pacific bluefin tuna Thunnus thynnus (Scombridae) lar-
vae reared in the laboratory, with special emphasis on the diges-
tive system. Mar. Freshw. Res., 47: 261-269.

Kaji, T., M. Tanaka, Y. Takahashi, M. Oka, and J. Hirokawa. — 1999.
Growth and morphological development of laboratory-reared
yellowfin Thunnus albacares larvae and juveniles, with special
emphasis on the digestive system. Fish. Sci., 65(5): 700-707.

La Mesa, M., M. Sinopoli and F. Andaloro. —2005. Age and growth
rate of juvenile bluefin tuna Thunnus thynnus from the
Mediterranean Sea (Sicily, Italy). Sci. Mar. 69(2): 241-249.

Laurs, R.M., R. Nishimoto and J.A. Wetherall. — 1985. Frequency
of increment formation on sagittae of North Pacific albacore
(Thunnus alalunga). Can. J. Fish. Aquat. Sci., 42(9): 1552-
1555.

Lied, E., G. Rosenlund, B. Lund and A. von der Decken. — 1983.
Effects of starvation and re-feeding on in vitro protein synthe-
sis in the white muscle of Atlantic cod (Gadus morhua). Comp.
Biochem. Physiol., 76B: 777-781.

Lopez-Jurado, J.L., J. Garcia Lafuente, and N. Cano. — 1995:
Hydrographic conditions of the Ibiza Channel during november
1990, March 1991, July 1992. Oceanol. Acta., 18(2): 235-243.

Lowry, O.H., N.J. Rosenbraugh, A.L. Farr and R.J. Randall. — 1951.
Protein measurements with the Folin phenol reagent. J. Biol.
Chem., 193: 256-275.

Margulies, D. — 1993. Assessment of the nutritional condition of
larval and early juvenile tuna and Spanish mackerel (Pisces:
Scombridae) in the Panama Bight. Mar. Biol., 115: 317-330.

May, R.C. — 1974. Larval mortality in marine fishes and critical
period concept. In: J.H.S. Blaxter, (ed), The early life history of
fish, pp 3-19. Springer Verlag, Berlin,.

Miyashita, S., Y. Sawada, T. Okada, O. Murata and H. Kumai. —
2001. Morphological development and growth of laboratory-
reared larval and juvenile Thunnus thynnus (Pisces:
Scombridae). Fish. Bull., 99(4): 601-616.

Rao, N. I. and G. Krupanidhi. — 2001. Biochemical composition of
zooplankton from the Andaman Sea. J. mar. biol. Ass. India, 43
(1-2): 49-56.

Rao, N.I. and R.R. Kumari. — 2002. Biochemical composition of
zooplankton from Visakhapatnam harbour waters, east coast of
India. Indian J. Mar. Sci., 31(2): 125-129.

Nomura, M., R. Gourse and G. Baughman. — 1984. Regulation of
the synthesis of ribosomes and ribosomal components. A. Rev.
Biochem., 53: 75-117.

Padoa, E. — 1956. Divisione Scombriformes. In: Uova, larve e stadi
giovanili di Teleostei, pp. 548-572. Fauna Flora Golfo Napoli.
Monografia 38.

Pinot, J. M., J. Tintoré, J. L. Lopez-Jurado, M. L. Fernandez de
Puelles and J. Jansa. — 1995. Three-dimensional circulation of a
mesoscale eddy/front system and its biological implications.
Oceanol. Acta., 18: 389-400.

Platonenko, S. and J.M. de La Serna. — 1997. Observaciones
Oceanograficas y Medioambientales en el Mediterraneo
Occidental durante la Epoca de reproduccion del Atin Rojo
(Thunnus thynnus L. 1758). Col. Vol. Sci. Pap. ICCAT., 46(4):
496-501.

Purcell, J.E., T.D. Siferd and J.B. Marliave. — 1987. Vulnerability
of larval herring (Clupea harengus pallasi) to capture by the
jellyfish Aequorea victoria. Mar. Biol., 94: 157-162.

Radke, R.L. and B. Morales-Nin. — 1989. Mediterranean juvenile
bluefin tuna: life history patterns. J. Fish. Biol., 35: 485-496.

Radke, R.L. — 1983. Otolith formation and increment deposition in
laboratory-reared skipjack tuna, Euthynnus pelamis, larvae.
NOAA Tech. Rep. NMFS., 8: 99-103.

Ramirez, T., D. Cortés, A. Garcia and A. Carpena. — 2004. Seasonal
variation of RNA/DNA ratios and growth rates of the Alboran
Sea sardine larvae. Fish. Res., 68: 57-65.

Vélez-Belchi, P. and J. Tintoré. — 2001. Vertical velocities at an
ocean front. Sci. Mar., 65: 301-304.

Wexler, J.B. — 1993. Validation of daily growth increments and
estimation of growth rates of larval and early juvenile black
skipjack tuna, Euthynnus lineatus, using otoliths. Bull. IATTC.,
20: 400-413.

SCI. MAR., 70S2, October, 2006, 67-78. ISSN: 0214-8358



78 * A. GARCIA et al.

Wexler, J.B., D. Margulies, S. Masuma, N. Tezuka, K. Teruya, M.
Oka, M. Kanematsu and H. Nikaido. — 2001. Age validation
and growth of yellowfin tuna, Thunnus albacares, larvae reared
in the laboratory. Bull. IATTC., 22(1): 52-71.

SCI. MAR., 70S2, October 2006, 67-78. ISSN: 0214-8358

Received October 21, 2005. Accpeted February 22, 2006.
Published online September 26, 2006.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 400
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 400
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /KOR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
    /ESP <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [566.929 822.047]
>> setpagedevice


