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SUMMARY: Biomass size spectra describe the structure of aquatic communities ataxonomically. The slope (b) of the 
normalized biomass size spectrum (NBSS) is often used as an indicator of the impact of perturbations, such as pollution 
or overfishing. The NBSS intercept (a), has generally been ignored on the basis of a correlation between the NBSS slope 
and intercept, although this correlation has not been shown to be universal. We assessed whether the NBSS parameters are 
correlated using: (i) theoretical analysis, (ii) virtual communities randomly generated based only on statistical considerations, 
and (iii) virtual food webs changing over time following a dynamic bioenergetic model. We also analyzed whether the 
parameters of the Pareto distribution are correlated or not, using approaches (i) and (ii). We found that when communities 
change over time there is no single relationship between the two NBSS parameters, due to a dependence on the variation in 
total community abundance (N). We conclude that to characterize any aquatic system at least two parameters are necessary 
from the NBSS triad N, a, b. In the case of the Pareto distribution, both NPareto and bPareto are necessary.

Keywords: biomass size spectrum, Pareto distribution, bioenergetic model, linear biomass hypothesis, complex food webs, 
ecosystem management.

RESUMEN: El uso dEl ajustE linEal En los EspEctros dE tamaño dE biomasa para disEñar indicadorEs 
Ecosistémicos. – Los espectros de tamaño de biomasa son un método ataxonómico para describir la estructura de 
comunidades acuáticas. La pendiente (b) del espectro de tamaños de biomasa normalizado (ETBN) se usa como un indicador 
del impacto de perturbaciones tales como polución y sobrepesca. El intercepto del ETBN (a) ha sido normalmente ignorado 
debido a una correlación observada entre la pendiente y el intercepto del ETBN, aunque no se ha demostrado la recurrencia 
de esta correlación. Se evaluó esta correlación entre los parámetros usando: (i) análisis teórico, (ii) comunidades virtuales 
generadas aleatoriamente basado en consideraciones estadísticas, y (iii) redes tróficas virtuales cambiando en el tiempo 
siguiendo un modelo bioenergético dinámico. Además, se analizó si los parámetros de la distribución de Pareto estaban o no 
correlacionados usando los enfoques (i) y (ii). Cuando las comunidades cambian en el tiempo no existe una única correlación 
entre los parámetros del ETBN, debido a una dependencia en la variación de la abundancia comunitaria (N). Para caracterizar 
cualquier sistema acuático se necesitan al menos dos coeficientes del ETBN de la triada N, a, b. En la distribución de Pareto 
los dos parámetros, NPareto y bPareto, son necesarios. 

Palabras clave: espectro de tamaños de biomasa, distribución de Pareto, modelo bioenergético, hipótesis de la biomasa 
constante, redes tróficas complejas, gestión del ecosistema.
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INTRODUCTION

The size spectrum is a two-dimensional graphical 
representation of ecological pyramids (Cousins 1985) 
designed to show the biomass distribution across differ-

ent size classes in a community. The size spectrum has 
been recommended as an alternative way to describe 
the structure of aquatic ecosystems (e.g. Rodriguez 
and Mullin 1986, Dickie et al. 1987, Gaedke 1993, 
Blanchard et al. 2009, Rochet and Benoit 2011). This 
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approach can be used to analyse global properties of 
the ecosystem without having to study the diversity of 
organisms within it (Blanco et al. 1994). Size spectrum 
research has demonstrated that, in the absence of major 
disturbances, community size distributions show clear 
regularities (Sheldon et al. 1972, Platt 1985, Quiñones 
1994, Law et al. 2009, Capitan and Delius 2010, Blan-
chard et al. 2011). 

Typically, size spectrum coefficients are extracted 
by performing a least-squares linear regression on the 
log-transformed values of abundance (y axis: biomass 
normalized to the width of each size class) and body 
size (x axis: individual weight) (White et al. 2007, 
Clauset et al. 2009). Classes with zero observations 
are excluded, because log(0) is undefined (White et al. 
2007). This technique is called the normalized biomass 
size spectrum (hereafter NBSS; Platt and Denman 
1977, 1978, Blanco et al. 1994).

The coefficients of the NBSS, slope (b) and intercept 
(a), have been proposed as quantitative indices of aquat-
ic ecosystem structure (Sprules and Munawar 1986). 
Many authors suggest the use of NBSS slope as an in-
dicator of the level of impact on a given ecosystem due 
to pollution (de Bruyn et al. 2002), habitat modification 
(Robson et al. 2005) or exploitation, especially when an 
ecosystem approach to fisheries (e.g. Shin et al. 2005, 
Jennings and Dulvy 2005, Garcia et al. 2012, see also 
Table 1) is adopted. The intercept, by contrast, has been 
proposed as an indicator of total biomass in the ecosys-
tem (Sprules and Munawar 1986) and an indicator of 

primary producers biomass (Zhou 2006), or it has sim-
ply been ignored due to an observed correlation between 
the NBSS slope and intercept (Rice and Gislason 1996). 
However, it has not been proven that the correlation be-
tween these parameters is recurrent. Daan et al. (2005) 
proposed the use of the midpoint height rather than the 
intercept of the NBSS to characterize spectra. The use 
of the midpoint height is supposed to remove the influ-
ence of empirical correlations observed between b and a 
(Rice and Gislason 1996, Daan et al. 2005). 

Several other approaches, however, have been de-
veloped for describing aquatic size spectra. Vidondo et 
al. (1997), suggested that the description of planktonic 
(or organismal in general) size distributions should 
be viewed in terms of distribution statistics, arguing 
in favour of using the Pareto distribution, which was 
originally used to describe the allocation of wealth 
among individuals (Pareto 1897) but is also widely 
used in many other disciplines to describe size distribu-
tions (e.g. energy release of seisms and gaps between 
them, masses in the solar system, population of cities 
within a country, see Vidondo et al. 1997 for more 
examples). Vidondo et al. (1997) indicated that the Pa-
reto parameter b (bPareto) is an unbiased estimator of the 
NBSS slope (b). In addition, it avoids the need to group 
data by log size classes and the problem of empty size 
classes that may occur with NBSS. Sprules and Goyke 
(1994) showed that offset parabolas of uniform curva-
ture provided an appropriate description of NBSS in 
Lakes Ontario and Michigan. An additive model was 

tablE 1. – List of the different size spectrum coefficients and different processes for which they have been proposed as ecosystem indicators.

Coefficient/Method Process/Indication/Application Source

Area below the Normalized  Total Community Biomass Platt and Denman (1977, 1978)
  Biomass Size Spectra (NBSS)  
Residual variation around the b  Level of perturbation from the steady state Sprules and Munawar (1986), Choi et al. 
  of the idealized linear size spectrum  (1999)
Residual variation around the b  Overall productivity of the system Sprules and Munawar (1986)
  of the idealized linear size spectrum  
Continuity in the size spectrum b  Benthic-pelagic coupling in lakes Echevarría et al. (1990)
Continuity in the size spectrum b  Benthic-pelagic coupling in continental shelf waters Schwinghamer (1985), Warwick et al. (1986)
a Biomass of primary producers or of the smallest size  Zhou (2006)
 group considered in the spectrum 
a To compare community biomass (only if they present  Sprules and Munawar (1986)
 equal size spectra b ) 
b System overall productivity  Sprules and Munawar (1986)
b Fishing exploitation Pope et al. (1987), Murawski and Idoine (1992),
  Gobert (1994), Rice and Gislason (1996), 
  Gislason and Rice (1998), Bianchi et al. (2000)
b Sewage enrichment in lotic systems de Bruyn et al. (2002)
b Predicting fish production from phytoplankton  Moloney and Field (1985)
 standing stock 
b Predicting fish production from primary and secondary  Sheldon et al. (1977), Borgmann (1983)
 production 
b Mortality rate Peterson and Wroblewski (1984)
b Global warming Yvon-Durocher et al. (2011)
b Predator–prey mass ratio  Silvert and Platt (1980), Camacho and Sole  
  (2001), Benoıt and Rochet (2004)
b Growth efficiency of individuals Silvert and Platt (1980), Camacho and Sole  
  (2001), Benoıt and Rochet (2004)
b Ecological efficiency Borgmann (1987), Boudreau and Dickie 
  (1992), Boudreau et al. (1991), Thiebaux and 
  Dickie (1992, 1993), Sprules and Goyke (1994)
b Flow of persistent contaminants up the food web Borgmann and Whittle (1983), Borgmann 
  (1985), Thomann (1979, 1981)
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used rather than a simple linear model by De Eyto and 
Irvine (2007) to assess the status of shallow lakes. 

Most of these new approaches and recommenda-
tions have not had a major impact on how empirical 
studies have described the size structure in marine and 
freshwater communities. Nevertheless, the Pareto dis-
tribution has been used to describe plankton communi-
ties (Quintana et al. 2002, Brucet et al. 2006, Finlay 
et al. 2007) and to assess the impact of trawling on 
benthic/demersal communities (Gómez-Canchong et 
al. 2011). A parabolic fit was also used by Finlay et 
al. (2007) when analyzing the factors driving the zoo-
plankton size spectrum in lake communities. 

In order to use size spectrum parameters as ecosys-
tem indicators and/or components of more complex in-
dicators, it is necessary to assess their properties and in 
particular, to determine whether they are independent 
of each other or have some level of correlation. 

In this article we determine, in aquatic ecosystems, 
whether the slope and intercept of the NBSS are cor-
related using the following approaches: (i) theoretical 
analysis, (ii) virtual communities generated randomly 
on the basis of only statistical considerations, (iii) 
virtual food webs changing over time following a dy-
namic bioenergetic model. We explore the relationship 
between these two coefficients in previously published 
empirical size spectra. In addition, we analyze whether 
the Pareto distribution parameters are correlated or not, 
using approaches (i) and (ii).

MATERIAL AND METHODS

Theoretical background

Sheldon et al. (1972) postulated the linear biomass 
hypothesis, which states that the biomass in a pelagic 
community is uniformly distributed across the different 
geometrically arranged size classes. The mathematical 
formalism was developed by Platt and Denman (1977, 
1978) and Silvert and Platt (1978) by means of b, a 
biomass density function based on the size of organ-
isms. The biomass contained in a size class, defined by 
organisms with sizes wl and wu, may be calculated as:

 B w w w dw( , ) ( )l u

w

w

l

u

∫ β=  (1)

Sheldon’s Linear Biomass Hypothesis states then:

 B(w,kw) = c      if k>1 (2)

where k is a geometric constant which represents the 
amplitude of each size class, and c is a constant that 
depends on k and the total amount of biomass in the 
ecosystem. b is an allometric function, awb, and only 
meets the previous condition (B=c) if b=–1. The non-
dimensional slope b is an indicator of the proportion of 
biomasses between consecutive size classes, which is 
constant in this case (Blanco et al. 1994), i.e.
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where a is a coefficient expressed in the same units as 
numerical abundance, which indicates the amount of 
biomass averaged over a size range whose limits are in 
the geometric proportion k. Historically, coefficient a 
has been related to the total biomass of the ecosystem 
(Sprules and Munawar 1986), but we will show below 
that the interpretation of this parameter is more com-
plex than the interpretation of Sprules and Munawar. In 
case of b≠–1 a more complex expression arises:
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In this case, biomass on a geometric scale is not in-
sensitive to body size and diminishes when w increases 
if b<–1, or increases with w if b>–1, and therefore the 
total biomass in the ecosystem is inversely related to 
the absolute value of b.

In relation to global properties, assuming w0 as the 
minimum size of organisms and infinite as the maxi-
mum organism size, according to Equation (1) the total 
biomass B of the ecosystem will be infinite if b≥–1, 
whereas if b<–1 the total biomass is
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which becomes simpler if we let w0 be conventionally 
1 (equivalent to using sizes relative to the smallest):

 
B

a

b 1
= −

+
 (6)

Therefore, in those ecosystems where b<–1, the 
total biomass is directly related to a and inversely re-
lated to the absolute value of b, from which we can 
deduce that the total biomass in the ecosystem would 
remain constant if and only if a change in one of the 
coefficients is compensated by an opposite change in 
the other.

Given a size-structured system, we may also define 
the abundance density function f, where the number 
of individuals (N) included between sizes wl and wu is 
(Blanco et al. 1994):

 

N w w w dw( , ) ( )l u

w

w

l

u

∫ φ=  (7)

This abundance density function f is related to the 
biomass density function b by the equation (Platt and 
Denman 1978)

 

 
w

w

w
( )

( )φ β=   (8)

where f is also an allometric function, f(w)=awb–1, and 
accepting the premise that there is a non-zero minimum 
size in our system (w0>0), then since total biomass is 
always constrained when b<–1, the total number of 
individuals is always constrained regardless of b:
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This also becomes simpler using relative sizes 
(w0=1):

 N
a

b
= −

 (10)

As before, in those ecosystems with b<0, the total 
abundance is directly related to a and inversely related 
to the absolute value of b, and consequently the same 
compensation effect could occur between the two 
parameters, maintaining N constant in the ecosystem, 
albeit with a different distribution of organism sizes.

The experimental approach to b traditionally 
classifies the abundance of organisms in octave size 
classes (Platt and Denman 1978, Blanco et al. 1994), 
i.e. by means of the function N(w, 2w) in the notation 
of Equation (7). However, from the same equation a 
cumulative approach can be deduced if we consider 
the function

 N w w w dw
a

b
w w( ) ( )i

w

w

i
b b

0

i

0

∫ φ ( )< = = −  (11)

which gives the number of individuals of size smaller 
than wi. The complementary form N(w<wi) to N, which 
is the number of individuals of size larger than wi, ar-
ranging Equations (9) and (11), is the Pareto function 
(Vidondo et al. 1997):

 N w w N N w w
a

b
w( ) ( )i i i

b≥ = − < = −
 (12)

This can be simplified using w0=1 and Equation 
(10) to

 N(w ≥ wi) = Nwi
b (13)

The cumulative Pareto function is not strictly a 
“size spectrum”, but has the same slope as b and is 
more robust in its statistical properties; it deals directly 
with the individual sizes without grouping them into 
classes and can be extended to non-linear distributions 
(see Vidondo et al. 1997 for details). It is important to 
note that the abundance size spectrum and the Pareto 
distribution cannot be constructed when the sampling 
and/or analytical method used is only able to quantify 
aggregated biomass (e.g. gravimetric analysis, ATP 
content).

Statistical model

To check the statistical implications of the findings 
from the previous section, we simulated the sampling 
of individuals in a size-structured system using a Mon-
te Carlo method (see Blanco et al. 1994 for an extended 

description). Following Equation (9), the size w of a 
randomly sampled individual can be deduced from:

 
N

w dw
1

( )
w0

∫γ φ=
ω

 (14)

where g is a uniformly distributed random variable (0, 
1), so

 w
bN

a
b b

0

1

ω γ= +



  (15)

If we assume w0=1, taking equation (10) and using 
1–g as equivalent to g (both being equally distributed), 
finally

 b

1

ω γ=  (16)

To avoid bias in the estimation of b, a very large 
number of individuals (106 in most cases, 105 in others, 
see below) were sampled and classified by size on an 
octave scale (i.e. base-2 logarithm). Furthermore, the 
elimination of empty size classes and those with few 
individuals located to the right of the first empty class 
also remove the tendency to overestimate b (the “unex-
pected case effect”, Blanco et al. 1994). The systematic 
error in the estimation of a caused by the selection of 
a nominal size for each class, was corrected by using 
the lower limit as the nominal size and multiplying the 
coefficient a by the correction factor 1/ln2 in case of 
b=–1, or (b+1)/(2b+1–1) in the case of b≠–1 (see Blanco 
et al. 1994 for details on the effect of nominal size, 
optimum nominal size and correction factors). In some 
cases, a cumulative Pareto distribution (Vidondo et al. 
1997) was built with the same data to avoid the clas-
sification into groups (with only 105 individuals due to 
computation time) and to serve as a comparison to the 
typical spectrum approach. 

To check possible influences of b, three types of 
simulation were performed: (A) keeping a constant 
b=–1, (B) picking b from a normal distribution with 
mean b=–1 and σ=0.25, and (C) picking b from a uni-
form distribution (between –1.5, –0.5) (Fig. 1). The 
central value of –1 was chosen because of the natu-
ral tendency of pelagic ecosystems around this slope 
(e.g. Kerr and Dickie 2001). In order to evaluate the 
importance of sample size, a B-type experiment was 
conducted with 4·105 samples of different size in the 
range 100 to 106 individuals.

Dynamic bioenergetic model

The food web models were built considering vir-
tual allometrically derived species (hereafter VADS; 
Gómez-Canchong et al. 2013). It is important to note 
that in this formulation, a VADS corresponds to an 
aggregation of individuals of the same body size, in-
dependent of their taxonomy. The population dynam-
ics within these food webs follows a model based on 
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bioenergetic and allometric reasoning, which involves 
parameterizing a model using power functions of indi-
vidual body mass (Yodzis and Innes 1992). The model 
was updated by Brose et al. (2005, 2006) with new allo-
metric coefficients (Brown et al. 2004) and extended to 
multi-species systems (Williams and Martinez 2004). 
Changes in the relative biomass densities of primary 
producer VADS (Eq. 17) and consumer VADS (Eq. 
18) are described as follows:

B r M G B
x M y B F B

e fi i i i i

j j j j ji

ji jij consumers

' ∑ ( )( ) ( )
= −

=  
(17)

B x M B x M y B F B

x M y B F B

e f

i i i i i i i i ji
j resources

j j j j ji

ji jij consumers

' ∑

∑ ( )

( ) ( ) ( )

( )

= − + −

−

=

=  

(18)

In these equations, Bi is the biomass of population 
i, ri is the mass-specific maximum growth rate of i, Mi 
is the body mass of individuals within population i, Gi 
is i’s logistic net growth rate of producers, where Gi = 
1 – (Bi/K) and K is i’s carrying capacity, xi is i’s mass-
specific metabolic rate, yi is i’s maximum consumption 
rate relative to its metabolic rate, and eij is i’s assimila-
tion efficiency when consuming population j. 

The functional response, Fij, quantifies the per 
capita consumption rates of predators (i) depending on 
prey density (j):

 

F
Bϖ

ϖB c B B Bij
ij j

h

h
i i

h
ik k

h

k resources
0 0 ∑=
+ +

=

 (19)

where vij is the weight factor representing the propor-
tion (0-1) of i’s attack rate targeted to prey j, B0 is the 

half-saturation density, h is the Hill coefficient (Real 
1977) and c quantifies predator interference. The Hill 
coefficient is a scaling exponent that relates to the han-
dling time needed to kill, ingest and digest a resource 
individual (Real 1977). The predator interference term 
in the denominator quantifies the degree to which indi-
viduals within population i interfere with one another’s 
consumption activities, which reduces i’s per capita 
consumption if c>0 (Beddington 1975, DeAngelis et 
al. 1975, Skalski and Gilliam 2001).

We calculated the average body masses of popula-
tions depending on their trophic level according to

 M TL rsdlog i
d

10 = +  (20)

where d is the exponent of the relationship between 
the trophic level and the body mass (TL-M slope) of 
each VADS, and rsd is a stochastic variable that is ran-
domly sampled from a normal distribution (mean=1, 
sd=2). This calculation implies that predators are most 
often larger than their prey, which is consistent with 
the structure of pelagic systems, where body size is 
considered to be the main constraint on the predator’s 
ability to catch its prey (Lundvall et al. 1999, Cury et 
al. 2003), unlike terrestrial systems where predators of 
higher trophic levels are able to feed on prey of greater 
body size but lower trophic level. For greater detail on 
the model, see Brose et al. (2005, 2006), Berlow et al. 
(2009) and Gómez-Canchong et al. (2013). 

In order to ensure that the use of mean body size 
of the VADS adequately represents the individual size 
distribution of the community, a sufficiently large num-
ber of VADS is required. If we increase the number of 
populations to infinite, the formulations must converge 
(Gómez-Canchong et al. 2013). In order to determine 
an appropriate number of VADS to be used, we ran 
1680 simulations over 800 time steps, 20 for each num-
ber of VADS from 7 to 90 (Fig. 2). We observed that 
increasing the number of VADS over 40 had no effect 

Fig. 1. – Three ways to generate the theoretical value of b of the 
system to be sampled. The coefficient b for Monte Carlo simulation 
was fixed at –1 (A) or was randomly chosen from a normal distribu-
tion with mean=–1 and s.d.=0.25 (B) or from a uniform distribution 

between –1.5 and –0.5 (C).

Fig. 2. – Behaviour of the slope b of the normalized biomass size 
spectrum (NBSS) of the dynamic approach when the number of 
virtual allometrically derived species (VADS) considered in the 
simulations is increased. The color scale indicates how many food 

webs have the same NBSS slope.
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on the simulation outputs (NBSS coefficients). Taking 
this into consideration, we decided to use networks 
with 70 VADS.

We ran 104 simulations over 800 time steps. A time 
step represents the turnover rate of a phytoplankton 
cell, which corresponds approximately to one day. 
For each run we generated a niche model food web, 
in which species are constrained to consume all prey 
species within one range of sizes whose randomly cho-
sen centre is less than the consumer’s size (Williams 
and Martinez 2000), assigning random initial biomass 
densities to populations while systematically varying 
the following food web variables: connectance (from 
0.075 to 0.250), functional response type (Hill coef-
ficients from a uniform distribution between 1 and 2), 
the strength of predator interference (ci from a uniform 
distribution between 1 and 2), the metabolic types of 
VADS (invertebrates or ectothermal vertebrates), and 
the carrying capacity (logistic growth) of the producer 
VADS (k from 0.5 to 3.5). The spectra generated using 

virtual food webs were not constrained to b=–1 in the 
initial biomass assignation.

To compare among the different food webs, the first 
quarter of the time steps of each simulation run was not 
used in the construction of the NBSS in order to avoid 
the effects of transient dynamics. Choosing biomass 
densities over this time period allowed initial transient 
dynamics to settle down and capture the inherent vari-
ability among runs, thus increasing consistency with 
empirical studies (Brose et al. 2006). Prior work by 
Berlow et al. (2009) demonstrated that this length of 
the time series is sufficient to obtain stable mean bio-
mass densities from populations that are independent 
of initial biomass densities. By contrast, all the time 
steps of each simulation run were taken into account 
when analyzing the relationship between the coeffi-
cients in each food web over time.

We also analyzed the behaviour of NBSS coeffi-
cients in some selected time series by calculating the 
NBSS for each time step. At each time step, we calcu-

Fig. 3. – A: relationship between spectrum coefficients (log a vs. slope b) of 105 simulations (each with a set of 106 organisms) according 
to Equation (16) with theoretical b fixed at –1. B: idem with theoretical b randomly chosen from a normal distribution with mean =–1 and 
s.d.=0.25. C: idem with theoretical b randomly chosen from a uniform distribution between –1.5 and 0.5. D (for comparison with the spectrum 
approach): relationship between N and b of Pareto’s cumulative distribution (Eq. 13) of 104 simulations (each with a set of 105 organisms) with 

theoretical b as in situation C. The distribution of cases is shown beside respective axis, with the empirical mean and s.d.
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lated the total biomass of the community from the area 
below the NBSS from arbitrarily chosen log10 body-
sizes, between one and five relative units, by means of 
the integral under the curve 

TotalBiomass w w aw dw
a

b
w,

1l u
b b

w

w

1

1

5

1

5

l

u

∫( ) = =
+







+

=

=

 (21)

Spectrum coefficients from published size spectra 

We reviewed references in which aquatic size 
spectra data were available, especially those includ-
ing spatial and temporal variability. We calculated the 
correlation between the spectrum coefficients in each 
study. Studies in which only commercial species were 
sampled and not the whole fish assemblage were not 
taken into account. The spectra analyzed corresponded 
to NBSS or number size spectra (NSS), in which the 
number of individuals per size class is plotted instead 
of biomass. Both size spectra are equivalent if the for-
mer is arranged on an octave scale and the latter on an 
arithmetic scale (Platt and Denman 1978). When a or 
b were not directly reported, we obtained them graphi-
cally from figures using Zoo/PhytoImage freeware. 

RESULTS

The statistical models always exhibited strong 
correlations between the two NBSS coefficients for 
any theoretical b distribution (Fig. 3A, B, C). In ex-
periments A and B, respectively, with fixed and normal 
theoretical values of b, the frequency of coefficients of 
sampled spectra followed normal distributions around 
the theoretical mean value (–1.00 for b, 6.00 for log a). 
In experiment C, the frequency of coefficients showed 
the same mean values, but now with a non-Gaussian 
distribution of cases. By comparison, the equivalent 
Pareto cumulative approach to experiment C showed 
no relationship between NPareto and bPareto, with an ac-
curate prediction of both parameters (the behaviour of 
NPareto being Gaussian, in spite of the uniform distribu-
tion of bPareto), even with fewer simulations and fewer 
sampled organisms. The regression between log a and b 
was around –2.0 in the fixed b experiment and showed 
slopes around –0.6 in experiments with a wider b range 
(B, C), which also showed a non-linear tendency as b 
approached zero. The influence of sample volume on 
the a/b ratio is shown in Figure 4 as an almost perfect 
coincidence between the two variables.

The virtual food web modelling also showed that 
the NBSS parameters were inversely correlated when 
different food webs were compared (Fig. 5). This rela-
tionship presented two states according to the value of 
the slope b: 

(i) Communities with b<–1: in these cases the rela-
tionship between the NBSS parameters b and a showed 
a strong correlation (Fig. 5; r=–0.8806; p<0.0001).

(ii) Communities with b>–1: these represent flatter 
biomass pyramids, which according to Makarieva et al 

(2004) are more unstable than steeper biomass pyra-
mids. They also displayed a strong correlation between 
b and a parameters (Fig. 5; r =–0.9082; p<0.0001). 

We found a similarly strong inverse relationship be-
tween the NBSS parameters b and a when tracking the 
relationship throughout the time series of individual 
food webs (see Fig. 6A, B for examples). Surprisingly, 
we also found some communities whose NBSS lacked 
a relationship between the b and a coefficients (see 
Fig. 6C for an example). Interestingly, all of the latter 
cases were food webs with either a type II functional 
response or with b>–1. However, not all food webs 
with type II functional responses or with b>–1 lacked a 
relationship between the NBSS parameters. 

Empirical results reported in the literature (Ta-
bles 2 and 3) show that in most cases (both com-

Fig. 4. – Comparison between volume of sample (N) and ratio –a/b 
of respective spectra of 4·105 cases. N varied randomly between 100 
and 106 individuals. The correlation was made with non-logarithmic 

values.

Fig. 5. – Relationship between parameters b and a of the normalized 
biomass size spectra of 104 simulated food webs. 
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paring between sites and over time) there was a 
negative correlation between the NBSS parameters 
b and a (e.g. Macpherson et al. 2002, Binduo and 
Xianshi 2005), although there were also cases in 
which this correlation was positive (e.g. Rodriguez 
and Mullin 1986, Sprules and Munawar 1986) or in 
which b and a of the size spectra were not correlated 
(e.g. Quiroga et al. 2005, Dimech et al. 2008). We 
observed this lack of correlation almost exclusively 
when comparing size spectra from different places 
(Table 2), in other words, when comparing between 
different communities.

DISCUSSION

The functional dependence of N=–a/b should ap-
pear in the background of any sampling system (either 
real or simulated) if the size structure is linear with b<0, 
as occurs in most pelagic ecosystems. In ideal systems, 
the sample volume will mainly affect the intercept a, 
with b being a more robust parameter independent of 
individual abundance and more related to the structure 
of the size distribution. It is expected that a system 

viewed through different windows of different sample 
volumes would exhibit the following relationship:

 − = =b
N

a

N

a
1

1

2

2

 (22)

where N1 and N2 are the abundance of organisms in 
each sample, as shown in Figure 4. Likewise, those 
systems with similar abundances (e.g. when analyzing 
the same community at different times) should exhibit 
the same a/b ratio, which could be reached with very 
different combinations of parameters, from steep size-
structures (many small, few large organisms: high 
absolute values of a, b) to flatter distributions (low ab-
solute values of a, b) and to Sheldon’s Linear System 
(biomass equally distributed among small and large 
organisms, with b=–1, a=N). Therefore, although a and 
b are related, they do not carry the same information 
about the ecosystem.

From a statistical standpoint, the correlation be-
tween the parameters of the NBSS is due to the separa-
tion into classes with a barycentre that is not located at 
the origin of the size axis and is independent of the situ-

Fig. 6. – Examples of the behaviour of the coefficients b (green line) and a (yellow line) of normalized biomass-size spectra (upper panels), 
the relationship between the same two coefficients (medium panels), and comparison between the two approaches used to measure the total 
community biomass (lower panels), summing the biomass of all the species (green line), and calculating the surface area under the normalized 

biomass size spectra (yellow line). Panels A and B represent regular biomass pyramids, and panel C an inverted biomass pyramid.
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ation (narrower or wider ranges for theoretical b). At 
narrow b ranges, the relationship is linear, whereas at 
wider b ranges the relationship falls asymptotically to 
zero when b tends to zero, to account for the spread of 
a finite abundance along an infinite size axis (flat spec-
trum, very rare in nature since it represents an inverted 
biomass pyramid). Another way to build NBSS in 
classes and avoid the correlation between coefficients 
is by fixing the midpoint of size distributions at zero 
(Daan et al. 2005) and then using its slope and height 
to characterize the NBSS. A better statistical approach 
is the use of a function with independent parameters 
(like the Pareto distribution), but the common use of 
size classes, as is the case in traditionally constructed 
size spectra, may be easier to interpret from an eco-
logical standpoint (e.g. Kerr and Dickie 2001, Marquet 
et al. 2005), particularly in pelagic ecosystems (e.g. 
Marañón et al. 2007) in which cumulative methods 

were proposed in the last century (e.g. Vidondo et al. 
1997) but have not gained many users yet. Also, non-
parametric approaches to size distributions (Quintana 
et al. 2008) were proposed to avoid the correlation of 
parameters and the effect of units on the comparison of 
ecosystems, but the resulting standardized measure is 
only useful for evaluating the size diversity and does 
not permit the deduction of global properties (biomass, 
metabolism, etc.), as do the classic parametric func-
tions (e.g. Blanco et al. 1998).

The results of the dynamic modelling confirmed 
the results of the statistical model, showing that the 
size spectra of food webs changing over time tend 
to display a strong correlation between the two size 
spectrum parameters (Fig. 6). In addition, the results 
of the virtual food web modelling (Fig. 5) also dis-
played a strong correlation when the coefficients were 
compared between food webs with a different link 

tablE 2. – Pearson correlations between the observed b and a of size spectra comparing different locations. Significant p-values and positive 
correlations in bold. NSS, Number Size Spectra; NBSS, Normalized Biomass Size Spectra.

Correlation p-value Groups included n Geographic location Spectra Observations Source

-0.6181 0.0037 Infaunal 21 North Sea NBSS Different trawling disturbance Jennings et al. 2001
-0.7892 <0.0001 Polychaete 21 North Sea NBSS Different trawling disturbance Jennings et al. 2001
-0.8247 <0.0001 Epifaunal 21 North Sea NBSS Different trawling disturbance Jennings et al. 2001
-0.8477 0.0039 From bacteria to 9 Central gyre.NW Atlantic NBSS Biomass in Biovolume Quiñones et al. 2003
  mesozooplankton
0.5755 0.0079 Microplankton 20 Central gyre.NW Atlantic NBSS Biomass in Biovolume Quiñones et al. 2003
-0.2540 0.3426 Microplankton 16 Central gyre.NW Atlantic NBSS Biomass in Biovolume Quiñones et al. 2003
0.9699 <0.0001 From bacteria to 9 Central gyre.NW Atlantic NBSS Biomass in Carbon Units Quiñones et al. 2003
  mesozooplankton
-0.9947 <0.0001 Demersal fish 6 Worldwide NSS Trawling surveys from demersal Bianchi et al. 2000
      fishing grounds
-0.8333 0.0008 Fish 12 Saint Lawrence River,  NBSS Enriched by sewage de Bruyn et al. 2002
    US/CA
-0.6603 0.0747 Demersal community 8 Malta NBSS Inside and outside a Dimech et al. 2008
      Fishery Management Zone
-0.3952 0.0374 Invertebrates 29 Lizard Peninsula,  NBSS Different macrophyte McAbendroth et al. 2005
    Cornwall, UK  physical complexity
0.5219 0.1218 Plankton 10 Atlantic Ocean NBSS Latitudinal variation San Martin et al. 2006
-0.9614 <0.0001 Littoral Rocky Fish 12 NW Mediterranean NBSS Protected Area Macpherson et al. 2002
-0.7798 0.0028 Littoral Rocky Fish 12 NW Mediterranean NBSS Unprotected Area Macpherson et al. 2002
0.9187 0.0275 Macro- and 5 Southern Baltic Sea NBSS Different sediment characteristics.  Drgas et al. (1998)
  meiobenthos    Biomass in Carbon Units
-0.2863 0.6404 Macrobenthos 5 Humboldt Current System NBSS Oxygen Minimum Zone Quiroga et al. 2005
0.8330 0.0200 Plankton 7 Great Lakes and North NBSS Different productivity Sprules and Munawar
    Pacific Central Gyre  and level of perturbation 1986 

tablE 3. – Pearson correlations between the observed b and a of size spectra from the same location during a time series. Significant p-values 
and positive correlations in bold. NSS, Number Size Spectra; NBSS, Normalized Biomass Size Spectra. 

Correlation p-value Groups Included n Geographic location Type of spectra Observations Source

-0.8207 <0.0001 Fish 17 North Sea NSS Trawled area Rice and Gislason (1996)a

0.1972 0.4184 Fish 19 North Sea NSS Data from multi-species virtual  Rice and Gislason
      population analysis. Trawled area (1996)a

0.9234 <0.0001 Microplankton 18 North Pacific NBSS Steady state oceanic ecosystem Rodriguez and Mullin
    Central Gyre   1986
-0.9629 <0.0001 Fish 14 Yellow Sea NSS Fishing area Binduo and Xianshi 2005
-0.9833 <0.0001 Demersal Fish 25 Eastern Bering Sea NSS Fishing area Bartkiw et al. 2007
-0.9996 <0.0001 Fish 10 - NSS Fishing effect modelling Shin and Cury 2004
-0.8868 <0.0001 Benthic fish 27 Benguela System  NBSS High and low productivity Macpherson and Gordoa 
      centres 1996
-0.9504 <0.0001 Lake Benthos 15 - NBSS Gradient of predation pressure Blumenshine et al. 2000
      in experimental lakes  

a Note that the size spectra from empirical survey data show a correlation between the b and a; however, the size spectra derive from multi-
species virtual population analysis lacks such a relationship.
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structure (who eats whom), suggesting that changes 
in the link structure are unable to affect the relation-
ship between the two spectrum parameters. Only a 
significant change in b is able to modify this rela-
tionship (i.e. if b is > or < than –1). A slope change 
towards more positive b values (b>–1) modifies the 
shape of the biomass pyramid because beyond this 
threshold the biomass pyramid becomes inverted; in 
other words, biomass would be larger at the top of the 
pyramid than at its base. The existence of inverted 
biomass pyramids seems paradoxical, although they 
are well known to exist in planktonic communities 
(Wang et al. 2009), because in a closed ecosystem 
each trophic level of the energy pyramid is roughly 
10% of the level below it (Odum 1971, Pauly and 
Christensen 1995), so inverted energy pyramids can-
not endure (Wang et al. 2009). Therefore, an inverted 
biomass pyramid or flatter spectrum should be very 
unstable and unable to persist for long.

The dynamic modelling results (Figs 5 and 6) also 
suggest that communities with steeper negative b do 
not have a smaller amount of community biomass, but 
rather biomass is lower in larger size classes and higher 
in smaller size classes. On the other hand, flatter size 
distributions can reduce the total biomass of the com-
munity when the value of b crosses the –1.0 threshold, 
becoming less negative and eventually transforming 
the size distribution into an inverted biomass pyramid 
with a consequently lower level of stability (Makarieva 
et al. 2004). Our simulations also show that when the 
producers in the system maintain constant carrying 
capacity, increases in a of the NBSS take place while 
b decreases, even when community biomass remains 
constant. Total community biomass is more associated 
with the area under the NBSS (i.e. the integral below 
the NBSS) than with the a coefficient (Fig. 6). How-
ever, this relationship is lost when the NBSS does not 
adequately represent the size structure (i.e. low corre-
lation coefficient) in some extreme cases, such as the 
extinction of all individuals in a size class or when the 
TL-M slope presents values close to zero. The lack of 
NBSS linearity precludes the use of the integral under 
the NBSS (Platt and Denman 1977, 1978) or the height 
of the size spectrum (Daan et al. 2005) to estimate eco-
system biomass.

The correlation between a and b in the statisti-
cal model was very high (Fig. 3a), indicating a 
functional relationship between these coefficients, 
which was expected because all the samples came 
from virtual communities where a=–bN and the total 
number of individuals (N) was the same. However, 
on the basis of our results from the dynamic model-
ling of virtual food webs and on the analysis of em-
pirical spectra reported in the literature, we observe 
that there is not a unique relationship between these 
two coefficients, and consequently it is not proper to 
assume that they are necessarily correlated. There-
fore, we cannot expect communities with different 
N (total abundance) to exhibit the same relationship 

between the two coefficients. Indeed, reviewing the 
empirical data published on size spectra (Tables 2 
and 3) shows that b and a are mostly correlated in 
size spectra from the same community over time, 
but not necessarily when data from different sites are 
compared or pooled. 

In all cases exclusively involving fish assemblages 
under fishing pressure, strong negative correlations 
were found between the b and a coefficients (Tables 
2 and 3). It is important to note that when working 
only with fish assemblages, the analysis is restricted 
to a narrow range of sizes and all organisms possess 
common production efficiencies (Boudreau and Dickie 
1992). Dickie et al. (1987) classified the b of these as-
semblages of species with similar production efficien-
cies as “secondary slopes” and suggested that at the 
level of this secondary scaling ecological principles 
(e.g. fishing effects) control the size structure of the 
assemblage. 

Several authors have proposed that fishing makes 
the slope of the NBSS steeper (i.e. more negative), be-
cause it selectively removes larger individuals and re-
duces survival (Gislason and Rice 1998, Bianchi et al. 
2000). Obviously, this is based on the assumption that 
the linearity of the NBSS is not lost. However, ecosys-
tems which are far from steady state can display non-
linear NBSS (Quiñones 1994, Rodriguez 1994), and 
high levels of fishing may cause the size distribution 
of the biota to be drastically modified (Jennings and 
Kaiser 1998). On the other hand, Benoit and Rochet 
(2004), Shin and Cury (2004) and Gómez-Canchong et 
al. (2011) suggested that fishing effects may be better 
captured by the curvature of the size spectrum than by 
its b. Consequently, it is important to explore the use 
of non-linear size spectra (e.g. Pareto distribution) as 
a tool for analyzing community dynamics in heavily 
fished ecosystems. 

In conclusion, to characterize any aquatic system 
at least two parameters are necessary from the NBSS 
triad (N, a, b), or other parameters derived from them. 
This is important for designing ecosystem indicators 
based on biomass size spectra, especially considering 
that most disturbances affecting ecosystems (e.g. fish-
ing, pollution) tend to reduce the total abundance of 
individuals in the system, changing the relationship 
between a and b or N and b, and consequently in such 
cases it is necessary to analyze the community size 
structure using both NBSS parameters (a and b) and a 
global property (N or B). 
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