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SUMMARY: Oceanographic data from 28 cruises performed in the NW Mediterranean Sea between 1982 and 2003 and 
data from historical databases, amounting to more than 100000 data points, are used to define the quality control ranges 
at standard level depths of dissolved inorganic nutrients, dissolved oxygen and chlorophyll a. The quality of each of the 
key variables and the analytical precision are assessed. The results indicate that freezing is a valid preservation method 
for phosphate, nitrate, silicate and nitrite in samples from the NW Mediterranean Sea, though their relative error increases 
(6.3%, –1.6%, –2.5% and –11.4%, respectively). In contrast, freezing nutrient samples on the cruises gathered negatively 
affected the analytical precision and accuracy of the ammonium analysis. The analysis precision is also estimated using 
different approximations, the most realistic being the use of replicate samples from the same sampling bottle. Except for 
phosphate and dissolved oxygen, specific quality control ranges for mixed water columns, usually found in winter, have to 
be defined, since the surface concentrations are particularly high due to deep water mixing. The quality-controls described 
in this work are an important and useful tool for validating data and for detecting erroneous or anomalous data obtained in 
both historical and future works in the NW Mediterranean Sea.

Keywords: dissolved inorganic nutrients, dissolved oxygen, chlorophyll a, nutrient preservation, analysis precision, quality 
control, NW Mediterranean Sea.

RESUMEN: Conservación de nutrientes, precisión de los análisis y control de calidad de una base de datos 
oceanográfica con nutrientes inorgánicos, oxígeno disuelto y clorofila a del Mediterráneo noroccidental. 
– Se han utilizado datos oceanográficos de 28 campañas realizadas entre 1982 y 2003 en el Mediterráneo noroccidental, 
así como de bases de datos históricas, para definir rangos de control de calidad en niveles de profundidad estándares 
para nutrientes inorgánicos, oxígeno disuelto y clorofila a. La calidad de cada una de estas variables clave, así como la 
precisión analítica, han sido evaluadas. Los resultados indican que la congelación es un método válido para conservar 
las concentraciones de fosfato, nitrato, silicato y nitrito en muestras procedentes del Mediterráneo noroccidental, aunque 
el error relativo del análisis incrementa (6.3%, –1.6%, –2.5% y –11.4% respectivamente). En cambio, en las campañas 
recopiladas la congelación de muestras de nutrientes ha afectado negativamente a la precisión y exactitud del análisis de 
amonio. La precisión de los análisis también ha sido estimada utilizando diferentes aproximaciones, siendo la más realista 
el uso de réplicas procedentes de la misma botella de muestreo. Excepto para fosfato y oxígeno disuelto, se han definido 
rangos de control de calidad específicos en condiciones de columnas de agua mezcladas, típicas de invierno, puesto que 
las concentraciones superficiales resultan particularmente elevadas debido a la mezcla con aguas profundas. Los rangos de 
control de calidad descritos en el presente trabajo son una herramienta útil e importante para validar datos oceanográficos, 
para detectar datos erróneos o anómalos, obtenidos en el pasado o futuros trabajos en el Mediterráneo noroccidental.

Palabras clave: nutrientes inorgánicos disueltos, oxígeno disuelto, clorofila a, conservación de nutrientes, precisión analítica, 
control de calidad, Mar Mediterráneo.
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INTRODUCTION

Oceanographic databases are basic tools for pre-
serving historical observations and for describing and 
tracking changes in ecosystems. Researchers construct-
ing databases that include decades of oceanographic 
research should take into account that most probably 
there are very significant differences in the way the 
measurements were obtained. Such differences include 
changes in the analysis instruments, the sampling and 
the preservation procedures. Therefore, it is necessary 
to check whether data collected and processed using 
different methodologies and precisions can be com-
bined. Subsequently, a quality-control (QC) for each 
variable should be applied in order to obtain a scien-
tifically quality-controlled database. Since nowadays 
so much research is used to try to determine climate 
change or anthropogenic impacts, basic information 
about the analysis precision, limit of detection and 
other analytical characteristics is critical.

The study of the quality of oceanographic data 
gathered from different sources has been raised by oth-
ers, and QC procedures have already been described 
for the whole oceans (Conkright et al., 1994, 2000). 
Also, Fichaut et al. (1997) defined ranges of T, S and 
dissolved oxygen in our study area (region DS2 in ME-
DATLAS database), often with one single concentra-
tion range for the whole water column. However, there 
is no information about the ranges of concentration for 
nutrients and chlorophyll a (chl a) in the MEDATLAS 
database. In this article, our aim is to establish the 
ranges of concentration with depth for the main bio-
chemical variables (nutrients, dissolved oxygen and 
chl a) in the NW Mediterranean Sea, the most produc-
tive area of the Mediterranean Sea. The oceanographic 
database gathered to accomplish this objective contains 
data from the almost annual oceanographic cruises 
performed since 1982 in the Catalan Sea, as well as 
historical data from MEDATLAS (Medar Group, 
2002) and MATER (Mater Group, 2001) databases. 
The available oceanographic data include dissolved in-
organic nutrients (phosphate, nitrate+nitrite (hereafter 
referred to as nitrate), nitrite, ammonium and silicate), 
dissolved oxygen and chl a, as well as temperature (T) 
and salinity (S).

The QC described in this work will be an important 
and useful tool for identifying erroneous or non-rep-
resentative measurements of oceanographic data ob-
tained in future studies in the NW Mediterranean Sea. 
Quality controlled data will provide a more accurate 
climatology of the NW Mediterranean Sea for the de-
scription of the distribution of nutrients, dissolved oxy-
gen and chl a (Segura-Noguera et al., submitted) for 
modeling the dynamics of the system and for studying 
long-term variations (e.g. seasonality or inter-annual 
trends, Segura-Noguera et al., in preparation).

MATERIALS AND METHODS

Data source

Oceanographic data from 28 cruises performed in 
the NW Mediterranean Sea between 1982 and 2003, 
amounting to 1388 stations, were gathered (see Appen-
dix 1 for more characteristics and instrumentation used 
on the cruises gathered). The information available for 
each station included date, position, sampling time and 
maximum depth. Information available for each water 
sample included depth (m), T (°C), S (practical salinity 
units), and density as s-T (kg m-3). Depending on the 
cruise, data of dissolved inorganic nutrients (mM), dis-
solved oxygen (ml l-1) and chl a (mg l-1) concentrations, 
were available.

In order to complement this information and to in-
crease the pool of data for statistical analysis, data from 
the MEDATLAS (Medar Group, 2002) and MATER 
(Mater Group, 2001) databases were extracted using 
as limits for the extraction area the most extreme lati-
tude and longitude of the cruises gathered (from 0 to 
4.5°W and from 38.7 to 42.4°N, Fig. 1). MEDATLAS 
and MATER databases include data earlier than 1982, 
as indicated in Table 1, where the amount of data for 
each oceanographic variable is indicated. Among all 
the collected cruises, only data from the “Mater 95” 
cruise was included in both databases, and therefore 
it was checked that this cruise was not duplicated in 
the final working database. Data from stations with a 
bottom depth higher than 400 m (considered as “open 
sea,” according to Medar Group, 2002) are also indi-
cated in Table 1, because they will be used to define 

Table 1. – Total data and data from open sea stations for each oceanographic variable, obtained from the cruises gathered (“cruises” including 
“Meso 95”) and extracted from MEDATLAS and MATER Databases (“databases”). Open sea refers to stations with a bottom depth higher 

than 400 m.

	 Range of years	         Total data from:			                      Open sea data from:		
 		  Cruises	 Databases	 TOTAL	 Cruises	 Databases	 TOTAL

Phosphate	 1957 - 2003	 8993	 6466	 15459	 6179	 3087	 9266
Nitrate	 1979 - 2003	 13971	 572	 14543	 9811	 387	 10198
Nitrite	 1976 - 2003	 12984	 4903	 17887	 8954	 2421	 11375
Ammonium	 1982 - 2003	 4944	 481	 5425	 3682	 223	 3905
Silicate	 1970 - 2003	 14013	 5857	 19870	 9831	 2844	 12675
Oxygen	 1910 - 2000	 10247	 8357	 18604	 7455	 5394	 12849
Chl a	 1976 -2003	 7201	 3530	 10731	 5009	 1446	 6455

Total	  	 72353	 30166	 102519	 50921	 15802	 66723
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the QC ranges for the NW Mediterranean Sea, follow-
ing the procedures described in Conkright et al. (1994, 
2000). The map of the NW Catalan Sea with all the 
stations sampled, including the data extracted from 
the MEDATLAS and MATER databases, is shown in 
Figure 1.

The regional limits for T and S described by the 
Medar Group (2002) were used to validate the quality 
of T and S data. As a result, less than 0.2% and 0.5% 
of the data, respectively, was found outside the limits. 
The most striking feature for these variables was a few 
low S values, which could be explained by their posi-
tion close to the Ebro River Delta.

Analytical precision

The nutrient analysis precision is reported only for 
the “Fronts 89”, “Fronts 90” and “Fronts 91” cruises 
(Varela and FRONTS Group, 1991). For the “Can-
yons” and “Caco” cruises, the precision of nutrient 
concentration was calculated during the analysis with 
Quality Control Charts (QCC) using internal standards 

within the samples. No data about the precision for dis-
solved oxygen and chl a analysis were reported for all 
the data collected.

When the precision value was not reported, the 
analysis precision of all samples was estimated for 
each cruise and parameter, using two different meth-
ods. The first method was applied when there were 
different kinds of duplicated samples. In these cases 
the precision was estimated by calculating the standard 
deviation: (1) of subsamples (replicates) of the same 
sampling bottle, assuming that the bottle is a homoge-
neous sample; (2) of samples from different sampling 
bottles closed at the same depth, assuming that the wa-
ter mass is a homogeneous sample; or (3) of consecu-
tive analysis of the same sample in the autoanalyzer.

An alternative method for calculating the analysis 
precision is described by Garcia et al. (1998). These 
authors proposed calculating the regression line of the 
oceanographic variables concentration versus potential 
T (q) and using samples that belong to the same wa-
ter mass, which should be physically and chemically 
stable. Then, the precision is estimated as the stand-
ard deviation of the difference between the measured 
values and those expected from the regression. Among 
the different water masses present in the NW Medi-
terranean Sea, the most physically stable is Western 
Mediterranean Deep Water (WMDW, less than 1°C 
variation, Salat, 1995), which is found below 800 m 
depth. The concentration of nutrients in this water 
mass is fairly constant with time and depth, according 
to the results of previous studies (Béthoux and Copin-
Montégut, 1986; Béthoux et al., 1998, 2002; Moutin 
and Raimbault, 2002). However, there is not enough 
data from this water mass on all cruises. Thus, we used 
as an alternative the data sampled in Levantine Inter-
mediate Water (LIW), located between 200 and 600 m 
depth, as well as in its core, characterized by a relative 
maximum of q and an absolute maximum of S (Salat 
and Cruzado, 1981; Millot, 1999).

Besides assessing the analysis precision, we also 
compared these methodologies to check whether they 
can be effectively used to estimate this parameter.

Nutrient analysis

From 1982 to 2003, nutrient data were obtained by 
7 analysts using 4 different autoanalyzer instruments. 
The nutrient analysis methodologies that were used are 
known only for the cruises gathered, but not for the 
data extracted from the databases. The analyses were 
based on the same general methodologies (phosphate, 

Table 2. – Criteria used to define the stratification coefficient of the profiles according to the vertical stratification index at 100 m depth 
(VDSI100) calculated.

Stratification coefficient	 VDSI100	 Most representative season	 Months in which this coefficient was found

1	 ≤ 5; surface T<15	 Winter	 November-April
2	 (5, 30]	 Spring	 April-July
3	 >30; surface T>24	 Summer	 June-September
4	 (5, 30]	 Autumn	 September-December

Fig. 1. – Map of the Catalan Sea with the position��������������� of the oceano-
graphic stations sampled during the cruises collected for this study. 
The inlet map shows the position of the Catalan Sea in the Mediter-

ranean Sea.
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Murphy and Riley 1962; silicate, Grasshoff 1964; 
Hansen and Koroleff 1999; nitrite, Bendschneider and 
Robinson 1952; nitrate, Hansen and Koroleff 1999; 
ammonium, Grasshoff 1970). Some adaptations and 
modifications for each autoanalyzer and analysis range 
were applied. However, it is commonly assumed that 
the quality of the measurements is often more depend-
ent on the care during the sampling and analysis process 
than on the variations of a given methodology (Hager 
et al., 1972). Ammonium data from 2003 cruises was 
obtained with a different methodology (Benesch and 
Mengelsdorf, 1972, cited by Riley et al., 1975; Bower 
and Holm-Hansen, 1980), using sodium salicylate 
instead of phenol, to avoid the use of this toxic com-
pound (a summary of the characteristics of the analyses 
can be found in Appendix 2). Nutrient concentrations 
are given in mmol l-1 and the range of density (st) in 
the Catalan Sea is 25.13 kg m-3 (surface waters during 
summer) to 29.10 kg m-3 (corresponding to WMDW). 
Standards were always prepared at room temperature 
(20-25°C).

Another potential source of variability is the base-
line used as a blank, which also varied during the study 
period. Two different baselines were used: (1) low 
nutrient seawater (LNSW), which is the most recom-
mended because there is no difference in matrix be-
tween the sample and the blank (Hansen and Koroleff, 
1999), and (2) artificial seawater (ASW), which in its 
simplest version is a solution of sodium chloride in 
double-distilled seawater, with the same salinity as the 
samples. When ASW is used as a baseline, it should be 
taken into account that even using the purest products 
(analytical grade), trace concentrations of elements of 
interest can be detected and must be quantified. Dur-
ing the analysis of surface water from summer cruises, 
using 38 g l-1 ASW as a blank, negative peaks were 
found. These are nutrient-depleted waters, the negative 
peaks being the result of contaminated ASW. This con-
tamination was observed using different NaCl batches 
(Merck) and corresponds to at least 0.02-0.03 mM 
phosphate; 0.23-0.26 mM ammonium; 0.03-0.06 mM 
nitrite and 0.09-0.13 mM nitrate. No silicate contami-
nation was detected. Moreover, double-distilled water 
can also contain nitrite ions, depending on the age of 
the water.

Nutrient preservation

Another major source of variability is how the sam-
ples are taken and processed. During the first cruises 
gathered, nutrient analyses were performed on board 
during the cruise, but from 1999 to 2003 nutrient 
samples were routinely frozen to be analyzed after the 
cruise (Appendix 2). When it is not possible to analyze 
immediately after sample collection, which would be 
the best option, freezing the samples is the most ac-
ceptable preservation method. However, the accuracy 
and precision of the analysis decreases (Stéfansson and 
Richards, 1963; Thayer, 1970; Strickland and Parsons, 

1972; Riley et al., 1975; Venrick and Hayward, 1985; 
Chapman and Mostert, 1990; Avanzino and Kennedy, 
1993; Gordon et al, 1993; Valderrama, 1995; Dore et 
al., 1996; Aminot and Kérouel, 1998; Kremling and 
Brügmann, 1999).

Many studies have been conducted to study the ef-
fect of freezing on nutrient samples, but no unequivo-
cal conclusion has been reached. The variables stud-
ied in these works include the velocity of freezing or 
defreezing the samples, the material of the recipient, 
the previous filtration due to presence of plankton or 
suspended matter, the period of time during which 
the samples are kept frozen, the surface/volume ratio 
of the recipient and the salinity of the sample. Those 
studies show contradictory results regarding the effects 
of freezing and filtering the samples on phosphate and 
ammonium concentrations but seem consistent in the 
validity of preserving nitrate and silicate concentra-
tion, but only if the concentration of the latter does not 
exceed 60 mM. In summary, the conclusion is similar 
to that described by Venrick and Hayward (1985) in 
a bibliographic revision about preservation methods. 
Those authors concluded that the effectiveness of the 
procedure depends highly on the local biological and 
chemical characteristics of the water, as well as the 
methodology used. They therefore suggested that nu-
trient preservation should be considered as the last op-
tion, and if necessary each laboratory should determine 
the resulting error introduced.

As suggested by Venrick and Hayward (1985), 
we designed an experiment to test the effect of freez-
ing samples from the NW Mediterranean Sea during 
a routine monthly sampling of the “Pudem” project. 
The results of this test will help us decide whether we 
can use the nutrient data that were frozen as a pres-
ervation method on the cruises gathered to build up 
the QC ranges of concentration for nutrients. Nutri-
ent samples were taken from 6 different stations, at 2 
different depths at each station (surface and bottom, 
the latter from 10 up to 40 m depth). Sampling tubes 
(polypropylene, 12 ml) were previously washed with 
5% HCl for 24 hours, distilled water (3 washes) and 
finally double-distilled water. Samples were filtered 
through a 200-mm mesh to remove large zooplankton, 
and were preserved tightly closed in an icebox dur-
ing the sampling time in an upright position. In the 
research centre 3 replicates of each station and depth 
were immediately analyzed, and 3 replicates were fro-
zen in an upright position at -20ºC (the temperature at 
which preserved nutrient samples from the gathered 
cruises were frozen). Samples were stored in a freezer 
containing exclusively nutrient samples (no biologi-
cal samples). Samples remained frozen for one week 
before analyses were conducted using an AA3 auto-
analyzer (Bran+Luebbe). ASW was used as a baseline 
because this was the blank most used when nutrient 
samples from the cruises were frozen (Appendix 2).

During the experiment, additional precautions were 
taken to: (1) avoid water at the tip from reaching the 
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sample, for example by drying the exterior of the tube 
before the sample was homogenized and introduced 
into the sampler; (2) keep the sample exposed to the 
air as short a time as possible during the analysis; and 
(3) avoid touching the interior of the tube and tip with 
the fingers.

The range of nutrient values, as well as precision 
(standard deviation from QCC using standards) and 
detection limits of the analysis (calculated following 
Gomez-Taylor et al., 2003) are the following: 0-0.5 
mM, 3% and 0.006 mM for phosphate analysis; 0-3 
mM, 1% and 0.015 mM for nitrate analysis; 0-0.5 mM, 
4% and 0.004 mM for nitrite analysis; 0-3 mM, 3% and 
0.020 mM for ammonium analysis; and 0-5 mM, 1% 
and 0.017 mM for silicate analysis.

The statistical analysis for the determination of dif-
ferences between nutrient concentration of preserved 
and unpreserved samples was performed with the Sta-
tistica v6.0 software package.

Assuming that few samples were frozen during 
onboard analysis, due to technical problems or bad 
weather, we also compared the nutrient concentration 
of the cruises on which the nutrients were preserved 
with those on which the nutrients were analyzed on 
board (unpreserved). Because we could not expect that 
the handling precautions taken during the experiment 
described above were also taken during the cruises, 
this additional test would help us to decide whether 
historical data from preserved nutrient samples were 
accurate enough to use them to construct the QC ranges 
of concentration of key bio-chemical variables in the 
Catalan Sea.

Since there is no information in the MEDATLAS 
and MATER databases on whether a preservation 
method of the nutrient samples was used, these data 
were not included in this comparison. The possible dif-
ferences between cruises in which nutrients were fro-
zen or analyzed on board were also studied with a two-
factor ANOVA statistical test using Statistica v6.0.

Dissolved oxygen analysis

The dissolved oxygen analysis methodology is 
one of the most robust from the analytical point of 
view, and has remained almost unmodified since its 
description, in the late 19th century (Winkler, 1888). 
The procedure for dissolved oxygen analysis can be 
found in detail in Hansen (1999). Basically, the oxy-
gen present in a water sample oxidizes I- ion to iodine, 
the amount of which will be determined by thiosulfate 
titration. The implementations of the methodology 
are mostly related to the automation of the final titra-
tion point, which also improves the precision of the 
analysis. The most important sources of error during 
the analysis are the oxygen present in reagents and in 
the blank (Culbertson et al., 1991). The concentration 
obtained must be corrected according to the in situ 
water temperature. Most of the data of dissolved oxy-
gen gathered from the NW Mediterranean Sea were 

determined without automation of the final titration 
point. On the cruises “Pep 83”, “Varimed 93”, “Fans 
1”, “Fans 2”, “Fans 3”, “Hivern 99” and “Hivern 
2000”, a titration system with a platinum electrode 
was used (PEPS Group, 1986; Masó and PEPS Group, 
1988; Varela and FRONTS Group, 1991; Masó and 
Varimed Group, 1995). 

Chlorophyll a analysis

All the chl a concentration data collected were 
obtained using the methodology described in Yent-
sch and Menzel (1963). The most outstanding dif-
ference among the cruises gathered is the use of two 
different glass fibre filters; GF/C filters, with a 1.2 
mm nominal pore diameter, were used during the 
cruises “Pep 82”, “Pep 83” and “Pep 84”, while GF/F 
filters, with a pore diameter of 0.7 mm, were used 
during the remaining cruises (PEPS Group, 1986; 
Masó and PEPS Group, 1988; Varela and FRONTS 
Group, 1991; Masó and Varimed Group, 1995). An 
inter-comparison experiment demonstrated that the 
amount of organic matter retained by the two filters 
was the same (Morán et al., 1999). 

The precision of the present method using natural 
populations shows a maximum variation of 15% for 
ten samples. The blank calibration of the fluorometer is 
constant for long periods, and instrument readings are 
repeatable within ±3% (Yentsch and Menzel, 1963). 
The limit of detection will depend upon the volume of 
seawater filtered and the sensitivity of the fluorometer. 
In general, the method is 5 to 10 times more sensitive 
than the spectrophotometric method, but it may be less 
accurate (Parsons et al., 1984).

In the range of years studied, the fluorometer was 
usually calibrated once a year using a spectrophotom-
eter and both commercial chl a (Sigma) and natural 
water samples from the study area. Natural samples 
were used to check whether there were interferences 
with chlorophyll b or c. The factors obtained with the 
two procedures were the same (L. Arin, personal com-
munication), so there is no interference. Also, when the 
fluorometer was moved to an oceanographic ship to 
measure the chl a concentration on board, the calibra-
tion was repeated when the cruise had finished and the 
fluorometer was back in the laboratory.

On some cruises, just a few chl a samples were taken 
for the calibration of the CTD fluorescence probe. Chl 
a data obtained from a calibrated CTD fluorescence 
probe were not used in this study.

Quality Control

The QC was performed following Conkright et 
al. (1994, 2000) and Fichaut et al. (1997). Conkright 
et al. (1994) described a methodology to set QC for 
phosphate, nitrate and silicate using data from open 
oceanic waters. Unfortunately, because our region of 
study is surrounded by land and may be influenced by 
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continental inputs, it does not meet the criteria used by 
Conkright et al. (1994) for oceanic waters. Therefore, to 
identify areas far from the coast to be used to build the 
QC, we followed Fichaut et al. (1997), which adapted 
the definition of open sea for the Mediterranean Sea. 
On these bases, areas deeper than 400 m are considered 
as open sea. We also used the standard level depths 
(SLD) proposed for the Mediterranean Sea by Fichaut 
et al. (1997), which increase the resolution at the up-
per layers. The SLD are those depths that have been 
historically most sampled, and include data comprised 
between up to 25% of the distance with the upper SLD 
and up to 75% distance with the lower SLD.

The first step for the QC description for all the 
biochemical variables was the determination of the 
frequency distribution of the data for each parameter 
at the closest SLD. Following Conkright et al. (1994, 
2000) the initial concentration ranges were defined at 
each SLD by those values with a frequency higher 
than 0.5%. However, due to the scarcity of available 
data of the region, this condition was changed; below 
500 m depth the minimum frequency was set at 10% 
because the amount of data is scarcest; and above 500 
m, where the amount of data is higher, the threshold 
frequency was raised to 5%. This criterion also al-
lows us to better appraise the seasonal variation and 
proximity to the coast. 

As it was observed that the concentration of ni-
trate and phosphate were fairly constant from 500 m 
depth to the bottom of the water column, and because 
the amount of data below this depth is scarce, we also 
merged all data below 500 m to set the deep initial con-
centration ranges of phosphate and nitrate. In the case 
of silicate, only data from 1400 m depth to bottom were 
averaged to set the deep initial concentration ranges of 
silicate, because the frequency distributions of SLD 
from 1400 m to the bottom were similar.

Chl a concentration depends on the phytoplankton 
concentration, which grows exponentially, so the con-
centration intervals defined for the study of the frequen-
cy distributions were exponentially distributed. Since 
nitrite concentration in the NW Mediterranean Sea is 
tightly coupled to phytoplankton dynamics (Estrada, 
1999; Lomas and Lipshultz, 2006), the concentration 
intervals for designing the frequency distributions of 
this parameter were also established exponentially.

Finally, the mean and standard deviation were 
calculated with the data included in the initial ranges 
at each SLD, and were used to calculate the final 
ranges using the following criteria. For stations with 
more than 200 m bottom depth (open sea and slope 
stations), the final concentration ranges included 2 
standard deviations above and below the mean at 
each SLD, instead of 3 standard deviations as de-
scribed in Conkright et al. (1994, 2000). However, 
to the first 100 m depth data, final ranges were cal-
culated as 3 standard deviations because this layer, 
which includes the DCM, is biological and physical-
ly more dynamic. For stations with less than 200 m 

bottom depth (continental shelf and coastal stations), 
to include possible variations due to terrestrial in-
fluences, the final concentration ranges were set to 
three standard deviations below 100 m depth and 4 
standard variations in the upper 100 m depth. These 
final concentration ranges constitute the QC for data 
from the NW Mediterranean Sea. Each value in the 
database was flagged with a “0” if it was included 
within the final concentration ranges, with a “1” if 
it was above the upper limit, and with a “2” if it was 
below the lower limit.

Using these criteria, it was observed that data from 
the photic layer corresponding to mixed waters in 
winter were mostly flagged with “1,” except for phos-
phate and dissolved oxygen, so we concluded that the 
obtained overall ranges could not be applied to mixed 
winter surface waters. To resolve this problem, the de-
gree of stratification was calculated for each individual 
station of each cruise with the following methodol-
ogy. First, the 100 m depth vertical stratification index 
(VDSI100) was calculated following Estrada (1999)

 VDSI100 2

1

=
=

∑N zi i
i

n

∆

where z is depth, Ni is the Brunt-Väisälä frequency (s-1) 
between zi-1 and zi, and n=100. N was calculated as in 
Pond and Pickard (1983)

N2 = g*[-(1/r)*(dst/dz)]

where g is the gravity (m s-2), r is the density of the 
water, and st is the density as s-T (units of both are 
Kg m-3). As expected, the calculated VDSI100 values 
showed a strong seasonal variability (Fig. 2). Then, we 
designed a stratification index based on the observa-
tions in Figure 2. Stations with VDSI100 lower than 
5 (winter conditions) were given a “1,” whereas those 
with a VDSI100 higher than 30 (summer conditions) 
were given a “3”. Stratification indices “2” and “4,” 
which correspond to spring and autumn transition pe-
riods, were assigned following the criteria described 
in Table 2. Each collected profile was thus identified 
with a stratification index (from 1 to 4) and data from 
profiles corresponding to 1 were used to set the win-
ter concentration ranges. New QCs for stations with 
a stratification index of 1 were defined following the 
same methodology. However, due to the low amount 
of data, the initial ranges were set using values with a 
frequency higher than 10% at all the SLD.

Finally, because VDSI100 is calculated from varia-
tions in density in the water column, which depends on 
the T and S, an additional study about the contribution 
of T and S to the stratification was performed using the 
following equations:

N2 = N2
T + N2

S
N2

T = g*[-(1/r)*(dr/dT)*(dT/dz)]
N2

S = g*[(1/r)*(dr/dS)*(dS/dz)]
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RESULTS

Analytical precision

The analytical precisions estimated with duplicated 
analyses and QCC during the cruises, and following 
Garcia et al. (1998), are shown in Tables 3 and 4. The 
precision is presented as the standard deviation (s) and 
as the coefficient of variation (CV in %) of the analy-
sis, because these are the customary ways to report it. 
However, one needs to be aware that the CV depends on 
the sample concentration, so the resulting value is less 
stable than the standard deviation value. It is because 
of this that in deep waters, where the concentrations are 
high and constant (CV data not shown), the lowest CV 
for phosphate, nitrate, silicate and dissolved oxygen 
analyses are obtained using the methodology of Garcia 
et al. (1998). This explains why in the same cruise, 
lower (better) precision values were found when data 
from the WMDW were used, whereas higher (worse) 
precision values resulted when data only from the core 
of the LIW or all data in the LIW were used. This can 
also be observed in all the cruises studied, when the 
precisions obtained using the different water masses 
are compared (Table 4).

The overall mean precision calculated for inorganic 
nutrients and dissolved oxygen analysis is lower when 
duplicated samples and QCC are used (last row in Ta-
ble 3) than when it is calculated with WMDW data, 
following Garcia et al. (1998) (last row in Table 4), 
except for nitrite, whose averages are similar.

The precisions calculated using duplicated samples 
from the same sampling bottle were unusually high for 
all nutrients in the “Meso 95” cruise and for silicate 
in the “Varimed 95” cruise. Removing these unusual 

results, we obtained the following ranges and means 
of analysis precisions using data from Table 3: phos-
phate <0.01-0.04 mM, mean 0.02 mM; nitrate 0.03-0.16 
mM, mean 0.11 mM; nitrite <0.01-0.02 mM, mean 0.02 
mM; ammonium 0.04-0.43 mM, mean 0.14 mM; silicate 
0.02-0.25 mM, mean 0.12 mM; and dissolved oxygen 
0.01-0.21 ml l-1, mean 0.11 ml l-1.

Analysis precision for chl a analyses could only 
be estimated following Garcia et al. (1998); its range 
throughout the cruises studied using data from the 
WMDW was 0.01-0.03 mg l-1 (Table 4).

Nutrient preservation 1. Laboratory experiment

Measurements of preserved and unpreserved nutri-
ent samples were significantly correlated for all the 
nutrients (P<0.01, Table 5). Changes in nutrient con-
centrations due to the preservation process were stud-
ied with a non-parametric ANOVA test for phosphate, 
nitrite and ammonium, whose data sets were not nor-
mally distributed (Kolmogorov-Smirnov test: P<0.01 
for phosphate and P<0.05 for nitrite and ammonium), 
and a parametric ANOVA test for nitrate and silicate. 
The chl a concentration range of the samples was 0.63-
0.89 mg l-1. Table 5 shows the mean concentration of 
preserved and unpreserved samples of our experiment. 
Nutrient concentrations were not significantly affected 
by the freezing process except for nitrite, which had a 
concentration significantly lower in preserved samples 
(P<0.05). However, ammonium results showed the 
highest relative error (18.2%) and the highest standard 
deviation among frozen samples (0.23 mM)(Table 5).

The standard deviation among frozen samples was 
higher than that calculated in fresh samples (Table 5), as 
has already been observed (DeGobbis, 1973; Gordon et 

Table 3. – Analysis precision calculated using different methods: reported (1, PEPS Group, 1986) and calculated using different samples 
collected at the same depth (2, without any information about the Niskin bottle number); different samples collected from the same sampling 
Niskin bottle (3); different samples collected from different Niskin bottles closed at the same depth (4); consecutive analysis of the same sam-
ple (5); and QCC using standards inserted among the samples (6). s, standard deviation (in mM for nutrients and ml l-1 for dissolved oxygen); 

CV, coefficient of variation (in %); n, amount of data. The mean (last row) was calculated with all the calculated precisions.

Cruise	 Method		  Phosphate			   Nitrate			   Nitrite			  Ammonium		  Silicate			  Dissolved 
																		                  oxygen
		  s	 CV	 n	 s	 CV	 n	 s	 CV	 n	 s	 CV	 n	 s	 CV	 n	 s	 CV	 n

Fronts 89, 90, 91	 1	 	 10	 		  1	 		  0.1	 		  1	 		  0.1	 			 
Varimed 93 I	 2				    0.08	 9	 16	 0.01	 16	 16				    0.15	 9	 16	 0.21	 4	 6
Varimed 93 II	 2	 			   0.08	 7	 43	 0.02	 11	 43				    0.17	 12	 41	 0.18	 3	 10
Varimed 93 III	 2	 			   0.16	 12	 172	 0.02	 12	 173				    0.12	 9	 173	 0.16	 3	 57
Varimed 95	 3	 <0.01	 7	 22	 0.08	 13	 22	 0.01	 9	 22				    0.52	 38	 22			 
Meso 95	 3				    0.65	 30	 6	 0.07	 14	 6				    0.44	 18	 6	 0.30	 5	 6
Varimed 95	 4	 0.01	 12	 64	 0.15	 22	 64	 0.02	 12	 64				    0.17	 27	 64			 
Meso 95	 4																                0.07	 2	 4
Fans 1	 4	 0.03	 31	 68	 0.06	 18	 68	 <0.01	 7	 68				    0.07	 5	 68	 0.07	 1	 15
Fans 2	 4	 0.02	 24	 276	 0.09	 3	 324	 0.01	 5	 324				    0.10	 3	 324	 0.01	 0	 38
Fans 3	 4	 0.04	 36	 52	 0.09	 12	 126	 0.01	 11	 125				    0.12	 5	 134	 0.07	 1	 40
Hivern 1999	 5	 0.01	 8	 252	 0.08	 4	 226	 0.01	 9	 254	 0.04	 5	 254	 0.16	 5	 235			 
Hivern 2000	 5	 0.01	 3	 220	 0.05	 1	 216	 0.01	 9	 220	 0.08	 12	 220	 0.09	 2	 195			 
Canyons I	 5	 0.02	 6	 289	 0.08	 6	 297	 0.01	 8	 296	 0.05	 11	 297	 0.12	 10	 296			 
Canyons II	 5	 <0.01	 7	 290	 0.07	 5	 291	 <0.01	 7	 291				    0.02	 2	 290			 
Canyons II - IV	 6	 0.03	 6	 92	 0.10	 5	 110	 0.02	 5	 104	 0.43	 16	 34	 0.25	 5	 92			 
Caco 1, 2	 6	 0.01	 3	 90	 0.03	 2	 84	 0.01	 5	 83	 0.09	 6	 89	 0.02	 1	 90			 
																			                 
Mean	 	  0.02	 23	 1715	 0.11	 9	 2065	 0.02	 9	 2089	 0.14	 11	 894	 0.12	 8	 2046	 0.11	 2	 176
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al., 1993; Dore et al., 1996). The standard deviation of 
freshly analyzed samples was similar to that calculated 
from QCC using standards, except for ammonium and 
silicate which had higher standard deviations (about 4 
and 2.5 times higher respectively).

Nutrient preservation 2. Comparison of cruise 
samples: on board analysis versus frozen nutrient 
samples

The study of the existence of statistically significant 
differences between the concentration of preserved 
and unpreserved nutrient samples is difficult. Because 
the concentration of nutrients changes with depth and 
season, the water column nutrient concentration can 
be different. We therefore applied a factorial ANOVA 
test to the data, the factors being the preservation of the 

sample, the SLD, and the degree of stratification of the 
water column. The results showed that there were sta-
tistically significant differences in the concentration of 
nutrients between previously frozen samples and unpre-
served ones (P>0.05). However a general pattern could 
not be found, because there were no differences at all 
the SLDs; when there were differences, sometimes the 
concentration was higher and sometimes it was lower.

Because the proportion of samples at each SLD is 
similar for cruises on which nutrient samples were fro-
zen and those on which nutrient samples were analyzed 
on board, we estimated the relative error due to the 
freezing process in the same way as in the laboratory 
experiment. Table 6 shows the mean concentration of 
samples preserved and unpreserved for the cruises un-
der study, as well as the relative error as a result of the 
preservation of the nutrient samples.

Table 4. – Analysis precision estimated for each cruise and oceanographic variable using the methodology described in Garcia et al. (1988) 
using data from WMDW, from the core of the LIW (*), and using all LIW data (**). The mean value was calculated using all the data at the 

WMDW. s, standard deviation (same units as Table 4, mg l-1 for chl a); n, amount of data.

Cruise	 Phosphate		  Nitrate		  Nitrite		 Ammonium		  Silicate		  Dissolved O2	 Chlorophyll a
	 s	 n	 s	 n	 s	 n	 s	 n	 s	 n	 s	 n	 s	 n

PEP 82	 0.01	 5	 0.14	 7	 0.00	 8	 0.01*	 4	 0.30	 8	 0.13	 8	   0.02*	 10
PEP 83	 0.07	 12	 0.54	 12	 0.01	 12	 0.03*	 15	 0.53	 12	 0.06	 12	 0.00	 8
PEP 84	 0.03	 10	 0.57	 10	 0.02	 10	 0.14*	 4	   0.64*	 46	 0.28	 10	   0.01*	 9
Fronts-3-85	 0.12	 13	 0.45	 13	 0.01	 13			   0.44	 13	 0.16	 13	 0.01	 7
Fronts-6-85	 0.06	 31	 0.73	 31	     0.09**	 16			   0.75	 31	 0.23	 31	 0.01	 14
PEP 86			   0.46	 36	     0.02**	 33	 0.14	 35	 0.24	 37	 0.21	 37	 0.03	 9
Fronts 11-86			   0.13	 6	 0.00	 31	 0.04	 6	 0.22	 6	 0.01	 6		
PEP 87	 0.05	 34	 0.47	 33	 0.02	 37	   0.14*	 12	 0.31	 34	 0.04	 34	 0.02	 5
Fronts 89	    0.03 *	 15	   0.33*	 16			     0.27*	 16	   0.41*	 16	   0.08*	 17	     0.08**	 61
Fronts 90	    0.04 *	 8	 0.03	 4	 0.01	 6	   0.30*	 8	 0.65	 6	 0.03	 6	 0.00	 4
Fronts 91			       0.31**	 71					         0.20**	 3	     0.07**	 3		
Fronts 92	    0.04 *	 15	   0.47*	 16			     0.13*	 10	   0.48*	 16	   0.17*	 16	   0.07*	 15
Varimed 93 I			   0.28	 115	 0.02	 34			   0.35	 113	 0.05	 117		
Varimed 93 II	 		  0.14	 25	 0.01	 4			   0.56	 25	 0.21	 34		
Varimed 93 III	 		  0.10	 23	 0.06	 115			   0.43	 23	 0.10	 7		
Varimed 95	 0.02	 68	 0.08	 73	   0.01*	 18			   0.26	 73			       0.05**	 111
Meso 95			   0.45	 98	 0.06	 23			   0.55	 99	   0.14*	 50		
Fans 1	 0.02	 15	 0.04	 15	 0.01	 73			   0.06	 15	 0.18	 10	     0.06**	 77
Fans 2	 0.01	 23	 0.09	 23	   0.00*	 43			   0.20	 23	 0.05	 26	     0.05**	 94
Fans 3	 0.05	 10	 0.23	 24	 0.01	 15			   0.34	 9	   0.06*	 27	     0.07**	 122
Hivern 1999	 0.07	 24	 0.84	 10	 0.00	 24	   0.22*	 14	 1.09	 17	   0.07*	 4	   0.01*	 4
Hivern 2000	 0.05	 94	 0.91	 93	 0.01	 10	 0.31	 94	 1.11	 94	 0.13	 62	 0.02	 34
Canyons I	   0.05*	 15	 0.79	 20	 0.02	 24	   0.44*	 15	 0.99	 20			       0.13**	 62
Canyons II	   0.02*	 20	   1.02*	 20	 0.02	 94			   0.15	 20			       0.03**	 65
Canyons III	 0.04	 17	 0.86	 17	 0.01	 20			   0.71	 17			       0.03**	 99
Canyons IV	   0.04*	 9	   0.65*	 9	 0.03	 17			   0.28	 9			       0.04**	 34
Caco 1	 0.03	 4	 0.47	 4	 0.01	 4	 0.21	 16	 0.47	 4			       0.04**	 72
Caco 2	 0.02	 3	 0.15	 3	 0.00	 3	 0.30	 16	 0.18	 3			       0.05**	 76
														            
Mean (WMDW)	 0.04	 339	 0.39	 680	 0.02	 577	 0.20	 142	 0.46	 655	 0.12	 413	 0.01	 81

Table 5. – Summary of the results of the experiment on the freezing effect on seawater nutrient concentration (mM). P-value for all the cor-
relations <0.01. * indicates the existence of statistically significant differences (P<0.05) between the mean concentration of freshly analyzed 

samples and that of frozen samples. n=16. 

	 Phosphate	 Nitrate	 Nitrite	 Ammonium	 Silicate

Correlation coefficient	 0.97	 0.99	 0.80	 0.96	 0.96
Mean fresh concentration	 0.16	 1.88	 0.35	 2.14	 1.96
Mean frozen concentration	 0.17	 1.85	 0.31 *	 2.53	 1.91
Difference	 0.01	 0.03	 0.04	 0.39	 0.05
Relative error frozen samples	 6.3%	 -1.6%	 -11.4%	 18.2%	 -2.5%
SD fresh samples (nM)	 5	 10	 5	 77	 42
SD frozen samples (nM)	 15	 107	 22	 227	 118
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Several trends were found that agree with the results 
of the laboratory experiment. First, the concentration of 
nitrite decreased, while the concentration of phosphate 
and ammonium increased. Second, the magnitude of 
the error was lower for silicate and nitrate, the same for 
phosphate, and higher for nitrite and ammonium.

For phosphate, the difference of mean concentra-
tions was the same as that calculated in the laboratory 
experiment, and was similar to the mean analysis preci-
sion (Table 3, last row). In addition, the relative error 
was also the same (6%, Tables 5 and 6). For ammoni-
um, the mean concentration of preserved samples was 
twice that of unpreserved ones (relative error 102%). 
The mean concentration of nitrite in preserved sam-
ples was 0.03 mM lower than the mean concentration 
in unpreserved samples, the same as in the laboratory 
experiment. However, as the mean value was lower, 
the relative error was higher (21.5%).

For silicate, differences between the mean concen-
tration of preserved and unpreserved samples were not 
statistically significant. The differences between means 
and the relative error were similar to those found in the 
laboratory experiment (0.05-0.06 mM and 2% respec-
tively), but positive (Tables 5 and 6).

Preserved nitrate samples also behaved contrary to 
what was found in the laboratory experiment: the mean 
concentration increased in 0.3 mM, which represented a 
relative error of 9.2%. However, nitrate concentrations 
of the “Hivern 1999” cruise, on which nutrient samples 
were preserved, contained data higher than 15 mM that 
could not be found in any of the other cruises. After 
they had been removed from the analysis, the mean 
nitrate concentration from preserved samples was 
3.23 mM, and the relative error was lowered to 5.8% 
(n=3097).

Due to the high error found when ammonium sam-
ples are preserved, comparing data from the cruises 
and from the results of the laboratory experiment, data 
of ammonium concentration from preserved samples 
were not used to define the QC concentration ranges of 
ammonium in the NW Mediterranean Sea.

Water column stratification

According to our results, the contribution of the T 
to the stratification of the water column is higher than 
the contribution of S (75% and 25%, respectively). 

These results are consistent with previous studies that 
state that the vertical stratification is controlled by the 
T (Velásquez, 1997). During spring and summer, the 
upper layer is warmed and a mixed layer is formed. 
This mixed layer is broken up in autumn and winter 
because of convective processes (vertical mixing), 
due to an increase in the wind intensity as well as 
storms (Salat, 1996; Send et al., 1999). During winter, 
the T of the whole water column is around 12°C, and 
even thermal inversion can be observed (Salat, 1996). 
Therefore, when the water mass was highly mixed, 
the T contribution to the stratification decreased, but it 
was still higher than the S contribution. While highest 
surface S values were found in winter, in general this 
variable does not show such evident changes through-
out the year as T. The highest S values in winter are 
a consequence of the evaporation due to the effect of 
strong winds, and due to mixing with deeper waters 
that are saltier than the surface ones (Salat, 1996). 
Only the S contribution was important to the vertical 
stratification at stations close to the coast and to the 
Ebro Delta.

Table 6. – Summary of the results on the freezing effect on seawater nutrient concentration (mM) using the data of the cruises collected. 
P-value for all adjusted r2<0.01. * indicates the existence of statistically significant differences (P<0.01) between the mean concentration of 
freshly (on board) analyzed samples and frozen nutrient samples. Nitrate average from frozen samples does not include 19 values higher than 

15 mM from the “Hivern 1999” cruise.

	 Phosphate	 Nitrate	 Nitrite	 Ammonium	 Silicate

Adjusted R2	 0.51	 0.80	 0.18	 0.15	 0.78
Mean fresh concentration	 0.18	 3.06	 0.13	 0.48	 2.91
Number of fresh samples	 6065	 10856	 9865	 2562	 10897
Mean frozen concentration	 0.19 *	 3.23 *	 0.10 *	 0.96 *	 2.97
Number of frozen samples	 2928	 3097	 3119	 2382	 3116
Difference fresh-frozen	 0.01	 0.17	 0.03	 0.48	 0.06
Relative error of frozen samples	 6.2%	 5.8%	 -21.5%	 102.1%	 1.8%

Fig. 2. – Variation throughout the year of the vertical stratification 
index at 100 m. CSIC Cruises, data from the cruises gathered for this 
study; Databases, data from MEDATLAS and MATER databases. 
Between brackets, stratification index that represents each season 

of the year.
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The stratification of the water column starts at the 
beginning of April, and highly stratified stations can 
already be observed at the beginning of July (Fig. 2). 
The stratification lasts between 4 and 5 months from the 
start of its formation (around the 100th day of the year) 
to the beginning of its disappearance (around the 250th 
day), the same length as described for the thermocline 
presence in the Mediterranean Sea (Duarte et al., 1999).

QC concentration ranges

Phosphate concentration in open sea surface waters 
(0-50 m) of the NW Mediterranean Sea ranged between 
0.0 and 0.3 mM (Table 7). From 50 to 400-500 m depth, 
the concentration increased monotonically towards the 
maximum ranges measured in the NW Mediterranean 
Sea. The concentration range from 400-500 m depth to 
the bottom of the basin was between 0.3 and 0.5 mM. 
In coastal and continental shelf waters, concentration 
ranges followed the same pattern, except that the upper 
limit was 0.1 mM higher, and the lower one was 0.0 mM 
at all the SLDs.

On the continental shelf, phosphate data above the 
described ranges were located in front of the Ebro Del-
ta, as well as in front of the city of Barcelona. At open 
sea stations, there was no clear pattern of localization 

of values above and below the phosphate concentration 
ranges found.

At stratified stations, nitrate concentration ranges 
in open sea surface waters above 30 m depth in the 
NW Mediterranean Sea were between 0.0 and around 
0.8 mM (Table 8). From 40 to 300 m the concentration 
increased constantly and the ranges became narrower. 
Below 500 m, nitrate concentration ranges showed lit-
tle variation, between 8.0 and 9.4 mM. In coastal and 
continental shelf waters, the upper limit of the nitrate 
concentration range increased up to 1.0 mM at the sur-
face and up to 10.3 mM at 200 m depth.

In mixed water columns, surface nitrate concentra-
tion ranges were wider than those described above, and 
nitrate concentrations were between 0.0 and 3.5 mM 
(Table 9). Nitrate concentration ranges in deep waters 
were similar to those described for the rest of the year. 
Nitrate concentration ranges in mixed water column 
stations in coastal and continental shelf surface waters 
(0–30 m depth) were from 0.0 to 4-4.5 mM. At 200 m 
depth, the concentration ranges were between 1.3 and 
7.8 mM (Table 9).

Coastal and continental shelf stations with nitrate 
data above the ranges were located near the Ebro Delta. 
Outside the continental shelf in front of the city of Tar-
ragona (see Fig. 1), where the continental shelf widens, 
data from several cruises (“Fronts 89”, “Meso 95”, 
“Fans 1”, “Fans 2”, “Fans 3”, “Caco 1” and “Caco 2”) 
were below the described ranges at all depths.

Table 7. – Phosphate concentration (mM) ranges in the NW Medi-
terranean Sea. SLD, Standard Level Depth; LR, Lower Range; UR, 
Upper Range; Coast and continental shelf stations have a bottom 
depth less than 200 m. Slope and open sea stations have a bottom 
depth larger than 200 m. n, amount of data within the range; % n 
range, proportion of the total amount of data included in the range 

at each SLD.

SLD	 Slope and	 Coast and	 n range	 % n
	 open sea	 continental shelf		  range
	 LR	 UR	 LR	 UR	 	

0	 0.00	 0.30	 0.00	 0.37	 357	 90.2
5	 0.00	 0.30	 0.00	 0.37	 449	 93.5
10	 0.00	 0.31	 0.00	 0.39	 298	 87.9
20	 0.00	 0.30	 0.00	 0.37	 472	 90.1
30	 0.00	 0.29	 0.00	 0.36	 498	 92.6
40	 0.00	 0.30	 0.00	 0.37	 497	 90.5
50	 0.00	 0.29	 0.00	 0.36	 486	 92.6
60	 0.00	 0.34	 0.00	 0.41	 407	 90.4
80	 0.00	 0.36	 0.00	 0.44	 896	 89.3
100	 0.00	 0.42	 0.00	 0.51	 809	 89.8
120	 0.06	 0.43	 0.00	 0.52	 300	 90.6
160	 0.06	 0.44	 0.00	 0.54	 368	 89.3
200	 0.10	 0.49	 0.03	 0.58	 527	 89.5
250	 0.13	 0.50			   195	 88.6
300	 0.17	 0.52			   289	 79.8
400	 0.28	 0.51			   339	 73.4
500	 0.30	 0.52			   205	 67.4
600	 0.32	 0.52			   191	 79.9
800	 0.31	 0.52			   196	 81.3
1000	 0.30	 0.50			   128	 71.1
1200	 0.29	 0.49			   37	 82.2
1400	 0.32	 0.50			   16	 55.2
1600	 0.31	 0.50			   49	 83.1
1800	 0.30	 0.49			   22	 91.7
2000	 0.29	 0.48			   39	 90.7
2500	 0.31	 0.50			   21	 100.0
≥ 500	 0.31	 0.51			   904	 76.3

Total	  	  	  	  	 8091	 87.3

Table 8. – Nitrate concentration (mM) ranges in the NW Mediter-
ranean Sea in stratified water columns (stratification coefficient = 2, 

3 and 4). Headers as in Table 7.

SLD	 Slope and	 Coast and	 n range	 % n
	 open sea	 continental shelf		  range
	 LR	 UR	 LR	 UR	 	

0	 0.00	 0.76	 0.00	 0.95	 234	 93.2
5	 0.00	 0.85	 0.00	 1.07	 472	 84.3
10	 0.00	 0.78	 0.00	 0.98	 342	 94.5
20	 0.00	 0.83	 0.00	 1.04	 512	 88.0
30	 0.00	 0.86	 0.00	 1.07	 483	 88.8
40	 0.00	 1.36	 0.00	 1.71	 529	 81.1
50	 0.00	 1.98	 0.00	 2.49	 457	 82.2
60	 0.00	 4.25	 0.00	 5.29	 550	 82.5
80	 0.00	 7.64	 0.00	 9.31	 1106	 91.4
100	 0.13	 7.95	 0.00	 9.26	 852	 84.6
120	 2.86	 7.74	 1.64	 8.95	 334	 85.9
160	 3.15	 8.26	 1.87	 9.53	 344	 84.7
200	 3.50	 8.96	 2.13	 10.32	 520	 85.4
250	 5.13	 9.17			   153	 84.1
300	 5.41	 9.79			   351	 86.9
400	 6.87	 9.68			   362	 79.6
500	 7.83	 9.59			   270	 72.4
600	 8.16	 9.37			   138	 61.3
800	 8.17	 9.40			   196	 74.2
1000	 8.14	 9.33			   164	 66.9
1200	 8.19	 9.16			   35	 70.0
1400	 7.92	 9.27			   27	 81.8
1600	 8.01	 9.44			   57	 68.7
1800	 8.06	 928			   20	 76.9
2000	 8.05	 9.32			   35	 79.5
2500	 8.00	 9.07			   17	 89.5
≥ 500	 8.03	 9.43			   959	 70.4
						    
Total	 	 	 	     	 8560	 83.9
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Nitrite surface concentration ranges at open sea 
stratified stations, between 0 and 30 m depth, were 
between 0.0 and 0.2 mM (Table 10). There was a maxi-
mum of nitrite concentration between 60 and 80 m 
depth with a range of concentration of 0.0 to 0.5 mM. 
Below 250 m depth the concentration range was con-
stant, from 0.0 to less than 0.1 mM. In coastal and con-
tinental shelf areas the surface concentration ranged 
from 0.0 to 0.3 mM and the maximum upper limit was 
0.6 mM (Table 10).

In mixed water columns, open ocean surface nitrite 
concentration ranges were between 0.0 and 0.4-0.5 mM 
(Table 11). The maximum concentration was located 
at 50 m depth, where the upper limit range reached 
0.6 mM. The deep nitrite concentration range was the 
same as during the rest of the year, from 0.0 to less 
than 0.1 mM. At coastal and continental shelf stations, 
the surface ranges increased up to 0.4-0.5 mM, and the 
maximum upper limit concentration was 0.7 mM.

Nitrite data above the ranges from stations on the 
continental shelf were situated mainly in front of the 
Ebro Delta and in front of the cities of Barcelona and 
Palma (Fig. 1). At open sea stations, data above the 
ranges were observed at stations located on submarine 
canyons.

At open sea stratified stations, ammonium con-
centration ranges from the surface to 30 m depth were 
between 0 and 0.8-1.0 mM (Table 12). Below 30 to 100 
m depth the ranges became narrower, from 0.0 to 0.5 

Table 9. – Nitrate concentration (mM) ranges in the NW Mediter-
ranean Sea in mixed water columns (stratification coefficient = 1). 

Headers as in Table 7.

SLD	 Slope and	 Coast and	 n range	 % n
	 open sea	 continental shelf		  range
	 LR	 UR	 LR	 UR	 	

0	 0.00	 3.58	 0.00	 4.48	 49	 100.0
5	 0.00	 3.48	 0.00	 4.25	 104	 79.4
10	 0.00	 3.31	 0.00	 4.12	 48	 96.0
20	 0.00	 3.31	 0.00	 4.09	 101	 80.8
30	 0.00	 3.70	 0.00	 4.50	 71	 93.4
40	 0.00	 4.36	 0.00	 5.25	 122	 79.7
50	 0.00	 3.94	 0.00	 4.78	 40	 97.6
60	 0.00	 4.91	 0.00	 5.81	 104	 81.3
80	 0.00	 5.48	 0.00	 6.51	 146	 82.5
100	 0.00	 5.99	 0.00	 7.01	 122	 72.2
120	 0.80	 5.78	 0.00	 7.03	 19	 65.5
160	 1.69	 6.17	 0.57	 7.30	 59	 72.8
200	 2.41	 6.70	 1.34	 7.78	 77	 59.7
250	 3.69	 7.24	 		  21	 60.0
300	 4.80	 9.06	 		  57	 59.4
400	 6.56	 9.49	 		  84	 74.3
500	 7.68	 9.27	 		  44	 51.2
600	 7.55	 9.15	 		  17	 40.5
800	 8.29	 9.10	 		  27	 51.9
1000	 8.17	 8.92	 		  28	 43.8
1200	 8.32	 8.85	 		  12	 75.0
1400	 8.10	 8.69	 		  5	 62.5
1600	 8.00	 8.82	 		  9	 40.9
1800	 					   
2000	 8.01	 8.93	 		  4	 36.4
2500	 7.96	 9.14	 		  4	 66.7
≥ 500	 7.90	 9.13	 		  150	 48.4
				  
Total	 		 	      	 1374	 72.6

Table 10. – Nitrite concentration (mM) ranges in the NW Mediter-
ranean Sea in stratified water columns (stratification coefficient = 2, 

3 and 4). Headers as in Table 7.

SLD	 Slope and	 Coast and	 n range	 % n
	 open sea	 continental shelf		  range
	 LR	 UR	 LR	 UR	 	

0	 0.00	 0.19	 0.00	 0.25	 370	 96.6
5	 0.00	 0.22	 0.00	 0.27	 591	 94.6
10	 0.00	 0.18	 0.00	 0.23	 359	 96.8
20	 0.00	 0.21	 0.00	 0.26	 576	 93.2
30	 0.00	 0.23	 0.00	 0.29	 628	 94.4
40	 0.00	 0.30	 0.00	 0.37	 639	 95.8
50	 0.00	 0.42	 0.00	 0.53	 653	 97.3
60	 0.00	 0.47	 0.00	 0.59	 575	 96.5
80	 0.00	 0.42	 0.00	 0.52	 1210	 93.9
100	 0.00	 0.31	 0.00	 0.38	 1039	 93.6
120	 0.00	 0.21	 0.00	 0.28	 399	 95.2
160	 0.00	 0.16	 0.00	 0.21	 475	 94.2
200	 0.00	 0.16	 0.00	 0.21	 605	 89.4
250	 0.00	 0.09			   246	 89.1
300	 0.00	 0.09			   376	 83.0
400	 0.00	 0.09			   443	 87.5
500	 0.00	 0.10			   337	 78.4
600	 0.00	 0.08			   230	 79.0
800	 0.00	 0.08			   243	 77.4
1000	 0.00	 0.08			   183	 71.8
1200	 0.00	 0.08			   42	 80.8
1400	 0.00	 0.09			   22	 66.7
1600	 0.00	 0.08			   60	 73.2
1800	 0.00	 0.07			   17	 65.4
2000	 0.00	 0.08			   40	 90.9
2500	 0.00	 0.07			   16	 84.2
≥ 500	 0.00	 0.08			   1164	 75.3
						    
Total	 	 	 	     	 10374	 91.2

Table 11. – Nitrite concentration (mM) ranges in the NW Mediter-
ranean Sea in mixed water columns (stratification coefficient = 1). 

Headers as in Table 7.

SLD	 Slope and	 Coast and	 n range	 % n
	 open sea	 continental shelf		  range
	 LR	 UR	 LR	 UR	 	

0	 0.00	 0.38	 0.00	 0.47	 45	 91.8
5	 0.00	 0.31	 0.00	 0.38	 137	 95.8
10	 0.00	 0.50	 0.00	 0.62	 48	 100.0
20	 0.00	 0.46	 0.00	 0.56	 116	 93.5
30	 0.00	 0.46	 0.00	 0.56	 62	 84.9
40	 0.00	 0.45	 0.00	 0.53	 129	 83.8
50	 0.00	 0.59	 0.00	 0.69	 34	 82.9
60	 0.00	 0.51	 0.00	 0.61	 101	 84.9
80	 0.00	 0.38	 0.00	 0.45	 127	 73.0
100	 0.00	 0.36	 0.00	 0.43	 140	 82.8
120	 0.00	 0.33	 0.00	 0.42	 30	 90.9
160	 0.00	 0.26	 0.00	 0.33	 85	 94.4
200	 0.00	 0.28	 0.00	 0.37	 99	 78.0
250	 0.00	 0.11			   42	 87.5
300	 0.00	 0.10			   90	 87.4
400	 0.00	 0.07			   95	 79.8
500	 0.00	 0.08			   87	 87.9
600	 0.00	 0.07			   39	 79.6
800	 0.00	 0.07			   49	 83.1
1000	 0.00	 0.06			   54	 84.4
1200	 0.00	 0.03			   16	 100.0
1400	 0.00	 0.05			   5	 100.0
1600	 0.00	 0.05			   17	 77.3
1800	 0.00	 0.07			   3	 75.0
2000	 0.00	 0.06			   9	 81.8
2500	 0.00	 0.05			   4	 66.7
≥ 500	 0.00	 0.06			   271	 80.9
						    
Total	 	 	 	     	 1663	 85.3
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mM. From 250 to 500 m depth ammonium concentra-
tion ranges became wider again, and below 500 m 
the concentrations ranged from 0.0 to 1.0-1.4 mM. At 
coastal and continental shelf stations, surface concen-
trations ranged from 0.0 to 1.0-1.2 mM. From 40 to 200 
m depth, the upper limit range decreased to 0.6 mM. 

In mixed water columns, the ammonium surface 
concentration ranges were more variable, and ran from 
0.0-0.1 mM to 1.0-2.0 mM (Table 13). Ammonium 
concentration in mixed water columns for coastal and 
continental shelf stations ranged from 0.0 to 1.1-1.2 
mM in surface waters and up to 2.5-2.9 mM between 30 
and 80 m depth.

High ammonium concentrations in deep waters 
are unexpected in an oxic environment like the NW 
Mediterranean Sea, and the origin of such high values 
remains unclear. Also, the low ammonium data makes 
it difficult to extrapolate, from the ranges of concentra-
tion, any feature in the vertical distribution of ammo-
nium. Ammonium data above the ranges were located 
mainly in the upper 200 m depth, and were spread over 
the continental shelf. At the open sea, data above the 
ranges were also highly scattered.

Surface (30-40 m depth) silicate concentrations at 
open-sea stratified stations of the NW Mediterranean 
Sea ranged from 0.0 to 2.5 mM (Table 14). From sur-
face, silicate concentration ranges steadily increased to 
reach values of between 7.7 and 10.4 mM below 1400 

Table 12. – Ammonium concentration (mM) ranges in the NW 
Mediterranean Sea in stratified water columns (stratification coef-
ficient = 2, 3 and 4). Below 500 m depth, data was gathered only 
from stations with stratification index 2, so they could not be repre-
sentative for other stratification conditions. Headers as in Table 7.

SLD	 Slope and	 Coast and	 n range	 % n
	 open sea	 continental shelf		  range
	 LR	 UR	 LR	 UR	 	

0	 0.00	 0.81	 0.00	 1.00	 101	 73.7
5	 0.00	 0.51	 0.00	 0.63	 61	 100.0
10	 0.00	 1.00	 0.00	 1.23	 114	 82.6
20	 0.00	 0.88	 0.00	 1.08	 107	 77.5
30	 0.00	 0.95	 0.00	 1.16	 116	 79.5
40	 0.00	 0.79	 0.00	 0.97	 100	 65.4
50	 0.00	 0.72	 0.00	 0.88	 142	 75.5
60	 0.00	 0.67	 0.00	 0.83	 139	 73.2
80	 0.00	 0.69	 0.00	 0.84	 250	 72.9
100	 0.00	 0.70	 0.00	 0.87	 181	 74.8
120	 0.00	 0.52	 0.00	 0.68	 79	 73.8
160	 0.00	 0.50	 0.00	 0.66	 59	 80.8
200	 0.00	 0.63	 0.00	 0.81	 69	 64.5
250	 0.00	 1.01			   21	 100.0
300	 0.00	 1.07			   38	 70.4
400	 0.00	 0.92			   46	 85.2
500	 0.04	 1.09			   29	 64.4
600	 0.00	 1.36			   6	 100.0
800	 0.00	 1.19			   12	 92.3
1000	 0.04	 1.13			   13	 100.0
1200						    
1400	 0.00	 1.40			   5	 100.0
1600	 0.00	 1.34			   7	 100.0
1800	 0.87	 1.06			   2	 100.0
2000					     1	 100.0
2500						    
					   
Total	  	 	 	 	    1698	 75.7 

Table 13. – Ammonium concentration (mM) ranges in the NW 
Mediterranean Sea in mixed water columns (stratification coeffi-

cient = 1). Headers as in Table 7.

SLD	 Slope and	 Coast and	 n range	 % n
	 open sea	 continental shelf		  range
	 LR	 UR	 LR	 UR	 	

0	 0.02	 1.22	 0.00	 1.51	 12	 92.3
5						    
10	 0.04	 1.11	 0.00	 1.37	 13	 86.7
20	 0.15	 1.30	 0.00	 1.59	 14	 93.3
30	 0.00	 2.03	 0.00	 2.56	 14	 100.0
40	 0.05	 2.05	 0.00	 2.55	 13	 86.7
50	 0.04	 2.05	 0.00	 2.55	 16	 100.0
60	 0.00	 2.18	 0.00	 2.82	 11	 91.7
80	 0.00	 1.94	 0.00	 2.45	 19	 95.0
100	 0.00	 2.17	 0.00	 2.75	 16	 94.1
120	 0.42	 1.39	 0.00	 1.88	 11	 91.7
160	 0.53	 1.18	 0.00	 1.50	 4	 80.0
200	 0.26	 1.24	 0.00	 1.74	 12	 85.7
250						    
300	 0.71	 1.77			   4	 80.0
400	 0.21	 1.43			   10	 100.0
500	 0.70	 1.61			   3	 100.0
600						    
800	 					   
1000	 					   
1200	 					   
1400	 					   
1600	 					   
1800	 					   
2000	 					   
2500	 					   
						    
Total	 	 	 	     	 172	 92.5

Table 14. – Silicate concentration (mM) ranges in the NW Mediter-
ranean Sea in stratified water columns (stratification coefficient = 2, 

3 and 4). Headers as in Table 7.

SLD	 Slope and	 Coast and	 n range	 % n
	 open sea	 continental shelf		  range
	 LR	 UR	 LR	 UR	 	

0	 0.00	 2.58	 0.00	 3.15	 422	 94.6
5	 0.00	 2.45	 0.00	 2.99	 581	 88.4
10	 0.00	 2.59	 0.00	 3.17	 435	 94.8
20	 0.00	 2.79	 0.00	 3.39	 631	 92.1
30	 0.00	 2.67	 0.00	 3.22	 699	 91.4
40	 0.00	 2.91	 0.00	 3.51	 640	 85.1
50	 0.00	 3.37	 0.00	 4.06	 731	 94.7
60	 0.00	 4.19	 0.00	 5.02	 610	 90.6
80	 0.00	 4.57	 0.00	 5.40	 1330	 92.3
100	 0.16	 5.15	 0.00	 5.98	 1131	 92.6
120	 1.43	 5.15	 0.59	 5.98	 438	 92.6
160	 1.64	 5.29	 0.73	 6.20	 491	 93.3
200	 2.17	 6.03	 1.20	 6.99	 680	 87.5
250	 3.07	 6.43			   250	 86.2
300	 4.17	 7.36			   391	 78.2
400	 4.75	 8.36			   505	 89.2
500	 5.75	 9.09			   395	 84.0
600	 5.76	 8.90			   255	 84.2
800	 6.54	 9.49			   246	 72.6
1000	 6.48	 10.49			   218	 80.7
1200	 7.10	 10.65			   35	 61.4
1400	 7.43	 10.85			   24	 63.2
1600	 7.63	 10.47			   59	 64.1
1800	 8.04	 10.51			   23	 74.2
2000	 7.92	 10.01			   37	 72.5
2500	 7.87	 10.22			   19	 90.5
≥ 1400	 7.74	 10.41			   162	 52.9
						    
Total	 	 	 	     	 11276	 89.0
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m. At coastal and continental shelf stations, silicate 
in surface waters ranged from 0.0 to 3.0-3.2 mM. The 
lower limit was 0.0 mM from surface to 100 m depth, 
increasing up to 1.2 mM at 200 m depth. The upper 
limit range increased steadily from the surface, reach-
ing values of 7.0 mM at 200 m depth.

In mixed water columns, silicate concentration 
ranges in the open ocean in the first 100 m depth were 
wider than the ranges at stratified stations, from 0.0 
to 5.8 mM. From 120 m they increased linearly with 
depth to reach maximum values of 5.5-9.2 mM at 500 
m depth (Table 15). Winter ranges in deep waters were 
similar to those of the rest of the year (8.4-10.7 mM). 
For coastal and continental shelf stations, upper limit 
ranges were between 4.5 and 6.0 mM and did not show 
a clear pattern. The lower limit was 0.0 mM from sur-
face waters to 120 m depth, increasing to 2.0 mM at 
200 m depth.

Silicate data above the described concentration 
ranges were located in front of the Ebro Delta and in 
front of the city of Palma, both on the continental shelf 
and slope. In the open sea area, values below the range 
were mostly found inside submarine canyons.

Open sea surface dissolved oxygen concentration 
ranges in the NW Mediterranean Sea were between 
4.2 and 6.6 ml l-1 (Table 16). Dissolved oxygen con-
centration increased with depth up to 40 m, where the 
concentration range was 4.8 to 6.8 ml l-1. Below this 
depth, the ranges decreased to 400-500 m depth, where 
a lower limit of 3.9 ml l-1 was found. Finally, from 500 

Table 15. – Silicate concentration (mM) ranges in the NW Mediter-
ranean Sea in mixed water columns (stratification coefficient = 1). 

Headers as in Table 7.

SLD	 Slope and	 Coast and	 n range	 % n
	 open sea	 continental shelf		  range
	 LR	 UR	 LR	 UR	 	

0	 0.00	 4.22	 0.00	 5.00	 59	 93.7
5	 0.00	 4.78	 0.00	 5.73	 108	 76.1
10	 0.00	 3.99	 0.00	 4.72	 60	 95.2
20	 0.00	 3.83	 0.00	 4.54	 113	 80.7
30	 0.00	 5.14	 0.00	 6.08	 87	 96.7
40	 0.00	 5.33	 0.00	 6.36	 143	 86.7
50	 0.00	 4.24	 0.00	 4.96	 48	 84.2
60	 0.00	 5.20	 0.00	 6.05	 95	 74.8
80	 0.00	 5.22	 0.00	 6.13	 144	 73.8
100	 0.00	 5.78	 0.00	 6.80	 151	 80.3
120	 0.81	 4.86	 0.00	 5.87	 37	 84.1
160	 1.26	 4.90	 0.35	 5.81	 68	 70.8
200	 2.77	 5.64	 2.05	 6.36	 80	 54.4
250	 3.40	 5.77			   31	 60.8
300	 4.34	 6.74			   48	 42.1
400	 4.96	 8.83			   86	 66.7
500	 5.46	 9.19			   67	 61.5
600	 5.26	 8.89			   32	 61.5
800	 6.91	 8.84			   27	 41.5
1000	 6.79	 9.09			   33	 47.8
1200	 7.54	 9.25			   2	 10.5
1400	 7.67	 10.27			   7	 70.0
1600	 8.36	 10.65			   11	 44.0
1800	 8.88	 10.73			   4	 57.1
2000	 8.20	 11.12			   6	 42.9
2500	 8.21	 10.89			   6	 75.0
≥ 1400	 8.35	 10.73			   32	 50.0
						    
Total	 	 	 	     	 1553	 70.9

Table 16. – Dissolved oxygen (ml l-1) ranges in the NW Mediter-
ranean Sea. Headers as in Table 7.

SLD	 Slope and	 Coast and	 n range	 % n
	 open sea	 continental shelf		  range
	 LR	 UR	 LR	 UR	 	

0	 4.22	 6.63	 3.82	 7.03	 532	 96.9
5	 4.20	 6.60	 3.80	 7.00	 476	 95.2
10	 4.50	 6.52	 4.16	 6.86	 523	 92.1
20	 4.58	 6.60	 4.24	 6.94	 623	 89.6
30	 4.73	 6.77	 4.39	 7.11	 710	 92.1
40	 4.78	 6.77	 4.45	 7.10	 505	 91.2
50	 4.68	 6.75	 4.33	 7.10	 688	 91.6
60	 4.50	 6.55	 4.15	 6.89	 483	 93.6
80	 4.46	 6.23	 4.16	 6.53	 1079	 89.0
100	 4.48	 5.99	 4.18	 6.27	 999	 91.7
120	 4.48	 5.67	 4.18	 5.97	 417	 91.9
160	 4.32	 5.61	 4.00	 5.93	 525	 95.1
200	 4.23	 5.43	 3.93	 5.73	 700	 91.7
250	 4.08	 5.34			   390	 95.4
300	 4.02	 5.17			   553	 94.0
400	 3.92	 5.03			   565	 94.3
500	 3.92	 4.89			   501	 92.3
600	 3.98	 4.93			   316	 92.1
800	 4.05	 4.86			   411	 96.0
1000	 4.25	 4.85			   294	 90.5
1200	 4.28	 4.82			   136	 88.3
1400	 4.33	 4.81			   109	 95.6
1600	 4.40	 4.82			   128	 94.1
1800	 4.40	 4.87			   72	 94.7
2000	 4.46	 4.80			   86	 94.5
2500	 4.44	 4.78			   68	 98.6
						    
Total	 	 	 	     	 11889	 92.5

Table 17. – Chl a concentration (mg l-1) ranges in the NW Mediter-
ranean Sea in stratified water columns (stratification coefficient = 2, 

3 and 4). Headers as in Table 7.

SLD	 Slope and	 Coast and	 n range	 % n
	 open sea	 continental shelf		  range
	 LR	 UR	 LR	 UR	 	

0	 0.00	 0.83	 0.00	 1.03	 385	 90.8
5	 0.00	 1.05	 0.00	 1.31	 294	 88.6
10	 0.00	 1.08	 0.00	 1.36	 331	 94.3
20	 0.00	 1.74	 0.00	 2.17	 414	 96.1
30	 0.00	 1.36	 0.00	 1.71	 520	 97.2
40	 0.00	 1.78	 0.00	 2.19	 478	 94.8
50	 0.00	 1.70	 0.00	 2.09	 508	 93.7
60	 0.00	 1.70	 0.00	 2.07	 429	 94.7
80	 0.00	 1.29	 0.00	 1.57	 932	 92.5
100	 0.00	 0.92	 0.00	 1.13	 688	 83.2
120	 0.00	 0.35	 0.00	 0.45	 242	 96.4
160	 0.00	 0.26	 0.00	 0.35	 234	 94.4
200	 0.00	 0.16	 0.00	 0.21	 271	 91.2
250	 0.00	 0.18			   53	 86.9
300	 0.00	 0.10			   39	 73.6
400	 0.00	 0.05			   67	 91.8
500	 0.00	 0.05			   24	 77.4
600	 0.00	 0.05			   10	 83.3
800	 0.00	 0.05			   5	 62.5
1000	 0.00	 0.03			   5	 45.5
1200	 0.00	 0.00			   1	 100.0
1400						    
1600	 0.00	 0.00			   1	 100.0
1800						    
2000	 					   
2500	 					   
						    
Total	 	 	 	     	 5931	 91.9
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m to the bottom, concentration increased slightly with 
depth to reach values of 4.4-4.8 ml l-1. Concentration 
ranges at coastal and continental shelf stations were 
from 4.2-7.0 ml l-1 in surface waters to 3.9-5.7 ml l-1 at 
200 m depth. The maximum upper limit found was 7.1 
ml l-1. This value is close to the upper limit proposed 
in the MEDATLAS database (7.0 ml l-1, Medar Group, 
2002). The few dissolved oxygen data above the ranges 
encountered on the continental shelf were located in 
front of the Ebro Delta and the city of Barcelona.

Surface chl a concentration ranges in open sea 
stratified waters from the NW Mediterranean Sea were 
around 0.0 and 1.0 mg l-1 (Table 17). The lower limit 
was 0.0 mg l-1 for all the SLDs. The maximum values 
were found between 40 and 60 m depth (the usual depth 
of the DCM in the NW Mediterranean Sea), where the 
upper limit concentration ranges were 1.7-1.8 mg l-1. 
Below 200 m, the observed chl a concentration range 

was between 0.0 and 0.05 mg l-1, although there were 
very few available data. At coastal and continental 
shelf stations, the upper limit of the surface concentra-
tion ranges increased from 1.0 to 1.7-2.2 mg l-1 at the 
DCM. Below this, the upper limit decreased with depth 
to reach 0.21mg l-1 at 200 m.

In mixed water columns, the chl a concentration 
ranges in surface open seawaters rose to 2.3 mg l-1 (Ta-
ble 18). The concentration then decreased steadily with 
depth from 20 to 120 m, where values were 0.0-0.4 mg 
l-1. In deep waters, concentration ranges were similar 
to those described for the rest of the year. At coastal 
and continental shelf stations, the winter upper limit 
for chl a concentration ranges was higher than 2.0 mg 
l-1 from surface waters to 50 m depth. The maximum 
value found was 2.7 mg l-1. At 200 m depth, the chl 
a upper limit range was 0.5 mg l-1. The highest chl a 
concentrations were found in front of the Ebro Delta, 
in front of the cities of Barcelona and Palma and inside 
some submarine canyons.

The proportion of data within the quality control 
ranges for each variable from the cruises gathered, as 
well as from the historical databases, is shown in Table 
19, which also shows the proportions of data outside 
the ranges from open sea versus coast and continental 
shelf stations, and from preserved samples versus sam-
ples analyzed on board.

Using the data included within the QC ranges of 
concentration described in the present paper, vertical 
profiles for the different oceanographic variables have 
been obtained and are described elsewhere (Segura-
Noguera et al., submitted).

DISCUSSION

Analytical precision

It would be desirable for all the analytical data re-
ported elsewhere to also incorporate information about 
some basic parameters, such as the limit of detection 
and the analysis precision. This was not the case with 
most of the data gathered, so we estimated the analyti-
cal precision using different methodologies, according 
to the data available for each cruise.

Our results indicate that standard deviations es-
timated following Garcia et al. (1998) were usually 
higher than those calculated from repeated analyses 

Table 18. – Chl a concentration (mg l-1) ranges in the NW Mediter-
ranean Sea in mixed water columns (stratification coefficient = 1). 

Headers as in Table 7.

SLD	 Slope and	 Coast and	 n range	 % n
	 open sea	 continental shelf		  range
	 LR	 UR	 LR	 UR	 	

0	 0.00	 2.01	 0.00	 2.31	 41	 66.1
5	 0.00	 1.78	 0.00	 2.12	 91	 77.8
10	 0.00	 2.15	 0.00	 2.53	 54	 79.4
20	 0.00	 2.29	 0.00	 2.73	 110	 85.3
30	 0.00	 2.14	 0.00	 2.56	 69	 81.2
40	 0.00	 2.06	 0.00	 2.46	 128	 82.1
50	 0.00	 2.20	 0.00	 2.60	 49	 81.7
60	 0.00	 1.10	 0.00	 1.31	 78	 70.3
80	 0.00	 0.99	 0.00	 1.18	 125	 71.0
100	 0.00	 0.77	 0.00	 0.92	 106	 69.7
120	 0.00	 0.42	 0.00	 0.53	 20	 60.6
160	 0.00	 0.39	 0.00	 0.51	 61	 84.7
200	 0.00	 0.41	 0.00	 0.53	 78	 83.9
250	 0.00	 0.31			   21	 84.0
300	 0.00	 0.21			   17	 60.7
400	 0.00	 0.06			   17	 89.5
500	 0.00	 0.10			   7	 70.0
600	 0.00	 0.05			   6	 75.0
800					     0	 0.0
1000					     0	 0.0
1200						    
1400						    
1600	 					   
1800	 					   
2000	 					   
2500	 				    0	 0.0
						    
Total	 	 	 	     	 1078	 76.6

Table 19. – Proportion (%) of the data gathered that is found within and outside the quality control ranges defined in this study.

	 Within the QC Ranges	 Outside the QC Ranges			 
	 Cruises	 Databases	 Open Sea and Slope	 Coast and 	 Samples analyzed	 Frozen samples
				    Cont. Shelf	 on board		

Phosphate	 91.9	 93.4	 7.0	 1.1	 9.8	 8.0
Nitrate	 90.8	 84.4	 8.6	 0.6	 7.6	 22.7
Nitrite	 91.4	 97.1	 7.1	 1.4	 11.9	 6.4
Ammonium	 73.5	 57.2	 17.1	 9.3	 17.1	 34.6
Silicate	 94.4	 96.4	 5.2	 0.4	 5.2	 10.8
Dissolved oxygen	 95.2	 94.9	 4.6	 0.2		
Chlorophyll a	 94.5	 96.2	 5.3	 6.0		
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of the same sample or from standards, because they 
included a component of natural variability. This com-
ponent was even more evident when we compared the 
precision estimated using data in the different water 
masses: better precision values were obtained using 
data in the WMDW, which is the most stable water 
mass, physically and chemically. Worse values were 
obtained using data from the core of the LIW or us-
ing all data sampled in LIW. This is because this water 
type (the core of the LIW) and water mass (the whole 
LIW) can be present in the NW Mediterranean Sea 
under different degrees of modification after its forma-
tion in the eastern Mediterranean Sea or other areas 
of the Mediterranean Sea (Emelianov et al., 2006); it 
is physically less stable than WMDW. Furthermore, 
at the interval of 200-600 m depth where the LIW is 
detected, the remineralization and dissolution proc-
esses are still active, so nutrient and dissolved oxygen 
concentrations are not constant. Thus, if the precision 
must be estimated following Garcia et al. (1998), we 
recommend using data from WMDW but not from the 
other water masses of the NW Mediterranean Sea.

Better precisions were obtained with the other 
methods used to estimate the analytical precision (Ta-
ble 3). Again, a component of natural variability can 
be observed when the precision is calculated from 
different bottles of the same water mass, rather than 
when it is calculated from different samples from the 
same Niskin bottle, as can be observed in the “Varimed 
95” cruise (Table 3). Another factor that could have an 
influence on the variation of the estimated analytical 
precision is the analyst (Hager et al., 1972).

Finally, traceability is another chemical parameter 
that should be taken into account in studies about the 
quality of the data. Even if the precision and the limit 
of detection of an analysis are acceptable, a system-
atic error can be present (e.g. by using a contaminated 
baseline or reagents). In this case, all the analyses will 
be deviated from the real value in the same way. The 
standards from which the calibration line is calculated 
are the most important source of systematic errors in 
nutrient analysis (Gordon et al., 1993). The best way 
to know whether the results obtained are true is to 
use certified reference material (Riu et al., 2002), but 
the participation in intercalibration experiments also 
gives an idea of how exact the laboratory analyses 
are. The only traceable nutrient values are those pro-
vided by the Department of Aquatic Biogeochemistry 
(CEAB-CSIC, analysts 2 and 3 in Appendix 2), which 
participated in an interlaboratory experiment and 
demonstrated a high accuracy in the analysis (Aminot 
and Kirkwood, 1995).

Nutrient preservation

According to Chapman and Mostert (1990), freez-
ing is a suitable method for nutrient preservation if the 
study can support errors as high as 10%, for example, 
in studies dealing with anthropogenic contamination. 

However, for open deep sea water studies that require 
higher precision or studies of nutrient limitation in 
euphotic layers where concentrations are low, nutrient 
analyses should be done immediately.

Our laboratory experiment results indicate that 
freezing is a valid preservation method that did not sig-
nificantly affect the concentration of phosphate, nitrate 
and silicate in samples coming from historical cruises 
in the NW Mediterranean Sea. The analysis errors cal-
culated for preserved samples are 6.3% for phosphate, 
1.6% for nitrate and 2.5% for silicate. These results are 
consistent with the results from the comparison of pre-
served and unpreserved nutrient samples from cruises 
in the NW Mediterranean Sea and with those from 
studies performed at other locations (Stéfansson and 
Richards, 1963; Strickland and Parsons, 1972; Riley et 
al. 1975; Chapman and Mostert, 1990; Avanzino and 
Kennedy, 1993; Valderrama, 1995; Dore et al., 1996; 
Krom et al., 2005). 

By contrast, nitrite and ammonium concentrations 
in samples from the NW Mediterranean Sea are signifi-
cantly altered by freezing, as has been observed previ-
ously in other regions (Carpenter and McCarthy, 1975; 
Eppley et al., 1977). The relative errors are higher than 
those found for the other nutrients: 11.4% for nitrite 
analysis and 18.2% for ammonium analysis. However, 
the decrease in nitrite concentration due to freezing 
(0.04 mM) is similar to the baseline contamination es-
timated from the use of ASW made with NaCl diluted 
in double-distilled water (0.03-0.06 mM). Thus, it is 
not clear whether the different concentrations found 
for preserved and unpreserved nitrite samples are the 
consequence of both preservation procedure and dif-
ferences in the nitrite concentration in ASW. It is also 
possible that nitrite had been quickly oxidized to ni-
trate during the realization of the experiment or during 
the handling of the cruise samples.

The increase in ammonium concentration (0.39 
mM) is higher than the contamination introduced by 
the use of ASW (0.23-0.26 mM) and close to the upper 
limit of the precision calculated (0.04-0.43 mM—this 
last parameter calculated for cruises on which nutrient 
samples were frozen, as can be observed in Table 3). It 
is evident that the ammonium concentration was affect-
ed by the analysis baseline used, as well as by freezing 
of the samples. The error in the analysis is much higher 
when it is calculated with data from the cruises (102%, 
Table 6). Moreover, the ammonium data gathered that 
has been frozen previous to analysis showed the high-
est percentage (35%) of data outside the resulting QC 
ranges of concentration among the studied variables 
(Table 19). Thus, we do not recommend using his-
torical ammonium data from samples that have been 
preserved by freezing, because both the accuracy and 
the precision of the analysis are significantly affected. 
If nutrient samples need to be frozen, it is important, 
both for ammonium and nitrite analyses, to establish 
which part of the error is due to the use of ASW and/
or distilled water as a baseline, and which is caused 
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by the freezing process, including the handling of the 
samples. For a revision of storage, pre-treatment of the 
samples and the risk of contamination during analysis, 
it is recommended to read Aminot et al. (2009).

The results of the comparison of preserved and 
unpreserved samples from cruises were used only as a 
reference. This is because it is not realistic to assume 
that the precautions taken in the laboratory experi-
ment during the sampling process and later freezing 
and analysis, described above, were followed in all 
cruises. According to Aminot and Kérouel (1998), 
the main disadvantage of freezing nutrient samples is 
that they should be continuously kept frozen until the 
moment of the analysis, so there is always a risk of 
losing the samples if the equipment fails. The transfer 
of the frozen samples from the ship to the laboratory 
on land is particularly critical, as the samples can be 
partially melted down if transfer takes too long. It was 
not possible to check whether this has happened during 
the manipulation of preserved samples on any of the 
cruises of this study.

Usually during a cruise on which the samples were 
analyzed on board, some samples had to be preserved 
when there were malfunctions of the autoanalyzer, or 
when it was not possible to work because of the bad 
weather. Therefore, it is likely that not all the samples 
that we treated as analyzed on board should be in that 
group. It was thus predictable that the resulting con-
centration errors would be higher than those calculated 
in the laboratory experiment, as in fact happened. As a 
consequence, the errors shown in Table 6 can be con-
sidered as the highest ones that can be obtained when 
nutrient samples are frozen during the course of an 
oceanographic cruise.

Part of the increase in nutrient, except nitrite, found 
for cruises on which the nutrients were preserved could 
be reflecting the proportion of cruises on which the 
water column was mixed (stratification index 1). The 
number of cruises on which samples were frozen was 
4 out of 10, but the number of those cruises on which 
samples were analyzed on board was only 4 out of 18. 
Note that the highest surface values of all nutrients 
were found when the water column was mixed and that 
most of the samples were commonly taken in the upper 
100 m. 

It is also possible that the higher mean concentra-
tions of phosphate, nitrate and ammonium calculated 
in preserved samples compared with unpreserved 
ones—observed both in the laboratory experiment and 
in the comparison of cruise samples—were the result 
of breaking cells during the freezing process, reinforc-
ing the hypothesis of Carpenter and McCarthy (1975).

QC concentration ranges

In this study, ranges of concentration of key ocea-
nographic variables in the NW Mediterranean Sea are 
reported. The QC ranges for oceanographic data in this 
area were obtained following the methodology pro-

posed by Conkright et al. (1994, 2000). However, one 
of the steps proposed by those authors was skipped. 
This step consisted in the interpolation of the data 
whose depth was not coincident with an SLD, in order 
to obtain the value in the SLD. This step was skipped 
because of the segmentation of the profiles available 
in the NW Mediterranean Sea, which usually only 
cover up to 12 of the 26 SLD considered by Fichaut et 
al. (1997). Moreover, the sampling was concentrated 
mainly in surface waters; the amount of data below 120 
m decreased in number with increasing depth (see Ta-
bles 9-21). It should also be taken into account that the 
SLDs considered by Fichaut et al. (1997) for the Medi-
terranean Sea and used in the present study, include 
more SLDs in surface waters (0-120 m depth, an area 
of high variation and low concentrations for most of 
the variables studied) than the SLDs used by Conkright 
et al. (1994, 2000). While the resolution in surface 
waters should be improved, more SLDs involve fewer 
data at each depth. Therefore, it was considered that the 
interpolation, together with the relatively low amount 
of data on hand compared to those gathered by Conk-
right et al. (1994, 2000), would result in an increase in 
the uncertainty instead of improving the profile.

Also, some QCs can observe false maximums and 
minimums at 100 m depth, which are the consequence 
of using different standard deviations to define the con-
centration ranges.

Seasonal variations in surface nutrient concentra-
tion and in chl a concentration emerged clearly during 
the development of QCs, when most of the winter data 
except for phosphate and dissolved oxygen data were 
found outside the concentration ranges, as it is known 
that vertical mixing is related to an increase in nutrients 
and chl a at the surface. Consequently, QCs were de-
veloped separately for those data coming from mixed 
water column stations (winter conditions alone) and 
from stratified stations. Unfortunately, these QCs for 
winter conditions alone should be taken with precau-
tion because the amount of data used to establish them 
is sometimes very low. The scarcity of data is observed 
with variations in the standard deviation between con-
secutive SLDs, which leads to abrupt variations in the 
amplitude of the ranges.

Finally, due to the possible error introduced by the 
freezing of ammonium samples, only ammonium data 
from onboard analysis were used to define the QC for 
this nutrient in the NW Mediterranean Sea. Unfortu-
nately, below 500 m depth only ammonium data from 
spring are available, and it is not known how repre-
sentative ammonium spring concentrations of deep 
waters are throughout the whole year. We therefore 
recommend the use of the QC for ammonium samples 
only from the surface to 500 m depth.

ACKNOWLEDGEMENTS

This work was supported by projects CANYONS 
(MAR99-1060-C03, CYCIT), CACO (REN2002-



QUALITY CONTROL OF BIO-CHEMICAL VARIABLES FOR DATABASES • 337

SCI. MAR., 75(2), June 2011, 321-339. ISSN 0214-8358 doi: 10.3989/scimar.2011.75n2321

01339/MAR, MEC), and PUDEM (REN2003-
06637-C02), and by an I3P fellowship (CSIC, MEC) to 
M.S.-N. We thank Marta Estrada, Jordi Salat, Miquel 
Alcaraz and Laura Arin (Institut de Ciències del Mar, 
CSIC) for providing bibliographic data, as well as Ana 
Sabatés and Albert Palanques (Institut de Ciències del 
Mar, CSIC) for providing cruise opportunities to obtain 
the most recent data. We thank Mikhail Emelianov (In-
stitut de Ciències del Mar, CSIC) and the personnel of 
UTM (CSIC) for useful assistance during the Canyons 
and Caco cruises, and Linda Lamb for the English revi-
sion of this manuscript. We also thank two anonymous 
reviewers for helpful comments on the manuscript.

REFERENCES

Aminot, A. and R. Kérouel. – 1998. Pasteurization as an alterna-
tive method for preservation of nitrate and nitrite in seawater 
samples. Mar. Chem., 61: 203-208.

Aminot, A. and D. Kirkwood. – 1995. Report on the results of the 
fifth ICES comparison exercise for nutrients in sea water. ICES 
Cooperative Research Report, 213. Copenhagen.

Aminot, A., R. Kérouel and S.C. Coverly. – 2009. Nutrients in 
Seawater Using Segmented Flow Analysis. In: O. Wurl (ed.), 
Practical Gudelines for the Analysis of Seawater. CRC Press, 
143-178.

Avanzino, R.J. and V.C. Kennedy. – 1993. Long-term frozen stor-
age of stream water samples for dissolved orthophosphate, ni-
trate plus nitrite, and ammonium analysis. Water Resour. Res., 
29: 3357-3362.

Bendschneider, K. and R. Robinson. – 1952. A new spectrophoto-
metric method for the determination of nitrite in sea water. J. 
Mar. Res., 11(1): 87-96.

Benesch, R. and P. Mangelsdorf. – 1972. A method for the colori-
metric determination of ammonium in sea water. Helgoländer 
Wiss Meeresunters, 23: 265-375.

Béthoux, J.P. and G. Copin-Montégut. – 1986.Biological fixation of 
atmospheric nitrogen in the Mediterranean Sea. Limnol. Ocea-
nogr., 31: 1353-1358.

Béthoux, J.P., P. Morin, C. Chaumery, O. Connan, B. Gentili and 
D. Ruiz-Pino. – 1998. Nutrients in the Mediterranean Sea, mass 
balance and statistical analysis of concentrations with respect to 
environmental change. Mar. Chem., 63: 155-169.

Béthoux, J.P., X. Durrieu de Madron, F. Nyffeler and D. Tailliez. – 
2002. Deep water in the western Mediterranean. Peculiar 1999 
and 2000 characteristics, shelf formation hypothesis, variability 
since 1970 and geochemical inferences. J. Mar. Sys., 33-34: 
117-131.

Bower, C.E. and T. Holm-Hansen. – 1980. A salicylate-hypochlorite 
method for determining ammonium in seawater. Can. J. Fish. 
Aquat. Sci., 37:794-798.

Carpenter, E.J. and J.J. McCarthy. – 1975. Nitrogen fixation and 
uptake of combined nitrogenous nutrients by Oscillatoria 
(Trichodesmium) thiebautii in western Sargasso Sea. Limnol. 
Oceanogr., 20: 389-401.

Chapman, P. And S.A. Mostert. – 1990. Does freezing of nutrient 
samples cause analytical errors. South African J. Mar. Sci., 9: 
239-247.

Conkright, M.E., T.P. Boyer, S. Levitus. – 1994. Quality control 
and processing of historical oceanographic nutrient data. NOAA 
Technical Report NESDIS 79. NOAA, Washington DC.

Conkright, M.E., H.E. Garcia, T.D. O’Brien, R.A. Locarnini, T.P. 
Boyer and C. Stephens, J.I. Antonov. – 2000. World ocean 
atlas. Volume 4: Nutrients. NOAA Atlas NESDIS 52. NOAA, 
Washington DC.

Cruzado, A. – 1989. Automatic Techniques for Seawater Analysis. 
Info. Tec. CEAB Ocean., 23.

Culbertson, C.H., G. Knapp, M.C. Stalcup, R.T. Williams and F. 
Zemlyak. – 1991. A comparison of methods for the determi-
nation of dissolved oxygen in seawater. WHP Office Report 
WHPO-91-2.

DeGobbis, D. – 1973. On the storage of seawater samples for am-

monium determination. Limnol. Oceanogr., 18: 146-150.
Dore, J.E., T. Houlihan, D.V. Hebel, G. Tien, L. Tupas and D.M. 

Karl. – 1996. Freezing as a method of sample preservation for 
the analysis of dissolved inorganic nutrients in seawater. Mar. 
Chem., 53: 173-185.

Duarte, C.M., S. Agustí, H. Kennedy and D. Vaqué. – 1999. The 
Mediterranean climate as a template for Mediterranean marine 
ecosystems: the example of the northeast Spanish littoral. Prog. 
Oceanogr., 44: 245-270.

Emelianov, M., J. Font, A. Turiel, C. Millot, J. Solé, P.-M. Puolain, 
A. Julià and M.-R. Vitrià. – 2006. Transformation of Levantine 
Intermediate Water tracked by MEDARGO floats in the West-
ern Mediterranean. Ocean Sci., 2: 281-290.

Eppley, R.W., J. H. Sharp, E.H. Renger, M.J. Perry and W.G. Har-
rison. – 1977. Nitrogen assimilation by phytoplankton and 
other microorganisms in surface waters of central North Pacific 
Ocean. Mar. Biol., 39: 111-120.

Estrada, M. – 1999. Hidrodinàmica i fitoplàncton en el Mar Català. 
Memorias de la Real Academia de Ciencias y Artes de Barce-
lona, 961. Vol. LVIII, num. 6: 189-247.

Fichaut, M., E. Balopoulos, L. Baudet, H. Dooley, M.-J. García-
Fernández, A. Iona, D. Jourdan and C. Maillard. – 1997. A com-
mon protocol to assemble a coherent database from distributed 
heterogeneous data sets: the MEDATLAS database experience. 
Proc. MAST workshop on project data management, June 1997, 
Ispra, Italy.

Garcia, H., A. Cruzado, L. Gordon and J. Escanez. – 1998. Decadal-
scale chemical variability in the subtropical north Atlantic de-
duced from nutrient and oxygen data. J. Geophys. Res., 103: 
2817-2830.

Gomez-Taylor, M., H.D. Kahn, W.A. Telliard, K. Ditthavong, L. 
Kopylev, H. McCarty, L. Riddick, K. Miller, J. Cuddeback, 
D. Rushneck, S. Dedah, K. Stralka. – 2003. Technical Support 
Document for the Assessment of Detection and Quantitation 
Approaches. U.S. Environmental Protection Agency, Washing-
ton D.C. 

Gordon, L.I., J.C. Jennings, Jr.A.A. Ross and J.M. Krest. – 1993. A 
suggested protocol for continuous flow automated analysis of 
seawater nutrients (phosphate, nitrate, nitrite and silicic acid) in 
the WOCE Hydrographic Program and the Joint Global Ocean 
Fluxes Study. WOCE Hydrographic Program Office, Methods 
Manual WHPO 91-1.

Grasshoff, K. – 1964. On the determination of silica in sea water. 
Deep-Sea Res., 11: 597-604.

Grasshoff, K. – 1970. Technicon paper, 691: 57.
Grasshoff, K., M. Ehrhardt and K. Kremling K. – 1983. Methods of 

seawater analysis. Verl. Chem., Weinheim.
PEPS Group. – 1986. Datos oceanográficos básicos de las campañas 

PEP-82, PEP-83 y PEP-84 en el mar Catalán. Datos Informa-
tivos Instituto de Ciencias del Mar, Barcelona, 19: 1-100.

Hager, S.W., E.L. Atlas, L.I. Gordon, A.W. Mantyla and P.K. Park. 
– 1972. A comparison at sea of manual and autoanalyzer analy-
ses of phosphate, nitrate and silicate. Limnol. Oceanogr., 17(6): 
931-937.

Hansen, H.P. – 1999. Determination of oxygen. In: K. Grasshoff, K. 
Kremling and M. Ehrhardt (eds.), Methods of Seawater Analy-
sis. Wiley-VCH, 75-89.

Hansen, H.P. and F. Koroleff. – 1999. Determination of nutrients. 
In: K. Grasshoff, K. Kremling and M. Ehrhardt (eds.), Methods 
of Seawater Analysis. Wiley-VCH, 191-228.

Kremling, K. and L. Brügmann. – 1999. Filtration and Storage. In: 
K. Grasshoff, K. Kremling and M. Ehrhardt (eds.), Methods of 
Seawater Analysis. Wiley-VCH, 27-40.

Krom, M.D., E.M.S. Woodward, B. Herut, N. Kress, P. Carbo, 
R.F.C. Mantoura, G. Spyres, T.F. Thingstad, P. Wassmann, C. 
Wexels-Riser, V. Kitidis, C.S. Law and G. Zodiatis. – 2005. 
Nutrient cycling in the south east levantne basin of the East-
ern Mediterranean: results from a phosphorus starved system. 
Deep-Sea Res. II., 52: 2879-2896.

Lomas, M.W. and F. Lipschultz. – 2006. Forming the primary ni-
trite maximum: nitrifiers or phytoplankton? Limnol. Oceanogr., 
51(5): 2453-2467.

Masó, M. and PEPS Group. – 1988. Datos oceanográficos básicos de 
las campañas Fronts-3-85, Fronts-6-85, PEP-86, Fronts-11-86 
y PEP-87 en el mar Catalán. Datos Informativos Instituto de 
Ciencias del Mar, Barcelona, 24: 1-83.

Masó, M. and Varimed Group. – 1995. Datos Oceanográficos Bási-



338 • M. SEGURA-NOGUERA et al.

SCI. MAR., 75(2), June 2011, 321-339. ISSN 0214-8358 doi: 10.3989/scimar.2011.75n2321

cos de las Campañas «FRONTS 1992» (octubre-noviembre 
1992) y «Variabilidad de mesoescala en el Mediterráneo Oc-
cidental» (junio 1993). Datos Informativos Instituto de Ciencias 
del Mar, Barcelona, 27: 1-117.

Mater Group. – 2001. MTPII-MATER 1996–1999 (Mass transfer 
and ecosystem response) database. IFREMER Edition (1 CD).

Medar Group. – 2002. MEDATLAS/2002 database. Mediterranean 
and Black Sea database of temperature salinity and bio-chemical 
parameters. Climatological Atlas. IFREMER Edition (4 CD).

Millot, C. – 1999. Circulation in the western Mediterranean Sea. J. 
Mar. Sys., 20: 423-442.

Morán, X.A.G., J.M. Gasol, L. Arin and M. Estrada. A comparison 
between glass fiber and membrane filters for the estimation of 
phytoplankton POC and DOC production. Mar. Ecol. Prog. 
Ser., 187: 31-41.

Moutin, T. and P. Raimbault. – 2002. Primary production, carbon 
export and nutrients availability in Western and Eastern Medi-
terranean Sea in early summer 1996 (MINOS cruise). J. Mar. 
Sys., 33: 273-288.

Murphy, J. and J.P. Riley. – 1962. A modified single solution 
method for the determination of phosphate in natural waters. 
Anal. Chim. Acta, 27: 31-36.

Parsons, T.R., M. Takahashi and B. Hargrave. – 1984. Biological 
Oceanographic Processes. Pergamon Press, Oxford.

Pond, S. and G.L. Pickard. – 1983. Introductory Dynamical Ocea-
nography. Pergamon Press, Oxford.

Riley, J.P., D.E. Robertson, J.W.R. Dutton, N.T. Mitchell and 
P.J.leB. Williams. – 1975. Analytical chemistry of Sea Water. 
In: J.P. Riley and G. Skirrow (eds.), Chemical Oceanography. 
Vol.3, Academic Press, 193-433.

Riu, J., A. Maroto, R. Boqué, F.X. Rius. – 2002. Determinació de 
la traçabilitat en mesures químiques. Notícies per a Químics, 
407: 5-8.

Salat, J. – 1995. The interaction between the Catalan and Balearic 
currents in the southern Catalan Sea. Oceanol. Acta, 18(2): 
227-234.

Salat, J. – 1996. Review of hydrographic environmental factors 
that may influence habitats in northwestern Mediterranean. Sci. 
Mar., 60(Suppl. 2): 21-32.

Salat, J. and A. Cruzado. – 1981. Masses d’eau dans la Mediterranée 
Occidentale: Mer Catalane et eaux adjacentes. Rapp. Comm. 

Int. Mer Médit., 27(6): 201-209.
Send, U., J. Font, G. Krahmann, C. Millot, M. Rhein and J. Tintore. 

– 1999. Recent advances in observing the physical oceanogra-
phy of the western Mediterranean Sea. Progr. Oceanogr., 44: 
37-64.

Stéfansson, U. and F. Richards. – 1963. Processes contributing to 
the nutrient distributions off the Columbia River and Strait of 
Juan de Fuca. Limnol. Oceanogr., 8: 394-410.

Strickland, J.D.H. and T.R. Parsons. – 1972. A Practical Handbook 
of Seawater Analysis. Fisheries Research Board Canada, 167: 
1-310.

Thayer, G.W. – 1970. Comparison of two storage methods for the 
analysis of nitrogen and phosphorous fractions in estuarine wa-
ter. Chesapeake Sci., 11: 155-158.

Valderrama, J.C. – 1995. Methods of nutrient analysis. In: G.M. 
Hallegraeff, D.M. Anderson and A.D. Cembella (eds.), Manual 
of Harmful Marine Microalgae. UNESCO, Paris, 251-268.

Varela, R. and FRONTS Group. – 1991. Datos Oceanográficos 
Básicos de las Campañas FRONTS 1989, FRONTS 1990 y 
FRONTS 1991 en el Mar Catalán. Datos Informativos Instituto 
de Ciencias del Mar, Barcelona, 26: 1-71.

Velásquez, Z. – 1997. Fitoplancton en el mediterráneo norocciden-
tal. Ph.D. thesis, Univ. Politècnica de Catalunya.

Venrick, E.L. and T.L. Hayward. – 1985. Evaluation of some tech-
niques for preserving nutrients in stored seawater samples. Cali-
fornia Cooperative Oceanic and Fisheries Investigations Report 
XXVI: 160-168.

Winkler, L.W. – 1888. Die Bestimmung des in Wasser gelosten 
Sauerstoffen. Berichte der Deutschen Chemischen Gesellschaft, 
21: 2842-2855.

Whitledge, T.E., S.T. Mallory, C.S. Patton and C.D. Wiritk. – 1981. 
Automated Analysis in Seawater. Nat. Tech. Inf. Serv. Spring-
field, Brookhaven Nat. Laboratory, USA.

Yentsch, C.S. and D.W. Menzel. – 1963. A method for the deter-
mination of phytoplankton chlorophyll and phaeophytin by 
fluorescence. Deep-Sea Res., 10: 221-231.

Scient. ed.: X.A. Álvarez-Salgado.
Received March 26, 2010. Accepted October 4, 2010.
Published online March 14, 2011.



QUALITY CONTROL OF BIO-CHEMICAL VARIABLES FOR DATABASES • 339

SCI. MAR., 75(2), June 2011, 321-339. ISSN 0214-8358 doi: 10.3989/scimar.2011.75n2321

Appendix 1. – Cruise name, date, number of stations, oceanographic vessel and instrumentation used of the cruises gathered in the present 
study. Source: I, PEPS Group, 1986; II, Masó and PEPS Group, 1988; III, Varela and FRONTS Group, 1991; IV, Masó and Varimed Group, 

1995.

Cruise	 Date	 Number	 Oceanographic	 CTD	 Thermometer	 Salinometer	 Pressure	 Source
		  of stations	 Ship	

Pep-82	 11–30 July 1982	 49	 Garcia del Cid		  reversible	 induction	 line	 I
Pep-83	 30 June-17 July 1983	 83	 Garcia del Cid	 Neil Brown	 sensor	 sensor	 sensor	 I
Pep-84	 15–30 May 1984	 53	 Garcia del Cid		  reversible	 induction	 line	 I
Fronts-3-85	 15–26 March 1985	 17	 Garcia del Cid	 Neil Brown (part)	 reversible	 induction	 line	 II
Fronts-6-85	 1–6 June 1985	 23	 Garcia del Cid		  reversible	 induction	 line	 II
Pep-86	 13–24 June 1986	 39	 Garcia del Cid		  reversible	 induction	 line	 II
Fronts-11-86	 7–12 November 1986	 15	 Garcia del Cid		  reversible	 induction	 line	 II
Pep-87	 23–30 May 1987	 20	 Garcia del Cid		  reversible	 induction	 line	 II
Fronts 89	 13–22 May 1989	 28	 Garcia del Cid	 Sea-Bird SEB 19 (some)	 reversible	 induction	 line	 III
Fronts 90	 9–21 February 1990	 30	 Garcia del Cid	 Neil Brown Mark-III (part)	 reversible	 conductivity	 line	 III
Fronts 91	 10–21 April 1991	 37	 Garcia del Cid	 Neil Brown Mark-III (part 1)	 sensor	 sensor	 sensor	 III
				    Seabird SBE 25 (part 2)	 			 
Fronts 92	 15 Oct.-4 Nov. 1992	 27	 Garcia del Cid	 Seabird SBE 25	 sensor	 sensor	 sensor	 IV
Varimed 93 I	 1–8 June 1993	 60	 Hespérides	 Neil-Brown Mark V	 sensor	 sensor	 sensor	 IV
Varimed 93 II	 10–16, 23–29 June 1993	 21	 Hespérides	 Neil-Brown Mark V	 sensor	 sensor	 sensor	 IV
Varimed 93 III	 18–22 June 1993	 41	 Hespérides	 Neil-Brown Mark V	 sensor	 sensor	 sensor	 IV
Varimed 95	 2–14 June 1995	 32	 Hespérides	 Neil-Brown Mark V	 sensor	 sensor	 sensor	 M. Estrada
Meso 95	 31 May-23 June 1995	 176	 Garcia del Cid	 Neil-Brown Mark-III	 sensor	 sensor	 sensor	 A. Cruzado
Fans 1	 1–11 November 1996	 53	 Garcia del Cid	 Neil-Brown Mark-III	 sensor	 sensor	 sensor	 L. Arin
Fans 2	 4–14 February 1997	 105	 Garcia del Cid	 Neil-Brown Mark-III	 sensor	 sensor	 sensor	 L. Arin
Fans 3	 7–16 July 1997	 110	 Garcia del Cid	 Neil-Brown Mark-III	 sensor	 sensor	 sensor	 L. Arin
Hivern 99	 20 Feb.-15 March 1999	 47	 Garcia del Cid	 Neil-Brown Mark-III	 sensor	 sensor	 sensor	 M. Estrada
Hivern 2000	 21 Jan.-11 Feb. 2000	 50	 Garcia del Cid	 Neil-Brown Mark-III	 sensor	 sensor	 sensor	 M. Estrada
Canyons I	 13–19 March 2001	 32	 Garcia del Cid	 Neil-Brown Mark-III	 sensor	 sensor	 sensor	 M. Emelianov
Canyons II	 24–31 May 2001	 44	 Garcia del Cid	 Neil-Brown Mark-III	 sensor	 sensor	 sensor	 M. Emelianov
Canyons III	 10–15 July 2001	 24	 Garcia del Cid	 Sea-bird SBE 25 / Idronaut	 sensor	 sensor	 sensor	 M. Emelianov
Canyons IV	 26–29 November 2001	 14	 Garcia del Cid	 Neil Brown Mark-III	 sensor	 sensor	 sensor	 M. Emelianov
Caco 1	 18–25 July 2003	 67	 Garcia del Cid	 Neil Brown Mark-III 1138	 sensor	 sensor	 sensor	 J. Salat
Caco 2	 11–20 September 2003	 65	 Garcia del Cid	 Neil Brown Mark-III 1138	 sensor	 sensor	 sensor	 J. Salat

Appendix 2. – Nutrient analysis characteristics for the data gathered from cruises in the NW Mediterranean Sea. Methodologies: S & P 72, 
Strickland and Parsons, 1972; W 81, Whitledge et al., 1981; C 89, Cruzado, 1989; G 83, Grasshoff et al., 1983; B+L 99, Bran+Luebbe, 1999; 
LNSW, low nutrient seawater; DW, distilled water; ASW, artificial seawater, usually 37 - 38 g l-1 sodium chloride. I to IV, same as Table 1.

Cruise	 Autoanalyzer	 Methodology	 Base line	 Preservation	 Analyst	 Source

Pep-82	 Technicon	 S & P, 72	 LNSW, DW	 no	 1	 I
Pep-83	 Technicon	 S & P, 72	 LNSW, DW	 no	 1	 I
Pep-84	 Technicon	 S & P, 72	 LNSW, DW	 no	 1	 I
Fronts-3-85	 Technicon	 S & P, 72	 LNSW, DW	 no	 1	 II
Fronts-6-85	 Technicon	 S & P, 72	 LNSW, DW	 freezing	 1	 II
Pep-86	 Technicon	 W, 81	 LNSW	 no	 2	 II
Fronts11-86	 Technicon	 W, 81	 LNSW, DW	 freezing	 1	 II
Pep-87	 Technicon	 W, 81	 ?	 no	 ?	 II
Fronts 89	 Skalar	 W, 81; C, 89	 LNSW	 no	 2	 III
Fronts 90	 Skalar	 W, 81; C, 89	 LNSW	 no	 2	 III
Fronts 91	 Skalar	 W, 81; C, 89	 LNSW	 no	 2	 III
Fronts 92	 Skalar	 W, 81; C, 89	 LNSW	 no	 2	 IV
Varimed 93 I	 Skalar	 W, 81; C, 89	 LNSW	 no	 2, 3	 IV
Varimed 93 II	 Skalar	 W, 81; C, 89	 LNSW	 no	 2, 3	 IV
Varimed 93 III	 Skalar	 W, 81; C, 89	 LNSW	 no	 2, 3	 IV
Varimed 95	 Skalar	 W, 81; C, 89	 LNSW	 no	 2	 M. Estrada
Meso 95	 Technicon	 W, 81; C, 89	 LNSW	 no	 4	 A. Cruzado
Fans 1	 Skalar	 W, 81; C, 89	 LNSW	 no	 4	 L. Arin
Fans 2	 Skalar	 W, 81; C, 89	 LNSW	 no	 4	 L. Arin
Fans 3	 Skalar	 W, 81; C, 89	 LNSW	 no	 4	 L. Arin
Hivern 99	 Evolution-II, Alliance	 G, 83	 ASW	 freezing	 5, 6	 M. Estrada
Hivern 2000	 Evolution-II, Alliance	 G, 83	 ASW	 freezing	 5	 M. Estrada
Canyons I	 Evolution-II, Alliance	 G, 83	 ASW	 freezing	 7	 M. Segura
Canyons II	 AA3, Bran + Luebbe	 B+L, 99	 ASW	 freezing	 7	 M. Segura
Canyons III	 AA3, Bran + Luebbe	 B+L, 99	 ASW	 freezing	 7	 M. Segura
Canyons IV	 AA3, Bran + Luebbe	 B+L, 99	 ASW	 freezing	 7	 M. Segura
Caco 1	 AA3, Bran + Luebbe	 B+L, 99	 ASW	 freezing	 7	 M. Segura
Caco 2	 AA3, Bran + Luebbe	 B+L, 99	 ASW	 freezing	 7	 M. Segura


