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SUMMARY: Generalized linear Bayesian (GLBM) non-hierarchical and hierarchical models were developed for standardization 
of catch per unit effort (CPUE). The GLBM containing the covariates of month, latitude, sea surface temperature (SST), sea 
surface salinity (SSS) and sea level height (SLH) had the best fit for the Chinese squid-jigging fishery of Ommastrephes 
bartramii in the northwest Pacific Ocean based on deviance information criteria. This best-fitting model tends to be more 
ecologically sound than other CPUE standardization models, such as generalized linear models and generalized additive 
models. GLBM was also used to deal with the problems of estimating stock abundance index (i.e. standardized CPUE) resulting 
from increased spatial heterogeneity of spatial dynamics of fishing efforts in the squid fishery by predicting the standardized 
CPUE for unfished areas. The standardized CPUE based on data including predicted CPUE of unfished areas was lower than 
the derived CPUE based on data with observed CPUE alone, in particular during the fishing peak of August to October. This 
study indicates that it is more appropriate to use the standardized CPUE derived from data including both predicted CPUE of 
unfished areas and observed CPUE of fished area as a stock abundance index. We suggest that the proposed method be used in 
CPUE standardization to account for impacts of large spatial heterogeneity of fishing efforts in fisheries.

Keywords: generalized linear Bayesian models, CPUE standardization, Ommastrephes bartramii, Chinese squid-jigging 
fishery, northwest Pacific Ocean.

RESUMEN: Modelos lineales generalizados bayesianos para la estandardización de CPUE: aplicación a la 
pesquería de calamar mediante jigging en el Pacífico noroccidental. – Se desarrollan modelos lineales generalizados 
bayesianos (GLBM) jerárquicos y no-jerárquicos para la estandardización de captura por unidad de esfuerzo (CPUE). El modelo 
GLBM seleccionado para la pesquería del calamar Ommastrephes bartramii mediante jigging en el Pacífico noroccidental 
incorporó las variables explicativas mes, latitud, temperatura superficial del mar (SST), salinidad superficial del mar (SSS) y 
altura del nivel del mar (SLH). La selección del modelo se basó en el Criterio de Información de la Desviación (DIC). El modelo 
que mejor se ajustó a los datos tiene más sentido ecológico comparado con modelos de estandardización de CPUE basado en 
modelos lineales generalizados y modelos aditivos generalizados. Se utilizó también el GLBM para tratar el problema de la 
estimación de un índice de abundancia del stock (es decir, CPUE estandardizada) frente a la elevada heterogeneidad espacial en 
la dinámica del esfuerzo en la pesquería del calamar mediante la predicción de la CPUE estandardizada en áreas no pescadas. La 
CPUE estandardizada en base a los datos que incluyen la CPUE predicha en áreas no pescadas fue inferior a la CPUE derivada 
en base solamente a la CPUE observada, especialmente durante el pico de pesca de Agosto a Octubre. Este estudio muestra que 
es más apropiado usar la CPUE estandardizada derivada de datos que incluyen al mismo tiempo la CPUE predicha de las áreas 
no pescadas y la CPUE observada en el área pescada como índice de abundancia del stock. Se sugiere que se use el método 
propuesto para la estandardización de CPUE teniendo en cuenta la gran heterogeneidad espacial del esfuerzo pesquero.

Palabras clave: modelos lineales generalizados bayesianos, estandardización CPUE, Ommastrephes bartramii, pesquería 
china de calamar mediante jigging, Pacífico noroccidental.
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INTRODUCTION

Catch per unit effort (CPUE) of a fishery is often 
used as an abundance index which is usually assumed 
to be proportional to the stock abundance (Hilborn and 
Walters, 1992). For many fish species, such as those 
with short life spans and weak relationships between 
spawning stock biomass and recruitment (Yatsu et al., 
1998; Ichii, 2003; Ichii and Mahapatra, 2004), it is of-
ten difficult to conduct a traditional stock assessment 
based only on age- or length-structured data. Thus, 
developing a reliable time series of abundance indices 
from fisheries data is critical to monitoring the popula-
tion dynamics of these fish species. 

 Observed fisheries CPUE data are, however, influ-
enced by many factors, in addition to fish population 
abundance, including spatial-temporal factors such 
as area and season and environmental factors such as 
sea surface temperature (SST) and sea surface salin-
ity (SSS; Rodhouse, 2001). The impacts of these fac-
tors on CPUE may shift the assumed proportionality 
between observed CPUE and stock abundance. Thus, 
CPUE standardization is needed to remove the impacts 
of factors other than population abundance (Gavaris, 
1980; Quinn and Deriso, 1999; Tian et al., 2009). 
Many statistical models have been developed for 
CPUE standardization: the generalized linear model 
(GLM) (Nelder and Wedderburn, 1972) is the most 
commonly used method in CPUE standardization, 
and its extension the generalized linear mixed model 
is also commonly used in evaluating the random ef-
fect of interactions (Pinheiro and Bates, 2000). Be-
cause of the limitations of the GLM in dealing with 
nonlinearity between dependent variables and multiple 
predictive variables, the generalized additive model 
(GAM) model is increasingly used recently for CPUE 
standardization (Bellido et al., 2001; Tian et al., 2009). 
However, these approaches may not work properly for 
some fisheries with unique characteristics, such as the 
neon flying squid (Ommastrephes bartramii) fishery in 
the north Pacific Ocean. 

The neon flying squid is an oceanic cephalopod 
widely distributed in subtropical and temperate waters 
of the world (Roper et al., 1984). It supports a major 
commercial squid fishery in the northwest Pacific 
Ocean. Japan began the commercial fishery in 1974 af-
ter catches of the Japanese common squid (Todarodes 
pacificus) dropped sharply during the early 1970s, 
and was followed by Korea and the Taiwan province 
of China. In the late 1980s, with the development of 
the driftnet fishery, annual catch increased rapidly. 
Mainland China started a small-scale commercial neon 
flying squid fishery in 1994, and since then the fishery 
has expanded greatly (Chen et al., 2008).

 The North Pacific population of O. bartramii com-
prises two seasonal cohorts (autumn and winter-spring) 
and four stocks: (1) the central stock of the autumn 
cohort; (2) the east stock of the autumn cohort; (3) 
the west stock of the winter-spring cohort; and (4) the 

central-east stock of the winter-spring cohort (Mori, 
1997; Nagasawa et al., 1998a, b; Yatsu et al., 1998). 
One of the stocks for O. bartramii, the western stock of 
winter-spring cohort, is the main target of the Chinese 
jigging fishery (Chen et al., 2007, 2008). This species 
plays an important role in the ecosystem of the North 
Pacific Ocean (Wang and Chen, 2005). Thus it is criti-
cal to monitor its population dynamics for the sustain-
able exploitation of this squid. However, because of its 
short life span and possible weak relationship between 
spawning stock biomass (SSB) and recruitment (Yatsu 
et al., 1998; Ichii, 2003; Ichii and Mahapatra, 2004), 
it is difficult to conduct a traditional stock assessment 
based on age- or length-structured data. Current stock 
assessment methods for this squid including the deple-
tion method (Chen et al., 2008) and squid recruitment 
prediction (Cao et al., 2009) are based on the avail-
ability of abundance indices. Therefore, developing a 
reliable abundance index from the fishery data is criti-
cally important for this squid fishery. 

For the western stock of the winter-spring cohort 
of O. bartramii, previous studies suggest that the dis-
tribution of this squid and its fishery CPUE can be 
significantly influenced by many environmental vari-
ables on the fishing grounds. Chen (1999) showed that 
the distribution and abundance of neon flying squid in 
the central north Pacific Ocean were strongly affected 
by water temperature and salinity, with temperature 
having a higher predictive power for abundance. The 
relationships between CPUE of neon flying squid 
fishery and SST were established in several studies 
(Yatsu and Watanabe, 1996; Chen, 1997; Chen and 
Tian, 2005). However, the CPUE standardization for 
this squid fishery using the GLM model showed that 
environment variables (SST, SSS) had no significant 
impacts on CPUE (Tian et al., 2009). Additionally, be-
cause of communication among fishing vessels and the 
use of SST information in squid searching, the monthly 
distribution of fishing effort is always concentrated on 
the highly productive areas perceived by the fisher-
men. Using such observed CPUE as squid abundance 
index may cause serious problems in monitoring the 
squid population. In order to overcome the problems, 
we explored the use of the generalized linear Bayesian 
model (GLBM) for the squid CPUE standardization in 
this study.

Bayesian statistical methods are widely used in 
fisheries stock assessment to provide a conceptually 
elegant approach for providing fishery management 
advice under uncertainty (McAllister and Kirkwood, 
1998), but they have been rarely used for CPUE stand-
ardization. Bayesian methods are appealing as they can 
easily incorporate heterogeneous data and are flexible 
in allowing the use of new data (Zhang et al., 2009). In 
this study we explored and developed alternative sta-
tistical methods for CPUE standardization and applied 
them to neon flying squid. Factors that might affect 
the CPUE of the neon flying squid fishery were identi-
fied. We determined whether our approach could deal 
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with the problems of developing an abundance index 
for squid in the presence of large heterogeneity in the 
spatial dynamics of fishing effort.

MATERIALS AND METHODS

Data

Commercial squid fisheries data on the western 
stock of the winter-spring cohort in the northwest Pa-
cific Ocean west of 170°E were obtained from June to 
November 1995-2004 from the database of the Chinese 
Squid-Jigging Technology Working Group. The main 
fishing ground of Chinese squid-jigging vessels target-
ing the winter-spring cohort is shown in Figure 1. The 
Observer Program of Chinese squid-jigging fishery, 
coordinated by the Technology Working Group, covers 
more than 70% of Chinese squid fishing vessels in the 
northwestern Pacific Ocean. The fishery data include 
fishing date, fishing location (longitude, latitude), 
number of fishing vessels per day, and daily catch per 
fishing vessel. A spatial scale of 0.5°×0.5° (referred to 
as a fishing grid) was used in grouping the data. The 
CPUE of a fishing grid was calculated by dividing the 
total catch by the number of fishing vessels per day 
within the fishing grid. The mean observed CPUEi 
(metric tons per fishing day for one fishing vessel, t/d) 
for a fishing grid was calculated as: 

 CPUE
Catch

Fishing daysi
i

i

=  (1)

where Catchi is the sum of catch for all the fishing ves-
sels within a fishing grid, and Fishing days is the sum 
of fishing days for all fishing vessels in the fishing grid. 
We chose month as the time-step in grouping observed 
CPUE for each fishing grid. In addition to catch and 
effort data, each monthly record also includes temporal 
information (year and month) and spatial information 
(latitude and longitude), and data on SST, SSS and sea 
level height (SLH). These environmental data were 
acquired from the website http://iridl.ldeo.columbia.
edu/ SOURCES/.CARTON-GIESE/ and grouped by 
the 0.5×0.5° grid for each month, consistent spatially 
and temporally with the above fisheries data. 

Covariates and error models

The covariates considered in the analysis were se-
lected if they were found to influence the squid fishery 
CPUE or squid habitats in previous studies (Chen, 
1997, 1999; Murata and Nakamura, 1998; Chen and 
Tian, 2005). These covariates were divided into two 
groups: categorical covariates, including year, month, 
latitude and longitude (the centre point value of each 
fishing grid); and continuous covariates, including 
SST, SSS, and SLH. Moreover, as all Chinese squid-
jigging vessels are modified from the same inshore bot-
tom-trawlers and equipped with a main engine power 

of 2×120 kW, squid-attracting lamp power of 112 kW 
and 16 squid-jigging machines, and thus almost identi-
cal in fishing power (Chen et al., 2007), fishing power 
was not considered as a factor in modelling. 

Two-way interactions among the main factors 
considered in this study were restricted to spatial ef-
fects versus temporal effects. The interactions between 
spatial-temporal factors and environmental variables 
were excluded in the GLM due to possible correlations 
between these terms (Bigelow et al., 1999). Because the 
life-span of neon flying squid is only one year (Yatsu 
et al., 1998) and this species is highly migratory, the 
interactive effects of spatial versus temporal factors on 
abundance are considered to be more important (Chen et 
al., 2003). Correlation matrix between variables (includ-
ing interaction terms) was calculated in order to avoid 
the high correlated terms in the GLBM model. All of the 
analyses were based on the assumption that CPUE data 
are log-normally distributed. An examination of plots 
of standardized residuals and quantile-quantile plots 
provided no evidence for violation of this assumption 
(results not shown because of space limitation).

Generalized Linear Bayesian Models

Lognormal basic model

The GLBM is based on the Bayesian estimator for 
the GLM. In this study we used lognormal GLM for 
the Bayesian estimation. Therefore, CPUEs were mod-
elled using the log-normal distribution: 

 Ui,j,k,l ~ Lognormal (U
–

i,j,k,l, σ2) (3)

where Ui,j,k,l is the observed CPUE at Latitude j and 
Longitude k in Month l of Fishing Year i, U

–
i,j,k,l is the 

mean of the distribution on the log scale for Ui,j,k,l, and 
σ is the standard deviation of the distribution on the 
log scale. Following Campbell and Tuck (1996), to 
overcome the problem of CPUE having zero values we 
added a small constant (D) equivalent to 10% of the 
overall CPUE (total catch divided by total effort over 
all the year) to each observed CPUE value:

 Ui,j,k,l + D ~ Lognormal (U
–

i,j,k,l, σ2) (4)

The mean, U
–

i,j,k,l, was estimated based on the effects 
of explanatory variables:

U
–

i,j,k,l = k + yeari*Year + monthl*Month + 
+ lonk*Longitude + latj*Latitude + SST*SST + 

 + SSS*SSS + SLH*SLH + Interactions. (5)

where k is the intercept; yeari, monthl, latj, and lonk are 
the effects of Year i, Month l, Latitude j, and Longitude 
k, respectively; and interactions are the effects between 
spatial covariates and temporal covariates. The abun-
dance index at Latitude j and Longitude k in Month l of 
Fishing Year i was estimated as:
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Ui,j,k,l = exp(k + yeari*Year + monthl*Month +
+ lonk*Longitude+ latj*Latitude + SST*SST +

+ SSS*SSS + SLH*SLH + Interactions + σ2/2) - D (6)

Non-hierarchical and hierarchical models

In this study we developed lognormal generalized 
linear Bayesian models of both hierarchical and non-
hierarchical form for standardizing CPUE. Hierarchi-
cal generalized linear models are also known as Gen-
eralized Linear Mixed Models. For a non-hierarchical 
model, interaction between spatial covariates and 
temporal covariates has a fixed effect; while for a hier-
archical model we can assume that the interaction has 
a random effect (i.e. use of nested parameters), which 
can lead a more reliable estimation of the interactions.

Prior distribution of parameters and model 
initialization 

Bayesian analyses require all model parameters to 
have prior probability distributions. Because we only 
had limited knowledge about all the model parameters, 
we assumed that the priors for all the parameters were 
non-informative. We assigned a normal distribution 
with mean = 0 and a large variance (100000) for k,

  yeari, monthl, latj and lonk. The normal distribution 
with such a large variance is similar to a uniform distri-
bution. For σ2 we assigned an inverse gamma distribu-
tion, 1/σ2 ~ Gamma (0.001, 0.0001), where 0.001 and 
0.0001 are the parameters of shape and rate (the inverse 
scale) of the gamma distribution (Ntzoufras, 2009). For 
the non-hierarchical lognormal model, the prior of each 
Interaction was assigned a normal distribution defined 
as N (0, 100000). For the hierarchical models, the pri-
ors of Interactions were assumed to follow a normal 
distribution ~N (Uc, σc

2), the hyperparameter, Uc, was 
assigned a normal distribution, ~N (0, 100000) and  
1/σc

2 ~ Gamma (0.001,0.0001). Sensitivity tests were 
conducted to evaluate the robustness of these priors 
especially for the shape of the variance parameter of 
the Gamma. 

Estimated abundance index using predictive CPUE

In order to deal with the high spatial heterogene-
ity of fishing effort distribution in the squid fishery, 
we used our models to predict CPUE in unfished ar-
eas based on the estimated effects of the explanatory 
variables as long as these areas were fished in some of 
the other months. Therefore, the abundance index for 
Year i and Month l, Ai,l, was estimated in two different 
ways, depending on whether predicted CPUE values in 
the unfished areas were used in the calculation of the 
abundance index. If predicted catch rates were used, 
Ai,l was calculated as: 

 A
TG

Ui l i j k l

TG

, , , ,= ∑1

1

 (7)

where TG is the total number of fishing grids fished in 
the time series. If predicted catch rates were not used, 
TG refers to the number of fished grids in Year i and 
Month l. 

Model selection

We started the process by analyzing the GLBM 
based on Equation (5) without adding interaction 
covariates and selected the most fitted model using 
the stepwise approach based on deviance informa-
tion criteria (DIC) (Spiegelhalter et al., 2002). The 
smaller the DIC value is, the better the model is. We 
then processed it by adding interaction covariates 
(yeari*monthl, yeari*lonk, yeari*latj, monthl*lonk and 
monthl*latj) both non-hierarchically and hierarchi-
cally, and identified the best-fitting models by these 
two approaches based on the DIC. Uncorrelated terms 
in each model were ensured during the modelling 
process.

Convergence diagnostics

Convergence is a fundamental assumption for the 
application of any method for sampling posterior distri-
bution (Cowles and Carlin, 1996; Brooks and Gelman, 
1997). In this paper, a large number of MCMC “burn-
in” and iterations were done in order to stabilize the 
central tendency of posterior distributions for all param-
eters. “Burn-in” was discarded before the analysis. Two 
chains were used for convergence checking by compar-
ing the variances within the chains and across the chains 
(Gelman and Rubin, 1992). The within-chain variance 
was calculated by taking n draws of m parameters with 
Equation (8), and the estimated variance across the 
chains was computed with Equation (9).

 W
m n j

i
j

i

n

j

m

=
−( )

−
==

∑∑1

1
2

11

( )θ θ  (8)

 

ˆ( ) ( )V
n
W

n
n

m j
j

m
θ θ θ= − +

−
−

=

∑1 1 1
1

2

1
 (9)

Once convergence is reached, W and V
^
(q) should be 

almost equivalent 

(e.g. R
V

W
= =

ˆ( )θ
1 ; Gelman and Rubin, 1992).

Alternate convergence diagnostic of Geweke 
(1992) was also applied in this study because we used 
the posterior mean as the estimated value.

Solving models

All of the Bayesian analyses and modelling were 
implemented with R version 2.10.0 and WinBUGS14 
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(Bayesian inference Using Gibbs Sampling; Spiegel-
halter et al., 2003). Appropriate MCMC iterations 
were used on the basis of the convergence assessment 
and a burn-in period with 100000 initial iterations be-
ing discarded was used in order to ensure that samples 
were drawn from a distribution close enough to the 
true stationary distribution to be usable for the estima-
tion and inference. As initial values were part of the 
computing process, we assigned the covariates differ-
ent initial values for two chains when we did MCMC 
runs. Autocorrelations among draws from posteriors 
were eliminated by thinning the samples for every 50 
MCMC runs (Geweke, 1992).

RESULTS

Spatial distribution

The analyses were based on 3361 records, of 
which 3357 had positive catches and 4 had zero 
catch. The distribution of effort is shown in Fig-
ure 1a, indicating that there were 587 fishing grids 
fished from 1995 to 2004, while effort in a given 
month was only distributed in less than 100 fishing 
grids (Fig. 1b). Most fishing effort was deployed in 
August to October and effort data in June and No-
vember only consisted of a small proportion of the 
overall efforts. 

Correlation

The correlations of all covariates including interac-
tion terms are summarized in the matrix plot (Fig. 2). 
Non-significant correlations were observed between 
covariates without interaction terms. However, inter-
action terms of monthl * lonk and monthl * latj showed 
high correlations with other interaction terms. There-
fore, we excluded these two terms from the modelling 
process. There is no significant correlation between 
CPUE and any single factor alone considered in this 
study (Fig. 2).

Model selection and comparison

The best-fitting models derived from three ap-
proaches (i.e. interaction terms being excluded, in-

teraction terms of fixed effects being included and 
interaction terms of random effects being included) are 
listed in Table 1. The DIC results showed that the mod-
el selected in GLBM analyses and containing monthl, 
latj, SST, SSS and SLH had the lowest value, suggesting 
that this model outperformed the other two best-fitting 
models which were derived from considering interac-
tion terms of fixed and random effects (Table 1). The 
results of this model are shown in Table 2.

For the GLBM analyses from which interaction 
terms were excluded, the best-fitting model revealed 
that all the covariates except for yeari and lonk con-
sidered in this study had significant effects (95% 
posterior interval does not cover zero) on CPUE and 
SSS had the most significant effect on CPUE (Fig. 
3a). The covariates, monthl latj and SST, were the 
second, third and fourth most significant covariates, 
respectively (Fig. 3a), and SLH had a weaker impact 
on CPUE than the other four significant covariates 
(Fig. 3a). For the non-hierarchical GLBM analyses in 

Fig. 1. – (a) fishing ground of the winter-spring cohort of Ommastrephes bartramii for the Chinese mainland squid jigging fishery and the 
spatial distribution of fishing efforts in 1995-2004; (b) spatial distribution of fishing effort in August 1998 (randomly selected from all the 

fishing months in 1995-2004).

Fig. 2. – Correlation matrix of all covariates for standardizing CPUE 
of Ommastrephes bartramii. Ellipse shows the correlations (nega-
tive and positive), straight line represents the strongest correlation 

and circle represents the absence of correlation.
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which interaction terms were assumed to have fixed 
effects on CPUE, the best-fitting model showed that 
the covariates of latj SST, SSS, SLH, yeari × monthl 
and yeari × lonk had significant effects on CPUE 
(Fig. 3b). Of the 6 significant covariates, SSS, latj, 
and SST were the most, second and third significant 
covariates, respectively, and yeari × monthl, yeari × 
lonk and SLH had very weak impacts on CPUE, com-
pared with the other 3 significant covariates (Fig. 
3b). For the hierarchical GLBM analyses in which 
interaction terms were assumed to have random ef-
fects on CPUE, the best-fitting model was the same 
as the second approach but with lower DIC value. 
The impacts of covariates on CPUE were almost the 
same as the best-fitting model derived from the sec-
ond approach (Fig. 3c). 

The spatial-temporal interaction terms with both 
fixed and random effects were found to be less impor-
tant in affecting CPUE according to the DIC results 
(Table 1), and the spatial and temporal factors tended 

to influence CPUE independently as a covariate rather 
than together as a covariate.

Convergence diagnostics

There is no evidence of non-convergence 

(e.g. R
V

W
= =

ˆ( )θ
1  )

for posterior distributions of parameters for the best-fit-
ting model based on the convergence diagnostic (Table 
2). Marginal posterior density plots of parameters for 
the three best-fitting models also showed a relatively 
stable central tendency (Fig. 4). Alternate convergence 
diagnostic of Geweke (1992) indicated that there was 
no evidence of non-convergence (P>0.05) for the 
posterior distributions of parameters in the best-fitting 
model derived from the three approaches. 

Table 1. – Results of the best-fitting models derived from the three models (i.e. interaction terms excluded, fixed effects interaction terms 
included, and random effects interaction term included)

Approach model DIC

Interaction terms excluded U
–

i,j,k,l = monthl + latj + SST + SSS + SLH 9458.5
Fixed effects interaction U

–
i,j,k,l = latj + SST + SSS + SLH + yeari *monthl + yeari*lonk 9462.2

   terms included
Random effects interaction U

–
i,j,k,l = latj + SST + SSS + SLH + yeari *monthl + yeari*lonk 9461.9

   term included

Table 2. – Posterior distribution of covariates and summary statistics for the selected models in which interaction terms were excluded.

Node Mean SD MC error 2.50% Median 97.50% √R
–
 n.eff

monthl 0.18200 0.00976 0.00025 0.16240 0.18230 0.20070 1.00 3300
latj 0.10650 0.00925 0.00071 0.08878 0.10640 0.12570 1.00 1200
SST 0.03955 0.00514 0.00016 0.02964 0.03952 0.04950 1.00 4000
SSS -0.18770 0.01154 0.00088 -0.21770 -0.18730 -0.16570 1.00 3900
SLH 0.00235 0.00127 0.00004 0.00150 0.00235 0.00488 1.00 4000
1/σ2 2.01500 0.04952 0.00008 1.91900 2.01600 2.11300 1.00 880
deviance 9452.0 3.67800 0.13290 9447.0 9452.0 9461.0 1.00 1200

MC refers to Monte Carlo; SD is the sample standard deviation; n.eff is a crude measure of effective sample size; 2 chains, each with 200000 
iterations (first 100000 discarded, thinning sample = 50), 4000 iterations saved.

Fig. 3. – Impacts of covariates in three best-fitted models (a, interaction terms excluded; b, fixed effect interaction terms included; c, random 
effect interaction terms included) on the CPUE of Ommastrephes bartramii (y-axis shows the posterior intervals of parameters).
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Fig. 4. – The marginal density distribution of posterior for the selected models in which (A) interaction terms were excluded, (B) fixed effect 
interaction terms were included and (C) random effect interaction terms were included.

A

B

C
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Comparison of observed CPUE and standardized 
CPUEs

The CPUE values standardized using the best-fitting 
model with two different sets of data (with and without 
predicted abundance index) were compared with the 
observed CPUE under different spatial and temporal 
scales. For yearly CPUEs which were averaged across 
all fishing months, mean standardized CPUE estimates 
from the best-fitting model with the lowest DIC value 
not including predicted CPUE data in unfished grids in 
modelling had a similar trend to the observed CPUE, in 
particular for the later years, but tended to fluctuate less 
than the observed CPUE. Both showed that the high-
est stock size occurred in 2000. However, the derived 
abundance index not including the predicted CPUE 
data in unfished grids showed that the lowest abun-
dance appeared in 2002, while for the observed CPUE 
it occurred in 2001 (Fig. 5). Yearly mean standardized 

CPUE with the inclusion of predicted CPUE data in the 
unfished grids showed a stable trend in 1995 to 2004 
with little fluctuation (Fig. 5). For monthly CPUE, the 
standardized CPUE with and without predicted CPUE 
data in the unfished grids showed the same trend, i.e. 
the stock size increased with the months, but in general 
the standardized CPUE with predicted CPUE data in 
the unfished grids was lower than the observed CPUE, 
in particular for the months when fishing activity peak-
ed (August to October; Fig. 6). 

DISCUSSION

Here we developed Bayesian CPUE standardiza-
tion models, non-hierarchical lognormal and hierarchi-
cal lognormal models, and applied these models to the 
CPUE standardization for the neon flying squid fishery 
to address the problems caused by the spatial hetero-
geneity of fishing effort distribution in the neon flying 
squid fisheries (Tian et al., 2009). This study suggests 
that the approaches developed in this study can effec-
tively deal with the CPUE standardization and estima-
tion when spatial distribution of fishing efforts is highly 
heterogeneous, a phenomenon commonly observed in 
commercial fisheries (Hilborn and Walters, 1992). 

In commercial fisheries for neon flying squid, fish-
ing effort is usually concentrated in one small fishing 
area showing the highest returns because of high ef-
ficiency in searching fishing grounds and communica-
tions between vessels (Tian et al., 2009). Our results 
show that monthly observed CPUEs appeared to be 
higher than the standardized CPUE, and the standard-
ized CPUE based on data without predicted CPUE 
values in the unfished grids was lower than that with 

Fig. 5. – Comparison of yearly observed CPUE with standardized 
CPUE using GLBM based on data with and without predicted 

CPUEs in 1995-2004.

Fig. 6. – Comparison of monthly observed CPUE with standardized CPUE using GLBM based on data with and without predicted CPUEs in 
1995-2004.
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predicted CPUE values (Fig. 6), especially during the 
fishing peak of August to October (Chen, 1997). This 
indicates that high concentration of spatial distribution 
of fishing efforts may result in the observed CPUE 
and even the standardized CPUE without predicted 
CPUE values in the unfished grids having hyperstabil-
ity relationships with abundance, which implies that 
CPUE stays high as abundance drops (Hilborn and 
Walters, 1992). Thus, previous studies for neon flying 
squid, which used observed CPUE as an abundance 
index directly in stock assessment (Chen et al., 2003) 
and evaluating impacts of environmental variables on 
abundance (Cao et al., 2009), may be biased. On the 
other hand, the models developed in this study have 
the capacity to predict abundance indices for unfished 
areas based on the estimated effects of the explana-
tory variables as long as these areas are fished in other 
months. Using such monthly CPUEs standardized with 
predicted abundance indices can deal with the spatial 
aggregation of fishing effort to a certain extent and re-
flect the abundance distribution more accurately. Pre-
vious studies also indicated that ignoring the unfished 
grids implicitly assumed that they behaved in the same 
way as the fished grids and could lead to severe hyper-
depletion in abundance indices for fisheries, and sever-
al approaches were proposed to deal with the unfished 
grids (Walters, 2003; Campbell, 2004). However these 
approaches tend to bypass the unfished areas because 
of interpolation or weighting of the spatial regions. 
The GLBM developed in this study, on the other hand, 
aims to estimate the abundance index of unfished areas 
directly by sharing the information using the Bayesian 
statistical method. 

The best-fitted model identified in the study in-
cludes the covariates of monthl, latj, SST, SSS and SLH. 
These spatio-temporal factors were considered impor-
tant in determining the spatial distribution of this squid 
fishery (Chen, 1997; Chen et al., 2003; Cao et al., 
2009). The selection of the environmental factors in 
this study is consistent with the results of previous stud-
ies (Chen, 1997; Chen et al., 2003; Cao et al., 2009). 
In May or June when the fishing vessels of Chinese 
mainland started fishing operation, the squid gradu-
ally migrated northward from their spawning ground 
to the fishing ground for feeding and then southward 
back to spawning ground for spawning (Murata and 
Nakamura, 1998). The stock biomass would be closely 
related to the timing when peak recruitments migrated 
into the fishing ground and the latitudinal location 
where peak recruitments could migrate. Therefore latj, 
which is the most significant covariate of all the spa-
tial-temporal covariates of the best-fitted model (Fig. 
3), is a critical factor for determining the distribution 
of peak recruitment. Our result indicates that SST and 
SSS were the main factors affecting CPUE. The other 
species of Ommastrephidae squids also have the simi-
lar linear relationships between abundance and SST or 
SSS (Rodhouse, 2001). However, the results of using 
traditional GLM models showed SST and SSS were 

not significant in explaining CPUE (Tian et al., 2009). 
The spatial-temporal interactions of both hierarchical 
and non-hierarchical models were identified as not 
significant in influencing CPUE as they were driven 
by environmental factors which were already included. 
For example, special oceanographic zones in the North 
Pacific such as transition zones, chlorophyll fronts 
(TZCF) and optimum-SST front zones for neon flying 
squid, which are closely related to the life history of 
neon flying squid, have a significant seasonal north-
south movement (Ichii et al., 2009). We also added the 
year effect (non-significant) for re-running the GLBM 
(Maunder and Punt, 2004), but found that it was hard 
to achieve convergence if we included the year effect. 

The estimated posteriors were similar for differ-
ent priors in the sensitivity analyses, indicating that 
the posteriors were determined by the data rather than 
by the priors. Compared with the observed CPUEs 
for neon flying squid stock, the standardized CPUEs 
tended to have smaller fluctuations and were in gen-
eral lower than the observed CPUE, indicating that the 
impact of spatial, temporal and environmental factors 
on catch rates was largely removed through the stand-
ardization process. 

There are also two issues that need to be addressed. 
Firstly, although we have a relatively large number of 
squid fishery data sets with a 10-year time span, these 
data lack spatial contrast. For example, there are almost 
no zero catch data because the fishing vessels would 
immediately depart the area when CPUEs dropped 
below economically viable levels. In a given time of 
the fishing season, the fishing vessels are usually con-
centrated at a few locations with similar environmental 
conditions, and there are small environmental gradi-
ents on the fishing grounds. This may result in loss 
of effective information for the Bayesian estimation. 
Additionally, the limited data of June and November 
could lead the results of monthly standardized CPUE 
for June and November to have large uncertainties. 
Future studies should compare the temporal trend of 
standardized CPUE with abundance indices derived 
from a fishery-independent scientific survey which is 
often considered as a more reliable abundance index 
because of its scientifically rigorous design (Hilborn 
and Walters, 1992). 

Secondly, the basic model of GLBM developed in 
this study is GLM, which assumes linearity between 
the dependent and explanatory variables. However, 
many studies suggest that functional relationships be-
tween CPUE and environmental variables are likely to 
be non-linear (Bigelow et al., 1999; Daniel and Michel, 
2004). The general additive model (GAM), known as 
the extension of GLM with additive models, can ana-
lyze non-linear relationships (Hastie and Tibshirani, 
1990), and Tian et al. (2009) showed that GAM models 
could explain more variations in CPUE standardiza-
tion for neon flying squid with weak effects on CPUE. 
However, overfitting can be a problem with GAMs, 
which often make the fitted relationship perform less 
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well on a new data set than on the data set used for 
model fitting (Everitt, 2002). Bayesian models can 
easily incorporate heterogeneous data and are flexible 
in allowing the use of new data (Zhang et al., 2009). 
Therefore, although we have to assume linearity of 
the relationship between neon flying squid CPUE and 
environmental variables (e.g. SST and SSS), the issue 
of formally detecting nonlinearity deserves further in-
vestigation before it is attempted to use GAM for neon 
flying squid CPUE standardization. 

In summary, we explored a new modelling ap-
proach in this study to standardize fisheries CPUE, 
which tends to yield a more reliable abundance index 
and deals with the problem of spatial aggregations of 
fishing efforts by including predicted CPUEs of un-
fished grids in the CPUE standardization. However, 
we warn of potential problems associated with lack of 
contrast in the data used in this study, suggesting that 
the proposed modelling approach should be further 
tested using data from other fisheries.
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