SCIENTIA MARINA 77(3) September 2013, 473-487, Barcelona (Spain) ISSN: 0214-8358 doi: 10.3989/scimar.03817.05A

The artisanal elasmobranch fishery of the Pacific coast of Baja California Sur, Mexico, management implications

SERGIO R. RAMIREZ-AMARO¹, DANIEL CARTAMIL², FELIPE GALVAN-MAGAÑA¹, GERARDO GONZALEZ-BARBA³, JEFFREY B. GRAHAM², MARIBEL CARRERA-FERNANDEZ¹, OFELIA ESCOBAR-SANCHEZ¹, OSCAR SOSA-NISHIZAKI⁴, ANET ROCHIN-ALAMILLO³

¹ Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Av. IPN s/n Col. Playa Palo de Santa Rita, CP 23096, La Paz, Baja California Sur, Mexico. E-mail: galvan.felipe@gmail.com
² Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0204, USA.

³ Universidad Autonoma de Baja California Sur, Km. 5.5 Carretera al Sur, CP 23080, La Paz, Baja California Sur, Mexico. ⁴ Laboratorio de Ecologia Pesquera, Departamento de Ecologia, CICESE, Ensenada, Baja California, Mexico.

SUMMARY: Artisanal fisheries in Mexico account for approximately 40% of the total national catch. In 2009, Baja California Sur (BCS) had the second largest catch of elasmobranchs on the Mexican Pacific coast. This paper characterizes and describes the artisanal elasmobranch fishery of Pacific coast of BCS from 2000 to 2010. Sixty artisanal camps were documented, of which 45 targeted elasmobranch, using primarily gillnets and longlines. We identified 52 elasmobranch species. Gillnetting accounted for 73.5% of the fishing effort and most frequently captured *Rhinobatos productus, Mustelus henlei* and *Myliobatis californica*. Longline fishing accounted for 26.5% of effort, most frequently capturing *Prionace glauca* and *Isurus oxyrinchus*, and *Myliobatis californica*) within landings suggests that fishing effort may be opportunistically directed at breeding or nursery areas. Despite the dominance of species with wide distributions, we observed a significant biogeographic pattern in the abundance of some species relative to Bahia Magdalena. Results of the present study will be useful to detect changes in the structure of commercially exploited elasmobranch populations, and to provide useful indications for management purposes.

Keywords: biogeographic pattern, elasmobranchs richness, fishing effort, Mexican coast, nursery areas, small-scale fishery.

RESUMEN: PESQUERÍA ARTESANAL DE ELASMOBRANQUIOS EN LA COSTA PACIFICO DE BAJA CALIFORNIA SUR, MÉXICO, IMPLICACIONES PARA SU GESTIÓN. – La pesquería artesanal en México soporta aproximadamente el 40% de la captura total nacional. En 2009 Baja California Sur (BCS) fue el segundo estado con mayor registro de captura de elasmobranquios de todo el Pacifico Mexicano. En el presente trabajo se realizó la caracterización y descripción de la pesquería artesanal de elasmobranquios en la costa Pacífico de BCS del 2000 al 2010. Se registraron 60 campos artesanales, de los cuales en 45 se capturaron elasmobranquios usando como artes de pesca redes y palangres. Se identificaron 52 especies de elasmobranquios. Las redes representaron el 73.5% del esfuerzo pesquero, las especies que se capturaron con mayor frecuencia fueron *Rhinobatos productus, Mustelus henlei* y *Myliobatis californica*. Por otra parte los palangres representaron el 26.5% del esfuerzo pesquero, las especies de usa especies capturadas con mayor frecuencia fueron, *Prionace glauca* e *Isurus oxyrinchus*. La presencia de especímenes juveniles de varias especies en los desembarques (p. ej. *Cephaloscyllium ventriosum, Galeorhinus galeus, Isurus oxyrinchus, Myliobatis californica*) sugiere que el esfuerzo pesquero portía ser oportunista dirigido a las zonas de crianza o de reproducción. A pesar del dominio de especies con distribuciones amplias, se observó un patrón biogeográfico significativo en la abundancia de algunas especies al sur y al norte de Bahía Magdalena. Los resultados del presente estudio serán de utilidad para poder detectar los posibles cambios en la estructura poblacional de los elasmobranquios explotados comercialmente.

Palabras clave: patrón biogeográfico, riqueza de elasmobranquios, esfuerzo pesquero, costa mexicana, zona de crianza, pesquería de pequeña escala.

INTRODUCTION

Artisanal fisheries are generally characterized as small-scale traditional fisheries using small amounts of capital and energy and small fishing vessels, which make short fishing trips close to shore, primarily for local consumption. These fisheries often take place in remote areas of developing countries. With the widespread adoption of motorization, artisanal fisheries have grown significantly over the past two decades, contributing more than 25% of the world catch and accounting for half of the fish used for direct human consumption. The rapid expansion of artisanal fishing capacity under open access regimes has begun to exert overfishing pressures on coastal fisheries resources (Mathew 2001).

Elasmobranchs (i.e. sharks and rays) are currently one of the resources of greatest concern in artisanal fisheries. Worldwide overfishing of several species has caused population declines of their populations, mainly because they are *k*-selected fishes with slow growth and low reproductive rates (Bonfil 1994, Camhi 1998, Walker 1998, Musick 1999).

In Mexico, artisanal fisheries account for approximately 40% of the total national catch and comprise up to 80% of the elasmobranch fishing effort (Arreguin-Sanchez et al. 2004). Mexico has been one of the most important elasmobranch fishing nations in the world; in 2007 it had the sixth largest catch of elasmobranchs, representing 4.3% of total world catch, with approximately 34638 t (Sosa-Nishizaki et al. 2008, FAO 2009). In 2008, 102807 vessels were recorded in Mexican artisanal fisheries, exploiting mainly coastal finfish, sharks, crustaceans, mollusks and echinoderms (Ramirez-Rodriguez 2011). This fishery represents an important source of employment, providing both sustenance and income for some of the poorest sectors of Mexican society (Arreguin-Sanchez et al. 2004, Ponce-Diaz et al. 2009, Cartamil et al. 2011).

The management of sustainable elasmobranch fisheries in Mexico has been hampered by a lack of reliable data. For example, official records of elasmobranchs recognize only three categories: sharks (sharks larger than 150 cm total length [TL]), *cazones* (sharks smaller than 150 cm TL) and rays (all batoids) (Bonfil 1997, Castillo–Geniz *et al.* 1998, Galvan-Magaña 2009). Detailed quantitative information on the specific composition of the catch is a basic requirement to determine possible effects of fishing on populations of target species and to establish baselines for comparison of biological diversity (Bonfil 1997, Marquez–Farias 2002).

In recent years the artisanal elasmobranch fisheries have been described in several regions of northwestern Mexico, including Sonora (Bizzarro *et al.* 2009a), the east coast of Baja California (BC) (Smith *et al.* 2009), the east coast of Baja California Sur (BCS) (Bizzarro *et al.* 2009b), Sinaloa (Bizzarro *et al.* 2009c) and the Pacific coast of BC (Cartamil *et al.* 2011). In 2009 BCS was the state with the second largest catch of elasmobranchs, representing 17% (4004 t) of the total catch on the Mexican Pacific coast (SAGARPA 2009). However, there have been no studies describing elasmobranch artisanal fisheries on the highly productive Pacific coast of BCS.

The objectives of the present study were to identify and describe the Pacific coast BCS artisanal elasmobranch fishery, to determine elasmobranch species composition and catch rates, and to provide biological information (size, sex, seasonality) for the most abundant species captured in BCS.

MATERIALS AND METHODS

Study area

BCS has an area of 73677 km², representing 3.8% of the land mass of Mexico and comprising the southern half of the Baja California Peninsula. It has 2220 km of coastline: 1400 km of which corresponds to the Pacific coast (between 28°16' and 22°33'N) (Fig.1). In 2010, the population of BCS was 637027, indicating a relatively low population density (Cortes-Ortiz *et al.* 2006, INEGI 2011).

The Pacific coast of BCS is characterized by a narrow continental shelf that is generally less than 37 km wide with a peak width of approximately 68.5 km between Laguna San Ignacio and the area north of the Bahia Magdalena lagoon complex (Fig. 1). This region is affected by the California Current System, which dominates during the cool part of the year, and by the northward intrusion of a branch of the tropical North Equatorial Current during the warm part. It has a high primary productivity driven by coastal upwelling (Alvarez-Borrego 1983, Espinoza-Carreon *et al.* 2001, Zaytsev *et al.* 2003).

Artisanal fishery survey

The artisanal elasmobranch fishery on the Pacific coast of BCS was surveyed during the period 2000-2010. The location of each camp was determined with a global positioning system (GPS) unit. Sites supporting artisanal fishing activities were characterized based on the level of infrastructure (Bizzarro *et al.* 2009a): A, little to no infrastructure; B, moderate infrastructure; and C, significant infrastructure. We determined whether camps were permanent (P) or temporary (T), and the number of active artisanal fishing vessels.

Elasmobranch sampling was conducted at 16 artisanal camps. Elasmobranchs landed at the camps were identified to the lowest possible taxon and enumerated. Sharks of the genus *Mustelus* were sometimes grouped into the category *Mustelus* spp. due to the difficulty of identifying them to species level. In addition, species-specific size and sex composition data were collected. Standard measurements used were total length (TL; using the natural extension of the caudal fin) and disc width (DW), recorded to the nearest 0.5 cm (Compagno 2001).

FIG. 1. – Locations of artisanal camps along the Pacific coast of Baja California Sur, Mexico. Open triangles (\triangle) indicate sites where biological data were collected. Numbers refer to codes in Table 1. Biogeographical zones: CP, California province; COP, Cortez province.

Total elasmobranch landings by season were assessed according to species composition. Catch per unit effort (CPUE) was defined as the number of individuals per vessel per trip, and was calculated for each species within each major gear type and for each season surveyed. Measured specimens were used to determine size composition and sex ratio of landings. Sex-specific size composition data were evaluated for normality (Kolmogorov-Smirnov test) and homoscedasticity (F test) and compared using a t-test or Mann-Whitney U test, as appropriate. As a result, differences in the size composition between the sexes were compared using raw size data in all cases. The sex ratio among landings was evaluated using chi-square analysis with Yates correction for continuity for specimens directly examined (Zar 1996). Histograms of size and sex composition of each species with ≥50 measured individuals were computed and compared with size at maturity (taken from several scientific literature sources: Villavicencio-Garayzar et al. 1994, Villavicencio-Garyazar 1995, 1996a, b, Compagno 2001, Ebert 2003, Villavicencio-Garayzar and Bizzarro 2004, Perez-Jimenez et al. 2005, Shoou-Jeng and Hua-Hsun 2005, Castillo-Geniz et al. 2007, Bizzarro et al. 2007a, Bejarano-Alvarez et al. 2010, Carrera-Fernandez et al. 2010, Hoyos-Padilla et al. 2012).

Sample size-sufficiency for each fishing gear and each seasonal catch composition was verified using cumulative taxon curves (Gotelli and Cowell 2001). Seasons were defined as follows: spring (22 March–21 June), summer (22 June–21 September), autumn (22 September–21 December) and winter (22 December–21 March). To determine whether the sampled landings were adequate to describe the catch composition, the average curve of accumulated number of elasmobranch taxa present in each vessel was plotted against the number of vessels grouped at random (Ferry and Cailliet 1996). Catch composition of 1000 randomly selected vessels was re-sampled (EstimateS 8.2.0.), and used to calculate a mean and standard deviation estimate for each sample (Colwell 2009). Linear regression was used to determine quantitatively whether the curve reached an asymptote, signifying an adequate number of samples (Bizzarro *et al.* 2007b).

The Shannon-Wiener index (H') was used to evaluate the levels of elasmobranch diversity within the study area, using the equation:

$$H = -\sum_{i=1}^{s} p_i \log_2 p_i$$

where *S* is the number of species in the sample, p_i is the proportion that the *i*th species contributes to the total abundance of the sample ($p_i=N_i/N$), N_i the number of individuals of the *i*th species, and *N* the number of individuals in the sample. Nonparametric permutation and bootstrap statistical methods (Manly 2007) were applied to estimate the mean and variance of the diversity index of the Pacific coast of BCS.

Elasmobranch dominance within the study area was further tested using the Simpson index (D) with the equation

$$D = \sum \left(\frac{n_i}{n}\right)^2$$

where n_i is the number of organisms of a particular species and n the total number of organisms of all species.

Zoogeographic affinity analysis was done according to the biogeographical divisions suggested for the Pacific coast of BC Peninsula by several authors (Briggs 1974, Walker 1960, Hastings 2000, Horn et al. 2006, Spalding et al. 2007, Robertson and Cramer 2009). The following divisions were considered: Californian Province (corresponding to temperate waters) from Point Conception, California to Bahia Magdalena, BCS, and the Cortez Province (corresponding to tropical waters), which extends south from Bahia Magdalena to the Gulf of California (Fig. 1). Based on these studies we divided the study area into north and south zones (relative to Bahia Magdalena). We calculated the diversity index for each zone and made comparisons between zones using a t-test. The Jaccard index (Jac) was calculated as a measure of similarity of species composition for each zone. This presence-absence index takes into account the relationship between the number of common species and total species found in the samples being compared, and is calculated as

$$Jac_{ij} = \frac{a}{a+b+c}$$

where a is number of shared species (present in both zones, i and j), b is the number of species present only in zone i and c is the number of species present only in zone j.

 TABLE 1. – Characteristics of the surveyed artisanal camps. "Type" refers to infrastructure: A, little to no infrastructure; B, moderate infrastructure; C, significant infrastructure. "Perm" refers to whether a camp is permanent (P) or temporary (T). "Target" refers to the fishery typology : EG, elasmobranch gillnet; EL, elasmobranch longline; T, teleosts; I, invertebrates (A, abalone; L, lobster; C, crab; G, gastropod; B, bivalve; H, sea cucumber; O, octopus; S, shrimp). FV = number of fishing vessels present during the surveys (or minimum/maximum in case of seasonal fluctuations in effort). Asterisks denote artisanal camps where elasmobranch biological data were sampled.

Map Camp Name N. Lat W. Long Type Perm T	Farget FV
1 La Isla* 28.211 114.078 A T I (B), EG	3/7
2 Las Casitas* 27.851 114.158 A P I (B, C, G), T, 1	EG, EL 15/80
3 Campo El Datil 27.796 114.176 A T NA	NA
4 Campo Queen 27,801 114.720 A P I (A, L, B, H, C	J), T, EG 4/6
5 Malammo [*] 27.822 114.852 B P 1 (A, L, B, H, C 6 Compite 27.800 114 518 A P 1 (A, L, B, H, C	J, U), I, EG, EL 9
7 Chester 27.859 115.052 A T I (A. I) FG	0/8 4/7
8 Isla Natividad 27.853 115.052 A P I (A, E) EG	EL 45
9 Punta Eugenia* 27.848 115.078 B P I (A, L, B, H),	T, EG 12
10 Lobera 27.831 115.064 A T I (A, L) EG	3/6
11 Punta Quebrada 27.727 114.994 A T I (A, L, H, G, F	B) 3/5
12 Bahia Tortugas* 27.690 114.894 C P I (A, L, G, B, F	H), T, EL, EG 23/85
13 El Rincon 27.645 114.864 A T I (A, L, G), I, J	EG 3
14 Clambey 27,019 114,644 A I I (A, L, G), I J 15 Puerte Eccondido 27.534 114,741 A P I (A L G) T	EG EI 5
16 Puerto Nievo 27.477 114.741 A I I (A, E, G), (J)	FI 8
17 San Cristobal 27.446 114.557 B P I (A. L. H), T. F	EG 12
18 San Pablo 27.219 114.470 A P I (A, L, H, B).	T, EL 6/9
19 San Roque 27.181 114.398 B P I (Å, Ĺ, Ĥ) Ť, Ě	EĠ 8/10
20 Bahía Asuncion 27.141 114.295 C P I (A, L, B) T, F	EG, EL 18/69
21 Punta Prieta 27.015 114.042 B P I (A, L, B) T, E	EG 16/24
22 San Hipolito 26.988 113.979 B P I (A, L, B), T, J	EG, EL 18
25 La Bocana 20.790 113.712 C P I (A, L, B, G, F 24 Punto Abragias 26.710 112.574 C P I (A, L, B, G, F	TEC 54
24 runa Abielojos 20.710 115.574 C r $1(A, L, B, G)$, 25 Campo Pachico 26.874 113.135 A T $I(B)$ T EG	1, EG 54 2/4
26 La Base 26 863 113 137 A T I(B), T, EG	3
27 La Freidera* 26.830 113.167 A T T, I (B), EG	2
28 El Cardon* 26.799 113.149 B P EG, T, Î (B,)	12/19
29 El Delgadito* 26.606 113.058 B P EG, T, I (B)	6/12
30 El Datil* 26.532 112.911 B P T, EG, I (B,C)	13/22
31 San Juanico 26.253 112.479 C P I (A, L, B), T, J	EG 16/23
52 La Bocana I 20.002 112.280 A I I (A, L, B), I, I 23 El Chicherron 26.062 112.273 A P El C. T.	EG 0/9 8/12
34 Las Barrancas* 26001 112.275 A F EL, EU, T 34	FG 15/19
35 San Andresito 25.805 112.109 A NA NA	NA
36 Santa Rosa 25.696 112.073 A T I (B, L), T	5/9
37 Buena Vista 25.653 112.066 A T I (B, L, C), T	6/8
38 Estero San Vicente 25.431 112.066 A P T, I, (B,C,S,L)	4/6
39 El Caballo 25.404 112.085 A NA NA	NA
40 Las Vacas 25.340 112.074 A 1 1,1(B,C,S)	3/6 EL 24/112
41 Adoino Lopez Maleos ^{**} 25.191 112.115 C P 1,1 (B,C), EG, 42 La Elorida 25.0(0 112.121 A P T (B,C)	EL 34/113 3/7
43 San Lazaro [*] 24.796 112.121 A I I, I(B, S)	B) 12
44 Punta Belcher* 24.584 112.072 A T EL, EG, T	7/10
45 San Carlos 24.787 112.103 C P I (B,S,C,L), T,	EG, EL 25/48
46 Bahia Magdalena 24.634 112.139 C P I (B,S,C,L,O),	T, EG 18/26
47 San Buto 24.777 112.051 A T I (S,B,C), T	6/8
48 Paredon Amarillo 24.787 111.968 A NA NA	NA
49 Puerto Alcatraz 24.304 111.845 C P I, $1(B,S,C), E(S,S,C)$	G 12/21
50 Puerto Cortes 24.477 111.022 B P 1, 1 (B,C,) 51 Les Tierze 24.376 111.705 A T T EG L (B C)) 0/8
52. Puerto Cancun 24548 111746 R P L(SCR) T F	G 6/10
53 El Cayuco 24.583 111.683 A T I (S.C.B), T, EV	G 3
54 Puerto Chale 24.422 111.553 B P T, I (S,C,B,L)	EG 40
55 Puerto Viejo* 24.347 111.471 A T T, I (S,C,B,) E	G 13
56 Loma Amarilla 24.310 111.395 A T T, I (S,C,B,)	4/6
57 El Datilar* 24.132 111.077 A P I (L, B), T, EG	7
24.0// 111.005 A P I (L, B), T, EG	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40-50

RESULTS

Fishing sites and global fishery characteristics

A total of 60 artisanal fishing camps were documented along the Pacific coast of BCS (Fig. 1). High variability was observed in fishing camp size, from small temporary camps to permanent camps with significant infrastructure. Table 1 details the comparative characteristics of the documented camps. Tables 2 and 3 indicate the number of days and trips sampled for each season and fishing gear.

TABLE 2. – Number of fishing vessels sampled by season and gear type.

Season	Vessels	Gillnets	Longlines
Spring	221	142	79
Summer	302	241	61
Autumn	57	27	30
Winter	55	6	49

Elasmobranchs were targeted at 75% (n=45; Table 1) of the artisanal camps, as either the primary (n=6) or the secondary target (n=39). Most camps contained moderate infrastructure (57%, n=34). The artisanal elasmobranch fishery was conducted with small vessels of less than 10.5 m length, locally called "pangas". These fishing vessels were open-hulled fiberglass boats with outboard motors. The number of vessels varied among camps, ranging from two (e.g. La Freidera camp) to 113 (e.g. Adolfo Lopez Mateos camp) (Table 1).

Bottom set gillnets were the most common fishing gear used, and were deployed on the continental shelf (<100 m depth). These nets were monofilament with lengths of 200-800 m, a drop of up to 6 m, and highly variable mesh sizes, ranging from 7.6 to 25.4 cm. On average, two gillnets were used per vessel.

Pelagic sharks were targeted mainly with longlines, which ranged from 1.5 to 3 km in length. The number of hooks per longline was highly variable (range 250-400), and set depths ranged from 5 to 10 m. The hook type commonly used is the "J-style hook" with a 6-8 cm length. On average, two longlines were used per vessel, and fishing time ranged from 10 to 15 hours.

In most artisanal camps, elasmobranchs were dressed, iced and sold fresh to local buyer or cooperatives. However, in some camps elasmobranchs were filleted, dried and salted; this was observed mainly in remote camps with more difficult access. Prices for elasmobranchs varied between seasons by species, size and buyers, but typically ranged between MX\$7.00 and \$14.00 per kilogram.

Catch composition

Sharks and batoids contributed differentially to total elasmobranch capture, comprising 61% and 39%, respectively. Of the 18192 specimens observed, at least 30 species of sharks and 22 species of batoids were recorded. The catch composition varied according to the gear used. Two fishing gears were registered during the study period: gillnets and longlines. Gillnets were used by 416 of the 635 vessels (65% of the fishing trips) and the primary target was elasmobranchs (13372 individuals from 49 species; Table 4). The most abundant elasmobranchs taken by gillnets were the shovelnose guitarfish (Rhinobatos productus; 28.6%; CPUE=9.18), the brown smooth-hound (Mustelus henlei; 24.2%; CPUE=7.8), the California bat ray (Myliobatis californica; 11%; CPUE=3.5), the banded guitarfish (Zapteryx exasperata; 8.3%; CPUE 2.67) and the angel shark (Squatina californica; 5.6%; CPUE 1.82) (Table 4).

Longlines were used by 219 of the 635 vessels sampled (35% of fishing trips), and the primary target was elasmobranchs (4820 individuals from 16 species, Table 4). The catches by longline were dominated by sharks (99%). Catch was dominated by two species: blue shark (*Prionace glauca*; 69.75%; CPUE 15.35) and mako shark (*Isurus oxyrinchus*; 22.74%; CPUE 5.01), which accounted for 91% of the total catch (Table 4).

Seasonality

CPUE for sharks and rays differed considerably between seasons (Table 5). In the shark group, the blue shark was captured in all seasons, while among batoids, *R. productus* was the dominant species, though its capture decreased significantly in winter. Overall, the CPUEs were greatest in spring because of high catch rates of *R. productus* (8.34 ± 1.54), *P. glauca* (8.19 ± 1.68) and *M. californica* (5.18 ± 1.95) (Table 5). *Echinorhinus cookei*, *Negaprion brevirostris*, *Squalus acanthias* and *Torpedo californica* were recorded only in summer.

High CPUEs were noted for many species during summer (Table 5). The species that dominated the landings were *M. henlei* (8.87 \pm 1.27), *R. productus* (5.94 \pm 0.87), *Z. exasperata* (2.64 \pm 0.49) and *P. glauca* (2.42 \pm 0.4). The species recorded only in summer were *Carcharhinus brachyurus*, *Notorynchus cepedianus*,

TABLE 3. – Sampling days (D) and number of fishing vessels sampled (V) on the Pacific coast of Baja California Sur for the present study. The numbers represent months of the year from January (1) to December (12) during the period 2000-2010.

Years		1	2	2		3	4	1	4	5	(5	,	7		3		9	1	0	1	1	1	2
	D	V	D	V	D	V	D	V	D	V	D	V	D	V	D	V	D	V	D	V	D	V	D	V
2000															7	12	2	2	1	2	1	1	2	2
2001	3	3	5	4	4	4	3	4	4	4	1	1	4	5	2	2	2	2						
2002			3	4			3	3	3	6	5	5	2	2	3	5	1	1	4	4	1	1	2	2
2003	2	4	2	6	2	3													3	3				
2004			2	3			1	1	2	2	2	3			2	2	1	1			1	1	1	2
2005									2	3														
2006																								
2007																	2	3			1	1		
2008							7	7	3	4									1	6				
2009	3	3	3	4			7	17	12	29	1	1	24	59	8	39			2	5			4	4
2010			5	7	15	45	16	42	10	16	15	57	13	22	27	93	8	24	12	16	3	4		

TABLE 4 List of elasmobranchs collected in Baja California Sur from 2000 to 2010, according to the fishing gear. The number of individ	u-
als documented (n), their percentage contribution on the total catch (%), and the catch per unit effort (CPUE) with standard error (SE) a	ire
indicated.	

	Species	Gillnet (<i>n</i>)	%	CPUE	S.E.	Longline (<i>n</i>)	%	CPUE	SE
	Sharks								
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Alopias pelagicus	15	0.11	0.04	0.02				
$ \begin{array}{c} Carcharmine standymes & 12 & 0.09 & 0.03 & 0.01 & \\ Carcharmine fail diornis & 161 & 1.20 & 0.39 & 0.10 & 97 & 2.01 & 0.44 & 0.13 & \\ Carcharmine limits in the standymes & 1 & 0.01 & 0.00 & 0.00 & 1 & 0.02 & 0.00 & 0.00 & \\ Carcharmine limits in the stand & 1 & 0.01 & 0.00 & 0.01 & 4 & 0.08 & 0.02 & 0.01 & \\ Carcharmine longinamus & 3 & 0.02 & 0.01 & 0.01 & 4 & 0.08 & 0.02 & 0.01 & \\ Carcharmine longinamus & 3 & 0.02 & 0.01 & 0.01 & 4 & 0.08 & 0.02 & 0.00 & 0.00 & \\ Carcharmine structure stands & 4 & 0.03 & 0.01 & 0.00 & 1 & 0.02 & 0.00 & 0.00 & \\ Carcharbine structure stands & 4 & 0.03 & 0.01 & 0.00 & 1 & 0.02 & 0.00 & 0.00 & \\ Carcharbine structure stands & 1 & 0.01 & 0.00 & 0.00 & & \\ Carcharbine structure stands & 1 & 0.01 & 0.00 & 0.00 & & \\ Carcharbine structure stands & 151 & 1.13 & 0.36 & 0.12 & 1 & 0.02 & 0.00 & 0.00 & \\ Carcharbine structure structure stands & 151 & 1.13 & 0.36 & 0.12 & 1 & 0.02 & 0.00 & 0.00 & \\ Heterodontus mexicanus & 57 & 0.43 & 0.14 & 0.05 & \\ Heterodontus mexicanus & 151 & 1.31 & 0.44 & 0.01 & 1076 & 0.274 & 5.01 & 1.25 & \\ Masselas californicus & 1185 & 1.33 & 0.44 & 0.01 & 1076 & 0.274 & 5.01 & 1.25 & \\ Masselas californicus & 173 & 0.58 & 0.77 & 0.17 & 1 & 0.35 & 0.08 & 0.02 & 0.00 & \\ Necaptrine brevirsstris & 1 & 0.01 & 0.00 & 0.00 & & & \\ Necaptrine brevirsstris & 1 & 0.01 & 0.00 & 0.00 & & & & \\ Necaptrine brevirsstris & 1 & 0.01 & 0.00 & 0.00 & & & & & \\ Necaptrine brevirsstris & 1 & 0.01 & 0.00 & 0.00 & & & & & \\ Necaptrine brevirsstris & 1 & 0.01 & 0.00 & 0.00 & & & & & \\ Necaptrine brevirsstris & 1 & 0.01 & 0.00 & 0.00 & & & & & & \\ Necaptrine brevirsstris & 1 & 0.01 & 0.00 & 0.00 & & & & & & \\ Necaptrine brevirsstris & 1 & 0.01 & 0.00 & 0.00 & & & & & & \\ Necaptrine brevirsstris & 1 & 0.01 & 0.00 & 0.00 & & & & & & \\ Necaptrine brevirsstris & 1 & 0.01 & 0.00 & 0.00 & & & & & & \\ Necaptrine brevirsstris & 1 & 0.01 & 0.00 & 0.00 & & & & & & \\ Necaptrine brevirsstris & 1 & 0.01 & 0.00 & 0.00 & & & & & & & \\ Necaptrine brevirsstris & 1 & 0.01 & 0.00 & 0.00 & & & $	Alopias vulpinus	36	0.27	0.09	0.03				
$ \begin{array}{c} Current control of Current control current control of Current $	Carcharninus aitimus	12	0.09	0.03	0.01				
$ \begin{array}{c} Carcharhina lawas in bot is 0 & 0.00 & 0.00 & 1 & 0.02 & 0.00 & 0.00 \\ Carcharhina lambaus & 1 & 0.01 & 0.00 & 0.00 & 1 & 0.02 & 0.00 & 0.00 \\ Carcharhina lambaus & 52 & 0.39 & 0.13 & 0.06 & 1 & 0.02 & 0.00 & 0.00 \\ Carcharhina lambaus & 4 & 0.03 & 0.01 & 0.00 & 0.00 \\ Carcharhina solution vertices & 1 & 0.01 & 0.00 & 0.00 \\ Carcharhina scoke = 1 & 0.01 & 0.00 & 0.00 & 0.00 \\ Carcharhina scoke = 1 & 0.01 & 0.00 & 0.00 & 0.00 \\ Carcharhina scoke = 1 & 0.01 & 0.00 & 0.00 & 0.00 \\ Carcharhina scoke = 1 & 0.01 & 0.00 & 0.00 & 0.00 \\ Carcharhina scoke = 1 & 0.01 & 0.00 & 0.00 & 0.00 \\ Carcharhina scoke = 1 & 0.01 & 0.00 & 0.00 & 0.00 \\ Carcharhina scoke = 1 & 0.01 & 0.00 & 0.00 & 0.00 \\ Carcharhina scoke = 1 & 0.01 & 0.00 & 0.00 \\ Carcharhina scoke = 1 & 0.01 & 0.00 & 0.00 \\ Heterodonus mexicanus & 57 & 0.43 & 0.14 & 0.05 \\ Heterodonus mexicanus & 175 & 1.31 & 0.44 & 0.09 & 1096 & 2.74 & 5.01 & 1.25 \\ Mustacha straistica & 175 & 1.33 & 0.42 & 0.10 & 17 & 0.35 & 0.08 & 0.02 \\ Mustacha straistica & 72 & 0.54 & 0.17 & 0.10 & 4 & 0.08 & 0.02 & 0.02 \\ Neagorino therevirostris & 1 & 0.01 & 0.00 & 0.00 \\ Neteroline scrutifica & 1 & 0.01 & 0.00 & 0.00 \\ Neteroline scrutifica & 1 & 0.01 & 0.00 & 0.00 \\ Notorhyncha ccpediamus & 1 & 0.01 & 0.00 & 0.00 \\ Notorhyncha ccpediamus & 1 & 0.01 & 0.00 & 0.00 \\ Sphyrna cygaena & 330 & 2.47 & 0.79 & 0.15 & 197 & 4.09 & 0.90 & 0.21 \\ Syndwis a canthias & 1 & 0.01 & 0.00 & 0.00 \\ Squaths a canthias & 1 & 0.01 & 0.00 & 0.00 \\ Squaths a canthias & 1 & 0.01 & 0.00 & 0.00 \\ Squaths a canthias & 1 & 0.01 & 0.00 & 0.00 \\ Squaths canthias & 1 & 0.01 & 0.00 & 0.00 \\ Syndwis diprensition & 14 & 0.10 & 0.00 & 0.00 \\ Syndwis diprensition & 14 & 0.10 & 0.00 & 0.00 \\ Squaths canthing & 1 & 0.01 & 0.00 & 0.00 \\ Squaths canthing & 1 & 0.01 & 0.00 & 0.00 \\ Milobatis californica & 1457 & 10.90 & 3.50 & 10.8 \\ Milobatis californica & 1457 & 10.90 & 3.50 & 1.08 \\ Minobatos glaccostigma & 12 & 0.01 & 0.00 & 0.00 \\ Dratysis hiperstrist & 1 & 0.01 & 0.00 & 0.00 \\ Dratysis hiperstrist & 1 & 0.01 & 0.00 $	Carcharhinus brachyurus Carcharhinus falciformis	161	1.20	0.00	0.00	97	2.01	0.44	0.13
$\begin{array}{c} Carchorhinas limbatus & 1 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.02 & 0.00 & 0.00 & Carchorhinas obscurus & 52 & 0.39 & 0.13 & 0.06 & 1 & 0.02 & 0.00 & 0.00 & Carchordinus obscurus & 52 & 0.39 & 0.13 & 0.06 & 1 & 0.02 & 0.00 & 0.00 & Carchordinus obscurus & 52 & 0.39 & 0.13 & 0.06 & 1 & 0.02 & 0.00 & 0.00 & Carchordinus cookei & 1 & 0.01 & 0.00 & 0.00 & 0.00 & Carchordinus cookei & 1 & 0.01 & 0.00 $	Carcharhinus Jaicijormis Carcharhinus leucas	101	0.01	0.00	0.00	1	0.02	0.00	0.00
Carcharhinus longimunus 3 0.02 0.01 0.01 4 0.08 0.02 0.01 Carcharhone obscurus 52 0.39 0.13 0.06 1 0.02 0.00 0.00 Carcharhone carcharias 4 0.01 0.00 0.00 0.02 0.00 0.00 Carcharhinus cooker 1 0.01 0.00 0.00 0.00 0.00 0.00 Galaccerdo cuvier 3 0.06 0.01 0.01 0.00 0.00 Heterodonius fracticanus 57 0.43 0.14 0.05 1.13 0.36 0.12 1 0.02 0.00 0.00 Mustelis altifornicus 173 1.31 0.42 0.01 1 0.35 0.08 0.02 0.01 Mustelis altifornicus 172 0.54 0.77 1.07 2 0.04 0.01 0.00 Notor/mchus cegedianus 1 0.01 0.00 0.00 0.02 0.02 0.02	Carcharhinus limbatus		0101	0.000	0.00	3	0.06	0.01	0.01
Carcharbinus obscurus 52 0.39 0.13 0.06 1 0.02 0.00 0.00 Carchardon carcharias 4 0.03 0.01 0.00 0.00 0.00 Carchardon uscobei 1 0.01 0.00	Carcharhinus longimanus	3	0.02	0.01	0.01	4	0.08	0.02	0.01
$ \begin{array}{c} Carcharodon carcharois 1 0.03 0.01 0.00 \\ Cephalos Villiam ventrios and the second se$	Carcharhinus obscurus	52	0.39	0.13	0.06	1	0.02	0.00	0.00
$ \begin{array}{c} Cephalaxcylliam ventriosum \\ Geharonius cookei \\ I 001 0.00 0.00 \\ Galeorato cuvier \\ \hline \\ Galeorinus cookei \\ I 0.02 0.00 0.00 \\ Heterodontus francisci \\ 378 2.83 0.91 0.16 \\ Heterodontus francisci \\ 378 2.83 0.91 0.16 \\ Heterodontus mexicanus \\ 57 0.43 0.14 0.05 \\ Hexanchus griseus \\ 181 1.35 0.44 0.09 1096 22.74 5.01 1.25 \\ Mustelus henlei \\ 3233 24.18 7.77 10.7 2 0.04 0.01 0.01 \\ Mustelus henlei \\ 3233 24.18 7.77 10.7 2 0.04 0.01 0.00 \\ Mustelus henlei \\ 3233 24.18 7.77 10.7 2 0.04 0.01 0.00 \\ Mustelus henlei \\ 3233 24.18 7.77 10.7 2 0.04 0.01 0.00 \\ Notorhynchus cepedianus \\ 1 0.01 0.00 0.00 \\ \hline \\ Negaprion brevirostris \\ 1 0.01 0.00 0.00 \\ \hline \\ Notorhynchus cepedianus \\ 1 0.01 0.00 0.00 \\ \hline \\ Notorhynchus cepedianus \\ 1 0.01 0.00 0.00 \\ \hline \\ Notorhynchus cepedianus \\ 1 0.01 0.00 0.00 \\ \hline \\ Notorhynchus cepedianus \\ 1 0.01 0.00 0.00 \\ \hline \\ Notorhynchus cepedianus \\ 1 0.01 0.00 0.00 \\ \hline \\ Notorhynchus cepedianus \\ 1 0.01 0.00 0.00 \\ \hline \\ Supura zygaena \\ 330 2.47 0.79 0.15 197 4.09 0.90 0.21 \\ Supura zygaena \\ 330 2.47 0.15 0.04 \\ \hline \\ Subtotal \\ \hline \\ Subtotal \\ \hline \\ Batoids \\ \hline \\ Batoids \\ \hline \\ Batoids \\ \hline \\ Ratinyraia spinosissima \\ 1 0.01 0.00 0.00 \\ \hline \\ \\ Mustelus hierura \\ 19 0.14 0.03 0.01 1 0.02 0.00 \\ O \\ Dayaits ionga \\ 32 0.24 0.80 0.01 \\ \hline \\ \\ Mustelus hierura \\ 19 0.14 0.03 0.01 0.00 \\ \hline \\ \\ Mustelus hierura \\ 19 0.14 0.03 0.01 \\ O \\ \hline \\ \\ \\ Subtotal \\ \hline \\ Batoids \\ \hline \\ \\ Batoids \\ \hline \\ \\ \\ Batoids \\ \hline \\ \\ \\ Ratinobatos glaucostigma \\ 125 0.03 0.01 0.00 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Carcharodon carcharias	4	0.03	0.01	0.00				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cephaloscyllium ventriosum	151	1.13	0.36	0.08				
$ \begin{array}{c} Cale of the curver \\ Gale of the sequence is a constrained of the curve of $	Echinorhinus cookei	1	0.01	0.00	0.00	2	0.06	0.01	0.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Galeocerao cuvier Galeorhinus galeus	151	1 13	0.36	0.12	5 1	0.00	0.01	0.01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Heterodontus francisci	378	2.83	0.50	0.12	1	0.02	0.00	0.00
	Heterodontus mexicanus	57	0.43	0.14	0.05				
	Hexanchus griseus	3	0.02	0.01	0.01				
Mustelias californicas 175 1.31 0.42 0.10 17 0.35 0.08 0.08 Mustelias henlei 3233 24.18 77 1.07 2 0.04 0.01 0.00 Mustelias henlei 1 0.01 0.00 0.00 0.00 Notorhynchus cepedianus 1 0.01 0.00 0.00 0.00 Prionace glauca 93 0.70 0.22 0.05 3362 69.75 15.35 1.78 Rhizoprionedon longurio 3 0.02 0.01 0.01 0.00 0.00 Sphyrna levini 14 0.10 0.03 0.02 12 0.25 0.05 0.04 Squatina californica 755 5.65 1.82 0.26 77 1.53 1.78 Bathyraja spinosissima 1 0.01 0.00 0.00 0.02 0.00 0.00 Gyantina californica 1457 0.30 0.10 0.00 0.02 0.00 0.00	Isurus oxyrinchus	181	1.35	0.44	0.09	1096	22.74	5.01	1.25
Mustelus henlei 3233 24.18 7.77 1.07 2 0.04 0.01 0.01 Mustelus hunulaus 72 0.54 0.17 0.10 4 0.08 0.02 0.02 Neorspronchus cepediamus 1 0.01 0.00 0.00 0.00 Prionace glauca 93 0.70 0.22 0.05 3362 69.75 15.35 1.78 Shyrna cygaena 330 2.47 0.79 0.15 197 4.09 0.90 0.21 Squalus acanthias 1 0.01 0.00 0.00 3362 69.75 15.35 1.78 Subtotal 582 0.01 0.00 0.00 3362 69.75 0.05 0.04 Subtotal 5882 0.15 0.44 0.02 0.00 0.00 Dasyatis dipterura 19 0.14 0.05 0.01 1 0.02 0.00 0.00 Dasyatis dipterura 19 0.14 0.05 <t< td=""><td>Mustelus californicus</td><td>175</td><td>1.31</td><td>0.42</td><td>0.10</td><td>17</td><td>0.35</td><td>0.08</td><td>0.08</td></t<>	Mustelus californicus	175	1.31	0.42	0.10	17	0.35	0.08	0.08
Mustelius lumidatus 72 0.54 0.17 0.10 4 0.08 0.02 0.02 Negaprion brevirosiris 1 0.01 0.00 0.00 0.00 Notorhynchus cepedianus 1 0.01 0.00 0.00 0.00 Prionace gluca 93 0.70 0.22 0.05 3362 69.75 15.35 1.78 Sphyma lewini 14 0.10 0.00 0.02 0.25 0.05 0.04 Squatina californica 755 5.65 1.82 0.26 $77600000000000000000000000000000000000$	Mustelus henlei	3233	24.18	7.77	1.07	2	0.04	0.01	0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mustelus lunulatus	72	0.54	0.17	0.10	4	0.08	0.02	0.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Negaprion brevirostris	1	0.01	0.00	0.00				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Priorace glauca	03	0.01	0.00	0.00	3362	69.75	15 35	1 78
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rhizoprionodon longurio	3	0.02	0.01	0.03	5502	07.15	15.55	1.70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sphvrna lewini	14	0.10	0.03	0.02	12	0.25	0.05	0.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sphyrna zygaena	330	2.47	0.79	0.15	197	4.09	0.90	0.21
	Squalus acanthias	1	0.01	0.00	0.00				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Squatina californica	755	5.65	1.82	0.26				
Subtolal 5882 4800 Batoids $Batoids$ $Batoids$ $a800$ Batoids $Batyraja$ spinosissima 1 0.01 0.00 0.00 Dasyatis dipterura 19 0.14 0.05 0.01 1 0.02 0.00 0.00 Dasyatis longa 32 0.24 0.08 0.05 0.01 1 0.02 0.00 0.00 Mimatura marmorata 245 1.83 0.59 0.10 0.01 0.00 Myliobatis californica 1457 10.90 3.50 1.08 900	Triakis semifasciata	63	0.47	0.15	0.04	4000			
Bathyraja spinosissima10.010.000.00Dasyatis dipterura190.140.050.0110.020.000.00Dasyatis longa320.240.080.0510.020.000.00Dasyatis longa320.240.080.0510.020.000.00Dasyatis longa320.240.030.010.000.00Myliobatis californica145710.903.501.08Myliobatis longirostris290.220.070.02Narcine entemedor400.300.100.040.03Pteroplatytrygon violacea20.040.010.01Raja inornata10.010.000.000.00Raja velezi340.250.080.03Rhinobatos glaucostigma1250.930.300.10Rhinobatos productus382028.579.181.30Rhinobatos productus382020.240.080.02Torpedo californica10.010.000.00Urobatis concentricus140.100.030.02Urotygon nama20.010.000.00Zapteryx exasperata11108.302.670.41Subtotal705233Undetermined species30.0270.150.03Mustelus spp.110.080.030.01Raja pp.11 <td>Subtotal</td> <td>5882</td> <td></td> <td></td> <td></td> <td>4800</td> <td></td> <td></td> <td></td>	Subtotal	5882				4800			
Daryatis dipterura10.010.000.0010.020.000.00Dasyatis longa320.240.080.0510.020.000.00Dasyatis longa320.240.080.050.0010.020.000.00Marcine armorata2451.830.590.100.000.000.000.00Myliobatis longirostris290.220.070.020.040.010.010.04Platyrhinoidis triseriata150.110.040.030.010.010.010.01Raja normata10.010.000.000.000.010.010.010.01Raja velezi340.250.080.030.10Rhinobatos graductus382028.579.181.30Rhinobatos productus382028.579.181.300.020.000.000.02Urobatis halleri30.020.010.010.000.000.020.010.01Urotrygon nana20.010.000.000.000.000.000.000.000.000.030.02Undetermined species10.010.000.0030.020.030.030.030.030.03Mustelus spp.110.080.030.0270.150.030.030.030.030.030.030.020.010.030.02	Bathyraia spinosissima	1	0.01	0.00	0.00				
Dasyatis longa320.240.080.050.020.000.00Gymnura marmorata2451.830.590.10Himantura pacifica40.030.010.00Myliobatis californica145710.903.501.08Myliobatis californica145710.903.501.08Myliobatis californica145710.900.010.02Narcine entemedor400.300.100.04Platyrhinoidis triseriata150.110.040.03Pteroplatytrygon violacea20.040.010.01Raja inornata10.010.000.00Raja inornata1250.930.300.10Rhinobatos glaucostigma1250.930.300.10Rhinobatos productus382028.579.181.30Rhinopatra staindachneri320.240.080.02Urobatis concentricus140.100.030.02Urobatis halleri30.020.010.01Urotrygon nana20.010.000.00Urotrygon rogersi10.010.000.00Subtotal705233Undetermined species110.080.0270.150.03Myliobatis spp.110.080.030.0270.150.030.03Raja spp.110.080.030.010.010.020.020.02<	Danyraja spinosissima Dasvatis dipterura	19	0.14	0.05	0.00	1	0.02	0.00	0.00
Gynura marmorata 245 1.83 0.59 0.10 Himantura pacifica4 0.03 0.01 0.00 Myliobatis californica 1457 10.90 3.50 1.08 Myliobatis longirostris 29 0.22 0.07 0.02 Narcine entemedor40 0.30 0.10 0.04 Platyrhinoidis triseriata 15 0.11 0.04 0.03 Pteroplatytrygon violacea 2 0.04 0.01 0.01 Raja inornata 1 0.01 0.00 0.00 Raja velezi 34 0.25 0.08 0.03 Rhinobatos glaucostigma 125 0.93 0.30 0.10 Rhinobatos groductus 3820 28.57 9.18 1.30 Rhinobatos groductus 3820 28.57 9.18 1.30 Rhinobatos productus 32 0.24 0.08 0.02 Torpedo californica 1 0.01 0.00 0.00 Urobatis concentricus 14 0.10 0.00 0.00 Urotrygon chilensis 1 0.01 0.00 0.00 Urotrygon rogersi 1 0.01 0.00 0.00 Urotrygon rogersi 1 0.01 0.00 0.00 Undetermined species 3 0.02 7 0.15 0.03 Mustelus spp. 11 0.08 0.03 0.02 7 0.15 0.03 Mustelus spp. 11 0.09 0.03 0.02 <	Dasvatis longa	32	0.24	0.08	0.05	-	0.02	0100	0.00
Himantura pacifica40.030.010.00Myliobatis californica145710.903.501.08Myliobatis longirostris290.220.070.02Narcine entemedor400.300.100.04Platyrhinoidis triseriata150.110.040.03Pteroplatytrygon violacea20.040.010.01Raja inornata10.010.000.00Raja velezi340.250.080.03Rhinobatos glaucostigma1250.930.300.10Rhinobatos productus382028.579.181.30Rhinobatos productus320.240.080.02Torpedo californica10.010.000.00Urobatis concentricus140.100.030.02Urobatis halleri30.020.010.00Urotrygon chilensis10.010.000.00Zapteryx exasperata11108.302.670.41Subtotal705233Undetermined species30.020.01Mustelus spp.4002.990.960.2540.080.02Mustelus spp.110.080.030.0270.150.030.03Rinobatos spp.120.090.030.0270.150.030.03Robustal0.030.0270.150.030.030.02R	Gymnura marmorata	245	1.83	0.59	0.10				
Myliobatis colifornica 1457 10.90 3.50 1.08 Myliobatis longirostris 29 0.22 0.07 0.02 Narcine entemedor 40 0.30 0.10 0.04 Platyrhinoidis triseriata 15 0.11 0.04 0.03 Preroplatytrygon violacea 2 0.04 0.01 0.01 Raja inornata 1 0.01 0.00 0.00 0.00 Raja inornata 1 0.01 0.00 0.00 0.01 Raja inornata 1 0.01 0.00 0.00 0.01 Rhinobatos glaucostigma 125 0.93 0.30 0.10 0.02 Rhinoptera staindachneri 32 0.24 0.08 0.02 0.00 Urobatis halleri 3 0.02 0.01 0.00 0.00 0.00 Urotrygon chilensis 1 0.01 0.00 0.00 0.00 0.00 Urotrygon rana 2 0.01 0.00 0.00 0.00 0.00 Urotrygon rogersi 1 0.01 0.00	Himantura pacifica	4	0.03	0.01	0.00				
Myliobatis longirostris 29 0.22 0.07 0.02 Narcine entemedor 40 0.30 0.10 0.04 Platyrhinoidis triseriata 15 0.11 0.04 0.03 Pteroplatytrygon violacea 2 0.04 0.01 0.01 Raja inornata 1 0.01 0.00 0.00 Raja velezi 34 0.25 0.93 0.30 0.10 Rhinobatos glaucostigma 125 0.93 0.30 0.10 Rhinobatos productus 3820 28.57 9.18 1.30 Rhinobatos productus 3820 28.57 9.18 1.30 Rhinobatos productus 14 0.10 0.00 0.00 Urobatis concentricus 14 0.10 0.03 0.02 Urotrygon rana 2 0.01 0.00 0.00 0.00 Urotrygon rogersi 1 0.01 0.00 0.00 0.00 0.02 0.01 0.01 Urotrygon rogersi 1 0.01	Myliobatis californica	1457	10.90	3.50	1.08				
Narcine entenedor 40 0.30 0.10 0.04 Platyrhinoidis triseriata 15 0.11 0.04 0.03 Pteroplatytrygon violacea 2 0.04 0.01 0.01 Raja inornata 1 0.01 0.00 0.00 0.00 Raja velezi 34 0.25 0.08 0.03 0.10 Rhinobatos glaucostigma 125 0.93 0.30 0.10 0.01 0.01 Rhinobatos productus 3820 28.57 9.18 1.30 1.30 0.02 0.01 0.01 Urobatis concentricus 14 0.10 0.03 0.02 0.01 0.01 0.00 0.00 Urobatis concentricus 1 0.01 0.00 0.00 0.00 0.00 0.00 0.00 Urobatis concentricus 1 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.03 0.02 </td <td>Myliobatis longirostris</td> <td>29</td> <td>0.22</td> <td>0.07</td> <td>0.02</td> <td></td> <td></td> <td></td> <td></td>	Myliobatis longirostris	29	0.22	0.07	0.02				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Narcine entemedor	40	0.30	0.10	0.04				
Raia inornata10.010.000.000.010.010.01Raja inornata10.010.000.00Raja velezi340.250.080.03Rhinobatos glaucostigma1250.930.300.10Rhinobatos productus382028.579.181.30Rhinoptera staindachneri320.240.080.02Torpedo californica10.010.000.00Urobatis concentricus140.100.030.02Urobatis halleri30.020.010.01Urotrygon chilensis10.010.000.00Urotrygon rogersi10.010.000.00Urotrygon rogersi10.010.000.00Undetermined species7052311Mustelus spp.4002.990.960.2540.080.02Myliobatis spp.110.080.030.020.010.030.03Raja spp.110.080.030.020.030.020.03Raja spp.120.090.030.020.020.020.02Solver yr ac pp40.030.010.010.010.020.02Number yr ac pp40.030.010.010.020.020.02Solver yr ac pp40.030.010.010.010.020.02Number yr ac pp40.030.01<	Platyrninolais iriseriala Pteroplatytrygon violacea	15	0.11	0.04	0.05	2	0.04	0.01	0.01
Raja velezi340.0250.080.03Rhinobatos glaucostigma1250.930.300.10Rhinobatos productus382028.579.181.30Rhinoptera staindachneri320.240.080.02Torpedo californica10.010.000.00Urobatis concentricus140.100.030.02Urobatis halleri30.020.010.01Urotrygon chilensis10.010.000.00Urotrygon ragersi10.010.000.00Urotrygon rogersi10.010.000.00Undetermined species30.2540.080.02Mustelus spp.4002.990.960.2540.080.02Myliobatis spp.110.080.030.0270.150.030.03Raja spp.110.080.030.010.010.010.030.02Subtotal spp.400.030.030.010.010.030.020.030.03Myliobatis spp.110.080.030.010.010.020.020.02Mustelus spp.120.090.030.020.010.010.020.02Subtora0.030.010.010.010.020.020.02Mustelus spp.120.030.030.010.010.020.02Subtora0.030.03 <td>Raja inornata</td> <td>1</td> <td>0.01</td> <td>0.00</td> <td>0.00</td> <td>2</td> <td>0.04</td> <td>0.01</td> <td>0.01</td>	Raja inornata	1	0.01	0.00	0.00	2	0.04	0.01	0.01
Rhinobatos glaucostigma 125 0.93 0.30 0.10 Rhinobatos productus 3820 28.57 9.18 1.30 Rhinoptera staindachneri 32 0.24 0.08 0.02 Torpedo californica 1 0.01 0.00 0.00 Urobatis concentricus 14 0.10 0.00 0.00 Urobatis halleri 3 0.02 0.01 0.01 Urobatis halleri 3 0.02 0.01 0.01 Urotrygon chilensis 1 0.01 0.00 0.00 Urotrygon rogersi 1 0.01 0.00 0.00 Urotrygon rogersi 1 0.01 0.00 0.00 Zapteryx exasperata 1110 8.30 2.67 0.41 0.02 0.01 Mustelus spp. 400 2.99 0.96 0.25 4 0.08 0.02 0.01 Myliobatis spp. 11 0.08 0.03	Raja velezi	34	0.25	0.08	0.03				
Rhinobatos productus 3820 28.57 9.18 1.30 Rhinoptera staindachneri 32 0.24 0.08 0.02 Torpedo californica 1 0.01 0.00 0.00 Urobatis concentricus 14 0.10 0.00 0.00 Urobatis concentricus 14 0.10 0.00 0.00 Urobatis halleri 3 0.02 0.01 0.01 Urotrygon chilensis 1 0.01 0.00 0.00 Urotrygon nana 2 0.01 0.00 0.00 Urotrygon rogersi 1 0.01 0.00 0.00 Zapteryx exasperata 1110 8.30 2.67 0.41 Subtotal 7052 3 3 Undetermined species 3 3 3 3 3 3 3 3 3 Mustelus spp. 400 2.99 0.96 0.25 4 0.03 0.03	Rhinobatos glaucostigma	125	0.93	0.30	0.10				
Rhinoptera staindachneri 32 0.24 0.08 0.02 Torpedo californica 1 0.01 0.00 0.00 Urobatis concentricus 14 0.10 0.00 0.00 Urobatis concentricus 14 0.10 0.03 0.02 Urobatis concentricus 14 0.10 0.03 0.02 Urobatis halleri 3 0.02 0.01 0.01 Urotrygon chilensis 1 0.01 0.00 0.00 Urotrygon nana 2 0.01 0.00 0.00 Urotrygon rogersi 1 0.01 0.00 0.00 Zapteryx exasperata 1110 8.30 2.67 0.41 50.02 0.02 0.01 Undetermined species $Mustelus$ spp. 400 2.99 0.96 0.25 4 0.08 0.02 0.01 Myliobatis spp. 11 0.08 0.03 0.01 6 0.12 0.02 <	Rhinobatos productus	3820	28.57	9.18	1.30				
Torpedo californica 1 0.01 0.00 0.00 Urobatis concentricus 14 0.10 0.03 0.02 Urobatis concentricus 14 0.10 0.03 0.02 Urobatis halleri 3 0.02 0.01 0.01 Urotrygon chilensis 1 0.01 0.00 0.00 Urotrygon nana 2 0.01 0.00 0.00 Urotrygon rogersi 1 0.01 0.00 0.00 Zapteryx exasperata 1110 8.30 2.67 0.41 Subtotal 7052 3 Undetermined species 3 Mustelus spp. 400 2.99 0.96 0.25 4 0.08 0.02 0.01 Myliobatis spp. 11 0.08 0.03 0.01 7 0.15 0.03 0.03 Raja spp. 12 0.03 0.01 6 0.12 0.02 0.02	Rhinoptera staindachneri	32	0.24	0.08	0.02				
Urobatis concentricus 14 0.10 0.03 0.02 Urobatis halleri 3 0.02 0.01 0.01 Urobatis halleri 3 0.02 0.01 0.01 Urotrygon chilensis 1 0.01 0.00 0.00 Urotrygon rogersi 1 0.01 0.00 0.00 Urotrygon rogersi 1 0.01 0.00 0.00 Zapteryx exasperata 1110 8.30 2.67 0.41 Subtotal 7052 3 Undetermined species 3 Mustelus spp. 400 2.99 0.96 0.25 4 0.08 0.02 0.01 Myliobatis spp. 11 0.08 0.03 0.02 7 0.15 0.03 0.03 Rhinobatos spp. 12 0.03 0.01 6 0.12 0.02 0.02	Torpedo californica	1	0.01	0.00	0.00				
Urobatis halteri 5 0.02 0.01 0.01 Urotrygon chilensis 1 0.01 0.00 0.00 Urotrygon nana 2 0.01 0.00 0.00 Urotrygon rogersi 1 0.01 0.00 0.00 Zapteryx exasperata 1110 8.30 2.67 0.41 Subtotal 7052 3 Undetermined species $Mustelus$ spp. 400 2.99 0.96 0.25 4 0.08 0.02 0.01 Myliobatis spp. 11 0.08 0.03 0.02 7 0.15 0.03 0.03 Raja spp. 11 0.03 0.01 6 0.12 0.02 0.02	Urobatis concentricus	14	0.10	0.03	0.02				
Urotrygon chilensis 1 0.01 0.00 0.00 Urotrygon nana 2 0.01 0.00 0.00 Urotrygon rogersi 1 0.01 0.00 0.00 Zapteryx exasperata 1110 8.30 2.67 0.41 Subtotal 7052 3 Undetermined species 3 Mustelus spp. 400 2.99 0.96 0.25 4 0.08 0.02 0.01 Myliobatis spp. 11 0.08 0.03 0.02 7 0.15 0.03 0.03 Raja spp. 11 0.08 0.03 0.01 6 0.12 0.02 Subtotal 0.03 0.01 6 0.12 0.02	Urobatis nalleri Urotrugon chilensis	3 1	0.02	0.01	0.01				
Urotrygon rogersi 1 0.01 0.00 0.00 Zapteryx exasperata 1110 8.30 2.67 0.41 Subtotal 7052 3 Undetermined species 400 2.99 0.96 0.25 4 0.08 0.02 0.01 Myliobatis spp. 11 0.08 0.03 0.02 7 0.15 0.03 0.03 Raja spp. 11 0.08 0.03 0.01 6 0.12 0.02 Subtotal 400 0.03 0.01 6 0.12 0.02	Urotrygon nana	2	0.01	0.00	0.00				
Zapteryx exasperata11108.302.670.41Subtotal70523Undetermined species $Myliobatis$ spp.4002.990.960.2540.080.020.01Myliobatis spp.110.080.030.0270.150.030.030.03Raja spp.110.080.030.0160.120.020.02Sphurag spp.120.090.030.0160.120.02	Urotrygon rogersi	1	0.01	0.00	0.00				
Subtotal70523Undetermined species $Mustelus$ spp.4002.990.960.2540.080.020.01Myliobatis spp.110.080.030.0270.150.030.03Raja spp.110.080.030.0170.150.030.03Rhinobatos spp.120.090.030.020.0160.120.02	Zapteryx exasperata	1110	8.30	2.67	0.41				
Undetermined speciesMustelus spp.400 2.99 0.96 0.25 4 0.08 0.02 0.01 Myliobatis spp.11 0.08 0.03 0.02 7 0.15 0.03 0.03 Raja spp.11 0.08 0.03 0.01 6 0.12 0.02 0.02 Sphura spp.12 0.09 0.03 0.01 6 0.12 0.02	Subtotal	7052				3			
Mustelus spp.400 2.99 0.96 0.25 4 0.08 0.02 0.01 Myliobatis spp.11 0.08 0.03 0.02 7 0.15 0.03 0.03 Raja spp.11 0.08 0.03 0.01 7 0.15 0.03 0.03 Rhinobatos spp.12 0.09 0.03 0.02 0.01 6 0.12 0.02	Undetermined species								
Mytiobatis spp. 11 0.08 0.03 0.02 7 0.15 0.03 0.03 Raja spp. 11 0.08 0.03 0.01 6 0.12 0.03 0.03 Rhinobatos spp. 12 0.09 0.03 0.02 6 0.12 0.02 0.02	Mustelus spp.	400	2.99	0.96	0.25	4	0.08	0.02	0.01
Kaja spp. 11 0.08 0.03 0.01 $Rhinobatos$ spp. 12 0.09 0.03 0.02 Sphura spp. 4 0.03 0.01 6 0.12 0.02	Myliobatis spp.	11	0.08	0.03	0.02	7	0.15	0.03	0.03
Namooduos spp. 12 0.03 0.02 0.02 Soluma spp. 4 0.03 0.01 6 0.12 0.02 0.02	<i>Kaja</i> spp.	11	0.08	0.03	0.01				
	<i>Kninodalos</i> spp.	1 Z A	0.09	0.03	0.02	6	0.12	0.03	0.02
Subtotal 438 17	Subtotal	438	0.05	0.01	0.01	17	0.12	0.05	0.02

Bathyraja spinosissima, Raja inornata, Urotrygon chilensis and Urotrygon rogersi.

for this season. The most common species were *P*. glauca (3.6 ± 1.13) , *R. productus* (2.79 ± 0.85) , *S. californica* (2.42 ± 0.71) and *M. californica* (2.35 ± 1.18) . Finally, in winter the lowest CPUE values were recorded (Table 5). Sharks dominated winter catches,

In autumn the CPUEs were lower than in spring and summer (Table 5). Catches were dominated by sharks, which accounted for 70% of the total catch

Table 5	- Seasonal	catch	per uni	t effort	(CPUE)	and sta	andard	error	(SE) 1	for e	elasmobranch	species	sampled	on th	ne Pacifi	coast	of B	aja
			-		Ca	lifornia	Sur di	uring t	he per	iod	2000-2010.	-	-					-

	Spring $(n=7268)$			Summer (n=8531)			Autu	Autumn (n=1314)			Winter (n=1079)			
Species	n	CPUE	SE	n	CPUE	SE	n	CPUE	SE	n	CPUE	SE		
Shorks			52			52		01 02			01 02	52		
Alonias pelagicus				12	0.04	0.03	3	0.05	0.04					
Alopias vulninus	13	0.06	0.03	16	0.04	0.03	4	0.05	0.04	3	0.05	0.05		
Carcharhinus altimus	10	0.00	0.05	12	0.04	0.02		0.07	0.01	5	0.05	0.00		
Carcharhinus brachvurus				1	0.00	0.00								
Carcharhinus falciformis				139	0.46	0.16	118	2.07	0.68	1	0.02	0.02		
Carcharhinus [°] leucas	1	0.00	0.00							1	0.02	0.02		
Carcharhinus limbatus	1	0.00	0.00							2	0.04	0.04		
Carcharhinus longimanus	1	0.00	0.00	6	0.02	0.01								
Carcharhinus obscurus	37	0.17	0.10	16	0.05	0.03								
Carcharodon carcharias	2	0.01	0.01	2	0.01	0.00	10	0.00	0.1.4					
Cephaloscyllium ventriosum	3/	0.17	0.05	96	0.32	0.09	18	0.32	0.14					
Echinorninus cookei Calaaanda auviar	1	0.00	0.00	1	0.00	0.00				2	0.04	0.04		
Galeocerao cuvier Galeochinus galeus	15	0.07	0.04	137	0.00	0.00				Z	0.04	0.04		
Heterodontus francisci	137	0.67	0.04 0.22	183	0.45	0.10	52	0.91	0.32	6	0.11	0.08		
Heterodontus mexicanus	157	0.02	0.22	56	0.19	0.07	52	0.71	0.52	1	0.02	0.02		
Hexanchus griseus				3	0.01	0.01					0.02	0.02		
Isurus oxyrinchus	687	3.11	1.19	276	0.91	0.12	107	1.88	0.62	257	4.67	1.46		
Mustelus californicus	111	0.50	0.15	78	0.26	0.09				3	0.05	0.05		
Mustelus henlei	442	2.00	0.48	2678	8.87	1.27	115	2.02	0.73					
Mustelus lunulatus	72	0.33	0.14	1	0.00	0.00	3	0.05	0.05					
Mustelus spp.	157	0.71	0.23	213	0.71	0.19	33	0.58	0.51	1	0.02	0.02		
Negaprion brevirostris	1	0.00	0.00	0										
Notorynchus cepedianus	1010	0.10	1 (0	1	0.40	0.40	205	2 (0	1.10	-	10.07	1.00		
Prionace glauca	1810	8.19	1.68	132	2.42	0.40	205	3.60	1.13	/08	12.87	1.92		
Sphyma lawini	2	0.01	0.01	12	0.01	0.01	0	0.00	0.00	2	0.04	0.03		
Sphyrna iewini Sphyrna spp	3	0.01	0.01	6	0.04	0.02	9	0.10	0.14	1	0.04	0.03		
Sphyrna spp. Sphyrna zygaena	110	0.01	0.01	228	0.02	0.02	99	1 74	0.00	40	0.02	0.02		
Saualus acanthias	1	0.00	0.00	220	0.70	0.15	//	1./4	0.54	40	0.75	0.17		
Squatina californica	205	0.93	0.26	410	1.36	0.23	138	2.42	0.71	2	0.04	0.04		
Triakis semifasciata	17	0.08	0.03	24	0.08	0.02	7	0.12	0.06	15	0.27	0.13		
Subtotal	3864			5342			911			1045				
Batoids														
Bathyraja spinosissima	0	0.04		1	0.00	0.00								
Dasyatis dipterura	8	0.04	0.02	12	0.04	0.02								
Dasyatis longa	25	0.11	0.09	172	0.02	0.01								
Gymnura marmorata Himantura paoifina	/2	0.33	0.10	1/3	0.57	0.13	1	0.02	0.02	0	0.00	0.00		
Muliobatis californica	1144	5.18	1.05	170	0.01	0.01	13/	2 35	1.18	0	0.00	0.00		
Myliobatis longirostris	0	0.04	0.03	20	0.07	0.10	134	2.55	1.10	0	0.00	0.00		
Myliobatis spp.	13	0.06	0.04	5	0.02	0.01								
Narcine entemedor	23	0.10	0.04	15	0.05	0.02	2	0.04	0.04	0	0.00	0.00		
Platyrhinoidis triseriata				15	0.05	0.02								
Pteroplatytrygon violacea	1	0.00	0.00	1	0.00	0.00								
Raja inornata				1	0.00	0.00								
<i>Raja</i> spp.	10	0.05	0.02	1	0.00	0.00								
Raja velezi	29	0.13	0.05	5	0.02	0.01								
Rhinobatos glaucostigma	1942	0.06	0.03	112	0.37	0.13	150	2 70	0.05	26	0.47	0.10		
Rhinobatos productus	1842	8.34	1.54	1/93	5.94	0.87	159	2.79	0.85	26	0.47	0.18		
Rhinoptara staindachnari	8	0.05	0.03	24	0.02	0.02								
Torpedo californica	1	0.04	0.02	24	0.08	0.05								
Urobatis concentricus	1	0.00	0.00	13	0.04	0.03								
Urobatis halleri	-	0.00	0.00	3	0.01	0.01								
Urotrygon chilensis				1	0.00	0.00								
Urotrygon nana				2	0.01	0.01								
Urotrygon rogersi		0.00	0.5.	1	0.00	0.00			0	~	0.1-	0.4.4		
Zapteryx exasperata	199	0.90	0.24	796	2.64	0.49	107	1.88	0.59	8	0.15	0.11		
Subtotal	3404			3189			403			54				

accounting for 95%, mostly because of the frequency of *P. glauca* (12.87 \pm 1.92) and *I. oxyrinchus* (4.67 \pm 1.46).

Cumulative taxon curves showed sufficient sample sizes for catch composition estimates of vessel using gillnets (t=0.260; P=0.795; n=416) and longlines

(*t*=0.360; *P*=0.719; *n*=219). The curves also indicate that sample size was sufficient to estimate the species composition by seasons: spring (*t*=0.130; *P*=0.896; *n*=221), summer (*t*=0.214; *P*=0.83; *n*=302), autumn (*t*=0.0132; *P*=0.91; *n*=57) and winter (*t*=0.125; *P*=0.90; *n*=55).

FIG. 2. – Size frequency distributions by sex of shark species captured by gillnets. *n* refers to the number of measured individuals. Females are depicted in black, males in white, unsexed specimens in grey. Dotted lines indicate the size at maturity. In cases in which a substantial difference in size at maturity exists between sexes, lines are labeled M (male) or F (female).

Biological information

For gillnet-captured elasmobranchs, size distribution differed significantly between males and females for C. ventriosum, G. galeus, H. francisci, I. oxyrhinchus, M. californicus, M. henlei, P. glauca, S. californica, G. marmorata, M. californica, R. glaucostigmata, R. productus and Z. exasperata. In addition, the

FIG. 3. – Size frequency distributions by sex of batoid species captured by gillnets. *n* refers to the number of measured individuals. Females are depicted in black, males in white, unsexed specimens in grey. Dotted lines indicate the size at maturity. In cases in which a substantial difference in size at maturity exists between sexes, lines are labeled M (male) or F (female).

male-to-female sex ratio differed significantly from the expected 1:1 ratio for the following gillnet-captured elasmobranch species: *C. falciformis, C. ventriosum, G. galeus, H. francisci, I. oxyrhinchus, M. henlei, S. zygaena, S. californica, G. marmorata, M. californica, R. glaucostigmata, R. productus and Z. exasperata.* For longline-captured elasmobranchs, size distribution differed significantly between males and females for *C. falciformis, P. glauca, and S. zygaena, while sex ratio differed significantly from the expected 1:1 ratio for I. oxyrhinchus, P. glauca and S. zygaena.*

Information detailing the size and sex composition of elasmobranchs captured by gillnet and longline is summarized in Figures 2, 3, and 4. Table 6 provides detailed information in sex ratios of all captured elasmobranchs, and Table 7 provides information on the size structure of infrequently captured species.

Diversity index and biogeography

The species richness and diversity recorded in BCS was high with 52 elasmobranch species documented, the Shannon-Wiener index value (H') of 2.34±0.01 SE and the Simpson index (D) of 0.86. There was a higher species richness in the north zone (46 species), resulting in a high diversity index (H'=2.32±0.02 SE) and dominance index (D=0.84), while the south zone (26 species) had lower richness; the diversity index was 2.19 (±0.14),

FIG. 4. – Size frequency distributions by sex of shark species captured by longlines. *n* refers to the number of measured individuals. Females are depicted in black, males in white, unsexed specimens in grey. Dotted lines indicate the size at maturity. In cases in which a substantial difference in size at maturity exists among sexes, lines are labeled M (male) or F (female).

but the dominance index was high (D=0.83). Significant differences (t=14.93; p<0.001) were found in the diversity indices estimated between north and south zones. Also, the Jaccard index between the two zones was low (J=0.42), indicating that there is a difference in the species composition of elasmobranchs from the sites studied.

DISCUSSION

Survey of artisanal camps

In conjunction with previous studies (Bizzarro *et al.* 2009a, Smith *et al.* 2009, Bizzarro *et al.* 2009b, Bizzarro *et al.* 2009c and Cartamil *et al.* 2011), the results of the present study allow for the first time a comprehensive characterization of artisanal elasmobranch fisheries throughout the Mexican northwest. In this region, the Pacific coast of BCS represents one of the largest catch regions of elasmobranch artisanal fisheries. A total of 60 artisanal camps were recorded and the area was surpassed in number only by the 83 camps on the east coast of BCS (Bizzarro *et al.* 2009b).

Elasmobranchs were the primary target in relatively few camps (6 camps). This may be due to the economics of this fishery, including high operating costs, fuel, oil, equipment, gear, poor infrastructure, limited marketing channels and consequently lower prices for products (Ponce-Diaz *et al.* 2009). On the Pacific coast of BCS the artisanal elasmobranch fishery was conducted by licensees (concessionaires), free fishers and cooperatives.

Elasmobranchs were often caught incidentally in teleost fisheries, such as the California halibut (*Paralichthys californicus*) gillnet fishery, in which elasmobranch bycatch such as *R. productus* and *M. henlei* was recorded. In addition, fishermen in some camps were opportunistic and focused catch on abundant local fauna, which varied according to the season, due to the low price of elasmobranchs (7-14 pesos kg⁻¹) compared with other fishery resources in the study area [e.g., California halibut (20-40 pesos kg⁻¹), white seabass (*Atractoscion*

TABLE 6. – Sex ratios for the most common species of elasmobranchs captured by the artisanal fishery on the Pacific coast of Baja California Sur during the period 2000-2010.

Fishing gear	Species	Males (n)	Females (n)	Ratio	χ^2	P^*
Gillnet	Sharks					
	Carcharhinus falciformis	64	97	1.5:1	6.76	< 0.001
	Carcharhinus obscurus	25	27	1:1	0.16	>0.68
	Cephaloscyllium ventriosum	41	89	2.1:1	17.72	< 0.001
	Galeorhinus galeus	56	94	1.6:1	9.62	< 0.001
	Heterodontus francisci	144	186	1.2:1	5.35	< 0.01
	Heterodontus mexicanus	18	25	1:1	1.13	0.28
	Isurus oxvrinchus	110	71	1.5:1	8.4	< 0.01
	Mustelus californicus	77	92	1:1	1.33	0.24
	Mustelus henlei	1038	2066	2:1	340.46	< 0.001
	Mustelus lunulatus	33	39	1:1	0.5	0.48
	Prionace glauca	55	38	1:1	3.1	0.07
	Sphyrna zygaena	106	166	1.5:1	13.23	< 0.001
	Squatina californica	298	389	1.3:1	12.05	< 0.001
	Triakis semifasciata	26	33	1:1	0.83	0.36
	Batoids					
	Gymnura marmorata	53	118	2.2:1	32.69	< 0.001
	Myliobatis californica	338	238	1.4:1	17.36	< 0.001
	Rhinobatos glaucostigma	19	51	2.6:1	14.63	< 0.001
	Rhinobatos productus	989	1164	1.2:1	14.22	< 0.001
	Zapteryx exasperata	645	354	1.8:1	84.76	< 0.001
Longline	Sharks					
Ū.	Carcharhinus falciformis	41	56	1:1	2.32	0.12
	Isurus oxyrinchus	588	432	1.3:1	23.86	< 0.001
	Prionace glauca	1993	1358	1.4:1	120.33	< 0.001
	Sphyrna zygaena	83	114	1.3:1	4.88	< 0.01

SCI. MAR., 77(3), September 2013, 473-487. ISSN 0214-8358 doi: 10.3989/scimar.03817.05A

		iciigui.			
Fishing gears	Species	MS	SD	SM	n
Gillnet	Alopias pelagicus	272.2	14.2	TL	15
	Bathvraia spinosissima	30		DW	1
	Carcharhinus altimus	126.74	14.84	TL	12
	Carcharhinus brachyurus	275		TL	1
	Carcharhinus leucas	91		TL	1
	Carcharhinus longimanus	195	12.16	TL	3
	Carcharodon carcharias	151.5	13.9	TL	4
	Echinorhinus cookei	145		TL	1
	Hexanchus griseus	143.5	14.15	TL	3
	Himantura pacifica	44.5	10.4	DW	4
	Myliobatis spp.	60	14	DW	11
	Negaprion brevirostris	67		TL	1
	Notorhynchus cepedianus	163		TL	1
	Platyrhinoidis triseriata	53.2	8.34	TL	15
	Raja inornata	36		DW	1
	Raja spp.	61.4	28.88	DW	11
	Rhinobatos spp.	86.62	9.36	TL	12
	Rhizoprionodon longurio	75.3	21.45	TL	3
	Sphyrna lewini	160.77	65.34	TL	14
	Sphyrna spp.	127.75	62.65	TL	4
	Squalus acanthias	33		AL	1
	Torpedo californica	43		DW	1
	Urobatis concentricus	37.17	1.89	DW	14
	Urobatis halleri	43.3	2.3	DW	3
	Urotrygon chilensis	33		DW	1
	Urotrygon nana	23.75	1.76	DW	2
	Urotrygon rogersi	36		DW	1
Longline	Carcharhinus leucas	285		TL	1
	Carcharhinus limbatus	162.33	38.39	TL	3
	Carcharhinus longimanus	187.5	23.04	TL	4
	Carcharhinus obscurus	99		TL	1
	Dasyatis dipterura	150		DW	1

167.33

125

77

109.5

76.25

86.29

94.33

51.5

51.68

13 44

4.6904

4.79

24.27

36.779

9.19

TABLE 7. – Summary statistics on size parameters for elasmobranch species captured by gillnet (where n < 16) and longline (where n < 8). Mean size (MS, in cm) ± standard deviation (SD) is shown for each specified measurement (SM). TL, total length; DW, disc width; AL, alternate length

nobilis; 40-60 pesos kg⁻¹), abalone (300-500 pesos kg⁻¹) and lobster (150-250 pesos kg⁻¹)].

Galeocerdo cuvier

Galeorhinus galeus

Mustelus lunulatus

Pteroplatytrygon violacea

Mustelus henlei

Mustelus spp.

Sphyrna spp.

Myliobatis spp.

Landings in the present study were dominated by sharks (61%). Compared with the shark fishery that began in 1930, batoid fisheries in Mexico are a relatively new activity. In the late 1980s, demand increased as shrimp vessels began to commercialize their batoid bycatch. In the early 1990s, due to a drop in the production of Pacific sharpnose shark (*Rhizoprionodon longurio*) and growing market demand, artisanal fishermen began to engage formally in targeting batoids (Cudney-Bueno and Turk-Boyer 1998). Currently the artisanal batoid fishery is increasing, and official data show that in BCS from 2008 (983 t) to 2009 (1504 t) there was an increase of over 50% (Marquez-Farias and Blanco-Parra 2006, SAGARPA 2009).

Biological data

The prevalence of juveniles of several elasmobranch species (e.g. G. galeus, C. ventriosum and M. californica) throughout the year and the frequency of occurrence of small size classes of several shark species (e.g. *P. glauca* and *I. oxyrinchus*) within landings suggests that considerable fishing effort may be opportunistically directed on breeding or nursery areas. Along the Pacific coast of BCS there are three major coastal lagoon systems (Guerrero Negro-Ojo de Liebre, Laguna San Ignacio and Bahia Magdalena; Fig. 1), which represent highly productive and diverse environments (Ibarra-Obando *et al.* 2001). It has been documented that coastal elasmobranch species use bays, estuaries and lagoons as foraging, resting, mating and nursery grounds (Pratt and Carrier 2001, Heupel and Simpfendorfer 2005, Farrugia *et al.* 2011).

TL

TL.

TL

TL

TL

DW

DW

TL

6

Sexual segregation has been reported in elasmobranchs (Sims 2005) and in the present study several species had a tendency to be caught in same sex grouping, such as *R. productus*, *M. californica*, *Z. exasperata* and species of the *Mustelus* genus. This is a behavior that can occur due to differences in sex, body size, behavior, nutritional requirements and/or habitat selection (Klimley 1987, Magurran and Macias-Garcia 2000, Sims 2005, Wearmouth and Sims 2008).

			-		
Pacific coast of BCS	Ν	North of Bahia Magdalena	Ν	South of Bahia Magdalena	Ν
Rhinobatos productus Prionace glauca Mustelus henlei	3820 3455 3235	Squatina californica Heterodontus francisci Galeorhinus galeus	755 378 152	Carcharhinus falciformis Myliobatis spp. Alonias pelagicus	258 18 15
Myliobatis californica	1457	Cephaloscyllium ventriosum	151	Carcharhinus longimanus	13
Isurus oxyrinchus	1327	Triakis semifasciata	63	Carcharhinus limbatus	3
Zapteryx exasperata	1110	Heterodontus mexicanus	57	Galeocerdo cuvier	3
Sphyrna zygaena	477	Carcharhinus obscurus	53	Carcharhinus leucas	2
Mustelus spp.	404	Alopias vulpinus	36	Negaprion brevirostris	1
Gymnura marmorata Mustelus eglifornicus	245	Platyrninolais triseriata Urobatis concentricus	15		
Rhinohatos alaucostiama	192	Carcharbinus altimus	14		
Mustelus lunulatus	76	Carcharodon carcharias	4		
Narcine entemedor	40	Himantura pacifica	4		
Raja velezi	34	Hexanchus griseus	3		
Rhinoptera steindachneri	32	Urotrygon chilensis	3		
Dasyatis longa	32	Urobatis halleri	2		
Myliobatis longirostris	29	Pteroplatytrygon violacea	2		
Sphyrna lewini	26	Carcharhinus brachyurus	1		
Dasyalls alpierura Phinohatos spp	20	Bainyraja spinosissima Notorbyrobus capadianus	1		
Raia spp.	11	Echinorhinus cookei	1		
Sphyrna spp.	10	Raja inornata	1		
Rhizoprionodon longurio	3	Squalus acanthias	1		
. 0		Úrotrygon rogersi	1		
		Torpedo californica	1		
		Urotrvgon nana	1		

TABLE 8. – Arrangement of species according to marine province divisions. The first column represents species distributed along the entire Pacific coast of BCS. The "North of Bahia Magdalena" column represents species restricted to the California Province. The "South of Bahia Magdalena" represents species restricted to the Cortez Province. Species are arranged from highest to lowest relative abundance.

R. productus and *P. glauca*, the two most abundant elasmobranch species recorded, were also the most important species in landings along the Pacific coast of BC (Cartamil *et al.* 2011). Shovelnose guitarfish was also the species most captured in the upper Gulf of California (Marquez-Farias 2002, Bizzarro *et al.* 2009a, Smith *et al.* 2009). High fishing pressure recorded in this species could cause population declines, so this species should be monitored closely.

Seasonality

Seasonal variation in targeted elasmobranch species was recorded along the Pacific coast of BCS. Several species recorded in the landings could be involved in seasonal migrations (e.g. *R. productus*, *M. californica*) (Bizzarro *et al.* 2007a). Temperature plays an important role in the seasonal migrations of several elasmobranchs species in nearshore waters (Talent 1985, Wallman and Bennett 2006, Wiley and Simpfendorfer 2008).

Fishing effort was greater during the spring and summer seasons than in autumn and winter. This lateyear decrease was caused primarily by adverse oceanographic conditions due to the presence of northwesterly winds (Jaramillo *et al.* 2004).

Diversity and biogeography

Estimates of diversity levels in fishery studies can be useful because changes can be detected in the structure of commercially exploited populations (Tavares and Arocha 2008). Further, it has been suggested that managers can use the diversity of species in an area and the presence of foundation species as indicators of marine ecosystem functioning (Bracken *et al.* 2007). The application of diversity indices in elasmobranch fisheries biology is relatively recent, and few studies using this technique have been reported (e.g. Worm *et al.* 2003, Tavares and Arocha 2008).

The Shannon-Wiener index estimated for the study area suggests high levels of elasmobranch diversity. The number of elasmobranch species (52) recorded on the Pacific coast of BCS is higher than that reported in any other region of northwestern Mexico. This high richness and diversity included species of different affinities and ecological requirements; this finding can be attributed to the convergence of currents found in the study area, as well as topography and bathymetry. Currents converging on the Pacific coast of BCS are the cold-temperate California current, and the North Equatorial Current with warm tropical characteristics (Hickey 1979, Lynn and Simpson 1987). These currents influence elasmobranch species composition (e.g. tropical species such as R. glaucostigma and N. brevirostris and temperate species such as T. californica and Alopias vulpinus) (Hubbs 1960, Walker 1960, Lluch-Belda et al. 2003, Dawson et al. 2006).

We observed a significant change in the abundance of some species to the south and north of Punta San Lazaro, Bahia Magdalena (Table 8). Bahia Magdalena is located at the confluence of several water masses and is therefore considered a transition zone (Brinton and Reid 1986). Our results also suggest that from Laguna San Ignacio to Bahia Magdalena there exists a transition zone between the Californian Province and Cortez Province; this is corroborated by the mixed tropicaltemperate species found in this study. This transition zone is a possible boundary for the distribution of some elasmobranchs (e.g. *Rhinoptera steindachneri, Rhinobatos glaucostigma* and *Myliobatis longirostris*).

Management implications

Despite the importance of elasmobranch fishing in Mexico, few regulations have been instituted for this fishery. The first step for management was taken by the Mexican National Institute of Fisheries, which recommended a moratorium on issuing new shark-fishing permits beginning in 1993 (Castillo-Geniz et al. 1998), which was carried out in 1998 (Sosa-Nishizaki et al. 2008). This was followed by the development of a National Action Plan for the Conservation and Management of sharks, rays and related species in Mexico in 2004 by the Comision Nacional de Agricultura y Pesca (CONAPESCA-INP 2004). Finally, a regulation known as NOM-029-PESCA-2006 (DOF 2007) instituted in 2007 aimed to protect and ensure proper fisheries management and conservation for elasmobranchs (DOF 2007).

Our results will serve as a baseline for determining future changes in the artisanal fishery. For proper management in Mexico it is necessary to improve fishery statistics and there is a need for a continued monitoring programme to obtain specific information about captures by sites and seasons. It is also important to incorporate an ecosystem approach to fisheries management, which represents a substantial change in perspective and poses equally substantial challenges (Bracken et al. 2007). In addition, our survey indicates that considerable fishing pressure is occurring upon juvenile elasmobranchs, likely within their nursery habitat. Further research into the determination and protection of these nursery areas is critical for the sustainability of elasmobranch populations (Branstetter 1990).

After decades of elasmobranch exploitation in waters of the Pacific coast of BCS, there have likely been decreases in populations and changes in size structure among less fecund species (Stevens et al. 2000). A specific case that was observed in the present study is that of the angel shark, which was exploited significantly in Laguna San Ignacio and Bahia Magdalena many years ago (Villavicencio-Garayzar and Abitia-Cardenas 1994). In the present study this species was not recorded in either zone; its catch was restricted only to the zone north of Laguna San Ignacio. This suggests that fishing pressure has caused the decline of its populations. Genetic studies suggest that the angel shark captured on the Pacific coast of the BC Peninsula is going through a "bottleneck" process caused by overfishing (Ramirez-Amaro et al. 2011), so particular attention should be paid to the protection of this species.

ACKNOWLEDGEMENTS

The present study was supported by CA Sea Grant, the Moore Family Foundation, the Tinker Foundation, the Save Our Seas Foundation, UC Mexus-CONACYT, and the Sharks and Rays Project of CICIMAR-IPN. Carmina Salinas, Yassir Torres, Omar Santana, Edgardo Camacho, Merit and students from Puerto Angel University assisted with field data collection. The first author acknowledges fellowships from CONACYT, PIFI and the International Academic Mobility Programme of the Instituto Politecnico Nacional. FGM acknowledges fellowships from the Instituto Politecnico Nacional (COFFA and EDI). We greatly appreciate the patience, cooperation and assistance of BCS artisanal fishermen for providing access to their landings and information about their fishing activities.

REFERENCES

- Alvarez-Borrego J. 1983. Gulf of California. In: Ketchum B.H. (ed.), *Ecosystems of the world estuaries and enclosed seas*. Elsevier Publishing Co., U.S.A., pp. 427-449.
- Arreguin-Sanchez F., Hernandez-Herrera A., Ramirez-Rodriguez M., Perez-España H. 2004. Optimal management scenarios for the artisanal fisheries in the ecosystem of La Paz Bay, Baja California Sur, Mexico. *Ecol. Model.* 172: 373-382.
- Bejarano-Alvarez M., Galvan-Magaña F., Ochoa-Baez R.I. 2010. Reproductive biology of the scalloped hammerhead shark *Sphyrna lewini* (Chondrichthyes: Sphyrnidae) off south-west Mexico. Aqua Int. J. Ichthyol. 17: 11-22.
- Bizzarro J.J., Smith W.D., Marquez-Farias J.F., Hueter R.E. 2007a. Artisanal fisheries and reproductive biology of the golden cownose ray, *Rhinoptera steindachneri* Evermann and Jenkins, 1891, in the northern Mexican Pacific. *Fish. Res.* 84: 137-146.
- Bizzarro J.J., Robison H.J., Rinewalt C.S., Ebert D.A. 2007b. Comparative feeding ecology of four sympatric skate species off central California, USA. *Env. Biol. Fish.* 80: 197-220.
- Bizzarro J.J., Smith W.D., Castillo-Geniz J.L., Ocampo-Torres A., Marquez-Farias J.F., Hueter R.E. 2009a. The seasonal importance of small coastal sharks and rays in the artisanal elasmobranch fishery in Sinaloa, México. *Pan-Am. J. Aquat. Sci.* 4: 513-531.
- Bizzarro J.J., Smith W.D., Hueter R.E., Villavicencio-Garayzar C.J. 2009b. Activities and catch composition of artisanal elasmobranch fishing sites on the eastern coast of Baja California Sur, Mexico. *Bull. South. Calif. Acad. Sci.* 108: 137-151.
- Bizzarro J.J., Smith W.D., Marquez-Farias J.F., Tyminski J., Hueter R.E. 2009c. Temporal variation in the artisanal elasmobranch fishery of Sonora, Mexico. *Fish. Res.* 97: 103-117.
- Bonfil R. 1994. Overview of world elasmobranch fisheries. FAO Fisheries Technical Paper. 341: 1-119.
- Bonfil R. 1997. Status of shark resources in the southern Gulf of Mexico and Caribbean: implications for management. *Fish. Res.* 29: 101-117.
- Bracken M.E.S., Bracken B.E., Rogers-Bennett L. 2007. Species diversity and foundation species: potential indicators of fisheries yields and marine ecosystem functioning. CalCOFI Rep. 48: 1-10.
- Branstetter S. 1990. Early life history implications of selected Carcharhinoid and Lamnoid sharks of the northwest Atlantic. *NOAA Technical Reports NMFS* 33: 17-28.
- Briggs J.C. 1974. *Marine zoogeography*. McGraw-Hill, New York, 475 pp.
- Brinton E., Reid J.L. 1986. On the effects of interannual variations in circulation and temperature upon euphausiids of the California Current. In: Pierrot-Bults A.C., van der Spoel S., Zahuranec B.J., Johnson R.K. (eds), *Pelagic biogeography*. UNESCO Technical Papers in Marine Science, pp. 47-50.

- Camhi M. 1998. Sharks on the line: a state-by-state analysis of sharks and their fisheries. National Audubon Society, New York, 158 pp.
- Carrera-Fernandez M., Galvan-Magaña F., Ceballos-Vazquez P. 2010. Reproductive biology of the blue shark Prionace glauca (Chondrichthyes: Carcharhinidae) off Baja California Sur, Mexico. Aqua Int. J. of Ichthyol. 16: 101-110.
- Castillo-Geniz J.L. 1992. Diagnostico de la Pesqueria de Tiburon en Mexico. Instituto Nacional de la Pesca and Secretaria de Pesca, Mexico, 76 pp.
- Castillo-Geniz J.L., Sosa-Nishizaki O., Pérez-Jimenez J.C. 2007. Morphological variation and sexual dimorphism in the California skate, Raja inornata Jordan and Gilbert, 1881 from the Gulf of California, México. Zootaxa 1545: 1-16.
- Castillo-Geniz J.L., Marquez-Farias J.F., De la Cruz M.C.R., Cortes E., Del Prado A.C. 1998. The Mexican artisanal shark fishery in the Gulf of Mexico: towards a regulated fishery. Mar. Freshw. Res. 49: 611-620.
- Cartamil D., Santana-Morales O., Escobedo-Olivera M., Kacev D., Castillo-Geniz L., Graham J.B., Rubin R.D., Sosa-Nishizaki O. 2011. The artisanal elasmobranch fishery of the Pacific coast of Baja California, México. Fish. Res. 108: 393-403.
- Colwell R.K. 2009. Statistical estimation of species richness and shared species from samples. Version 8.2.0. http://viceroy.eeb. uconn edu/estimates.
- Compagno L.V.J. 2001. Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Bullhead, mackerel and carpet sharks (Heterodontiformes, Lamniformes and Orectolobiformes). FAO Species Catalogue for Fishery Purposes 2. FAO, Rome, pp. 1-269.
- CONAPESCA-INP. 2004. Plan de accion nacional para el manejo y conservacion de tiburones, rayas y especies afines en Mexico. Comision Nacional de Acuacultura y Pesca e Instituto Nacional de la Pesca, Secretaria de Agricultura, Ganaderia, Desarrollo Rural, Pesca y Alimentacion. Mazatlan, Mexico. 78 pp.
- Cortes-Ortiz R.A., Ponce-Diaz G., Angeles-Villa M. 2006. El sector pesquero en Baja California Sur: un enfoque de insumo-producto. Region y Sociedad 18: 107-129.
- Cudney-Bueno R., Turk-Boyer P. 1998. Pescando entre mareas del alto Golfo de California; una guia sobre la pesca artesanal, su gente y sus propuestas de manejo. CEDO intercultural, Serie tecnica No. 1. Sonora, Mexico. 164 pp. Dawson M.N., Waples R.S., Bernardi G. 2006. Comparative phy-
- logeography of coastal fishes. In: Allen L.G., Horn M.H., Pondella D.J. (eds), *Ecology of California marine fishes*. California University Press, U.S.A. pp. 26-54.
- DOF, Diario Oficial de la Federacion. 2007. Norma Oficial Mexicana NOM-029-PESC-2006, Pesca responsable de tiburones y rayas. Especificaciones para su aprovechamiento. Secretaria de Agricultura, Ganaderia, Desarrollo Rural, Pesca y Alimentacion (SAGARPA), Mexico.
- Ebert D.A. 2003. Sharks, rays and chimeras of California. Univer-
- sity of California Press, 285 pp. Espinoza-Carreon T. L., Gaxiola-Castro G., Robles-Pacheco J. M., Najera-Martinez S. 2001. Temperatura, salinidad, nutrientes y clorofila A en aguas costeras de la ensenada del sur de California. Cienc. Mar. 27: 397-422
- FAO (Food and Agriculture Organization of the United Nations). 2009. Fishstat Plus (v.2.30), capture production data base, 1950-2007. FAO, Rome, Italy.
- Farrugia T.J., Espinoza M., Lowe C.G. 2011. Abundance, habitat use and movement patterns of the shovelnose guitarfish (Rhinobatos productus) in a restored southern California Estuary. Mar. Freshw. Res. 62: 648-657.
- Ferry L.A., Cailliet G.M. 1996. Sample size sufficiency and data analysis: are we characterizing and comparing diet properly? In: MacKinlay D., Shearer K. (eds), Feeding ecology and nutrition in fish: proceedings of the symposium on the feeding ecology and nutrition in fish. International Congress on the Biology of
- Fishes, San Francisco, pp. 71-80.
 Galvan-Magaña M.F. 2009. La pesqueria de tiburones en Baja California Sur. In: Urciaga G.J., Beltran M.L.F., Lluch B.D. (eds), Recursos marinos y servicios ambientales en el desarrollo regional. Centro de Investigaciones Biologicas del Noroeste, Mexico, pp. 227-244
- Gotelli N.J., Colwell R.K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of spe-

cies richness. Ecol. Lett. 4: 379-391.

- Hastings P.A. 2000. Biogeography of the tropical eastern Pacific: distribution and phylogeny of chaenopsid fishes. Zool. J. Lin. Soc. 128: 319-335.
- Heupel M.R., Simpfendorfer C.A. 2005. Using acoustic monitoring to evaluate MPAs for shark nursery areas: the importance of longterm data. *Mar. Technol. Soc. J.* 39: 10-18.
- Hickey B.M. 1979. The California Current System-hypothesis and
- Herdy D.M. 1977. The Cambra Cambra Cambra System—hypothesis and facts. Prog. Oceanogr. 8: 191-279.
 Horn M.H., Allen L.G., Lea R.N. 2006. Biogeography. In: Allen L.G., Pondella D.J., Horn M.H. (eds), The ecology of marine fishes: California and adjacent waters. University of California, U.S.A. pp. 3-25.
- Hoyos-Padilla E.M., Ceballos-Vázquez B.P., Galván-Magaña F. 2012. Reproductive biology of the silky shark Carcharhinus falciformis (Chondrichthyes: Carcharhinidae) off the west coast of Baja California Sur, México. Aqua Inter. J. Ichthyol. 18(1): 15-24
- Hubbs C. 1960. The marine vertebrates of the outer coast Symposium: The biogeography of Baja California y adjacent seas. Syst. Zool. 9: 41-165.
- Ibarra-Obando S.E., Camacho-Ibar V.F., Carriquiry J.D., Smith S.V. 2001. Upwelling and lagoonal ecosystems of the dry Pa-cific coast of Baja California. In: Seeliger U., Kjerfve B. (eds), Coastal marine ecosystems of Latin America. Springer-Verlag, Berlin, pp. 315-330.
- Instituto Nacional de Estadistica Geografia e Informatica (INEGI). 2011. Información por entidad. http://www.inegi.org.mx.
- Jaramillo O.A., Saldaña R., Miranda U. 2004. Wind power potential of Baja California Sur, Mexico. Renew. Energ. 29: 2087-2100.
- Klimley A.P. 1987. The determinants of sexual segregation in the scalloped hammerhead shark, Sphyrna lewini. Environ. Biol. Fish. 18: 27-40.
- Lluch-Belda D., Lluch-Cota D.B., Lluch-Cota S.E. 2003. Baja California's Biological Transition Zones: Refuges for the California Sardine. J. Oceanogr. 59: 503-513.
- Lynn R.J., Simpson J.J. 1987. The California current system: the seasonal variability of its physical characteristics. J. Geophys. Res. 92: 12947-12966.
- Magurran A.E., Macias-Garcia C. 2000. Sex differences in behavior as an indirect consequence of mating system. J. Fish. Biol. 57: 839-857
- Manly B.F.J. 2007. Randomization, Bootstrap, and Monte Carlo Methods in Biology. Chapman and Hall/CRC Press, Inc., Boca Raton, 455 pp
- Marquez-Farias J.F. 2002. The artisanal ray fishery in the Gulf of California: development, fisheries research, and management issues. Shark News 14: 1-5.
- Marquez-Farias J.F., Blanco-Parra M.P. 2006. Las rayas del Golfo de California. In: Instituto Nacional de la Pesca (eds), Sustentabilidad y pesca responsable en Mexico, evaluacion y manejo. Secretaria de agricultura, ganaderia, desarrollo rural, pesca y alimentación, Mexico. pp. 305-321.
- Mathew S. 2001. Small-scale Fisheries Perspectives on an Ecosystem-based Approach to Fisheries Management. Reykjavik Conference on Responsible Fisheries in the Marine Ecosystem, 1-4 October, 2001. Food and Agriculture Organization, Reykjavik.
- Musick J.A. 1999. Criteria to define extinction risk in marine fishes. Fisheries 24: 6-14.
- Perez-Jimenez J.C., Sosa-Nishizaki O., Furlong-Estrada E., Corro-Espinosa D., Venegas-Herrera A, Barragan-Cuencas O.V. 2005. Artisanal Shark Fishery at "Tres Marias" Islands and Isabel Island in the Central Mexican Pacific. J. Northw. Atl. Fish. Sci. 35: 333-343.
- Perez-Jimenez J.C., Sosa-Nishizaki O. 2008. Reproductive biology of the Brown smoothhound shark Mustelus henlei, in the northern Gulf of California, Mexico. J. Fish Biol. 73, 782-792.
- Ponce-Diaz G., Beltran-Morales L.F., Hernandez-Vazquez S., Serviere-Zaragoza E. 2009. Pesca ribereña: retos y oportunidades en un entorno adverso. In: Urciaga G.J., Beltran M.L.F., Lluch B.D. (eds), Recursos marinos y servicios ambientales en el desarrollo regional. Centro de Investigaciones Biologicas del Noroeste, Mexico, pp. 177-196. Pratt H.L., Carrier J.C. 2001. A review of elasmobranch reproduc-
- tive behavior with a case study on the nurse shark, Ginglymostoma cirratum. Environ. Biol. Fish. 60: 157-188.
- Ramirez-Amaro S.R., Vazquez-Juarez R., Galvan-Magaña F. 2011.

Cryptic vicariance of Northeastern Pacific and Gulf of California angel shark (*Squatina californica*) populations. Evidence from Mitochondrial sequences. Abstract In: *Résumés des communications/Book of abstracts Colloque international sur la conservation et la gestion durable des populations de Requins en Afrique de l'Ouest: Bilan et Perspectives*, 25, 26 and 27 July 2011, UCAD II, Dakar, Senegal.

- Ramirez-Rodriguez M. 2011. Data collection on the small-scale fisheries of Mexico. *ICES J. Mar. Sci.* 68: 1-5.
- Robertson D.R., Cramer K.L. 2009. Shore fishes and biogeographic subdivisions of the Tropical Eastern Pacific. *Mar. Ecol. Progr. Ser.* 308: 1-17.
- SAGARPA. 2009. Anuario estadistico de Acuacultura y pesca 2009. Comisión Nacional de Acuacultura y Pesca. Sinaloa. Mexico. http://www.conapesca.sagarpa.gob.mx.
- Shoou-Jeng J., Hua-Hsun H. 2005. Reproduction and embryonic development of the shortfin mako, *Isurus oxyrinchus* Rafinesque, 1810, in the Northwestern Pacific. *Zool. Stud.* 44: 487-496.
- Sims D.W. 2005. Differences in habitat selection and reproductive strategies of male and female sharks. In: Ruckstuhl K., Neuhaus P. (eds), Sexual segregation in vertebrates: ecology of the two sexes. Cambridge University Press, London, pp. 127-147.
- Smith W.D., Bizzarro J.J., Cailliet G.M. 2009. The artisanal elasmobranch fishery of Baja California, Mexico: characteristics and management considerations. *Cienc. Mar.* 35: 209-236.
- Sosa-Nishizaki O., Marquez-Farias J.F., Villavicencio-Garayzar C.J. 2008. Case study: pelagic shark fisheries along the west coast of Mexico. In: Camhi M.D., Pikitch E.K., Babcock E.A. (eds), Sharks of the open ocean: Biology, fisheries and conservation. Blackwell Science, Ames, IA. U.S.A. pp. 60-68. Spalding M.D., Fox H., Allen G.R., Davidson N., Ferdaña Z.A.,
- Spalding M.D., Fox H., Allen G.R., Davidson N., Ferdaña Z.A., Finlayson M., Halpern B.S., Jorge M.A., Lombana A., Lourie S.A., Martin K.D., McManus E., Molnar J., Recchia C.A., Robertson J. 2007. Marine Ecoregions of the world: a bioregionalization of coastal and shelf areas. *BioScience* 57: 573-583.
- Stevens J.D., Bonfil R., Dulvy N.K., Walker P.A. 2000. The effects of fishing on sharks, rays, and chimaeras (Chondrichthyans), and the implications for marine ecosystems. *ICES J. Mar. Sci.* 57: 476-494.
- Talent L.G. 1985. The occurrence, seasonal distribution, and reproductive condition of elasmobranch fishes in Elkhorn Slough, California. *Calif. Fish Game* 71: 210-219.
- Tavares R., Arocha F. 2008. Species diversity, relative abundance and length structure of oceanic sharks caught by the Venezuelan longline fishery in the Caribbean Sea and Western-central Atlantic. *Zootecnia Trop.* 26: 489-503.
- Villavicencio-Garayzar C.J. 1995. Biologia reproductiva de la guitarra pinta, Zapteryx exasperata (Pisces: Rhinobatidae), en

Bahía Almejas, Baja California Sur, Mexico. *Cienc. Mar.* 21: 141-153.

- Villavicencio-Garayzar C.J. 1996a. Aspectos poblacionales del angelito, *Squatina californica* Ayres, en Baja California Mexico. *Cienc. Mar.* 7: 15-21.
- Villavicencio-Garayzar C.J. 1996b. Size, sex and reproduction of Myliobatis californica and Myliobatis longirostris (Pisces: Myliobatidae) in Baja California Sur, Mexico. Rev. Biol. Trop. 44: 291-295.
- Villavicencio-Garayzar C., Abitia- Cardenas L.A. 1994. Elasmobranquios en Bahia Magdalena y Laguna San Ignacio, Baja California Sur, Mexico. *Rev. Inv. Cienc. Ser. Cienc. Mar.* 5: 63-67.
- Villavicencio-Garayzar C., Bizzarro J.J. 2004. Narcine entemedor. In: IUCN Red List of Threatened Species. IUCN 2011, Version 2011.1, www.iucnredlist.org.
- Villavicencio-Garayzar C.J., Downton-Hoffmann C.C., Mariano-Melendez E. 1994. Tamaño y reproduccion de *Dasyatis longus* (Pisces: Dasyatidae), en Bahia Almejas, Baja California Sur, Mexico. *Rev. Biol. Trop.* 42: 375-377.
- Walker B.W. 1960. The distribution and affinities of the marine fish fauna of the Gulf of California. Symposium: The Biogeography of Baja California and adjacent Seas. *Syst. Zool.* 9: 123-133.
- Walker T.I. 1998. Can shark resources be harvested sustainably? A question revisited with a review of shark fisheries. *Mar. Freshw. Res.* 49: 553-572.
- Wallman H.L., Bennett W.A. 2006. Effects of parturition and feeding on thermal preference of Atlantic stingray, *Dasyatis sabina* (Lesueur). *Environ. Biol. Fish.* 75: 259-267.
- Wearmouth V.J., Sims D.W. 2008. Sexual segregation of marine fish, reptiles, birds and mammals: behavior patterns, mechanisms and conservation implications. *Adv. Mar. Biol.* 54: 107-170.
- Wiley T.R., Simpfendorfer C.A. 2008. The ecology of elasmobranchs occurring in the Everglades National Park, Florida: implications for conservation and management. *Bull. Mar. Sci.* 80: 171-189.
- Worm B., Lotze H.K., Myers R.M. 2003. Predator diversity hotspots in the blue ocean. *Proc. Nat. Acad. Sci. USA* 100: 9884-9888.
- Zaytsev O., Cervantes-Duarte R., Sanchez-Montante O., Gallegos-Garcia A. 2003. Coastal upwelling activity on the Pacific shelf of the Baja California Peninsula. J. Oceanogr. 59: 489-502.
- Zar J.H. 1996. Biostatistical Analysis. Prentice Hall, Upper Saddle River, NJ, 960 pp.

Scient. ed.: P. Sartor.

- Received January 22, 2013. Accepted July 1, 2013
- Published online September 5, 2013.