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Abstract:  
The exchange and reorganization of genetic material between two individuals is an essential function 

of meiosis. Even though in the last years major findings in the field of meiosis have been achieved, 

especially in plants some key questions remain concealed. For a better understanding of plant 

meiosis it is essential to decipher why plants need the activity of two very different meiotic SPO11 

proteins. This stands in contrast to metazoa and fungi where a single SPO11 is present and sufficient 

for a proper meiosis. In Arabidopsis thaliana two SPO11, referred to as Ath SPO11-1 and  

Ath SPO11-2, are necessary in a functional form for the induction of double strand breaks (DSBs) 

during prophase I of meiosis. In nearly all eukaryotic organisms DSBs ensure on one hand the overall 

genome stability by enabling correct pairing and distribution of the chromosomes and on the other 

hand genetic variability by permitting recombination. Without DSBs no physical connection can occur 

between homologous chromosomes and recombination, pairing, and crossing over are excluded. The 

absence of these processes leads to a random distribution of the chromosomes during meiosis and to 

almost complete sterility. Therefore, the evolution, the specific functions, and possible interaction of 

both different meiotic SPO11 proteins in plants have been analyzed in this thesis. For this purpose 

database searches were performed and homologs of SPO11 in nearly all kingdoms of life were 

identified and analyzed. To determine the specific functions of both SPO11 paralogs in A. thaliana 

three non-conserved parts and the well conserved last exon between both meiotic SPO11 were 

exchanged. Furthermore, the later one was completely deleted, creating chimeric SPO11 genes. 

Analyzing these exchanges a sequence specific function for both SPO11 proteins was shown. By 

exchanging Ath SPO11-1 and -2 with related and more ancestral SPO11, additionally, species 

specificity for the respective SPO11 was exposed. Complementation was only possible using SPO11 

from the close related (20 mya) species Brassica rapa. Partial complementation was achieved when 

SPO11-1 cDNA from papaya (Carica papaya) was integrated multiple times. By performing these 

analyses a vast pattern of aberrant spliced forms for SPO11-1 and -2 in various species were 

identified. By examination of the splicing landscape of orthologs from both SPO11 in its respective 

source plant and after transformation into A. thaliana, furthermore, a species and sequence 

specificity for the splicing process of SPO11 have been revealed. Due to analyses performed on the 

splicing landscape of the chimeric SPO11 genes a sequence specific distribution of splicing events was 

identified. These findings indicate that the function and the conserved splicing mechanism of each 

meiotic active SPO11 paralog is sequence specific and that function of the respective orthologs are 

species specific. To investigate a possible interaction of both SPO11 during meiosis an antibody 

against SPO11-2 was produced and a co-immunolocalization study for SPO11-1 and -2 was 

performed. First findings illustrate that both SPO11 paralogs seem to colocalize during early 

prophase I. However, SPO11-2 seems to stay longer on the chromatin.  
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Zusammenfassung: 
Der Austausch und die Reorganisation von genetischem Material zwischen zwei Individuen ist eine 

essentielle Funktion der Meiose. Selbst wenn in den letzten Jahren bedeutsame Erkenntnisse über 

die Meiose, insbesondere bei Pflanzen, erzielt werden konnten, bleiben einige Schlüsselfragen 

ungeklärt. Für ein besseres Verständnis der Meiose ist es wichtig, zu entschlüsseln, warum Pflanzen 

zwei sehr verschiedene meiotisch aktive SPO11 Proteine benötigen. Dies steht im Gegensatz zu 

vielzelligen Tieren und Pilzen, die nur ein SPO11 besitzen und bei denen dieses für die korrekte 

Meiose ausreichend ist. In Ackerschmalwand (Arabidopsis thaliana) werden zwei SPO11 Proteine 

benötigt, Ath SPO11-1 und Ath SPO11-2 genannt, um während der Prophase I Doppelstrangbrüche 

(DSB) zu induzieren. In nahezu allen Eukaryoten sichern DSB auf der einen Seite die Genomstabilität 

durch eine korrekte Paarung und Verteilung der Chromosomen und auf der anderen Seite die 

genetische Vielfalt, da sie die Rekombination erst ermöglichen. Ohne DSB gibt es keine Verbindung 

zwischen homologen Chromosomen und Rekombination, Paarung und chromosomale 

Überkreuzungen sind daher ausgeschlossen. Dies führt zu einer zufälligen Chromosomenverteilung 

sowie beinahe vollständiger Sterilität. Deswegen wurden in dieser Arbeit die Evolution, die speziellen 

Funktionen und ein mögliches Zusammenspiel der beiden verschiedenen SPO11 Proteine in Pflanzen 

untersucht. Hierfür wurde eine Datenbanksuche durchgeführt und es konnten SPO11 Homologe in 

nahezu allen biologischen Reichen identifiziert und analysiert werden. Um die speziellen Funktionen 

der beiden SPO11 Paraloge in A. thaliana zu untersuchen, wurden drei nicht konservierte Bereiche 

sowie das konservierte letzte Exon zwischen beiden SPO11 ausgetauscht. Zusätzlich wurden beide 

um das letzte Exon verkürzt. Durch diese Änderungen konnte eine Sequenz spezifische Funktion 

beider SPO11 Proteine aufgedeckt werden. Durch den Austausch von SPO11-1 und -2 aus A. thaliana 

mit verwandten und mehr urtümlichen SPO11 Orthologen konnte zusätzlich eine Speziesspezifität für 

das jeweilige SPO11 gezeigt werden. Eine Komplementation war nur mit dem nahe verwandten 

SPO11 aus Brassica rapa möglich. Eine Teilkomplementation konnte erreicht werden, indem SPO11-1 

cDNA aus Papaya (Carica papaya) mehrfach integriert wurde. Während der Analysen wurde eine 

erhebliche Anzahl aberranter Formen von gespleißten SPO11-1 und -2 in verschiedenen Pflanzen 

identifiziert. Die Analyse des Spleißens von SPO11, sowohl in der Ursprungspflanze als auch nach der 

Transformation in A. thaliana konnte eine Spezies und Sequenzspezifität nachweisen. Zusätzlich 

zeigte das Spleißmuster der chimären SPO11 eine Sequenzabhängigkeit der einzelnen Spleißeffekte. 

Zusammengefasst sind die Funktionen und das konservierte Spleißen von meiotischen SPO11 

sequenzspezifisch und die jeweiligen SPO11 Orthologe sind speziesspezifisch. Um ein mögliches 

Zusammenspiel der beiden SPO11 während der Meiose zu zeigen wurde ein Antikörper gegen 

SPO11-2 entwickelt. Erste Ergebnisse zeigen eine Kolokalisation beider SPO11 während der frühen 

Prophase. SPO11-2 scheint jedoch länger an den Chromatiden zu verweilen. 
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Introduction: 
 

The exchange and reorganization of genetic material is an essential player of evolution. In 

contrast to bacteria most multicellular organisms like plants and metazoa have developed a 

specialized pathway for the exchange and recombination of genetic material between two 

individuals called sexual reproduction. This pathway involves the formation of a specialized 

generative cell type, the so called gametes which are formed by a specific cell division 

process named meiosis. Meiosis is divided into two division steps. The first division, 

meiosis I, possesses unique features as the homologous chromosomes pair, recombine, and 

get separated from each other. The second division, meiosis II is comparable to a mitotic cell 

division, in which a separation of the sister chromatids takes place (Figure 1). Since there is 

no DNA replication in between the division cycles, every new forming cell contains only half 

of the DNA content of its origin (for review see Edlinger and Schlögelhofer, 2011). In a given 

diploid organism, this process is leading to four genetically unique haploid generative cells. 

Meiosis is the crucial step that ensures genetic variability in the developing gametes on the 

one hand and overall genome stability on the other (Roeder, 1997; Zickler and Kleckner, 

1998; Paques and Haber, 1999; Knoll and Puchta, 2011, Knoll et al., 2014). A key step during 

meiosis I is the elongated prophase in which pairing and recombination of the parental 

chromosomes take place. Prophase I is further subdivided into five stages; leptotene, 

zygotene, pachytene, diplotene, and diakenisis (Ross et al., 1996; Figure 1). In A. thaliana the 

whole process of meiosis lasts around 33 h (Armstrong et al., 2003). Most of this time the 

cells are in the interphase (G2) and prophase I (Armstrong et al., 2003; Figure 1). 
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Figure 1. Meiotic stages in wild type A. thaliana pollen mother cells. 
Fluorescence micrograph of chromosomes from spread wild type A. thaliana pollen mother cells in 
different stages of meiosis I and meiosis II (as indicated) stained with DAPI (4´,6-diamidino-2-
phenylindole) diagramed with an estimated timeframe of A. thaliana meiosis according to Armstrong 
et al., 2003. The substages of Prophase I are shown in detail. Meta = Metaphase; Ana = Anaphase, 
Telo = Telophase. Bar = 5 µm. 

 

Double strand break induction and repair during meiosis 
 

Precise interaction of a meiosis specific protein machinery during prophase I ensures correct 

pairing, including physical connection via double Holliday Junctions (DHJs), between the 

homologous chromosomes. Due to this, the stability of the overall chromosome number is 

guaranteed (reviewed in de Massy, 2013; Jasin and Rothstein, 2013; Keeney et al., 2014). 

The subsequent resolution of DHJs by the pathway of homologous recombination repair is 

providing genetic variability in the forming gametes. In most eukaryotic organisms pairing 

can only be achieved if double strand breaks (DSBs) are initiated by SPO11 during leptotene 

(Keeney et al., 1997; 1999). In some organisms such as Drosophila melanogaster or 

Caenorhabditis elegans the homologous chromosomes are attached by a distinct mechanism 

that is not involving recombination at all. These organisms also show a lower overall DSB 
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frequency (Dernburg et al., 1998; McKim et al., 1998; Liu et al., 2002; Colaiacovo et al., 2003; 

Keeney et al., 2014). However, in most eukaryotes including plants, SPO11 induced breaks 

and their subsequent repair ensure the physical linkage between the homologous 

chromosomes. Without these breaks synapsis is inhibited and random distribution of the 

chromosomes takes place leading to almost complete sterility (Grelon et al., 2001; Stacey et 

al., 2006; Hartung et al., 2007a).  

The eukaryotic SPO11 protein shows homology to the Topoisomerase VI subunit A (TOPVIA) 

from archaea (Bergerat et al., 1997; Keeney et al., 1997; Grelon et al., 2001; Malik et al., 

2007). SPO11 and TOPVIA share seven conserved motifs, a CAP (cysteine-rich secretory 

proteins, antigen 5, and pathogenesis-related 1 proteins) domain including a winged helix 

domain, and a TOPRIM (topoisomerase-primase) domain. Both proteins are able to cleave 

double stranded DNA constituting a 5´-phosphotyrosyl linkage (Bergerat et al., 1997; Keeney 

et al., 1997; Malik et al., 2007). This and the following steps of DSB repair are best analyzed 

in yeast and mouse, where it was shown that SPO11 proteins are released from the break 

site covalently bound to a short piece of DNA, the so called SPOligo (Neale et al., 2005; 

Keeney and Neale, 2006; Milman et al., 2009; Garcia et al., 2011; Figure 2). SPOligos are 

released from the break with a 2 base pair (bp) long 5´-overhang. Each DSB generated by 

SPO11 is resulting in two SPOligos which are released from the break site and can be used to 

quantify total DSB levels as well as for identification of genome regions with enhanced DSB 

formation, so called hotspots (Gerton et al., 2000; Pan et al., 2011; Lange et al., 2011; 

reviewed in Petes, 2001). The endonucleolytic release of SPOligos leaves free DSB ends 

which are exonucleolytically resected to gain 3´-single-stranded tails. This process is 

performed by the MRX/N (MRE11; RAD50 and XRS2/NBS1) complex in combination with 

SAE2/COM1 (Uanschou et al., 2007; Garcia et al., 2011; for reviews see Czornak et al., 2008; 

Edlinger and Schlögelhofer, 2011).  

It is most likely that the endonuclease activity of MRE11 is mediating the single strand DNA 

(ssDNA) nick and the exonuclease activity of MRE11 resects the ssDNA towards SPO11. The 

relatively short piece of ssDNA is further resected by the exonucleases EXO1 and DNA2 in 

combination with the helicase SGS1 (Mimitou and Symington, 2008; 2009; 2011; Rothenberg 

et al., 2009; Manfrini et al., 2010; Garcia et al., 2011; reviewed in Edlinger and Schlögelhofer, 

2011; Figure 2). DSBs and their processing, especially by the MRN complex, are activating the 
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kinases ATM or ATR via direct interaction with NBS1 (Williams et al., 2010). ATM activation 

seems to control a negative feedback circuit that inhibits SPO11 activity as several unrelated 

studies in mouse, flies, and yeast have recently shown (for review see Keeney et al., 2014). 

Additionally, ATM is phosphorylating the histone H2AX at the amino acid (aa) serine at 

position 139, on megabase regions surrounding DSBs (Rogakou et al., 1998; Czornak et al., 

2008). Phosphorylated H2AX (γH2AX) forms foci at and near the break sites and accumulates 

various proteins which are involved in DSBs procession including the MRX/N complex, 

starting an activation cycle (Czornak et al., 2008).  

The ssDNA originating from the exonucleolytic resection by MRE11/EXO1/DNA2 is bound 

with high affinity by replication protein A (RPA) which is essential for the formation of 

crossovers in A. thaliana (Fanning et al., 2006; Osman et al., 2009; Broderick et al., 2010). 

RPA loading onto the DNA is a prerequisite for binding of the strand exchange proteins 

RAD51 and DMC1 which are orthologs of the bacterial RecA protein (for review see Fanning 

et al., 2006; Broderick et al., 2010). RAD51 and DMC1 in combination with several DNA 

repair factors and other proteins mediate the formation of heteroduplex joints (D-loops) by 

strand invasion, DNA elongation, and the capture of a second DNA strand (Petukhova et al., 

2000; Shibata et al., 2001; Li et al., 2004; Bleuyard et al., 2005). These D-loops are further 

dispersed depending on their resolution, either by crossover reactions leading to exchange 

of genetic material between the parental chromosomes, or by non-crossover reactions. The 

later ones are resulting in no exchange of genetic material or exchange of only small parts of 

the chromosomes, e.g. gene conversion (Takata et al., 1998; Sonoda et al., 2006; for review 

see Jasin and Rothstein 2013).  

Exchange of genetic material between homologous chromosomes by crossovers can be seen 

in DAPI (4´,6-diamidino-2-phenylindole) stained meiocytes as chiasmata. The process of 

crossover/non-crossover decision and the resolution of crossovers are still not fully 

understood and proteins involved in these processes vary between different phyla. 

Crossover reactions can only occur if the second end of the DSB is binding to the 

homologous chromosome and a DHJ is formed. If the extended 3´-end is expelled from the 

homologous chromosome and annealed with the other end of the DSB, synthesis dependent 

strand annealing (SDSA) takes place which is leading to a non-crossover reaction (Nassif et 

al., 1994; Paques and Haber, 1999; Allers and Lichten, 2001; Mimitou and Symington, 2009; 
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Mannuss et al., 2010). The further processing of DHJs can lead to either crossover or 

non-crossover reactions depending on their resolution and can also be processed through 

direct dissolution or transient strand invasion with limited DNA synthesis, followed by 

dissolution, leading again to a non-crossover reaction (Schwacha and Kleckner, 1995; Allers 

and Lichten, 2001; Wu and Hickson, 2003; Bishop and Zickler, 2004; Youds and Boulton, 

2011). The resolution of a DHJ is performed by a number of protein complexes which are 

able to reject D-loops or dissolve DHJs. The RTR-complex (RECQ, TOP3; RMI1) is one of these. 

Other proteins involved in the resolution of DHJs are for example MUS81/GEN1 and YEN1 

(Hartung et al., 2007b; Higgins et al., 2008; Svendsen and Harper, 2010; Lorenz et al., 2010; 

Bauknecht and Kobbe, 2014; for review see Knoll et al., 2014).  

It seems that, at least in budding yeast (Saccharomyces cerevisiae), the decision between 

crossover and non-crossover is made quite early at the leptotene/zygotene transition and 

involves a complex of proteins referred to as ZMM proteins 

(ZIP1, ZIP2, ZIP3, MER3 and MSH4/5) (Börner et al., 2004; reviewed in Osman et al., 2011). 

The ZMM proteins appear to stabilize strand invasion during D-loop formation and DHJs, 

thereby directing them to form crossovers. Mutations in the ZMM proteins, including 

MSH4/5, which are homologs of the Escherichia coli MUTS protein, are leading to 

elimination of most, but not all, crossovers. Two further important proteins, MLH1 and 

MLH3 which are homologs of the MUTL protein from E. coli, also encourage the resolution of 

DHJs to crossovers rather than non-crossovers. In addition to these proteins another 

pathways exists which enables the formation of crossovers involving MUS81 and MMS4. A 

homolog of MUS81 is also involved in crossover formation in A. thaliana (de los Santos et al., 

2003; Hartung et al., 2007b; Higgins et al., 2008). The final ligation of the DSBs is most 

probably performed by DNA ligase 4 in combination with XRCC4 (West et al., 2000; Bleuyard 

et al., 2004; 2006; Bray et al., 2005). A schematic overview of these processes is given in 

figure 2. 
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Figure 2. Double strand break induction and repair model during meiosis. 

Double strand break (DSB) induction and repair during meiosis. Several key proteins of DSB induction 
and repair are shown at the stage at which they are active, according to the known processes in 
model organisms. Due to space limitation not all proteins involved in the corresponding process 
could be shown and are only referred to in the text. Proteins which are commonly used for marking 
of DSBs are written in bold. See text for details. ds DNA = double stranded DNA; SDSA = synthesis 
dependent strand annealing; DSB = double strand break.  
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The synaptonemal complex 
 

The pairing and synapsis of the homologous chromosomes during prophase I possesses an 

additional specific feature, the formation of a protein complex between both homologous 

chromosomes, the so called synaptonemal complex (SC) which includes some of the ZMM 

proteins (Moses, 1969; reviewed in Zickler and Kleckner, 1999). In A. thaliana the two major 

proteins of the synaptonemal complex are ASY1, a homolog of yeast HOP1 which forms the 

lateral elements of the SC and ZYP1, a homolog of yeast ZMM protein ZIP1 which forms the 

central element of the SC (Armstrong et al., 2002; Higgins et al., 2005; Sanchez Moran et al., 

2007; 2008). Without ASY1 synapsis is interrupted and the formation of chiasmata is 

dramatically reduced. In the absence of ZYP1 chiasmata formation is only slightly reduced 

and recombination occurs not only between homologous chromosomes but also between 

non-homologous chromosomes (Higgins et al., 2005; Sanchez Moran et al., 2008).  

 

The evolution and function of SPO11 
 

The initiation of the recombination process and synapsis relies in many organisms, like 

mammals and fungi, on a single SPO11 protein which is sufficient for the induction of meiotic 

DSBs. Plants stand in contrast to this, since they encode for at least three different SPO11 

proteins. In A. thaliana two of these have a function in meiosis, referred to as Ath SPO11-1 

and Ath SPO11-2 (Keeney et al., 1997; Grelon et al., 2001; Stacey et al., 2006; Hartung et al., 

2007a). The third one, Ath SPO11-3, is involved in endoreduplication in somatic cells working 

in a combination with the second subunit of topoisomerase VI (TOPVIB), but it has no 

specialized meiotic function (Hartung et al., 2002; Stacey et al., 2006; Simkova et al., 2012). 

Rice (Oryza sativa) possesses furthermore two additional SPO11 proteins, referred to as 

Osa SPO11-4 and Osa SPO11-5, from which Osa SPO11-4 is believed to play a role in meiosis 

(An et al., 2011; Shingu et al., 2012). 

In yeast and mouse it is proposed that SPO11 forms multimers/homodimers and dimers 

between two distinct spliced protein variants (Malik et al., 2007; Cole et al., 2010; de Massy, 

2013). Differential splicing of SPO11 was shown in mouse and human and so far in plants 

only for SPO11-1 in A. thaliana (Romanienko and Camerini-Otero, 1999; 2000; Hartung and 



- 15 - 
 

Puchta, 2000). In mouse and human two distinct splice variants for SPO11 were identified 

which possess different features concerning the timing of the DSB induction as studies in 

mouse have shown (Bellani et al., 2010; Kauppi et al., 2011). The process of aberrant splicing 

seems to be a common feature in meiosis. It was also identified for other meiosis specific 

proteins, such as DMC1 and MER2, in different species including yeast, mammals and plants 

pointing towards a conserved mechanism (Habu et al., 1996; Nakagawa and Ogawa, 1997; 

Terzi and Simpson, 2008). A possible interaction of meiotic SPO11 proteins with other 

proteins has not been studied in detail. This is one of the reasons why the mechanisms of 

DSB induction by at least two different SPO11 proteins and their regulation in plants remain 

cryptic. It is unknown whether and how the different SPO11 proteins act together during 

meiosis. A theory describes both proteins forming heterodimers which interacts with the 

DNA and forms DSBs (Hartung et al., 2007a; Malik et al., 2007; de Massy, 2013). Till today no 

distinct evidence for this hypothesis was found, since no interaction between SPO11-1 and 

SPO11-2 could be identified. Protein interaction was only shown between SPO11-1 and PRD1 

and for SPO11-2 and -3 with TOPVIB (Hartung et al., 2002; De Muyt et al., 2007). But it is 

known for DSB formation that SPO11-1 as well as SPO11-2 are both needed containing their 

active tyrosine residue. Mutations of the active tyrosine residue or changes in the conserved 

motifs of Ath SPO11-1 are leading to a loss of function (Hartung et al., 2007a; Shingu et al., 

2010).  

 

Marking the break, proteins suitable for marking of double strand breaks 
 

Information about the localization of a protein and the timeframe in which it is active during 

meiosis is always resulting in a great gain of knowledge. Co-immunolocalization studies are a 

suitable tool to achieve such information. Two proteins which are commonly used in these 

studies for analyzing the different stages of prophase are ASY1 and ZYP1, since their 

distribution changes during the stages of prophase I. ASY1 appears early in prophase I and 

ZYP1 appears later but remains longer (Higgins et al., 2005; Sanchez Moran et al., 2008; 

Kurzbauer et al., 2012; Figure 3). Since DSBs are too tiny to be seen directly during meiosis, 

the use of DSB associated proteins is a common method to mark the breaks. In principal 
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most of the proteins mentioned above could be used for this (Armstrong et al., 2002; Higgins 

et al., 2005; Sanchez Moran et al., 2007). 

 

Figure 3. Co-immunolocalization study of meiosis specific proteins in meiocytes of wild type 
A. thaliana. 

Meiocytes in different meiotic stages were counterstained with DAPI and immunolocalization of 
ASY1 as first antibody and various DSBs associated proteins as second antibody (as indicated) was 
performed. Presented meiotic stages have been chosen according to timeframe in which the 
corresponding protein can be detected the best. AB = Antibody, red bar = 5 µm 
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But some of the proteins, like SPO11, are only binding during a short timeframe on the 

chromosomes, making detection difficult. Commonly used proteins for marking DSBs are 

those that remain longer at the break site and accumulate there, like γH2AX, ATM and ATR 

or DMC1/RAD51 (Sanchez Moran et al., 2007; 2008; Kurzbauer et al., 2012; Figure 3;  

Figure 4). In A. thaliana, SPO11-1 can only be localized in a 5 h time frame during 

preleptotene and leptotene at the chromosomes and with the present antibody SPO11-1 is 

hard to detect (Figure 4). 

 

 

Figure 4. Timely distribution of double strand break associated proteins during prophase I in 
A. thaliana. 

Fluorescence micrograph of chromosomes in Prophase I stages, from spread wild type A. thaliana 
pollen mother cells stained with DAPI. Various double strand break associated proteins and the 
stages in which the corresponding protein is detectable during prophase I are shown, the timely 
distribution of each protein is indicated as a dashed line. Bar = 5 µm. 

 

So far no one had ever looked at the localization and timing of SPO11-2 during meiosis, since 

no antibody was available (Sanchez Moran et al., 2008; personal communication). 
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Aims of this work: 
 

During this work several questions concerning the function, regulation and development of 

the different SPO11 proteins and their splicing in A. thaliana and other organisms were 

addressed. It is commonly known that the function of meiosis is conserved between 

eukaryotes, but not for all proteins which are involved in yeast meiosis, orthologs in 

different clades can be identified. Even if orthologous genes can be found some of these 

have taken over different functions between miscellaneous species (for reviews see Keeney 

and Neale, 2006; Cole et al., 2010; de Massy, 2013; Keeney et al., 2014). The growing 

number of available databases unclosed the opportunity to elucidate the development, 

distribution, and sequence conservation of different SPO11 proteins throughout the 

kingdoms of life (Sprink and Hartung, 2014). To evaluate if besides the protein itself also the 

function of SPO11 is conserved between various plants and still conserved in more diverged 

SPO11 genes from green algae and animals, foreign SPO11 genes were introduced into 

SPO11-1 and -2 knockout lines. For this purpose genomic DNA as well as complementary 

DNA (cDNA) was used (Sprink and Hartung, 2015). 

Even though derived from a common ancestor and sharing the same conserved motifs, the 

two meiotic active SPO11 homologs in A. thaliana are not redundant and both are needed in 

a functional form, indicating that the difference between both paralogs is somehow 

embedded in the less conserved regions of the proteins (Stacey et al., 2006; Hartung et al., 

2007a). To gain a deeper understanding, why plants need two very different SPO11 proteins 

for a functional meiosis and which regions of the proteins are defining the specific functions, 

three of the non-conserved parts were interchanged between the paralogs, Ath SPO11-1 and 

-2. Since disruption just before the last exon of Ath SPO11-2 by T-DNA (transfer DNA) 

insertion is leading to a total loss of function, indicating that this might be an essential part, 

this last exon was exchanged between both paralogs, too (Stacey et al., 2006; Hartung et al., 

2007a). Additionally, both proteins were truncated by the last exon to investigate if the 

effect of the T-DNA insertion could be mimicked and if the loss of the last exon has such a 

severe effect on SPO11-1 as it has on SPO11-2 (Sprink and Hartung, 2015). As T-DNA 

insertions can have multiple effects on the plant and since a mutation line for SPO11-3 is no 

longer available, new mutation lines for all three SPO11 paralogs in A. thaliana were created 
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and further propagated, to achieve mutation lines without T-DNA insertion and their 

possible effects. A mutation of the genomic region just around the active tyrosine of the 

protein was aimed, using the novel sequence specific nucleases (SSNs) TALENs (Transcription 

activator like effector nucleases) and CRISPR/Cas9 (Clustered regularly interspaced short 

palyndromic repeats/Cas9) (recently reviewed in Belhaj et al., 2015; Sprink et al., 2015). 

Furthermore, it has been evaluated if SPO11-2 is binding on the DNA during leptotene as 

SPO11-1 does, to figure out, if both proteins work together during meiosis. For this purpose 

SPO11-2 specific antibodies were designed and produced using peptides from the N- and 

C-terminal part of the protein. Moreover, an additional antibody against the N-terminal 

region of SPO11-1 was produced, aiming to achieve stronger signals in immunolocalization 

studies. The SPO11-2 N-terminal antibody was produced in rabbit and mouse, so that the 

antibody can be used for co-immunolocalization studies together with an antibody against 

SPO11-1. To gain an idea whether the different splice forms of SPO11 are also resulting in 

alternative protein forms a western blot analysis was performed to see if multiple signals in 

the blot, which might be related to SPO11-2 can be identified. 
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Results and discussion: 
 

The function of SPO11-1 and SPO11-2 is sequence and to a certain extent species specific 
 

By the construction of four chimeric SPO11 genes, a sequence specific function of A. thaliana 

SPO11-1 and SPO11-2 was shown. Three non-conserved parts as well as the conserved last 

exon have been interchanged between A. thaliana SPO11-1 and -2. Additionally, both SPO11 

genes were truncated by the conserved last exon. None of these changes let to a 

complementation of the sterile phenotype of the SPO11 knockout lines spo11-1-3 and 

spo11-2-3. A light but significant increase in seed set could only be observed, when the last 

exon of SPO11-1 was exchanged with the one from SPO11-2 (Sprink and Hartung, 2015).  

By exchanging SPO11-1 and -2 in A. thaliana with genes from different species, a species 

specific function of the respective SPO11 could also be identified. Functional 

complementation of the sterile phenotype of the A. thaliana SPO11 knockout mutants was 

only achieved, when SPO11 from a plant belonging to the same family as A. thaliana, was 

used for complementation, such as SPO11 from B. rapa. Both plants diverged around 20 

million years ago (mya) (Town et al., 2006). Such a functional complementation could not be 

observed, when SPO11 from papaya was integrated which belongs to a different family, but 

is still part of the order of Brassicales. However, a partial complementation could be 

accomplished when cDNA of papaya SPO11-1 was integrated multiple times into the genome 

of the respective SPO11 knockout. A complementation was neither attained when SPO11 

from a monocot species was used nor when even more diverged SPO11 genes from mouse 

and green algae were integrated.  

These findings are pointing towards a highly sequence specific function of both SPO11 

paralogs in A. thaliana as well as a species specific function for the different SPO11 orthologs 

and are highlighting the essential function of the well conserved last exon (Sprink and 

Hartung, 2015). 
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The splicing landscape of SPO11 is diverse and shows species and sequence specific 
features 
 

During the identification of SPO11 orthologs in different plants by using commonly available 

databases retained introns were identified in some of the gathered EST sequences as well as 

sequences in which exons were skipped. Throughout the determination of the full length 

cDNA constructs of SPO11-1 and -2 from various plants just the same has been observed. It 

was recognized that the analyzed plants exhibit a pattern of aberrant spliced SPO11-1 and 

SPO11-2 products. Due to these novel findings, splicing of SPO11 seems to be conserved 

between the different SPO11 orthologs involved in meiosis throughout evolution (Sprink and 

Hartung, 2014). In human and mouse two distinct alternative spliced isoforms exist which 

both possess essential functions during meiosis (Romanienko et al., 1999; Kauppi et al., 

2011). Such a conserved alternative spliced form could not be detected for SPO11-1 or 

SPO11-2 in plants. Nevertheless, other putative functional forms were recognized. 

Unfortunately none of these putative functional forms seem to be conserved between 

different plants. Additionally, the positional distribution as well as the number of aberrant 

splicing events is strongly differing between the analyzed plants. An analysis of aberrant 

splicing of SPO11-1 in generative and vegetative tissue in several species exposed a 

difference in the splicing landscape between both tissue types. These findings revealed a 

tissue specificity of SPO11 splicing and that splicing of SPO11 differs between the respective 

gene sequence and plant species (Sprink and Hartung, 2014). 

An evaluation of aberrant splicing of SPO11 genes from species which were analyzed earlier, 

introduced into SPO11 knockout lines, sustained the observations made before. The splicing 

of Ath SPO11-1 and -2 showed no remarkable changes when being reintroduced into the 

respective knockout plants. The splicing of foreign SPO11 in A. thaliana differs from the 

splicing in its origin plant and, additionally, positional distribution of the splicing events 

changed depending on the sequence identity between the introduced SPO11 and 

Ath SPO11. For introduced SPO11 with higher sequence identity to SPO11 from A. thaliana 

splicing of prior identified forms, in its initial plant or in A. thaliana for the respective 

homolog, seems more likely (Sprink and Hartung, 2015). 
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Additionally, the splicing patterns of the chimeric SPO11 genes (SPO11swap 1 to 4) were 

evaluated, to gain a deeper insight into the sequence specificity of SPO11 splicing in 

A. thaliana. Analyzing these patterns revealed that the splicing depends on the nearby 

sequences, as seen for the N-terminal part of SPO11-1, which shows retention of intron 

number two, even when it is fused to the SPO11-2 backbone or internal parts of SPO11-1 are 

exchanged (Figure 5b), as well as on the overall exon-intron orientation. Especially changes 

in the overall number of exons and introns as well as changes in the C-terminal part of each 

gene are leading to novel splice forms (Figure 5). The C-terminal part seems to have an 

essential function in regulation of splicing especially for SPO11-2, since strong changes in the 

positional distribution of the splicing events have been recognized (Figure 5D-e). Exchange of 

the conserved last exon is only leading to small changes in the positional distribution of 

splicing events for SPO11-1, but for SPO11-2 massive intron retention can be observed 

(Figure 5e). This finding is endorsing the essential function of the last exon in particular for 

SPO11-2 which was shown before by truncation and the exchange of the last exon between 

both paralogs (Sprink and Hartung, 2015). Since correctly spliced forms could be identified 

for all interchanged constructs the changes in the exon-intron structure of SPO11-1 and -2 as 

well as the changes of the sequences themselves do not lead to a total disarrangement of 

the splicing machinery for SPO11 in A. thaliana. 
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Figure 5. The splicing landscape of chimeric SPO11 genes. 

Schematic non scaled scheme of the different splice forms of SPO11-1 (A-E) and SPO11-2 (a-e). Splice 
forms of A. thaliana SPO11-1 (A) and -2 (a) as well as SPOswap1 (B,b), SPOswap2 (C,c), SPOswap3 
(D,d) and SPOswap4 (E,e) are shown. Exons are numbered, SPO11-1 exons are shown as white, 
SPO11-2 exons as grey blocks, exons with parts of SPO11-1 and -2 are shown in both colors. Spliced 
introns are illustrated as black lines, intron retention events are illustrated as black boxes, alternative 
5´splice site selection is shown as blue boxes and alternative 3´splice site as light green boxes. In case 
of exon skipping the corresponding white box is missing. Known splice forms are numbered in greek 
letters (according to Sprink and Hartung, 2014; 2015). 
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Taken everything into account, the splicing landscape of SPO11 shows tissue specificity and 

depends, like the function of SPO11, also on the respective gene sequences and on the plant 

species. But since SPO11 from closely related plants are predominantly spliced in a correct 

way the splicing of SPO11 from further diverged plants seem to be less effective. 

Additionally, previously unknown positional distributions of splice effects in the chimeric 

SPO11 genes were identified which had never been observed so far. Summarizing these 

results let assume that the splicing of SPO11 is not only embedded in the plain DNA 

sequence of the respective SPO11 gene but also in its internal composition, as well as in 

other factors which remain unknown and are likely to be species specific. Such factors could 

be splicing factors or other proteins which might have coevolved with SPO11. But the 

process of alternative splicing seems to be a common mechanism in meiosis since it can be 

found in various species and for different genes involved in meiosis and it might have 

regulatory functions. (Engebrecht et al., 1991; Mackey et al., 1997; Romanienko and 

Camerini-Otero, 1999; Terzi and Simpson, 2008; Sprink and Hartung, 2014). The examination 

of the splicing patterns of SPO11 in pollen mother cells in different meiotic stages would be 

of great interest. Such an analysis could reveal if a correlation between aberrant spliced 

isoforms and meiotic stages exist in plants comparable to the one found in mouse and 

human (Kauppi et al., 2011). Furthermore, analyzing the functions and splicing patterns of 

artificial SPO11 genes composed of Ath SPO11 and SPO11 from other organisms would also 

be of great interest. 

 

SPO11-2 is located on the chromosome during leptotene and early zygotene 
 

Since no antibody was available against SPO11-2 and it had never been looked at the 

distribution and timing of SPO11-2 during meiosis a polyclonal antibody was designed and 

produced to gain such information. For the production of the antibody a 21 aa long peptide 

localized in the N-terminal part of SPO11-2 has been chosen which is not conserved in 

SPO11-1. The N-terminal part of the protein was selected since this part seems to be 

accessible by the antibody in localization studies as a prediction of the secondary structure 

let assume (Figure 6). 
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Ath SPO11-1: 41.81 kilodalton 

MEGKFAISESTNLLQRIKDFTQSVVVDLAEGRSPKISINQFRNYCMNPEADCLCSSDKPKGQEIFTLKKEPQTYR 
---------HHHHHHHHHHHHHHHHHHHH-----EEEE-----EEE-----EEEE-----EEEEE------HHHH 

IDMLLRVLLIVQQLLQENRHASKRDIYYMHPSAFKAQSIVDRAIGDICILFQCSRYNLNVVSVGNGLVMGWLKFR 
HHHHHHHHHHHHHHHH---EEEEEEEEE---------HHHHHHHHHHHHHH--------EEE---EEEE---EEE 

EAGRKFDCLNSLNTAYPVPVLVEEVEDIVSLAEYILVVEKETVFQRLANDMFCKTNRCIVITGRGYPDVSTRRFL 
----EEEE----------------EE-------EEEEEE-HHHHHHHHH---------EEEE------HHHHHHH 

RLLMEKLHLPVHCLVDCDPYGFEILATYRFGSMQMAYDIESLRAPDMKWLGAFPSDSEVYSVPKQCLLPLTEEDK 
HHHHH-----EEEEE-----HHHHHHHHHHH----H----------EEEEE--------------------HHHH 

KRTEAMLLRCYLKREMPQWRLELETMLKRGVKFEIEALSVHSLSFLSEVYIPSKIRREVSSP 
HHHHHHHH-------HHHHHHHHHHHHH----EEHHHHH------HHHHHHHHHHHHH---- 

 

Ath SPO11-2: 43.13 kilodalton 
 
MEESSGLSSMKFFSDQHLSYADILLPHEARARIEVSVLNLLRILNSPDPAISDLSLINRKRSNSCINKGILTDVS 
-------------------------HHHHHHHHHHHHHHHHHHHH-------EEEE------------------- 
 
YIFLSTSFTKSSLTNAKTAKAFVRVWKVMEICFQILLQEKRVTQRELFYKLLCDSPDYFSSQIEVNRSVQDVVAL 
-EEE---EEEE-----HHHHHHHHHHHHHHHHHHHHH---EE-EEEEEEE-----------HHHHHHHHHHHHHH 
 
LRCSRYSLGIMASSRGLVAGRLFLQEPGKEAVDCSACGSSGFAITGDLNLLDNTIMRTDARYIIIVEKHAIFHRL 
H-------EEEE----EEEEEEEEEE----EEEE-------------------EE-----EEEEEEE—HHHHHH 
 
VEDRVFNHIPCVFITAKGYPDIATRFFLHRMSTTFPDLPILVLVDWNPAGLAILCTFKFGSIGMGLEAYRYACNV 
HH---------EEEE------HHHHHHHHHHHHH-----EEEEE-----HHHHHHHHH----------------E 
 
KWIGLRGDDLNLIPEESLVPLKPKDSQIAKSLLSSKILQENYIEELSLMVQTGKRAEIEALYCHGYNYLGKYIAT 
EEE------------------HHHHHHHHHHHHH-----HHHHHHHHHHHH----EEHHHHH------HHHHHHH 
 
KIVQGKYI 
HHHH---- 

 
Figure 6. Predicted secondary structure of A. thaliana SPO11-1 and SPO11-2. 

Predicted secondary protein structure and protein mass of the two meiotic SPO11 paralogs in 
A. thaliana. Prediction was made using Jpred V. 3.0 (Cole et al., 2008). Full length protein sequence is 
shown with subjacent predicted secondary structure. H = alpha helix; E = beta sheet; - = random coil. 
The 21 amino acids which were used for the production of an N-terminal SPO11-2 antibody are 
shown in bold red. 

 

The peptide was utilized to immunize two rabbits. The first animal was used for an 

intravenously (IV) induction of the immunoreactions. In the second animal the 

immunoreaction was induced by intramuscular (IM) application of the peptide. The blood 

sera of both animals were utilized for immunolocalization of SPO11-2 in spread preparations 

of pollen mother cells from wild type A. thaliana anthers. With both sera foci could be 

detected during early prophase I. The serum of the animal which was used for IM induction 
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of immunoreactions showed a brighter signal, therefore this serum was purified and the 

cleaned antibodies were used in further studies. Immunolocalization studies using the 

purified antibody revealed the presence of foci during leptotene and early zygotene on the 

chromosomes (Figure 7). In spo11-2-3 no signal on the chromosomes could be detected, 

indicating that the antibody is specific against SPO11-2 and is not binding SPO11-1 or any 

other protein in a noticeable amount during meiosis (Figure 7). Around 100 SPO11-2 foci per 

cell could be identified on the chromosomes during early leptotene which is comparable to 

the number of SPO11-1 foci found in wild type A. thaliana (Sanchez Moran et al., 2007; 

personal communication). Surprisingly, SPO11-2 can be detected even during zygotene, 

whereas SPO11-1 cannot be detected during this stage (Sanchez Moran et al., 2007). 

Nevertheless, in other organisms as mouse and yeast such a behavior of SPO11 staining was 

observed before (Romanienko and Camerini-Otero, 2000; Prieler et al., 2005). The function 

of that late detectable SPO11 on the chromosome is still ambiguous since DSB induction is 

clearly induced earlier by SPO11 during leptotene. So it can only be speculated that the 

presence of SPO11 in later stages might have other function than cleaving the DNA. Prieler 

et al., suggested an interaction of these late SPO11 with recombination hotspots. But in 

plants such an interaction was never shown before and further analyses, like analyses of 

SPOligo distribution in combination with hotspot identification, have to be made.  
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Figure 7. Co-immunolocalization study of ASY1 and SPO11-2 during different meiotic stages. 
Meiocytes of wild type A. thaliana plants in different meiotic stages (as indicated) and a meiocyte of 
spo11-2-3 in leptotene stage were counterstained with DAPI (blue) and immunolocalization of ASY1 
(orange) and SPO11-2 (green) was performed. The signal of SPO11-2 is strongest in early leptotene 
but remains to early zygotene. In late zygotene only very few foci remain, which are hard to 
distinguish from the overall background. In spo11-2-3 meiocytes no signal brighter than the overall 
background can be detected. Red bar = 5 µm. 

 

Co-localization of SPO11-1 and SPO11-2 
 

The fact that both SPO11 proteins in A. thaliana can be detected during early leptotene in a 

comparable number is supporting the theory of both proteins working together. A 

co-immunolocalization study using antibodies against SPO11-1 and -2 should reveal if both 

proteins colocalize. For this purpose an antibody against SPO11-2 was produced in mouse, 
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using the same peptide as used in rabbits. First co-immunolocalization studies have been 

performed but only a few cells could be analyzed so far. A localization of both proteins 

proximal to each other was found but the detection is challenging due to differences in 

signal intensity and the low number of analyzed cells (Figure 8). To propose a meaningful 

and robust statement further analyses have to be made and much more cells have to be 

analyzed.  

 

Figure 8. Co-immunolocalization of SPO11-1 and SPO11-2. 
Meiocytes of wild type A. thaliana plants in preleptotene/leptotene stage were counterstained with 
DAPI (blue) and co-immunolocalization of SPO11-1 (orange) and SPO11-2 (green) was performed. 
The signals of both proteins can be detected proximal to each other and in some cases signals 
overlap, which can be seen in yellow areas in the merged images. Red bar = 5 µm. 
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Western blot analysis of SPO11-2 
 

To check whether the antibody produced in rabbit is detecting multiple variants of SPO11-2 

or other proteins a western blot using two samples of purified total protein from A. thaliana 

wild type flowers was performed (Figure 9). To resolve possible protein complexes half of 

each sample was boiled at 95°C before separation. The peptide used for immunization of the 

animals was used as a positive control. The western blot showed multiple signals between 

30- and 45 kilodalton (kDa) and two additional signals at around 60 kDa in all samples.  

 

 

Figure 9. Western blot analysis of protein samples from A. thaliana flowers using SPO11-2 
antibody. 

Western blot of two wild type A. thaliana flower protein samples detected with SPO11-2 antibody  
(1 to 500), before (RT) and after heating at 95°C (95°C). Ten nanogram of the peptide used for the 
production of the antibody was loaded as positive control (+). 

 

The predicted protein mass of SPO11-2 is 43 kDa indicating that the antibody seems to 

detect predominantly SPO11-2. The smaller proteins might be alternative spliced forms, as 

they were spotted before in western blot analyses using a SPO11 specific antibody 

performed in mouse (Bellani et al., 2010; Lange et al., 2011). The proteins detected at 

around 60 kDa might be (i) larger isoforms of SPO11-2 (ii) complexes or (iii) unspecific 
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binding of the antibody. Since heating of the protein samples is not resulting in dissolution of 

these bands, unspecific binding or the presence of a larger isoform seem to be the more 

likely hypothesis (Figure 9). Performing two dimensional (2D) electrophoresis followed by 

protein mass spectroscopy analysis such as MALDI TOF (matrix-assisted laser 

desorption/ionization, time of flight) could help to identify the proteins which are detected 

by the antibody and validate the assumption that predominantly SPO11-2 is detected. Such 

analyses should be done in the future. An additional antibody which is binding at the 

C-terminal end of the protein, should also detect less protein bands, since many aberrant 

spliced isoforms are missing the C-terminal end of the gene. An additional western blot 

analysis using an antibody against SPO11-1 would reveal if such a pattern of protein bands 

can also be identified for SPO11-1.Since not enough serum containing an antibody against 

SPO11-1 was available and no antibody against the C-terminal end of SPO11-2 exists, an 

additional antibody against SPO11-2, using a 21 aa long peptide which is located at the 

C-terminal end was designed. Furthermore, an additional antibody against SPO11-1, using a 

23 aa long peptide which is located in the N-terminal part of SPO11-1, was designed to 

perform such analyses (Figure 10). The N-terminal part was chosen because of valuable 

performance of the SPO11-2 antibody and the part seems to be accessible in SPO11-1 like it 

is in SPO11-2 (Figure 6). Both antibodies are produced in rabbits the same way as the first 

SPO11-2 antibody. But no analyses could be done using these antibodies so far since they 

are still in production. 
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Figure 10. Positional distribution of SPO11 specific antibodies. 

Multiple alignment (done with Lasergene V. 12.1.0) of SPO11-1-and-2 from A. thaliana (Ath); B. rapa 
(Bra) and C. papaya (Cpa). Gaps are represented by dashes; conserved amino acids are shaded in 
yellow. Conserved motifs are indicated and shown as black boxes. The active tyrosine within motif 
one is marked with an asterix. Amino acids chosen for the production of antibodies are marked as 
green (SPO11-1) or blue (SPO11-2) boxes. The already existing antibody against SPO11-1 from the 
group of Prof. Chris Franklin (Sanchez Moran et al., 2007) is marked as an orange box. The amino acid 
numbering of each protein is shown on the right (according to Sprink and Hartung, 2015) 

 

Production of T-DNA free, SPO11-mutation lines by sequence specific nucleases 
 

A phenotypic difference in seed production between the two T-DNA insertion lines 

spo11-2-2 and spo11-2-3 has been observed earlier (Hartung et al., 2007a). For some reason 

the seed set of spo11-2-2 is lower compared to spo11-2-3. This is hard to explain because 

the putatively expressed form of SPO11-2 is only seven aa longer in spo11-2-2 than in 

spo11-2-3 and these seven aa are not even part of a conserved domain (Hartung et al., 

2007a). To investigate if the difference in seed set is an artifact of the T-DNA insertion or due 

to remaining truncated protein forms we used the sequence specific nucleases (SSNs) 
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TALENs and CRISPR/Cas9 in the aim of generating T-DNA free knockout lines, mutated only 

around the active tyrosine residue. In addition to this a CRISPR/Cas9 construct targeting the 

genomic region just around the active tyrosine of SPO11-3 was produced. 

 

Introducing mutations with Transcription Activator Like Effector Nucleases (TALENs) 
 

Two TALEN pairs were designed to target either the genomic region around the active 

tyrosine of SPO11-1 or SPO11-2. The TALEN pairs were constructed spanning a defined 

restriction enzyme site (Figure 11A). Screening the offspring revealed a very low overall 

transformation rate of < 0.1% (SPO11-1 TALEN: 5 out of ~10000; SPO11-2 TALEN: 2 out of 

~10000). No heritable mutations could be detected in plants carrying a TALEN pair. Only a 

very few somatic mutations in plants transformed with the SPO11-1 TALEN pair were 

identified using restriction enzyme based mutation analysis and sequencing. One deletion of 

11 bp was detected at the targeted site all other mutations were single nucleotide 

substitutions (Figure 11B).  
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Figure 11. Mutation induction approach in A. thaliana SPO11-1 and -2 using transcription activator 
like effector nucleases (TALENs). 
(A) Schematic structure of SPO11-1 and -2 as well as the TALEN pairs used for double strand break 
induction (as indicated). The binding site of each TALEN monomer is written in red, the active 
tyrosine is written in bold and marked with an asterix in the scheme. The spanned restriction enzyme 
site is underlined. The flash is indicating the predicted cut site of the FokI dimer. 

(B) Sanger sequencing results from all analyzed clones obtained from the restriction enzyme based 
mutation analysis. Sequence of the wild type gene (WT) and all mutated alleles obtained from the 
mutation identification in the SPO11-1 TALEN approach plant no. 3 are shown. TALEN binding sites 
are written in bold, mutations are marked in red. The type of the mutation is mentioned at the right 
site. 
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It is unclear why the efficiency of the TALEN pairs is quite low in this mutation approaches. 

But comparable experiments made at the Karlsruher Institute of Technology by the group of 

Prof. Holger Puchta, using the same vectors, gained in similar results. No mutation could be 

observed in all approaches (>30 approaches; Alexander Knoll, personal communication). The 

reason for this remains ambiguous since mutation induction in A. thaliana and other plants 

is possible as several publications have recently shown (Christian et al., 2013; Chen et al., 

2014; for recent review see Sprink et al., 2015). One possibility might be that the binary 

vector pSW5 is not suitable for induction of mutations or that the expression of the TALEN 

pairs is not leading to a sufficient induction of mutations. Additionally, we might have missed 

some events by using only restriction enzyme based mutation analysis. But since the group 

of Prof. Puchta has not found any mutation in their approaches, even in a T7 endonuclease 

assay, we decided to change the mutation system (Kim et al., 2009). 

 

Mutation induction using the clustered regularly interspaced short palindromic 
repeats/Cas9 system 
 

One CRISPR/Cas9 construct was designed for each of the three SPO11 paralogs in A. thaliana 

targeting the genomic region around the active tyrosine of each protein (Figure 12).  
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Figure 12. Mutation induction approach in A. thaliana SPO11 using clustered regularly interspaced 
short palindromic repeats/Cas9 (CRISPR/Cas9). 
Scheme of the A. thaliana SPO11 loci showing the binding site of the CRISPR/Cas9 construct with the 
single guide RNA including the designed gene specific protospacers (bold) and the corresponding 
protospacer adjacent motifs (red). Nucleotides located in introns are written in lowercase, the ones 
in exons in capital letters. The active tyrosine residue is indicated with an asterix. The flash is marking 
the expected site of break induction. sgRNA = single guide RNA; PAM = protospacer adjacent motif, 
trcRNA = trans activating CRISPR RNA. 
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To determine the presence of mutation events, induced by the CRISPR/Cas9 system, the 

progeny of primary transformants were used for high resolution melting (HRM) analysis 

(Gundry et al., 2003). 20 plants per line and ten lines of each CRISPR approach have been 

analyzed so far. We could detect mutation in plants of each approach using HRM analysis 

(Figure 13). Most events could be identified for the SPO11-3 CRISPR approach. The HRM 

analysis is only providing information if a mutation was induced, but no information about 

the kind of mutation can be retrieved. For this purpose all lines showing deviations of more 

than 0.2°C in the HRM curves were further analyzed, by direct sequencing of the PCR 

reaction. The achieved chromatograms were analyzed and the presence of the second 

shifted chromatogram differing in intensity, beginning four bp upstream the protospacer 

adjacent motif (PAM), could be identified in all cases (Figure 13). The sequencing revealed 

multiple events in which the type of mutation cannot be identified e.g. for the plant no. six 

of SPO11-2 CRISPR line two (Figure 13b). Additionally, single mutations such as an insertion 

of an adenine in the plant no. 69 of SPO11-3 CRISPR line six were revealed (Figure 13c). The 

sequenced PCR fragments were further cloned using TA cloning and gained clones were 

sequenced afterwards to verify the type of mutation. This last step was done so far only for 

the SPO11-3 CRISPR approach. 
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Figure 13. Mutation analyses by high resolution melting and sequencing in SPO11-CRISPR 
approaches. 
High resolution melting analysis and chromatograms of T2 generation of the Cas9 expressing 
SPO11-1 (A), SPO11-2 (B), and SPO11-3 (C) CRISPR mutation approaches. On the left site melting 
curves of PCR fragments from wild type controls (red), plants not differing > 0.2°C from wild type 
control (green) and plants differing > 0.2°C from wild type control (blue) are depicted, showing either 
a shift in the melting temperature or a second melting peek. On the right site single chromatograms 
of PCR fragments with shifted meelting curves are shown. The presence of a second chromatogram 
four base pair upstream of the protospacer adjacent motif can be identified. This region is marked 
with an arrow. 

 

Multiple mutations in the eight individual SPO11-3 CRISPR plants analyzed so far were 

detected (Figure 14). The majority of the detected mutations were single insertions of 

one bp, located four bp upstream of the PAM. In most cases an adenine was integrated, but 
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also integration of thymine and guanine was observed. Additionally, two deletion events 

were detected, a one bp and a six bp deletion. Surprisingly a large insertion at the break site, 

in which parts of the SPO11-3 gene combined with DNA from unknown origin were 

integrated, was also identified. Some plants possessed only one type of mutation but in 

some plants multiple mutation events were identified (Figure 14). These events are most 

probably the result of independent DSB induction by Cas9 in different cells of a single plant.  

 

 

Figure 14. A subset of Sanger sequencing results from the SPO11-3 CRISPR/Cas9 mutation 
approach. 

Sequence of the wild type gene (WT) and unique mutated alleles obtained from mutant identification 
of plants from the SPO11-3 CRISPR approach. Protospacer binding site is written in bold, mutations 
are marked in red. The line and plant number is written on the left site. The type of the mutation is 
mentioned at the right site. The mutation was always identified four base pairs upstream of the 
protospacer adjacent motif. In some individuals multiple mutations were identified, e.g. line six plant 
no. 36.  
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In the future, analyses of the offspring, the T3 generation, will be done and plants carrying a 

heterozygous mutation will be identified as it was done for other targets (Fauser et al., 

2014). These lines can be further cultivated aiming to identify lines possessing one mutated 

allele but no T-DNA. These lines have to be further propagated to gain T-DNA free 

heterozygous mutation lines. The ideal case would be a large deletion or insertion in the 

gene which can be detected by PCR, such as the one found for plant 36 of line six in the 

SPO11-3 CRISPR mutation approach (Figure 14). With such a mutation it would be easy to 

identify plants with a heterozygous altered gene by PCR analysis. If only small mutations can 

be identified in the progeny it will be hard to distinguish between plants which are 

heterozygous altered and wild type plants.  
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Material and Methods: 
 

Antibody production 
 

Secondary structure prediction of both SPO11 paralogs in plants was performed using Jnet 

Version 3.0 (Cole et al., 2008). 

The production of the antibodies was performed by the group of Dr. Frank Rabenstein from 

the Institute for Epidemiology and Pathogen Diagnostics of the Julius Kuehn Institute, using 

rabbits from an undefined strain and mice from the BALB/c strain. Immunization of rabbits 

by IV injection of the corresponding peptide (GenScript USA Inc., NJ; USA) was induced by 

five injections of the peptide in a two day interval injecting two times 60 µg of peptide in 

0,9 % sodium chloride solution, followed by two times 90 µg and one time 120 µg. Three 

blood samples were taken on a weekly base, starting three weeks after the first injection. IM 

immunization of rabbits was induced by injection of 400 µg peptide mixed one to one with 

Freund´s complete adjuvant, followed by two injections of 400 µg peptide with Freund´s 

incomplete adjuvant after three weeks each. Three blood samples were taken; the first was 

taken ten days after the last injection, followed by two blood samples taken on a weekly 

base. 

Mice were immunized by subcutaneous injection of 100 µg peptide mixed one to one with 

Freund´s complete adjuvant, followed by one injection of 100 µg peptide mixed one to one 

with Freund´s incomplete adjuvant two weeks after the first injection. An additional 

injection was done one week later, three weeks after the first injection. Only one blood 

sample was taken one week after the last injection. 

 

Western blot analysis 
 

Proteins were isolated from A. thaliana flower tissue using the TCA (trichloroacetic acid) 

method from Wu and Wang, 1984. 

Western blot analysis was performed by Janina Metje at the Max Plank Institute of 

Biophysical Chemistry in Goettingen. 
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Two samples of wild type A. thaliana flowers were used for western blot analysis. An aliquot 

of the samples were boiled for 10 min at 95°C to resolve possible protein complexes. 

Western blotting was performed using the semi-dry method (Towbin et al., 1979). A 

Schagger gel was used for protein separation yielding in a better resolution of 

proteins < 80 kDa (Schagger and von Jagow, 1987). The gel and a nitrocellulose membrane 

were washed in water and afterwards in transfer buffer. Four filter papers were soaked in 

transfer buffer and a sandwich of two filter papers, gel, membrane, and two filter papers 

was prepared. Blotting was done at 25 V and 45 mA for 90 min. Subsequently, the 

membrane was washed with PBST and blocked for 20 min with 5 % (w/v) skim milk in PBST. 

Incubation with the SPO11-2 antibody diluted 1 to 500 in 5 % (w/v) skim milk in PBST was 

done over night at 4°C. After incubation the membrane was washed three times with PBST. 

The membrane was incubated with the second antibody (#170-6515, Bio-Rad Laboratories 

GmbH, Munich, Germany) diluted 1 : 3000 for 1 h at room temperature, washed three times 

with PBST and visualized with Western Lightning Plus ECL solution (Perkin Elmer; Baesweiler; 

Germany). Detection and analysis were performed using an Imageready LAS-1000 CCD 

camera (Fujifilm Europe GmbH; Düsseldorf; Germany) and AIDA software (Fujifilm Europe 

GmbH; Düsseldorf; Germany). 

 

Immunolocalization studies 
 

Immunostaining was performed as described in Sprink and Hartung 2015, using the following 

A. thaliana specific antibodies, provided by the group of Prof. Chris Franklin in Birmingham. 

Rat and rabbit anti ASY1 (1:1000, Armstrong et al., 2002); rat and rabbit anti ZYP1 (1:500, 

Higgins et al., 2005); rat and rabbit anti RAD51 (1:200; Sanchez Moran et al., 2007), rat and 

rabbit anti DMC1 (1:200; Sanchez Moran et al., 2007) and rabbit anti SPO11-1 (1:100; 

Sanchez Moran et al., 2007). The Antibodies against ATM/ATR and γH2AX are not A. thaliana 

specific and can be purchased commercially, ATM/ATR (#2851S; Cell Signaling Technology 

Europe, B.V.;Leiden; The Netherlands) and γH2AX (#07-164; Merck Chemicals GmbH; 

Schwalbach; Germany). The rabbit and mouse antibody against SPO11-2 produced at the 

Julius Kuehn Institute was used in a 1 to 100 dilution. 
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Construction and evaluation of the TALEN constructs 
 

TALENs were assembled followed the Golden Gate cloning protocol by Cermak et al., 2011 

and introduced in the binary vector pSW5, based on the binary vector which was used for 

the SPO11 complementation approaches (Sprink and Hartung, 2015). All components of the 

TALEN system were received from the group of Prof. Holger Puchta from the Karlsruher 

Institute of Technology. The target site of the SPO11-1 TALEN pair is harboring an EcoRV 

restriction enzyme site, the target site of the SPO11-2 TALEN pair a SacI site. After TALEN 

assembly transformation into wild type A. thaliana plants by floral dip method was 

performed (Clough and Bent, 1998). Screening for positive transformants was done as 

previously described (Sprink and Hartung, 2015). Mutations were identified by PCR 

amplification of DNA prior digested for 1 h at 37°C with the restriction enzyme present in the 

target site of the corresponding TALEN pair to reduce amplification of wild type sequence 

and enrich the amplification of mutated sequences. PCR fragments were cloned using TA 

cloning and resulting clones were sequenced afterwards (Sprink and Hartung, 2014). 

 

Construction and evaluation of the CRISPR/Cas9 constructs 
 

CRISPR/Cas9 constructs were assembled and introduced into A. thaliana wild type plants 

followed exactly the protocol by Fauser et al., 2014. Oligonucleotides were ordered from 

Metabion (Metabion International AG; Planegg/Steinkirchen; Germany). 

HRM analyses were performed using kappa HRM fast master mix (VWR International GmbH, 

Erlangen, Germany), in a final volume of 15 µl according to the instructions of the 

manufacturer, using the CFX96 cycler from Biorad (Bio-Rad Laboratories GmbH, Munich, 

Germany). After 50 cycles of PCR amplification a HRM curve was performed in which the 

temperature was increased in 0.1°C steps, each temperature was kept for 5 s and 

fluorescence was measured at each step. Every candidate which melting curve was varying 

more than 0.2°C from the control lines were further analyzed for induced mutations by 

sequencing, TA cloning and subsequent sequencing of single clones. 
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Toward the global understanding of plant meiosis, it seems to be essential to decipher
why all as yet sequenced plants need or at least encode for two different meiotic SPO11
genes. This is in contrast to mammals and fungi, where only one SPO11 is present. Both
SPO11 in Arabidopsis thaliana are essential for the initiation of double strand breaks (DSBs)
during the meiotic prophase. In nearly all eukaryotic organisms DSB induction during
prophase I by SPO11 leads to meiotic DSB repair, thereby ensuring the formation of a
necessary number of crossovers (CO) as physical connections between the homologous
chromosomes. We aim to investigate the specific functions and evolution of both SPO11
genes in land plants. Therefore, we identified and cloned the respective orthologous
genes from Brassica rapa, Carica papaya, Oryza sativa, and Physcomitrella patens. In
parallel we determined the full length cDNA sequences of SPO11-1 and -2 from all
of these plants by RT-PCR. During these experiments we observed that the analyzed
plants exhibit a pattern of alternative splicing products of both SPO11 mRNAs. Such an
aberrant splicing has previously been described for Arabidopsis and therefore seems to
be conserved throughout evolution. Most of the splicing forms of SPO11-1 and -2 seem to
be non-functional as they either showed intron retention (IR) or shortened exons. However,
the positional distribution and number of alternative splicing events vary strongly between
the different plants. The cDNAs showed in most cases premature termination codons
(PTCs) due to frameshift. Nevertheless, in some cases we found alternatively spliced
but functional cDNAs. These findings let us suggest that alternative splicing of SPO11
depends on the respective gene sequence and on the plant species. Therefore, this
conserved mechanism might play a role concerning regulation of SPO11.

Keywords: SPO11, Arabidopsis thaliana, alternative splicing, meiosis, double strand breaks

INTRODUCTION
In most eukaryotic organisms the rearrangement of the parental
alleles by homologous recombination during meiosis is one essen-
tial step leading to genetic diversity. Correct pairing and subse-
quent homologous recombination in prophase I ensure stability
of the chromosome number on the one hand and variability in the
developing cells due to crossover resolution resulting in exchange
of genetic material between the homologous chromosomes on the
other hand. One crucial aspect in the arrangement of the recom-
bination progress is the initial formation of double strand breaks
(DSBs) by SPO11. The eukaryotic SPO11, which shows homology
to the archaeal Topoisomerase VIA subunit (TOPVIA), is one of
the key factors mediating the formation of DSBs in a wide range of
organisms (Bergerat et al., 1997; Keeney et al., 1997; Grelon et al.,
2001). Without DSBs and their subsequent repair as crossovers
there is no physical linkage between the homologous chromo-
somes and random chromosome distribution would appear (Cole
et al., 2010). Like TOPVIA, SPO11 is able to cleave DNA via a
5′ phosphotyrosyl linkage thereby defining the acceptor sites of
exchange between the parental genomes (Cole et al., 2010). In
contrast to animals and fungi where a single SPO11 is sufficient
for meiotic DSB formation, plants encode for at least two SPO11,
referred to as SPO11-1 and -2, that are both essential in a func-
tional protein form for DSB formation during meiosis (Keeney

et al., 1997; Grelon et al., 2001; Hartung et al., 2007; Shingu
et al., 2012). However, the mechanism by which two very different
SPO11 proteins in plants induce DSBs specifically during meiosis
is still unclear. Our long term aim is to investigate the specific
functions, origin and evolution of each SPO11 in the plant king-
dom. By analyzing complete genomic sequences of more than 40
plants, we were able to show that all as yet sequenced land plants
encode for at least three SPO11 genes. Two of them, AthSPO11-1
and -2 play a meiotic role. The third one, AthSPO11-3 together
with TOPVIB, the second subunit of the topoisomerase, possesses
essential functions during somatic development of plant cells but
plays no role in meiosis (Hartung et al., 2002a, 2007; Stacey et al.,
2006; Simkova et al., 2012).

The phylogenetic analyses of SPO11-1 and -2 in land plants
and algae show very clearly that both genes are highly conserved
and ancient in the lineage of plants but cannot be found in algae
or protists in the same form. An analysis of a high number of
available genomic and protein sequences of SPO11 in virtually
all kingdoms of life shows that at least one duplication of the
original SPO11 from archae must have occurred very early pre-
ceding the split of animals and plants (Malik et al., 2007; this
work). In addition to this, the intron content and localization in
the SPO11 genes from different organisms shows ancestral con-
servation between animals, fungi, and plants but also dramatic
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variations in protists and green algae (Hartung et al., 2002b; this
work).

Early investigations of SPO11-1 expression in Arabidopsis
thaliana exhibited an extensive pattern of alternative splicing,
which we were now able to show also for SPO11-2 (Hartung
and Puchta, 2000). Analyzing the expression in other plants we
could identify various non-functional alternative splicing events
for SPO11-1 and -2 in Oryza sativa, Brassica rapa, Carica papaya,
and Physcomitrella patens. Additionally, we found putative func-
tional forms of alternative spliced SPO11-1 or -2 for the first time
in plants, namely in B. rapa, C. papaya, O. sativa, and P. patens.
The fact that both SPO11 show such a diversified splicing pattern
and that alternative splicing for both SPO11 is conserved between
the different species indicates that SPO11 has an ancient complex
transcriptional regulation mechanism, most probably involving
the non-sense mediated decay pathway as described for other
meiotic genes (Chiba and Green, 2009).

MATERIALS AND METHODS
ACCESSION NUMBERS
We sequenced the cDNA of SPO11-1 and SPO11-2 from B. rapa,
C. papaya, and P. patens. The resulting sequences have been
deposited in this order in the NCBI database under accession
numbers KF841348, KF841349, KF841350, KF926859, KF926860,
and KF926861.

PLANT MATERIAL AND GROWTH CONDITIONS
Arabidopsis (Arabidopsis thaliana L.) wild type plants (Col-0)
were seeded on a 3:1 mixture of soil and vermiculite spiked with
4 g/l Plantacote (Wilhelm Haug GmbH und Co. KG, Ammerbuch,
Germany) as fertilizer and 0, 4 g/l Exemptor (BAYER crop sci-
ence, Langenfeld, Germany) as an preventive insecticide. Plants
were kept under short day conditions (8-h light/16-h dark cycle
at 18◦C) for 3 weeks and then transferred to a green house under
a long day regime (16-h light/8 h- dark at 20◦C). Rice (O. sativa
subsp. Japonica) plants were grown in the greenhouse under a long
day regime as well as B. rapa var. fastplant. Papaya (C. papaya
L.) trees were grown in a public tropical greenhouse on loamy
soil. P. patens gametophores were kindly provided by Gertrud
Wiedemann from the group of Ralf Reski (Freiburg, Germany)
on solid media.

GENE COMPILATION AND SOURCE OF SEQUENCE DATA
A total of 42 SPO11-1 and 39 SPO11-2 sequences from land plants
were extracted from different databases using the Arabidopsis
and O. sativa orthologs as starting point. The databases used
were: Phytozome (http://www.phytozome.net), JGI (http://www.

jgi.doe.gov), Ensembl plants (http://plants.ensembl.org/index.
html), Gramene (http://www.gramene.org/), CoGeBlast (http://
genomevolution.org/r/5kv5), and NCBI (http://www.ncbi.nlm.

nih.gov/genomes/PLANTS/PlantList.html). Models predicting
not the full length cDNA but only a few assembled ESTs were
manually curated by aligning these sequences to annotated
SPO11-1 and -2 of A. thaliana as well as O. sativa using MegAlign
(DNASTAR Inc. Madison, WI, USA). For some species the ESTs
and the cDNA prediction did not cover the whole sequence. In
these cases, the corresponding genomic DNA region was screened

for possible matches and manually added to the model if possible.
To check the accuracy of our prediction, elected coding sequences
(CDS) were amplified using Primers covering the whole predicted
CDS (Supplemental Table 1). The sequence of each gene was
checked by sequencing, using the Sanger method (GATC Biotech
AG, Konstanz, Germany). All sequences used for phylogenetic
comparisons and their accession codes are listed in Supplemental
Tables 2, 3.

RNA ISOLATION AND USED TISSUE
All kits used in this study were used following the instructions
of the manufacturer. Total RNA was isolated using the Bio & Sell
RNA mini Kit (Bio&Sell e.K., Feucht, Germany). To evaluate the
abundance of SPO11 transcripts in generative tissue, fresh young
flowers were used for RNA isolation. In the case of C. papaya,
flowers were stored in RNAshield (Zymo research Europe GmbH,
Freiburg, Germany) prior to RNA isolation. To check the abun-
dance in vegetative tissue, leaf material was used. In the case of
C. papaya no leaf material was available so fruit exocarp tissue was
utilized instead. To check expression in P. patens 6-week old game-
tophores were used for RNA Isolation. Isolated RNA was treated
with DNase I (Thermo Fisher Scientific, Germany). To check con-
tamination with genomic DNA in the treated RNA, a PCR was
performed with RNA as a template. No contamination was found
in the RNA samples after DNase treatment (data not shown).
cDNA was produced using an anchored oligo dT Primer with
the Maxima H Minus Reverse Transcriptase Kit (Thermo Fisher
Scientific, Germany) using 2–4 μg of total RNA as a template for
the RT-reaction.

MOLECULAR CHARACTERIZATION OF SPO11
Reverse transcribed cDNA was used as a template for a PCR reac-
tion using 50 amplification cycles. The resulting PCR products
were purified using the GeneJET PCR purification Kit (Thermo
Fischer Scientific, Germany) and cloned into the insTA-cloning
vector system (Thermo Fischer Scientific, Germany). Resulting
clones were screened in a colony PCR using M13 Primer. Clones
differing in the size of their insert were sequenced and analyzed
using MegAlign.

RESULTS
IDENTIFICATION OF SPO11 HOMOLOGOUS AMONG THE PLANT
KINGDOM
The progress in sequencing and the growing amount of data
input into the sequence databases provided us with a pow-
erful tool for the identification of putative homologous pro-
teins in a rapidly growing number of organisms by database
searches using common bioinformatics tools such as BLAST-
programs (TBLASTN = protein sequence search against the
respective genomic sequence). By using known sequences of
SPO11 from A. thaliana and O. sativa we were able to iden-
tify orthologs to SPO11-1 and -2 in all publicly available land
plant genome assemblies sequenced to date. The identities of the
orthologs to SPO11-1 from A. thaliana ranges between 95.9%
for Arabidopsis lyrata to 45.4% for P. patens. The identities of
the orthologs to SPO11-2 from A. thaliana is comparable to the
identities found for SPO11-1. For A. lyrata the identity is 96.9%
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and the least identity is found again for P. patens with 47.5%
(Supplemental Tables 2, 3). In both cases, the monocotyledonous
plants show approximately 10% less identity compared to the
dicotyledonous plants representing the earlier split of mono- and
dicots (Supplemental Tables 2, 3).

In our database analyses we found orthologs of SPO11-1
and -2 in all land plants with completely sequenced genomes. The
conserved gene structure of SPO11-1 in land plants contains 15
exons and 14 introns in the coding region. This structure has
been verified earlier by sequencing of the cDNAs from A. thaliana
and O. sativa (Hartung and Puchta, 2000; Jain et al., 2006).
In a large number of cases, the annotation of these orthologs
corresponded to the known cDNAs but in several cases the cor-
respondence was incomplete. In virtually all of the latter cases
we could perform a manual correction according to the known
sequences. In the Asterid Utricularia gibba we found that intron
number one was missing, clearly indicating an intron loss event
in this species. In Table 1 the predicted position and phase of
the introns in relation to their deduced protein sequence is given.
All plants with a completely sequenced genome possess SPO11-2
and show a conserved gene structure concerning the position
of the 10 introns in the coding region of SPO11-2 (Table 1).
However, we can identify three exceptions. Firstly, Malus domes-
tica, Prunus persica, Vitis viniferis, Fragaria vesca, and Eucalyptus
grandis all miss the first intron so it has most probably been lost
in a common ancestor of these species. Secondly, in some rice
species a loss event of intron two occurred, as this intron is miss-
ing only in O. sativa and O. glaberrima. This intron loss event

must have occurred recently as the close relative O. brachyan-
tha contains intron two. Thirdly, the plant Aquilegia coerulea,
belonging to the Ranunculaceae, encodes for a SPO11-2 gene
which does not contain a single intron (Supplemental Figure 1).
Most probably this SPO11-2 gene is a reinserted copy of a fully
spliced reverse transcribed mRNA, a mechanism which is also
proposed to have resulted in the origin of SPO11-3 (Hartung
et al., 2002b).

Considering all this, it is very clear that SPO11-2 existed before
the evolution of land plants that took place approximately 450
mya, exemplarily shown by the SPO11-2 sequence (genomic and
cDNA) of the moss P. patens, an extant member of one of the
oldest land plant lines (Supplemental Figure 1). However, there
is a recognizable gap of conservation considering a second or
third SPO11 gene in green algae and other algae that belong to
the heterokontophyta or rhodophyta. All fully sequenced green
algae contain a single SPO11 gene that shows the highest sequence
identity to SPO11-3 from land plants. In all of these algae, the sec-
ond subunit TOPVIB is also present as has been shown earlier by
Malik et al. (2007). This indicates that like land plants, algae most
probably possess a functional complex of TOPVIA and B. A very
interesting feature of the SPO11-3 gene structure in green and
other algae is that this gene possesses a high number of introns
(14 in Chlamydomonas reinhardtii) that are not correlated to the
introns found in plant SPO11-1 or -2, whereas SPO11-3 in land
plants possesses only one intron (whose position is correspond-
ing to intron no. 6 of CreSPO11-3) or none at all (Supplemental
Figure 2).

Table 1 | Intron localization of A. thaliana, H. sapiens, and the SPO11 genes from the two fungi C. cinerea (Basidiomycota) and C. grayi

(Ascomycota) with respect to their corresponding amino acid sequence positions.

Intron no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 End

Ath pos. (aa) 18.3 51.6 76.3 110.3 135 140.6 164 176.3 192.3 212 222.6 258 298.3 319.6 362

IP SPO11-1 1a 2 1 1 0 2 0 1 1 0 2 0 1 2

Hsa pos. (aa) 43.6 81.6 111.3 133.6 170 199 211.3 248 281.3 294 319.6 357 396

IP SPO11 2 2 1 2 0 0 1 0 1 0 2 0

Cci pos. (aa) 68.6 99.3 121.6 140 158 187 215 239 261.6 312.6 331 344.6 376.6 401

IP SPO11 2 1 2 0 0* 0 0 0 2 2 0 2 2

Cgr pos. (aa) 74.3 96.6 133 164 190 215 378

IP SPO11 1 2 0 0 0 0

Ath pos. (aa) 28 56 99.3 145.3 175 218 249.6 270.6 296.3 339 383

IP-SPO11-2 0b 0c 1 1 0 0 2 2 1 0

The numbering of introns was done with respect to the highest number of 14 introns in Arabidopsis SPO11-1. Gaps are included in the other lines to better visualize

the conserved intron positions.
aThis intron has been lost in Utricularia gibba.
bThis intron has been lost in Fragaria vesca, Malus domestica, Mimulus guttatus, Prunus persica, and Vitis vinifera.
cThis intron has been lost in Oryza brachyantha and Oryza sativa.
*This intron number 5 of C. cinerea is in the same conserved position as intron number 5 of Arabidopsis SPO11-1 and H. sapiens but is preceded by a non-conserved

intron position (no. 4).

Color coding: Orange, intron position conserved at least since the split of the plant and animal kingdom, sometimes (8 and 12) lost later on in fungis; Yellow, intron

position conserved between H. sapiens (as representative for animals) and two fungal divisions. Abbreviations: IP, Intron position; Ath, Arabidopsis thaliana; Cci,

Coprinopsis cinerea; Cgr, Cladonia grayi; Hsa, Homo sapiens.

www.frontiersin.org May 2014 | Volume 5 | Article 214 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


Sprink and Hartung The splicing fate of plant SPO11 genes

Malik et al. (2007) performed extensive phylogenetic analy-
ses in which they described a second SPO11 gene that can be
found in chlorophyta (prasinophyceae), rhodophyta, and het-
erokontophyta and is by its sequence homology most related to
SPO11-2 of plants. However, a meiotic function of the gene has
not been demonstrated for any of these organisms so far, and
additionally, the gene structure is highly different compared to
SPO11-2 from land plants (Supplemental Figure 2). The SPO11-2
similar genes of phylogenetically very different algae either pos-
sess no intron at all, or a much smaller number of introns in
positions that are not correlated to the highly conserved posi-
tions found in all land plant SPO11-2 orthologs (Supplemental
Figure 2). Taking all data together, two very early duplications
of the original SPO11-3 (which is orthologous to TOP6A from
archea) must have occurred, followed by a number of losses in
different kingdoms.

This raises the question if SPO11-2 from algae is really orthol-
ogous to SPO11-2 from land plants. To address this question, we
can use the method of comparison of intron positions which we
already developed earlier (Hartung et al., 2002b). In brief, after
the alignment of the protein sequences, each intron position is
projected onto these sequences which can result in an intron
located in between two coding triplets (phase 0) or interrupt-
ing a coding triplet after the first or second nucleotide (phase 1
and 2 which results in e.g., amino acid 18.3 or 18.6, respectively).
Doing so for all genes, we can clearly see that six intron positions
in SPO11-1 are conserved throughout the animal and plant king-
dom, spanning a time frame of almost one billion years (Table 1;
Hartung et al., 2002b). These introns are number 3, 5, 7, 8, 10, and
12 with respect to the AthSPO11-1 gene (Table 1). The ancient
intron positions 8 and 12 most probably have been lost after
the divergence of plants and animals/fungis in the fungi king-
dom only. Furthermore, even one intron of SPO11-2 (no. 6) is
somehow conserved with respect to fungal SPO11 which is a sin-
gle copy SPO11 (Hartung et al., 2002b). These conserved intron
positions cannot be found in the second SPO11 copy in algae or
protists (Supplemental Figure 2). Considering this, we think that
the second SPO11 in protists and algae is an ortholog of plant
SPO11-2 due to its sequence conservation but a lot of changes
concerning its gene structure have taken place during evolution
(Malik et al., 2007; this work).

ANALYSIS OF SPO11 cDNAs
Based on the obtained database sequences, we designed primer
pairs to amplify the whole coding sequence (CDS) of SPO11-1
and SPO11-2 from B. rapa, C. papaya, O. sativa, and P. patens.
The predicted models fit the amplified CDSs in all cases. Using
preamplified cDNA of the corresponding species, both SPO11
could be amplified in their full length from C. papaya, B. rapa,
and A. thaliana. From P. patens and O. sativa only SPO11-1
could be amplified as a full length construct, for SPO11-2 from
P. patens two overlapping fragments were amplified, sequenced,
and artificially put together afterwards. For O. sativa no full length
construct of SPO11-2 could be amplified due to high GC con-
tent in the 5′ region (GC > 80%). Every time we tried to evaluate
SPO11-2 all constructs were artificially modified due to a repeti-
tive sequence in the 5′ region. Due to this artificial error SPO11-2

from O. sativa was not further analyzed in detail. In this region
the PCR leaped directly from one repetitive sequence to the next,
resulting in constructs without a methionine that could not pos-
sibly be spliced in a natural way. The structures of the SPO11-1
and -2 genes are shown schematically in Figure 1. In all cases,
SPO11-1 consists of 15 exons and 14 introns. SPO11-2 codes for
11 exons interrupted by 10 introns in all cases, except for O. sativa
and O. brychyantha in which intron 2 has been lost. The CDS and
protein length of each analyzed SPO11 is shown in Table 2.

Full length cDNAs were assembled from the RT-PCR
data compared to the genomic sequences in the databases.
Astonishingly, in our attempts to amplify the cDNA by RT-PCR
for each gene we barely found one clearly distinguishable band.
In most cases, more than one band accompanied with a smear
was visible in the ethidium bromide stained gel (Figure 2). After
cloning and sequencing of the PCR-products we were able to
identify different alternatively spliced variants for both SPO11
cDNAs.

PATTERN OF ALTERNATIVE SPLICED SPO11
In the course of analyzing the patterns of alternative splicing
events for SPO11, different splicing events which lead to puta-
tive non-functional proteins could be detected (Figure 3). In most
cases we found intron retention (IR) mostly leading to a pre-
mature termination codon (PTC) and an altered length of the
putative proteins. In some cases exon skipping (ES) occurred and
we also observed events with altered 5′ or 3′ splice sites (alt 5′ss
or alt 3′ss) leading to shorter or longer exons which led to the
integration of PTCs in most cases.

When comparing the patterns of alternative splicing events
of SPO11-1 in vegetative and generative tissue we could only
detect very few events with a matching pattern in both tissue
types (Supplemental Table 4). Furthermore, these patterns are
also different between the analyzed plants. We found no con-
served alternatively splicing events between two different plants
in our analyses, indicating that the events are species and tissue
specific.

Analyzing A. thaliana SPO11-1 (Figure 3A), a total of eight
alternative splicing events could be found (β-ι). From these, five
events were IR (β-ζ), one alt 5′ss (θ), one alt 3′ss (η), and one alt
3′ss combined with IR (ι). All alternative splicing events resulted
in altered putative truncated proteins varying from 69 amino
acids (aa) to 324 aa in length instead of 362 aa (Supplemental
Table 4). For A. thaliana SPO11-2 (Figure 3a), six alternative
splicing events could be observed (β-η), three IR events (β-δ),
one alt 5′ss (ε), one alt 5′ss combined with IR (ζ), and one alt
3′ss combined with ES (η). Five forms result in PTC and putative
truncated proteins ranging from 52 to 305 aa instead of 383 aa.
One form missing exon 3 and parts of exon 4 does not contain a
PTC and is leading to a putative functional protein of 303 aa (η)
(Supplemental Table 4).

The analysis of SPO11-1 alternative splicing events in B. rapa
revealed five different forms (β-ζ), which consist of two IR
(β,γ), two alt 3′ss (ε,ζ), and one combination of ES with IR (δ)
(Figure 3B). Leading to one alternative splicing event without
PTC where the protein length is shortened by 9 aa (ε). All other
events lead to PTC and therefore the putative protein sequences
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FIGURE 1 | The in-scale exon–intron organization of SPO11-1 (A) and

SPO11-2 (B) for five analyzed species. Ath, Arabidopsis thaliana; Bra,
Brassica rapa; Cpa, Carica papaya; Ppa, Physcomitrella patens; Osa, Oryza

sativa. Coding regions are represented by gray boxes. The introns are
represented by black lines. ∗ Intron 2 has been lost in OsaSPO11-2. For a
better comparison exon 2 was marked with 2 and 3 due to their fusion.

Table 2 | Length of the coding sequence and the respective deduced

protein length of SPO11-1 and -2 from different species.

Organism Gene CDS length (bp) Protein length (aa)

Arabidopsis thaliana SPO11-1 1089 362

SPO11-2 1152 383

Brassica rapa SPO11-1 1089 362

SPO11-2 1143 380

Carica papaya SPO11-1 1086 361

SPO11-2 1149 382

Oryza sativa SPO11-1 1146 381

SPO11-2 1158 385

Physcomitrella patens SPO11-1 1086 361

SPO11-2 1113 370

Abbreviations: bp, basepair; aa, amino acid.

were truncated ranging from 82 to 153 aa instead of 362 aa
(Supplemental Table 4). In the case of B. rapa SPO11-2, five alter-
native splicing events were detected (β-ζ). All of them had one or
more IR (Figure 3b), four of them with a PTC putatively lead-
ing to truncated proteins between 32 and 268 aa length. One IR
event, the retention of intron 10 (δ), did not lead to a PTC result-
ing in an altered putative protein with 404 aa instead of 380 aa
(Supplemental Table 4).

The evaluation of the alternative splicing events in SPO11-1
from C. papaya revealed the highest number of 11 alternative
splicing events (β-μ), all differing in type (Figure 3C). We found
IR, ES, alt 5′ and 3′ss as well as all kinds of combinations between
those types. All constructs contained a PTC leading to putative

FIGURE 2 | Semiquantitative RT-PCR of SPO11-1 and -2 from

Arabidopsis thaliana (A) and Brassica rapa (B). 1 μl of each cDNA was
used for the PCR reaction. In the case of SPO11-1, distinct bands are
visible. The lower band represents the α form of SPO11-1, the others are a
mixture of other forms. The same holds true for SPO11-2.

truncated proteins ranging from 30 to 210 aa in size, instead of
361 aa (Supplemental Table 4). When looking at CpaSPO11-2, five
different alternative splicing events were detected (β-ζ). All had
IR but also one combination of IR with an alt 3′ss was detected
(ζ) (Figure 3c). Four events lead to PTC and putative proteins
between 97 and 270 aa instead of 382 aa. One event could lead
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FIGURE 3 | Schematic unscaled schema of the different splice forms

of SPO11-1 (A–E) and -2 (a–e) from Arabidopsis thaliana (A,a),

Brassica rapa (B,b), Carica papaya (C,c), Oryza sativa (D,d), and

Physcomitrella patens (E,e). Exons are numbered and shown as white
blocks, spliced introns as black lines. Intron retention events are
illustrated as black boxes, alternative 5′ splice site selection are shown
as blue boxes and alterative 3′ splice site selection as light green boxes.

In the case of exon skipping the corresponding white box is missing.
Splicing forms are named in Greek letters. Splice forms found in
generative tissue are marked with a red bar; splice forms found in
vegetative tissue are marked with a green bar. Splice forms found in both
tissues have both bars. Putative functional forms are marked with an
asterisk. Due to high GC content and resulting PCR failure, amplification
of OsaSPO11-2 was only possible from exon 2 so exon 1 is not indicated.

to an altered protein with 410 aa in length containing intron 9 (γ)
(Supplemental Table 4).

In O. sativa we were only able to analyze the alternative splic-
ing events for SPO11-1, due to the fact that SPO11-2 has a
very high GC content in the 5′ region of its genomic coding
sequence. This high GC content prevented successful amplifi-
cation of the cDNA up to exon 2. In the case of SPO11-1
we identified six alternative splicing events (β-η). We found IR
as well as a combination of alt 5′ and 3′ss with and without
IR (Figure 3D). Five of these constructs lead to PTC result-
ing in altered putative protein lengths between 109 and 237 aa
instead of 381 aa. One construct with a shortened exon 1 and
2 did not lead to a PTC (γ) and results in a truncated puta-
tive protein with the length of 350 aa (Supplemental Table 4).
Despite the problems with PCR amplification, we identified one

alternative splicing event (Figure 3d), containing intron 7 for
SPO11-2.

Looking at P. patens, we could only find one alternative splic-
ing event for each SPO11 (Figures 3E,e). In SPO11-1, intron 8
was retained resulting in a PTC and a putative shortened protein
of 181 aa instead of 361 aa (Supplemental Table 4). In SPO11-
2, exon 2 was skipped without causing a PTC, but generating a
putative truncated protein with a length of 342 aa instead of 372
aa (Supplemental Table 4).

The majority of alternative transcripts found in these exper-
iments lead to putative non-functional proteins. Only a small
number of alternative transcripts may lead to functional pro-
tein forms these transcripts were exclusively found in generative
tissue and were outnumbered by the alternative transcripts which
contained a PTC.
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DISCUSSION
EVOLUTION OF DIFFERENT SPO11 GENES
The time frame of SPO11 gene evolution remains unclear as a
second SPO11 copy must have arisen very early, most proba-
bly by gene duplication and subsequent divergence of the two
genes. The most likely scenario is that SPO11-3, which shows
by far the best sequence homology to TOPVIA from archaea
and additionally is still functional and interacting with TOPVIB
in plants, was the ancestor of gene duplications giving rise to
other SPO11 copies (Hartung et al., 2002a; Malik et al., 2007).
The phylogenetic sequence homology of SPO11-2 to the second
SPO11 found in protists shown by Malik et al. (2007) favors this
gene as the first result of duplication and speciation. However, as
we could show earlier and sustain here, SPO11-1 from plants is
clearly orthologous to SPO11 from fungi and animals, indicating
a very early appearance of this gene by duplication of SPO11-3
(Hartung et al., 2002a; Forterre et al., 2007; this work). Therefore,
in our opinion a duplication of the ancestral SPO11-3 must have
occurred twice and very early giving birth to SPO11-1 and -2
that currently we can find either in animals and fungi (SPO11-1)
or algae and protists (SPO11-2). The organisms that currently
only contain SPO11-1 must have lost the other copies, whereas
protists that contain SPO11-2 and -3 orthologs have lost only
SPO11-1 (Figure 4). Finally, in land plants all known copies of
SPO11 are still encoded and active as we and others have show
for all three SPO11 genes earlier (Grelon et al., 2001; Hartung
et al., 2002a,b, 2007; Sugimoto-Shirasu et al., 2002; Stacey et al.,
2006). In addition, SPO11-3 is present together with the second
subunit TOPVIB, not only in plants but also in all so far inves-
tigated green algae and protists, which is not the case in animals
and fungi (Malik et al., 2007) (Figure 4). This points to a con-
served and linked function of both gene products together as we
and others have shown for Arabidopsis (Hartung et al., 2002b;
Sugimoto-Shirasu et al., 2002).

Nevertheless, the exact evolution and function of two SPO11
in plant meiosis is still enigmatic. We show that both meiotically
active SPO11 genes are undergoing an extremely complicated
splicing procedure leading to high numbers of mostly aberrant
alternative splice products. Despite the very high conservation
of the gene structure for SPO11-1 and -2, whose introns are
in virtually 100% identical positions throughout all land plants,
the alternative splicing seems to be regulated specifically in each
species. It is not clear whether all different splicing forms of
SPO11 found in this study are real alternative spliced transcripts
or if some may result from sampling unprocessed pre-mRNAs
or genomic DNA contamination. However, there are some clues
that the identified alternative splicing patterns are real events. (1)
The pattern is found for both SPO11 in a similar rate and the
same as described by Hartung and Puchta (2000), (2) the pat-
tern is conserved between different species, (3) amplification of
genomic DNA was not possible (Supplemental Figure 3A) and
(4) of the analyzed meiotic genes, only SPO11-1 and -2, PHS1
and VIP3 show this pattern (Supplemental Figure 3B). An alterna-
tive splicing pattern was described for VIP3 and SPO11-1 earlier
(Hartung and Puchta, 2000; Terzi and Simpson, 2009). This study
is slightly differing in the findings for SPO11-2 from the study
done by Hartung and Puchta (2000), due to the fact, that we

FIGURE 4 | Proposed evolution scheme of SPO11 by two duplications

and different loss events. The proposed evolution of the three different
SPO11 genes nowadays found in land plants is shown schematically.
Whereas bacteria do not possess a topoisomerase 6, LAECA has
developed a topoisomerase type 6 from which the subunit TOP6A is
orthologous to SPO11-3 in eukaryotes. Two duplication events of SPO11-3
took place after separation of eukarya from archaea resulting in the
additional SPO11-1 and SPO11-2 genes. In different phyla loss events of
either SPO11-1 or -2 occurred. After separation of the animal and fungal
kingdom SPO11-2 and -3 as well as TOP6B must have been lost resulting in
the remaining single SPO11 gene present in these two kingdoms.
Abbreviations: LUCA, last universal common ancestor; LAECA, last
archaeal-eukaryal common ancestor. The term LAECA was taken from
Forterre (2013).

now took a closer look especially on SPO11-2 and used a differ-
ent protocol for RT-PCR combined with a higher number of PCR
cycles. The conservation of alternative splicing between ortholo-
gous genes has been described in A. thaliana and O. sativa (Wang
and Brendel, 2006). For this reason, it is not extraordinary that
the alternative splicing is conserved not only between A. thaliana
and O. sativa but also between the other analyzed species. Wang
and Brendel (2006) also reported that the type of alternative splic-
ing is more conserved than the respective intron which is spliced,
also seen for SPO11-1 and -2 in this study.

Having a look at another kingdom in the eukaryotes previous
studies showed also for mouse and human a pattern of alterna-
tive spliced transcripts for SPO11 (Shannon et al., 1999). In this
previous work various alternative spliced transcripts were identi-
fied. Most of them were not further analyzed, but two transcripts
variants with the expected size code for functional proteins. These
two forms, SPO11-α and SPO11-β differ only in the abundance of
exon 2. SPO11-α is missing exon 2 resulting in a shortened pro-
tein. The same forms were found in humans (Romanienko and
Camerini-Otero, 1999). We were not able to find splicing forms
equivalent to SPO11-alpha/beta from mammals due to the fact
that the protein sequence in this area has not much homology
to SPO11 from plants. But we were able to find other putative
functional forms in plants as shown in Figure 3. The fact, that
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alternative splicing of SPO11 is also common in other kingdoms,
let us suggest that this mechanism is highly conserved and might
have a regulating function.

SPO11 AND THE NMD PATHWAY
Many aspects are known to initiate non-sense mediated decay in
plants. It was shown that long 3′ untranslated regions (UTRs)
as well as an intron in the 3′UTR can trigger the NMD pathway
(Kertész et al., 2006). We could previously show that A. thaliana
SPO11-1 and -2 both harbor an intron in the 3′UTR and show
different poly A sites, which sometimes results in long 3′UTRs
(Hartung and Puchta, 2000). In this study we determined vari-
ous poly A sites of SPO11 in O. sativa and C. papaya (data not
shown) that affect the position of the poly A tail and sometimes
lead to long 3′UTRs. Another aspect which may lead to non-sense
mediated decay besides a long 3′UTR are upstream open reading
frames (uORFs) adjacent to the start codon of the gene (Nyikó
et al., 2009). Analyzing the 5′UTR of A. thaliana SPO11-1 and -2,
we could identify in both cases long uORFs. For other species such
as C. papaya and O. sativa, such long and adjacent uORF could
not be found for both SPO11. However, for all analyzed species
we were able to identify alternative splicing events that lead to
PTCs which are presumed to be targeted by the non-sense medi-
ated decay pathway (for recent review see Reddy, 2007). In plants,
many pathways such as the circadian clock and the flowering time
are controlled via alternative splicing of core genes (James et al.,
2012; Staiger and Brown, 2013). Alternative splicing and various
polyadenylation has been reported for VIP 3 during flower devel-
opment of Arabidopsis (Terzi and Simpson, 2009). VIP 3 is the
Arabidopsis ortholog of SKI 8 from yeast, one of the described
direct interaction partners of SPO11 in Saccharomyces cerevisiae
(Arora et al., 2004). There must be a reason for the conserved
alternative splicing of SPO11-1 and -2 in plants. One possibil-
ity could be that SPO11 is controlled in a precise way via the
pathways of alternative splicing and non-sense mediated decay.
The NMD pathway offer a mechanism which is routinely used by
mammals and others to regulate gene expression (Lareau et al.,
2004; Lejeune and Maquat, 2005). Such effects were observed for
mice and men where the splicing of SPO11 and other meiosis spe-
cific genes are regulated during meiosis (Habu et al., 1996; Schmid
et al., 2013). It has long been known for yeast that genes which are
involved in meiosis show alternative splicing (Engebrecht et al.,
1991; Guisbert et al., 2012). Considering that the number of pos-
sible NMD candidates in plants are quite similar to the frequency
observed for humans, it seems likely that plants may also use non-
sense mediated decay and alternative splicing for gene regulation
in a comparable way (Lareau et al., 2004; Wang and Brendel,
2006).

While further analyses on the localization of the alternative
spliced isoforms need to be done, this study revealed differences in
the alternative spliced forms of SPO11-1 and -2 between genera-
tive and vegetative tissue. Such tissue specific regulation of NMD
was shown before. Especially in mammals this has been studied
recently (Zetoune et al., 2008; Huang and Wilkinson, 2012) An
accurate differentiation between single cell types could give closer
insight into the alternative splicing during pre-meiotic and mei-
otic stages as done for yeast and mammals (Engebrecht et al.,

1991; Schmid et al., 2013). The very weak expression especially
for SPO11-2 could make this a challenging task. Up to now lit-
tle is known about the function of the conserved domains in
SPO11 (Bergerat et al., 1997). A closer look and more infor-
mation on those domains could contribute to the understand-
ing of the putative function of the alternative spliced isoforms.
Investigating nmd−/− mutants could provide us with more infor-
mation about the potential regulation of SPO11-1 and -2 via
NMD in Arabidopsis. In previously published studies, SPO11
mRNA was not captured mostly due to its weak expression and
inadequate conditions for the amplification of SPO11 (Simpson
et al., 2008; Kalyna et al., 2012). Taking a closer look at SPO11
expression in these plants would be of great advantage.
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Abstract: 

Major findings in the field of plant meiosis have been achieved recently but important 

questions towards the understanding of meiosis in plants remain concealed. A key question is 

why plants need two very different meiotic SPO11 proteins and whether these two interact 

together. In Arabidopsis thaliana both meiotic SPO11 are essential in a functional form for 

double strand break induction. This stands in contrast to metazoa where a single SPO11 is 

present and sufficient for proper meiosis. We aim to investigate the specific function and 

evolution of both meiotic SPO11 paralogs in plants. By exchanging three not conserved parts 

as well as exchange and deletion of the last exon between Ath SPO11-1 and -2, we were able 

to show a sequence specific function for both SPO11 proteins. By exchanging SPO11-1 and -

2 in A. thaliana with related and ancestral SPO11 we additionally could show a species 

specific function of the respective SPO11. Complementation was possible using SPO11 from 

the close related (20 mya) species Brassica rapa and partial complementation with multiple 

integrated SPO11-1 cDNAs from papaya. These findings indicate that the function of each 

meiotic active SPO11 paralog is sequence specific and that the respective orthologs are 

species specific. 

 

Introduction 

In most eukaryotic organisms a functional meiosis is the crucial step that ensures overall 

genome stability on one hand and provides genetic diversity on the other (Roeder 1997; 

Zickler and Kleckner, 1998; Paques and Haber, 1999; Knoll and Puchta, 2011). Precise 

interaction of the meiosis specific protein machinery enables correct pairing of the 

homologous chromosomes including their physical connection via double Holliday Junctions. 

This is leading to at least one crossover per chromosome. Thereby it guarantees stability of 

the chromosome number whereas the subsequent resolution of the crossovers by homologous 

recombination provides genetic variability in the developing gametes. Initial formation of 

double strand breaks (DSBs) by SPO11 at the leptotene stage of early prophase I is a key 

aspect that is needed in most organisms for the following meiotic processes. SPO11 induced 

DSBs facilitate a physical linkage between the homologous chromosomes, without these 

DSBs and their subsequent repair no pairing occurs and the chromosomes are randomly 

distributed (Grelon et al., 2001; Stacey et al., 2006; Hartung et al., 2007; Cole et al., 2010; this 

work). 
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The eukaryotic SPO11 protein which is a homolog of the topoisomerase VI (TOPVI) subunit 

A is this key factor introducing DSBs in a wide range of organisms. The SPO11 gene is quite 

conserved between various organisms as we and others could demonstrate earlier (Bergerat et 

al,. 1997; Keeney et al., 1997; Grelon et al.; 2001; Sprink and Hartung, 2014). SPO11 and 

TOPVIA share seven conserved motifs, including a winged helix and a TOPRIM domain 

(Malik et al., 2007; de Massy, 2013). Both proteins are able to cleave double stranded DNA 

constituting a 5´-phosphotyrosyl linkage. The resulting DSBs are defining the acceptor sites 

of exchange between the parental chromosomes (Keeney et al., 1997; Malik et al., 2007; Cole 

et al., 2010). Previous work mostly done in yeast and mouse demonstrates that SPO11 

proteins are subsequently released bound to a short piece of DNA, the so called SPOligo. 

These SPOligos are released with a 2 bp long 5´-overhang from the break site. The release is 

performed by a combined action of several proteins such as the MRX-complex (MRE11, 

RAD50, XRS2) in Saccharomyces cerevisiae or the MRN-complex (MRE11, RAD50, NBS1) 

in other species including A. thaliana, in a combination with SAE2/COM1 (Alani et al., 1990; 

Cao et al., 1990; Liu et al., 1995; Nairz and Klein, 1997; Prinz et al., 1997; Buhler et al., 

2001; Prieler et al., 2004; Neale et al., 2005; Mimitou and Symington, 2008; Rothenberg et 

al., 2009; Garcia et al., 2011). Following the removal of SPO11 from the break sites different 

specialized meiotic DNA repair proteins including RPA1, RAD51 and DMC1 in combination 

with several DNA repair factors mediate strand invasion, DNA elongation and the capture of 

a second DNA strand followed by subsequent repair and ligation of the break (reviewed in 

Edlinger and Schlögelhofer, 2011; de Massy, 2013). 

In many organisms like mammals and fungi a single SPO11 is present and sufficient for 

meiotic DSB formation. In contrast to this, plants encode for at least three SPO11 proteins, 

from which two play a meiotic role in A. thaliana referred to as Ath SPO11-1 and Ath 

SPO11-2. Both are essential in a functional form for DSB formation during meiosis (Keeney 

et al., 1997; Grelon et al., 2001; Stacey et al., 2006; Hartung et al., 2007). The third one, Ath 

SPO11-3 possesses pivotal functions during somatic development of plant cells in 

combination with the second subunit of the topoisomerase VI (TOPVIB), but it has no 

function in meiosis (Hartung et al., 2002a; 2007; Stacey et al., 2006; Simkova et al., 2012). In 

rice (Oryza sativa) two additional SPO11 proteins have been identified from which one, Osa 

SPO11-4, is proposed to have a function in meiosis (An et al. 2011; Shingu et al., 2012). 

The mechanism of meiotic DSB formation in plants by at least two different SPO11 proteins 

remains mysterious. To date it is still unclear whether and how they collaborate in meiosis 
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and which regions of the proteins are defining their specific functions. Therefore, we 

investigated the specific function, interaction and evolution of SPO11 in the plant kingdom. 

We and others were able to reveal the evolution of SPO11 in all kingdoms of life and could 

identify a widely conserved mechanisms of aberrant splicing for both SPO11-1 and -2 in 

numerous plants (Hartung and Puchta, 2000; Hartung et al., 2002b; Malik et al., 2007; Sprink 

and Hartung, 2014).  

Here we addressed several questions concerning the function of the two meiotic SPO11 

proteins in plants. First we wanted to evaluate if the function of orthologous SPO11 genes is 

conserved between different related plants and if the function is still conserved in more 

ancestral SPO11 genes from green algae and animals. By using both genomic DNA and 

complementary DNA (cDNA) for complementation approaches we were able to check if the 

aberrant splicing has any effect on the complementation efficiency. In a second approach we 

investigated which regions of Ath SPO11-1 and -2 are defining the different functions of both 

proteins by interchanging three less conserved regions between both paralogs. Last but not 

least we deleted and exchanged over cross the last exon of both genes, since we discovered 

earlier that disruption by a T-DNA in this part of the respective gene leads to a total loss of 

function indicating that it might be an essential part (Stacey et al., 2006; Hartung et al., 2007).  
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Results 

The function of AthSPO11 is sequence specific. 

As a control for a positive complementation approach we transformed spo11-1-3 plants with a 

full genomic construct of SPO11-1 from A. thaliana including 553 bp of the promoter region 

and 496 bp of the 3´-UTR region (spo11-1-3-Ath SPO1g). We did the same for spo11-2-3, as 

we used the full genomic region of Ath SPO11-2 including 704 bp of the promoter region and 

496 bp of the 3´-UTR region (spo11-2-3-Ath SPO2g). This architecture of the UTR regions 

was also used for all other complementation approaches. Like in a previous study done in 

2007 most generated lines produced a similar number of seeds as the wild type control 

(Hartung et al., 2007). We analyzed eight independent spo11-1-3 Ath SPO1g lines and eight 

independent spo11-2-3 Ath SPO2g lines which were homozygous for the respective mutation 

and carried the wild type genomic complementation construct. From these lines six out of 

eight (spo11-1-3-Ath SPO1) and seven out of eight (spo11-2-3-Ath SPO2) were able to fully 

complement the sterile phenotype of the respective knockout mutant (table 1).  

 
Table 1. Mean seed set of A. thaliana plants with an additional full genomic construct of the A. 

thaliana SPO11 (AthSPOg) and without (SPO11-1 / SPO11-2) containing none (+/+) one (+/-) or two 

(-/-) disrupted alleles of endogenous SPO11. 

 SPO11-1 SPO11-1-Ath SPO1g SPO11-2 SPO11-2-AthSPO2g 

+/+ 93.1 ± 9,1 91.2 ± 14.6 93.5 ± 9.2 98.1 ± 22.9 

+/- 106.4 ± 9,2 97.4 ± 21.1 105.1 ± 9.8 101.3 ± 22.2 

-/- 3.5±0,6 87.8*** ± 22.6 4.8 ± 0.8 97.3*** ± 10.2 

Seed set is shown in % mean ± standard error of the mean (SEM) calculated against combined mean 

seed set of wild type and heterozygous plants. (Welch´s T-test, P <0.05). *** = highly significant, p-

value < 0.001 

Analysis of the meiotic stages in the complemented plants showed a distribution and pairing 

of the chromosomes as in the wild type control. The homologous chromosomes paired in 

pachytene stage and five bivalents were formed at the diplotene stage of prophase I (Figure 

1).  
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Figure1. Fluorescence micrograph of DAPI-stained nuclei. 

Male meiotic chromosomes counterstained with DAPI during pachytene and diplotene stage 

of prophase I in wild type (Col-0) and spo11-1-3 and spo11-2-3 single mutants as well as 

SPO11 single mutants transformed with endogeneous SPO11 genomic DNA (Ath-SPOg) as 

indicated. Pairing of chromosomes during pachytene stage and formation of five bivalents 

could be observed in the case of wild type and the successful complemented mutants. The 

single knockout lines do not show any pairing or formation of bivalents instead ten univalents 

are formed. 



7 
 

Immunolocalization studies in spread preparations of spo11-1-3-Ath SPO11-1 and spo11-2-3-

Ath SPO11-2 meiocytes revealed a restoration of RAD51 loading onto the DNA just like in 

wild type control (~150 foci / cell; n=10) (Figure 2).  
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Figure 2. Dual immunolocalization of ASY1 and RAD51 proteins in meiocytes of 

different SPO11 mutant lines. 

Meiocytes were counterstained with DAPI (blue) and an immunolocalization of ASY1 

(orange) and RAD51 (green) was performed using rabbit polyclonal antibody against ASY1 

and rat polyclonal antibody against RAD51. A. thaliana meiocytes in zygotene and pachytene 

stage of wild type, SPO11 single knockout lines and complemented single knockouts were 

used for localization studies (as indicated). Green bars = 5µm. 
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This stands in contrast to spo11-1-3 and spo11-2-3 where RAD51 is present in the cytoplasma 

of the cells but is not loaded onto the DNA (Figure 2). The additional expression of a 

respective SPO11 under its natural promoter in Col-0 wild type plants had no influence on the 

number of DSBs since the number of RAD51 foci remained the same as in the wild type 

control ~150 foci/cell (n=10) (Supplementary figure 1).To investigate the sequence specificity 

of Ath SPO11 genes we created three constructs with interchanged parts between Ath SPO11-

1 and Ath SPO11-2 (named SPO1swap1 to 3 and SPO2swap1 to 3). In all cases the 

endogenous promoter and 3´-UTR of the larger part of the respective chimeric gene was used. 

In the swapped regions both proteins showed less sequence identity between each other 

compared to the conserved parts of the proteins (Figure 3). All swaps were performed on the 

genomic level switching exon as well as intron regions (Supplementary figure 2).For the first 

construct we swapped the N-terminal part between Ath SPO11-1 and -2 by interchanging the 

first 81 amino acids (aa) of Ath SPO11-1 with the first 102 aa of Ath SPO11-2 and vice versa 

(SPO1swap1 and SPO2swap1) (Figure 3 and Supplemental figure 2). 
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Figure 3. Clustal W alignments of SPO11-1 and -2 from different plants of the order of 

Brassicales with indicated swaps between Ath SPO11-1 and -2. 

Multiple alignment (done with Lasergene V. 12.1.0) of SPO11-1-and-2 from A. thaliana 

(Ath); B. rapa (Bra) and C. papaya (Cpa). Gaps are represented by dashes; conserved amino 

acids are shaded in yellow. Conserved motifs are indicated and shown as black boxes. The 

active Tyrosine within motif 1 is marked with an asterix. Interchanged regions between Ath 

SPO11-1 and Ath SPO11-2 are indicated and shown as red boxes. Swap 4 represents the last 

exon. The amino acid numbering of each protein is shown on the right. 

 

We analyzed ten individual spo11-1-3-SPO1swap1 lines and four individual spo11-2-3-

SPO2swap1 lines. None of them showed any evidence for a successful complementation, all 

analyzed lines showed the same reduced seed set as the non transgenic control (Figure 4).  

 

 



11 
 

 

Figure 4. Seed set in complementation experiments using interchanged SPO11 

constructs. 

Relative seed set of A. thaliana plants containing an artificial SPO11 construct and none (WT) 

one (HT) or two (HM = homozygous) disrupted alleles of endogenous SPO11, compared to 

the seed set of the respective control carrying no construct (SPO11-1; SPO11-2). Seed sets are 

shown as mean seed set in % ± standard error of the mean (SEM), compared to the respective 

combined seed set of the corresponding wild type (WT) and heterozygous (HT) plants. 

(Welch´s T-test; P < 0,05) * = significant. (A) SPO11-swap1 to 3 plants (B) SPO11-swap4 

and SPO11 – last exon plants (SPO11 –Δlex). 
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Additionally, we also had a look at these constructs when transformed into the opposite 

genetic background SPO1swap1 in spo11-2-3 and SPO2swap1 in spo11-1-3. Six individual 

spo11-1-3-SPO2swap1 lines and six spo11-2-3-SPO1swap1 lines showed all the same result, 

none of the lines possessed an increased seed set (Supplemental figure 3). The expression of 

the swapped constructs had no influence on the seed set in the respective heterozygous or wild 

type plants (Figure 4 and supplementary figure 3).The same holds true for the second swap 

approach, in which we interchanged 21 aa from Ath SPO11-1 with 23 aa from Ath SPO11-2 

and vice versa (SPO1swap2 and SPO2swap2). The interchanged region was located in the 

middle part of the proteins between motif two and motif three (Figure 4). We tested four 

individual lines of spo11-1-3-SPO1swap2 and six lines of spo11-2-3-SPO2swap2 all 

homozygous for the respective mutation. In none of these lines any induction of seed set 

could be observed also when transformed in the opposite genetic background (0/6 spo11-1-3-

SPO2swap2 and 0/3 spo11-2-3-SPO1swap2) (Supplementary figure 3). Surprisingly, we 

could observe sterile siliques in some wild type plants and plants heterozygous for the T-DNA 

insertion in either SPO11-1 or -2 transformed with SPO1swap2. This effect ranged from only 

a few sterile siliques to nearly complete sterility (Supplemental figure 4). In all of these plants 

the expression of Ath SPO11-1 and Ath SPO11-2 as well as the expression of SPO1swap2 

were analyzed, a silencing of either SPO11-1 or -2 could not be detected (Supplementary fig 

4B). A similar effect of SPO2swap2 on either wild type or heterozygous plants could not be 

detected. 

As third swap approach we interchanged 51 aa of Ath SPO11-1 and 54 aa of Ath SPO11-2 

(SPO1swap3 and SPO2swap3) located near the C-terminal end of the proteins including the 

conserved motif six (Figure 3). We analyzed three individual spo11-1-3-SPO1swap3 and four 

individual spo11-2-3-SPO2swap3 lines, as in the other swap construct no change in fertility 

was observed (Figure 4). Also when transformed in the opposite genetic background both 

constructs did not lead to any change in fertility, neither in the respective mutant lines (0/3 

spo11-1-3-SPO2swap3 and 0/2 spo11-2-3-SPO1swap3) nor in wild type and heterozygous 

plants (Supplementary figure 3). 

By changing three non conserved parts between both SPO11 paralogs in A. thaliana we think 

that the function of SPO11 is sequences specific, because not any type of positive 

complementation was observed. If these parts would be functional in the background of the 

respective other protein, we should have gained DSBs and an increase in seed set, or at least 

fragmentation of the chromosomes, but none of this could be observed. In contrast to this we 
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have identified a negative interference in wild type plants for SPO1swap2 leading us to 

suppose that some swap constructs may bind to the DNA but are not able to cleave it and 

compete with the endogenous SPO11 proteins. 

The last exon codes for a conserved but gene specific function  

The C-terminal end seems to have an essential function for Ath SPO11-1 and Ath SPO11-2 

since disruption of this part of the protein, namely the last exon, by T-DNA insertion is 

leading to a complete loss of function for Ath SPO11-2. Additionally, the last exon is quite 

conserved between both proteins since it is containing the conserved motif seven and ten 

additional conserved amino acids (Figure 3).  

We wanted to elicit if the loss of function due the T-DNA insertion is caused by disrupting the 

overall structure of the genomic region or if the loss of the last exon alone has the same 

devastating effect on Ath SPO11-2 as well as on Ath SPO11-1. For this purpose we designed 

full genomic constructs for Ath SPO11-1 and Ath SPO11-2 lacking the last exon but keeping 

the endogenous promoter. An artificial stop codon (TAG) was introduced just after exon 14 of 

Ath SPO11-1 and after exon ten of Ath SPO11-2. The gene specific 3´-UTR region was fused 

to this artificially truncated protein (SPO1-Δlex and SPO2-Δlex) (Supplemental figure 2). We 

had a look on eight individual spo11-1-3-SPO1-Δlex lines and three individual spo11-2-3-

SPO2-Δlex lines which were homozygous for the respective knockout and were transformed 

with the truncated protein and none of these lines showed an increased number of seeds 

(Figure 4).  

To address the question whether the function of the last exon is conserved and if it can be 

exchanged between Ath SPO11-1 and Ath SPO11-2 we designed a full genomic construct 

including the endogenous promoter region and 3´-UTR for both genes in which the last exon 

was exchanged (SPO1swap4 and SPO2swap4) (Figure 3). We analyzed two individual spo11-

1-3-SPO1swap4 lines which were homozygous for the respective mutation. Both lines 

showed a slightly but significant induction of seed production compared to the control 

knockout line (Figure 4). This effect was not observed for SPO2swap4 where five individual 

lines were analyzed and none of these lines showed an increase in seed production (Figure 4). 

After transformation of the constructs in the opposite genetic background also no obvious 

change in fertility could be observed. When looking at the meiotic figures of spo11-1-3-

SPO1swap4, we were not able to identify enhanced pairing of the chromosomes in pachytene 

stage. We neither could find any evidence for the formation of bivalents during diplotene 
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stage. The same holds true for the meiotic figures of spo11-2-3-SPO2swap4 (Supplemental 

figure 5).  

 

The function of SPO11 is to a certain extend species specific. 

To answer the question whether the function of SPO11 is conserved between plants which are 

related to a different extend we tried to complement the sterile phenotypes of spo11-1-3 and 

spo11-2-3 with genes from species which diverged more recently from A. thaliana ~20 

million years ago (mya), earlier (~70 mya) and from a monocot species which diverged  

~150-200 mya. Additionally, we wanted to elucidate if the function of SPO11 is also 

conserved between land plants and more ancestral genes from green algae or animals. An 

overview of the used genes and their sequence identity in respect to A. thaliana SPO11-1 and 

-2 is shown in table 2. 

For the first heterologous complementation approach we used the full genomic sequence of 

SPO11-1 and -2 from Brassica rapa (B. rapa) (spo11-1-3-Bra SPO1g and spo11-2-3-Bra 

SPO2g) which is closely related to A. thaliana (~ 20 mya;) and shows the highest sequence 

identity (Town et al., 2006; Table 2). 

Table 2. Pairwise comparison of Ath SPO11-1 and Ath SPO11-2 to SPO11 proteins from 

organism used for the complementation approaches.  

Organism   Gene gDNA (bp) CDS (bp) protein (aa) Ath 1 (%) Ath 2 (%) 
Arabidopsis thaliana SPO11-1 2633 1089 362 100 30,5 
 SPO11-2 2029 1152 383 30,5 100 
Brassica rapa SPO11-1 2492 1089 362 90,3 30,1 
 SPO11-2 1870 1143 380 31,8 92,3 
Carica papaya SPO11-1 4491 1086 361 72,8 32,2 
 SPO11-2 2163 1149 382 30,5 73,8 
Oryza sativa  SPO11-1 3710 1146 381 58,7 31,4 
 SPO11-2 2710 1158 385 29,1 62,8 
 SPO11-4 1572 1464 488 28,9 25,1 
Chlamydomonas 
reinhardtii SPO11 4920 1239 413 44,2 27,8 
Mus musculus SPO11β 15877 1188 396 34,1 29,7 
One pair alignment of full SPO11 protein sequences from indicated species were performed 

against A. thaliana SPO11-1 and -2 using MegAlign (Lipman Pearson Ktuple: 2, Gap penalty 

4, Gap lenght penalty 12). Highest and lowest identity of the orthologs is shown in bold and 

the identity between Ath SPO11-1 and -2 are shown in italics. 
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Just like in the control experiment we used the endogenous promoter and 3´-UTR region of 

the corresponding A. thaliana gene for all of the complementation approaches. We analyzed 

three individual spo11-1-3-Bra SPO1g lines and six individual spo11-2-3-Bra SPO2g lines. 

From these lines two out of three (spo11-1-3-BraSPO1g) and six out of six (spo11-2-3-

BraSPO2g) were able to fully complement the sterile phenotype of the respective mutant, as 

seed set was restored just as in the Ath SPOg lines (Figure 5).  
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Figure 5. Successful complementation of spo11-1-3 and spo11-2-3 using genomic SPO11 

constructs from A. thaliana and B. rapa. 

(A) Relative seed set of A. thaliana plants containing a full genomic construct of A. thaliana 

or B. rapa SPO11 and none (WT) one (HT) or two (HM = homozygous) disrupted alleles of 

endogenous SPO11, compared to the seed set of the respective control carrying no construct 

(SPO11-1; SPO11-2). Seed sets are shown as mean seed set in % ± standard error of the mean 

(SEM), compared to the respective combined seed set of the corresponding wild type (WT) 

and heterozygous (HT) plants. (Welch´s T-test; P < 0,05) * = significant. Seed set of spo11-1-

3 Bra SPO1g was not determined. (B) Fluorescence micrograph of DAPI-stained nuclei from 

spo11-1-3 Bra SPO1g and spo11-2-3 Bra SPO2g anthers, in pachytene and diplotene stage of 

prophase I. A reconstitution of pairing during pachytene stage as well as the formation of five 

bivalents could be observed for the successful complemented knockout lines. 
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The meiotic figures in pollen mother cells from spo11-1-3-Bra SPO1g and spo11-2-3-Bra 

SPO2g looked the same as the ones in Col-0 wild type plants. We observed pairing of the 

homologous chromosomes during pachytene stage as well as the formation of five bivalents 

during diplotene stage of prophase I (Figure 5). In the later stages of meiosis the distributions 

of chromosomes between the forming gametes were also just like in wild type control 

(Supplementary figure 6). 

As a second heterologous complementation approach we used the full genomic sequence of 

SPO11-1 and SPO11-2 from papaya (Carica papaya) (spo11-1-3-Cpa SPO1g and spo11-2-3-

Cpa SPO2g). C. papaya belongs like A. thaliana and B. rapa to the order of the Brassicales 

(Supplemental figure 7). Referring to Woodhouse et al. ancestors of A. thaliana and C. 

papaya diversified around 72 mya (Woodhouse et al., 2010). We analyzed nine individual 

spo11-1-3-Cpa SPO1g lines and 15 individual spo11-2-3-CpaSPO2g lines and none of these 

lines showed any signs of positive complementation. All of the analyzed lines had the same 

reduced seed set as their respective knockout control (Figure 6). The meiotic stages of DAPI 

stained spreads of spo11-1-3-Cpa SPO1g and spo11-2-3-CpaSPO2g pollen mother cells were 

also identical to the ones found in the respective knockout plants (Figure 6). 
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Figure 6. Complementation experiments of spo11-1-3 and spo11-2-3 using different 

genomic SPO11 constructs from O. sativa and C. papaya. 

(A) Relative seed set of A. thaliana plants containing a full genomic construct of O. sativa or 

C .papaya SPO11 and none (WT) one (HT) or two (HM = homozygous) disrupted alleles of 

endogenous SPO11, compared to the seed set of the respective control carrying no construct 

(SPO11-1; SPO11-2). Seed sets are shown as mean seed set in % ± standard error of the mean 
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(SEM), compared to the respective combined seed set of the corresponding wild type (WT) 

and heterozygous (HT) plants. (Welch´s T-test; P < 0,05). 

(B) Fluorescence micrograph of DAPI-stained nuclei from spo11-1-3-Cpa SPO1g, spo11-2-3-

Cpa SPO2g and spo11-1-3-Osa SPO1g anthers in pachytene and diplotene stage of prophase 

I. Neither reconstitution of pairing nor formation of bivalents could be observed for any of the 

complemented mutants. 
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In none of the analyzed lines we could identify pairing of the chromosomes during pachytene 

stage or formation of bivalents during diplotene stage, instead ten univalents were formed and 

randomly distributed just like it is known from the respective A. thaliana mutants. 

For the third heterologous complementation approach we used the full genomic region of 

SPO11-1 and -2 from a monocot species, rice (Oryza sativa) subspecies japonica for this 

attempt (spo11-1-3-OsaSPO1g and spo11-2-3-OsaSPO2g). Monocots and dicots diverged at 

around 150 to 200 mya (Soltis et al., 2008) and also the sequence of SPO11 changed 

reasonably between monocots and dicots, 19 additional aa were added to SPO11-1 in 

monocots. (Table 2, Town et al., 2006, Sprink and Hartung, 2014). We analyzed seven 

independent spo11-1-3-Osa SPO1g lines and five independent spo11-2-3-OsaSPO2g lines and 

none of the lines were able to complement the sterile phenotype of the respective mutant 

(Figure 6). We also checked the meiotic stages of a spo11-1-3-OsaSPO1 line and could not 

identify any difference to the respective mutant (Figure 6).  

In O. sativa an additional SPO11 gene has been described which is thought to be involved in 

meiosis, Osa SPO11-4 (An et al., 2011). To investigate if Osa SPO11-4, which has all the 

conserved motifs but shows the lowest sequence identity to Ath SPO11 between all compared 

SPO11 proteins (Table 2), is able to complement the sterile phenotype of either spo11-1-3 or 

spo11-2-3 we designed two complementation constructs using the respective promoter and 3´-

UTR region from either Ath SPO11-1 or Ath SPO11-2 (spo11-1-3-OsaSPO4g and spo11-2-3-

Osa SPO4g). We created nine individual lines for spo11-1-3-Osa SPO4g and spo11-2-3-Osa 

SPO4g each. None of these showed an increased number of seed set. All lines had a seed set 

comparable to the respective knockout (Figure 6). 

 

Complementation with ancestral SPO11  

In contrasts to land plants and some protists mammals and green algae posses only a single 

SPO11 gene therefore loss of the other ones during evolution is very likely (Sprink and 

Hartung, 2014). The sole SPO11 of green algae shows the highest sequence identity to 

SPO11-3 from land plants and the SPO11 from animals shows the highest sequence identity 

to SPO11-1 from land plants (Malik et al., 2007; Sprink and Hartung, 2014).  

To investigate if the function of SPO11 is conserved between ancestral genes we tried to 

complement spo11-1-3 and spo11-2-3 plants with SPO11 from the green algae 
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Chlamydomonas reinhardtii (spo11-1-3-Cre SPO and spo11-2-3-Cre SPO) as well as SPO11 

from mouse (Mus. musculus) (spo11-1-3-Mmu SPO and spo11-2-3-Mmu SPO). Land plants 

diverged from algae around 450 mya and the split between plants and animals ranges back to 

>1000 mya (Wang et al. 1999).  

Due to huge differences in gene structure between Cre SPO11 and Ath SPO11 as well as 

many repetitive sequences in the intronic regions of C. reinhardtii we used the respective 

cDNA of Cre SPO11 for a complementation approach. Just like in the other approaches we 

used the endogeneous promoter and 3´-UTR region from A. thaliana. For the 

complementation approach with mouse SPO11 we also used the cDNA since the gene 

structure between Mmu SPO11 and Ath SPO11 is quite different as the intron sequences are 

larger in mouse compared to A. thaliana. The β-form of SPO11 transcript was used for the 

complementation approach since it is the complete splice form of Mmu SPO11 including 

exon 2 (Kauppi et al., 2011). We investigated the seed set of ten individual spo11-1-3-Mmu 

SPO and eight individual spo11-2-3-Mmu SPO lines homozygous for the respective 

knockout. For the complementation approach with Cre SPO11 we analyzed four individual 

spo11-1-3-Cre SPO and 11 individual spo11-2-3-Cre SPO11 lines. None of these lines 

showed an increase in seed production compared to the respective knockout control neither 

the lines expressing Mmu SPO11 nor the ones transformed with Cre SPO11 (Figure 7).  
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Figure 7. Seed set in complementation experiments of spo11-1-3 and spo11-2-3 with 

SPO11 cDNA constructs from C. reinhardtii (Cre) and M. musculus (Mmu). 

Relative seed set of A. thaliana plants containing a complementary DNA construct of C. 

reinhardtii or M. musculus SPO11 and none (WT) one (HT) or two (HM = homozygous) 

disrupted alleles of endogenous SPO11, compared to the seed set of the respective control 

carrying no construct (SPO11-1; SPO11-2). Seed sets are shown as mean seed set in % ± 

standard error of the mean (SEM), compared to the respective combined seed set of the 

corresponding wild type (WT) and heterozygous (HT) plants. (Welch´s T-test; P < 0,05). 

 

The splicing landscape of SPO11 homologs changes when transformed in A. thaliana 

Since we know from previous studies that SPO11 is differentially spliced in various plants we 

now had the chance to elicit whether the aberrant splicing is sequence and/or species specific 

and if the splicing is effected by neighboring sequences (Hartung and Puchta 2000; Sprink 

and Hartung, 2014). By having a first look on the different splice variants of spo11-1-3-

AthSPO1g plants we could not detect any unknown splice variants. We identified three 

differentially spliced transcripts all retaining introns (splice variants β, γ and λ) besides the 

functionally spliced form (Figure 8). 
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Figure 8. The splicing landscape of SPO11 genes introduced in A. thaliana. 

Schematic non scaled schema of the different splice forms of various SPO11-1 (A-D) and -2 

(a-c) genes introduced in A. thaliana. Splice forms of A. thaliana (A,a), B. rapa (B,b), C. 

papaya (C,c) and O. sativa (D) are shown. Exons are numbered and shown as white blocks, 

spliced Introns as black lines. Intron retention events are illustrated as black boxes, alternative 

5´splice site selection is shown as blue boxes and alterative 3´splice site selection as light 

green boxes. In case of exon skipping the corresponding white box is missing, additional 

exons are not numbered but shown as an additional white box. Known splice forms are named 

in greek letters new ones are not named (according to Sprink and Hartung, 2014). 
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When looking at spo11-2-3-Ath SPO2g we could identify besides the functional spliced 

variant four additional transcript variants which all showed intron retention (IR). One of these 

forms was known (γ) and three were previously unknown (Figure 8) in the wild type control 

we were also able to identify four previously unknown spliced transcript variants for Ath 

SPO11-2 (Hartung and Sprink, 2014) (Supplemental figure 8). 

When looking on the aberrant splicing of Bra SPO1g we could detect five aberrant spliced 

transcript variants besides the correclyt spliced form. We could identify two previously 

known splice variants from B. rapa (β and γ) as well as two previously unknown forms, one 

IR and one splice form in which exon six was skipped. One form was detected which is 

identical with the splice variant γ from A. thaliana (Hartung and Sprink, 2014). For Bra 

SPO2g we could detect besides the functional form two additional transcript variants, one 

previously identified (δ) and one new variant in which intron four was retained (Figure 8). 

The splicing landscape of Cpa SPO1g is already quite divergent in C. papaya and after 

transformation in A. thaliana we never observed any correctly spliced form. We detected 

seven previously unknown spliced transcript variants all containing intron 12 in a 

combination with alternative 5´- and/or 3´-splice site selection, exon skipping and retention of 

additional introns (Figure 8).. The splicing of Cpa SPO2g in A.thaliana is resulting in two 

additional aberrant spliced transcripts beside the functional form, one of the transcript forms 

was known from Cpa SPO11-2 (β) and one is comparable to one found for Ath SPO11-2 (κ) 

(Figure 8). 

The splicing landscape of Osa SPO11-1 in A. thaliana is also completely disturbed, we were 

able to identify the correct spliced variant, but besides this we detected at least six aberrant 

spliced transcript variants all showing IR. Three variants showed additionally alternative 

3´splice site selection and one variant created a completely new exon between exon 12 and 

exon 13 (Figure 8). The splicing of Osa SPO2g could not be analyzed in detail due to an 

already described problem concerning the genomic sequence (Sprink and Hartung, 2014). 

 

Complementation with cDNA  

To investigate if the great amount of aberrant splicing of SPO11 has an influence on the 

complementation efficiency and if cDNA might be overcoming this problem, we additionally 

cloned and transformed the cDNA of different SPO11 genes in the same way as the genomic 

constructs. To check this approach, we used cDNA of Ath SPO11-1 and SPO11-2 as control. 
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Like the constructs using the genomic DNA, most generated lines which were homozygous 

for the respective T-DNA insertion and carried the cDNA complementation construct, 

produced a similar number of seeds as the wild type control. We analyzed seven independent 

spo11-1-3 lines carrying Ath SPO11-1 cDNA (spo11-1-3-Ath SPO1c) and eight spo11-2-3-

lines carrying Ath SPO11-2 cDNA (spo11-2-3-Ath SPO2c). From these lines four out of 

seven (spo11-1-3-Ath SPO1c) and seven out of eight (spo11-2-3-Ath SPO2c) were able to 

complement the sterile phenotype of their respective homozygous control carrying no 

complementation construct (Figure 9). The same holds true for B. rapa when using cDNA 

instead of genomic DNA for a complementation approach (spo11-1-3-Bra SPO1c and spo11-

2-3-BraSPO2c). Six out of eight (spo11-1-3-BraSPO1c) and six out of seven (spo11-2-3-

BraSPO2c) lines were able to complement the sterile phenotype of the respective knockout 

mutant (Figure 9). As we could not detect any functionally spliced transcript variant for Cpa 

SPO11-1 in A-thaliana we also created complementation lines for Cpa SPO11 using cDNA 

(spo11-1-3-CpaSPO1c and spo11-2-3-Cpa SPO2c). We analyzed eight independent spo11-1-

3-CpaSPO1c lines and to our surprise two of them showed an increased number of seed 

production (Figure 9).  
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Figure 9. Complementation experiments of spo11-1-3 and spo11-2-3 plants with SPO11 

cDNA constructs from A. thaliana, B. rapa or C. papaya. 

 

(A) Relative seed set of A. thaliana plants containing a complementary DNA construct of A. 

thaliana, B. rapa or C .papaya SPO11 and none (WT) one (HT) or two (HM = homozygous) 

disrupted alleles of endogenous SPO11, compared to the seed set of the respective control 

carrying no construct (SPO11-1; SPO11-2). Seed sets are shown as mean seed set in % ± 

standard error of the mean (SEM), compared to the respective combined seed set of the 

corresponding wild type (WT) and heterozygous (HT) plants. (Welch´s T-test; P < 0,05) * = 

significant. 

(B) Fluorescence micrograph of DAPI-stained nuclei from spo11-1-3 Cpa SPO1c line 4 

anthers in pachytene and diplotene stage of prophase I. A reconstitution of pairing during 

pachytene stage as well as the formation of five bivalents could be observed in around 20 % 

of the analyzed nuclei. 
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Both lines with increased seed set did not show a three to one mendelian segregation for their 

offspring indicating that more than one copy of Cpa SPO1c was integrated in these lines. We 

could detect a seed set of around 40% compared to wild type for one of the lines (line four). 

DAPI stained spreads of pollen mother cells of this line showed pairing of the chromosomes 

at pachytene stage in ~ 20% of the cells. Formation of bivalents during diplotene stage could 

also be observed in some cases (Figure 9). Immunolocalization studies in spread meiocytes of 

spo11-1-3-CpaSPO1c line 4 showed that in some cells loading of RAD51 onto the 

chromosomes was restored (Supplemental figure 9). But the number of foci per cell was 

highly variable making it impossible to give a meaningful mean. Analyzing the offspring of 

this line we discovered a ten times higher seed number per silique compared to the respective 

knockout line (Table 3).  

Table.3. The average number of seeds per silique in A. thaliana plants with either zero ( wild 

type), one (heterozygous; +/-) or two ( homozygous; -/-) disrupted endogenous SPO11 as well 

as average seed number per silique in spo11-1-3 Cpa SPO1c line 4 plants and spo11-2-3 Cpa 

SPO2c plants. 

 

Strain Seeds/silique Siliques analyzed 
Col-0 (wild type) 45.5 +/- 3,3 15 

spo11-1-3 +/- 44.6 +/- 4.7 15 
spo11-1-3 -/- 0.42 150 
spo11-1-3 -/- Cpa1c 5.8 +/- 2.4 80 
spo11-2-3 +/- 45.9 +/- 3.5 15 
spo11-2-3 -/- 0.69 180 
spo11-2-3 -/-Cpa2c 0.23 40 
Seeds were counted from individual siliques and are given as mean ± standard error of the 

mean  

 

The siliques were also bigger compared to the respective knockout (Supplemental figure 10). 

Flowering time of spo11-1-3-Cpa1c line 4 was the same as in the respective knockout which 

is flowering longer compared to wild type and is producing due to the longer flower period 

more siliques, like it is known from many other sterile mutants. (Garcia et al., 2003; Stacey et 

al., 2006). 
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The other six lines of spo11-1-3-CpaSPO1c which showed a three to one mendelian 

segregation showed no increased number of seeds, nor could any pairing of chromosomes be 

detected in pachytene stage in these lines. The same holds true for spo11-2-3-CpaSPO2c. We 

analyzed eight individual lines, none of these lines showed an increased seed set, nor was the 

number of seeds per silique enhanced (Figure 9 and Table 3). 

 

Discussion  

In most known eukaryotic organisms a proper pairing of homologous chromosomes with 

subsequent recombination via crossovers is essential for genetic variability as well as correct 

disjunction of the chromosomes in the first meiotic division. In most so far analyzed 

eukaryotic organisms SPO11 plays a major role in the induction of DSBs and without those 

no pairing of chromosomes and subsequent random disjunction occurs. The ancestral 

“SPO11”, TOPVIA from archaea is working in a tetrameric complex, composed of two 

TOPVIA and two TOPVIB subunits each. The protein complex is able to cut and religate 

DNA double strands in one process. Fungi and mammals contain only a single homolog of 

TOPVIA and have lost the second subunit. The SPO11 proteins have kept their ability to 

cleave double stranded DNA but the resealing of the breaks has been taken over by other 

proteins such as DNA ligase IV in combination with XRCC4 or XRCC3 (Bleuyard et al., 

2004; 2006; Bray et al., 2005; Kozak et al., 2009) . In contrast to mammals and fungi land 

plants have kept a TOPVIB homolog as well as at least three TOPVIA homologs (in A. 

thaliana, Ath SPO11-1, -2- and -3) (Malik et al., 2007, Sprink and Hartung, 2014). In A. 

thaliana an interaction with TOPVIB has been shown only for SPO11-3 which is not involved 

in meiosis (Hartung and Puchta, 2002a). Even though a subject of general interest, still no 

solution could be found for the question why plants need and encode for two meiotic active 

SPO11. Due to a number of studies performed on Ath SPO11-1 and Ath SPO11-2 we know 

that the function of both proteins is not redundant (Grelon et al., 2001; Stacey et al., 2007; 

Hartung et al., 2007). Additionally, we need at least one functional copy of each SPO11 for 

proper meiosis in A. thaliana. The mutation of the active tyrosine as well as changes in the 

conserved motifs are leading to a loss of function for Ath SPO11-1 and -2 as well as for Osa 

SPO11-1, changes in the non conserved part of Ath SPO11-1 do not have such an severe 

effect (Hartung et al., 2007; Shingu et al., 2010). Studies on SPO11-2 concerning DNA 

binding efficiency and structural analysis have not been done so far, so we can only assume 

that the findings achieved for SPO11-1 can be transferred to SPO11-2 since the described 
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domains seem to be conserved. In this work we addressed the question if the function of each 

SPO11 is sequence specific and encoded in the respective non conserved parts. By 

exchanging these parts of the respective SPO11 we hoped to identify regions of SPO11 which 

are defining the differences between both SPO11 in A. thaliana. Since we could not observe 

any difference in seed set between the complementation approaches using swapped constructs 

and the respective knockout lines, we have to assume that the species specificity of SPO11 

lies in more than one region. Nevertheless, we cannot rule out that the exchange of sequence 

parts is leading to a disruption of the overall structure of the whole protein or to a disruption 

of a specific domain. In both cases a functional interaction might be prevented. We haven´t 

modified the structure of the very conserved TOPRIM domain by exchanging parts of it, 

which is assumed to span from motif three to motif five within the swapped approaches (An 

et al., 2011). But the CAP domain including the winged helix doamin is disrupted at least by 

the first swap and it seems that such an exchange is not functional. Additionally, the winged 

helix domain which is located ranging from aa 9 to 137 in Ath SPO11-1 and between aa 91 - 

163 in Ath SPO11-2 is disturbed, too. Winged helix domains are assumed to mediate protein-

protein as well as protein-DNA interaction since they can be found in many proteins that bind 

DNA such as transcription factors and restriction enzymes (Wah et al., 1997; Cicero et al., 

2001). The winged helix domain seems to possess also an essential function for SPO11 since 

it spans the active tyrosine which is responsible for cutting the DNA. The second swap 

approach, which is the smallest one, is not harboring any conserved motifs. It showed also no 

positive complementation but a reasonable negative interference on wild type and 

heterozygous plants could be observed. Such an effect of partial sterility, but not in such a 

severe manner, was observed earlier for SPO11 genes mutated in their active tyrosine residue 

(Hartung et al., 2007). These findings are indicating that SPO1swap2 seems to bind to the 

DNA but is not able to cleave it what might have different possible reasons such as i) 

missfolding of the chimeric SPO11 protein and physical distortion of the DNA/SPO11-1 and -

2 cleavage complex ii) the disability of binding interaction partners which are necessary for 

cleavage iii) tighter binding of interaction partners paired with a missing ability to cleave 

DNA which results in their sequestration into an inactive complex. In all of these possible 

cases, the chimeric protein stands in competition to the natural occurring SPO11. Further 

analyses have to be done to investigate the possible structure of this chimeric protein for 

example by mutating single amino acids and investigate the binding capacity of DNA like it 

was done before for SPO11-1 (Shingu et al., 2010). Considering why SPO2swap2 as well as 

all the other swaps seem not to interfere with the naturally occurring SPO11 we can only 
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speculate that the overall structure is to strong disrupted which might prevent an effective 

binding to the DNA and therefore no negative interference occurred. 

The last exon seems to have an absolutely essential function for Ath SPO11-2 as we know 

from the knockout lines spo11-2-2 and spo11-2-3 (Stacey et al., 2006; Hartung et al., 2007). 

We now were able to show that the loss of function observed for Ath SPO11-2 is indead due 

to the loss of the last exon and not due to a potentially interferring T-DNA insertion. 

Additionally, we could show that the last exon is also essential for Ath SPO11-1. A functional 

complementation could not be achieved by exchanging the last exon between both genes but a 

significant higher number of seeds as in the near sterile mutant was observed when the last 

exon of Ath SPO11-2 was fused to Ath SPO11-1. Since the conserved domain in the last exon 

was fully exchanged this is hard to explain, but the best guess that this exchange only worked 

in one direction is that there are additional functions in the last exon of SPO11-2 compared to 

SPO11-1. This question can be analyzed by exchanging smaller parts between both exons. 

Furthermore, we assume that without the last exon cleavage of the DNA is not possible 

otherwise we would have observed fragmentation of the DNA rather than unbroken 

univalents in the complemented mutant lines (Supplemental figure5). 

Other studies showed before that alteration of single amino acids in the non conserved parts of 

SPO11, seem to have no negative effect on the DNA binding activity and sometimes even do 

not alter the cleavage capability of SPO11-1 (Shingu et al., 2010). With our heterologous 

complementation approach we wanted to evaluate if the function of SPO11 is conserved 

between orthologous SPO11 genes from organisms which are related to a different extend. 

Since a fully functional complementation is possible between Ath SPO11 and Bra SPO11 the 

function seems to be conserved at least in the family of the Brassicaceae. Multiple small 

changes especially in the N-terminal part of SPO11-1 and -2 seem to have no negative effect 

on its function, since this is the part where SPO11 from A. thaliana and B. rapa differ most. 

The overall structure seems not to be influenced by these small changes as SPO11 from both 

species must have the conserved domains at the appropriate location for a functional 

interaction. The subsequent repair of the breaks is conducted as in wild type, indicating that 

putative interacting factors of Ath SPO11 can also recognize Bra SPO11. If not, 

fragmentation of the chromosomes should be visible just like it is known from mutants 

lacking DSBs repair proteins such as MRE11 or RAD51 (Puizina et al., 2004; Li et al,.2005).  

A positive complementation approach with Cpa SPO11 is not possible under natural 

expression conditions using genomic DNA, even though the sequence identity is quite high 
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(~73%). After evaluating the splicing landscape of Cpa SPO11-1 in A. thaliana we detected a 

divergent pattern of abbernt spliced isoforms as it is the case in C. papaya (Sprink and 

Hartung, 2014). A functional spliced form of Cpa SPO1g could not be detected in flowers of 

A. thaliana, but the presence of a functional spliced form is not excluded since in C. papaya 

this form is very rare, too. Multiple insertions of Cpa SPO1c were leading to an increased 

number of seeds. This could have different reasons; the first one is that the binding of Cpa 

SPO11-1 on the DNA of A. thaliana is not effective enough due to changes in the TOPRIM 

and or winged helix domain. When it is expressed multiple times the loading of Cpa SPO11-1 

onto the DNA might be enough to create a sufficient number of breaks ensuring the pairing of 

DNA in some cells. In other cells there might be an insufficient number of breaks as no 

pairing is visible. Another possibility is that Cpa SPO11 is binding to the DNA but a break 

cannot be induced by insufficient binding of partner proteins or improper binding to the 

respective second SPO11 protein to build up a tetramer. We cannot dismiss the last possibility 

because a combined expression of Cpa SPO11-1 and -2 was not leading to an enhanced seed 

set (Supplemental figure 11), but there might be other proteins necessary that coevolved with 

SPO11 in each plant and therefore cannot recognize the ones from C. papaya. One possibility 

to get a better understanding of what happens is to produce an antibody against Cpa SPO11-1 

and have a look on its distribution. If we would see a loading of Cpa SPO11-1 onto the DNA 

like it is known from Ath SPO11-1 (Sanchez Moran., 2007), the second theory would be the 

more likely one, if no loading could be observed the first one would be more likely. A 

positive complementation approach could not be observed for Cpa SPO11-2, the reason is 

unclear and hard to explain since the sequence identity between SPO11-2 from C. papaya and 

A. thaliana is higher than between the orthologous SPO11-1 proteins. One possibility is that 

we didn´t had enough Cpa SPO11-2 loading onto the DNA to create a break since we haven´t 

had a line with multiple copies integrated. Creating such a line and having a look on its 

meiocytes could answer this question. Additionally, creating swapped constructs between Cpa 

SPO11 and Ath SPO11 would result in a great gain of knowledge enabling us to have a look 

on which parts of SPO11 need to be conserved and which parts can be edited. 

A functional complementation between O. sativa and A. thaliana was not possible, most 

probably due to major changes in the protein sequence leading to structural changes. 

Especially Osa SPO11-1 possesses a major difference to Ath SPO11 since it has 19 additional 

amino acids located just behind the start codon, a feature that most known monocot SPO11-1 

proteins share. Additionally, reasonable changes in the conserved domains occurred as Osa 

SPO11-1 has a shorter winged helix domain.  
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A complementation with more ancestral genes failed as well. The previously described 

SPO11-4 gene from O. sativa which is proposed to have a function in meiosis seems not to be 

a homolog of either SPO11-1 or -2. The authors described that a fragmentation of the 

chromosomes was observed in RNAi plants of Osa SPO11-4, this is leading to the assumption 

that Osa SPO11-4 is more likely involved in DSBs repair rather than in DSBs induction (An 

et al., 2011) 

The analysis of the splicing landscape of the different orthologous plant SPO11 genes in A. 

thaliana showed that there is a species specific pattern of aberrant splicing for each SPO11. 

Since SPO11 from closely related plants was spliced predominantly in a correct way, the 

splicing of SPO11 from more distant plants seems to be much less effective. New splicing 

patterns were found especially for SPO11-1 of C. papaya and O. sativa which had never been 

observed so far. This lead us to suggest that the splicing of SPO11 is not only embedded in 

the plain sequence of the respective SPO11 gene but also in other factors which remain 

unknown and are probably species specific. Taking a closer look on SPO11 splicing in 

various plants as well as at different time points during meiosis would be of great interest to 

gain a better understanding of this putative regulation step of SPO11 by aberrant and maybe 

also alternative splicing patterns. 

 

Material and Methods 

 

Plant material and growth conditions 

For the complementation approaches, the mutant lines spo11-1-3 (SALK_146172) and spo11-

2-3 (GABI line 749C12) were used. Both mutant lines have been previously described 

(Alonso et al., 2003; Stacey et al., 2006; Hartung et al., 2007). For propagation and to obtain 

anthers for evaluation of meiosis in pollen mother cells the plants were grown as previously 

described (Sprink and Hartung, 2014). For the selection of positive transformation events, 

seeds from inflorescence transformed with Agrobacterium tumefaciens were surface sterilized 

with 4% sodium hypochlorite, stratificated at 4°C overnight and sown on agar plates 

containing germination medium (GM = 4.9 g/l Murashige and Skoog including vitamins, 10 

g/l sucrose and 0.8 g/l agar (adjusted to pH 5.7 with KOH)). The plantlets were cultivated in a 

plant culture chamber under controlled conditions of 22°C with 16 h light and 8 h dark. 
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Molecular characterization of the mutant lines 

For genotyping of the mutant plants, DNA was extracted from a small leave of the plantlets. 

For PCR analysis, first primer pair was used to amplify the sequence that is interrupted by T-

DNA in the mutants ( SPO11-1: SP1-2 and SP1-R3; SPO11-2: SP2-2 and SP2-RP2) 

(Supplemental figure 12 and Supplementary data1) The presence of the T-DNA Insertion was 

checked using a left border specific primers for each line (SALK LBd1 for SPO11-1 and 

GABI LB1 for SPO11-2; ) and a gene specific primer for each SPO11 gene located 

downstream of the T-DNA insertion (SP1-R3 and SP2-RP2 ). A full list of the primer 

sequences and PCR conditions is available as supplementary data (Supplemental data 1). 

Transformed plants were double checked by growing on media containing 6 mg/l 

phosphinothricin (PPT) and PCR checked using a primer pair specific for the insertion of the 

phosphinothricin acetyl transferase (PAT) (Supplementary data 1). To identify the genetic 

background of the plants transformed with SPO11 from A. thaliana, B. rapa and C. papaya a 

primer pair located outside the promoter and 3´-UTR region was used (SPO11-1: SP1-3Lr2 

and SP15L4; SPO11-2: SP2-(-5) and SP2-R (-4)) (Supplemental figure 12 and Supplementary 

data 1) to amplify the sequence that is interrupted by the T-DNA, due to high sequence 

identity between the endogeneous SPO11 and the introduced paralog SPO11 gene.  

 

Plasmid construction and plant transformation 

Transformation of A. thaliana was performed as described (Clough and Bent, 1998). Due to 

sterility of homozygous SPO11 mutants, plants heterozygous for the T-DNA insertion had 

been used for transformation. The constructs used for plant transformation are based on the 

binary plasmid pPZP201 (Hajdukiewicz et al., 1994) with an enhanced multiple cloning site 

(MCS) and modified as previously described (Bonnet et al., 2013). For the double 

mutantspo11-1-3:SP1Pro:Cpa SPO11-1 SP2Pro:CpaSPO11-2cDNA the vector was edited, the 

PPT-resistance cassette under the control of the CaMV 35S gene promoter was exchanged by 

a gentamycin resistance gene (aaaC1 ) under the control of the PcUbi4-2 promoter. Plants 

homozygous for the first event were used for the transformation with the second gene. After 

selection of transformed plants in the T1 generation by PPT resistance (6 mg/l PPT), the T2 

generation was checked for mendelian 3:1 segregation to obtain lines with a single insertion 

event.  
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RNA extraction and RT-PCR 

All kits used in this study were applied, if not especially mentioned, strictly following the 

manufacturer’s instructions. Total RNA of A. thaliana, B. rapa and C. papaya was isolated 

from fresh young flowers using the RNA mini Kit from Bio & Sell (Bio&Sell e.K., Feucht, 

Germany).Total RNA from Chlamydomonas reinhardtii was isolated from fresh grown liquid 

cultures. Isolated RNA was treated with DNase I (Thermo Fisher Scientific, Germany) and 

afterwards cleaned and concentrated using the GeneJET RNA Cleanup and Concentration 

Micro Kit (Thermo Fisher Scientific, Germany). To check contamination with genomic DNA 

in the DNase I treated RNA a PCR was performed with RNA as template using gene specific 

primers for SPO11-1. CDNA was produced using an anchored oligo-dT Primer (VT20) using 

the Maxima H Minus Reverse Transcriptase Kit (Thermo Fisher Scientific, Germany) using 

2-5 µg of total RNA as template for RT-reaction. 

 

Molecular Characterization of SPO11 splice variants 

The screening for aberrant spliced SPO11 transcripts were performed as previously described 

with one exception (Sprink and Hartung, 2014). For analysis of the splice variants of the 

transgene, plants homozygous for the respective knockout were used for RNA isolation and 

cDNA production, to ensure that contamination with the endogeneous transcripts is excluded.  

 

Complementation experiments 

We generated several constructs to rescue the observed phenotypes of spo11-1-3 and spo11-

2-3 and to check whether a heterologous SPO11 protein is able to complement the sterility. 

For all complementation approaches the respective promoter and 3´-UTR region of the 

corresponding SPO11 was used as described (Hartung et al., 2007). The genomic regions 

from ATG to Stop of SPO11-1 and -2 from A. thaliana, B. rapa, C. papaya and O. sativa and 

the genomic region of SPO11-4 from O. sativa were amplified using gene specific primers 

with an 15 bp long attached linker by a high proofreading polymerase (Q5® High-Fidelity 

DNA Polymerase, New England Biolabs, Ipswich, Massachusetts, USA). Linker sequences 

were homolog to the corresponding 5´- and 3´-UTR-region from the respective SPO11 from 

A. thaliana (Supplementary data 1). The corresponding promoter and 3´-UTR regions were 

added to the heterologous genes and transferred into the binary vector via the homologous 
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linkers using the In Fusion High fidelity cloning Kit (Takara Bio Europe/Clontech, Saint-

Germain-en-Laye, France). The cDNA constructs for SPO11-1 and SPO11-2 from A. 

thaliana, B. rapa and C. papaya were amplified using high quality cDNA samples prepared 

from fresh young flowers also using the same linker primers as for the genomic DNA. The 

cDNA construct for SPO11 from C. reinhardtii was constructed using cDNA from liquid 

culture kindly provided by Serge Zagermann from the Institute of Horticultural Production 

Systems Biosystems Engineering (Leibniz University Hannover). The cDNA constructs for 

mouse (Mus musculus) were made from a plasmid containing the mouse SPO11-β cDNA 

which is able to complement spo11 in mouse kindly provided by Dr. Scott Keeney from the 

Memorial Sloan Kettering cancer center (NY, USA) (Kauppi et al.,2011). All amplified genes 

were fully sequenced after construction and before we transformed them into the 

corresponding heterozygous mutants. 

Constructs with interchanged section between Ath SPO11-1 and -2 (Supplemental figure 2) 

were prepared using segment specific primers with attached linkers. Resulted fragments were 

fused together by the sites of homology and added to the vector using also the In Fusion high 

fidelity cloning Kit. Seed set was calculated as mean ± SEM of each genotype by comparing 

the mean number of seeds from wild type and heterozygous plants of the individual construct 

with every plant carrying the respective construct. 

 

Preparation of pollen mother cells 

The staining of the chromosomes of the pollen mother cells was performed as described 

(Pawlowski et al., 2013. P 3 ff.). Primary inflorescences were cut just after the first bud had 

opened and were fixed in ice cold fixative (3:1 ethanol : acetic acid). After 24 h the fixative 

was exchanged. Flowers were dissected in fixative under a stereo microscope. All buds 

containing mature pollen were discarded all other buds were washed 3x in 0.01 M citrate 

buffer (pH 4.5) and digested in a mixture of 0.33% cellulase (C1794, Sigma-Aldrich Chemie 

GmbH, Taufenkirchen, Germany) and 0.33% pectolyase (P5936, Sigma-Aldrich Chemie 

GmbH, Taufenkirchen, Germany) in 0.01 M citrate buffer for 90 min at 37°C in a humid 

chamber. Each flower bud was squashed on a separate slide, mixed with 5µl of 60% acetic 

acid, briefly stirred and incubated for 45s on a heated plate at 45°C. A ring of fixative was 

drawn around the droplet and the slide was tilted, afterwards the slide was dried from the back 

using a hairdryer. 
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Meiocytes for immunolocalization of meiotic proteins were isolated, with minor changes as 

described (Pawlowski et al., 2013. P 3 ff.) from immature flower buds, using a 

stereomicroscope and fine forceps. Inflorescence was cut and immediately put on a damp 

filter paper. All buds containing mature pollen were discarded from the other buds anthers 

were dissected transferred onto a clean glass slide (~ 40/slide) and digested in 5 µl of a 

mixture of 0.4% cytohelicase (C8274, Sigma-Aldrich Chemie GmbH, Taufenkirchen, 

Germany), 1.5% sucrose and 1% of polyvinylpyrolidone K30 (MW 40,000; Carl Roth GmbH 

& Co. KG, Karlsruhe, Germany) for 5 min on a heated plate at 37°C in a humid chamber, 

smashed and digested in additional 5 µl of digestion medium for 5 min. Afterwards mixed 

with 10 µl of 0.25% of Lipsol (SciLabware Limited, Staffordshire, UK) as spreading medium, 

incubated for 4 min at 37°C on a heated plate and then fixed for min. 2 h with 4% 

paraformaldehyde under the fume hood. Immunostaining was done as described using 

antibodies (ABs) against the meiosis specific protein Ath ASY1 (1:1000) and Ath RAD51 

(1:200) (Armstrong et al., 2002; Sanchez Moran et al. 2007; 2008). As secondary ABs, 1:200 

goat anti rat conjugated with Alexa488® (112-545-167, Dianova GmbH, Hamburg, Germany) 

and 1:200 goat anti rabbit conjugated with Cy3 (111-165-144, Dianova GmbH, Hamburg, 

Germany) ABs were used.  

All slides were stained with 7 µl of VECTASHIELD antifading mounting medium (H-1000, 

Vector Laboratories Inc., Burlingame,California, USA) containing 0.01 mg/ml DAPI (4´6-

Diamidin-2-phenylindol). Staining of chromatin and meiotic stages was analyzed using a 

fluorescence microscope (Nikon ECLIPSE Ni-E microscope, DAPI-5060C; CFI Plan 

Apochromat 60X/1.4 and 100X/1.45, DS-QiMC camera).  

Statistical analyses 

Statistical analyses were performed using Welch´s T-Test by comparing the combined relative 

seed set of wild type and heterozygous plants with the relative seed set of wild type , 

heterozygous and homozygous plants alone. Before using the combined seed set of wild type 

and heterozygous plants for calculations, it was analyzed if a difference in seed set could be 

measured between both. No difference was detected expect for the construct SPO1swap2 

which seems to interfere with the endogenous SPO11. Additional tests were performed 

between plants carrying the respective construct against the respective background line 

carrying no construct. Relative data were used for the calculation due to seasonal changes of 

the absolute number of produced seeds and seed number was also varying between plants 

which were pre cultivated on media compared to plants which were sown directly into soil. A 
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parallel planting of all lines was not possible due to limitations of the cultivation area. 

Detailed information on seed set as well as all P-values can be found in supplemental data 2. 

Supplemental data: 

Supplemental Figure1: Dual immunolocalization of ASY1 and RAD51 proteins in 

meiocytes of wild type plants expressing an additional wild type SPO11 allele. 

Supplemental figure 2. In scale exon-intron organization of swapped (swap1 to 4) and 

truncated (Δlex) Ath SPO11-1 and Ath SPO11-2 constructs.  

Supplemental figure 3. Seed set in complementation experiments of spo11-1-3 and spo11-2-

3 using interchanged SPO11 constructs. 

Supplemental figure 4. Negative interference of SPO1swap2 on wildtype plants. 

Supplemental figure 5. Fluorescence micrograph of DAPI stained nuclei from spo11-swap4 

plants. 

Supplemental figure 6. Fluorescence micrograph of DAPI stained nuclei from spo11-

BraSPOg plants. 

Supplemental figure 7. Relationship between the used organisms for the complementation 

approach. 

Supplemental figure 8. The Splicing landscape of endogenous SPO11-1 and -2 in A. 

thaliana. 

Supplemental figure 9. Dual immunolocalization of ASY1 and RAD51 proteins in 

meiocytes of spo11-1-3-Cpa SPO1c. 

Supplemental figure 10. Partial complementation of the sterile phenotype of spo11-1-3 by 

the multiple expression of SPO11-1 cDNA from C. papaya. 

Supplemental figure 11. Seed set in the complementation experiment of spo11-1-3 Cpa 

SPO1g with Spo11-2 cDNA from C. papaya. 

Supplemental figure 12. In scale exon-intron organization of Ath SPO11-1 and Ath SPO11-

2. 

Supplemental data 1: Primerlist  
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Supplemental data 2: Seed set numbers and statistics. 

 

Accession Numbers 

Sequence data from this article can be found in the databases under the following accession 

numbers: At3g13170 (Ath SPO11-1), At1g63990 (Ath SPO11-2); At5g20850 (RAD51); 

Os03g54091 (Osa SPO11-1); Os08g0156900 (Osa SPO11-2); Os03g0284800 (Osa SPO11-

4); Gene ID: 5727367 (Cre SPO11); MGI:1349669 (Mmu SPO); KP895877 (Cpa SPO1); 

KP895878 (Cpa SPO2) 
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Supplemental figure 1. Dual immunolocalization of ASY1 and RAD51 proteins in 

meiocytes of wild type plants expressing an additional wild type SPO11 allele. 

Meiocytes were counterstained with DAPI (blue) and dual immunolocalization of ASY1 

(orange) and RAD51 (green) was performed using rabbit polyclonal antibody against ASY1 

and rat polyclonal antibody against RAD51. Meiocytes in zygotene (Col Ath1g) and 

pachytene (Col Ath2g) stage were used for immunolocalization. Green bar = 5µm. 
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Supplemental figure 2. In scale exon-intron organization of swapped (swap1 to 4) and 

truncated (Δlex) Ath SPO11-1 and Ath SPO11-2 constructs.  

Coding region of Arabidopsis SPO11-1 and -2 are shown as grey and black boxes, introns are 
represented as black and grey lines. The respective promoter (pro) and UTR regions are 
shown in blue and green, 3´-UTRs are shown as boxes 3´-introns as lines. The respective start 
and STOP by its codon (ATG, TAA, TGA ,TAG). The active tyrosine of each SPO11 is 
indicated by an asterix. Interchanged regions between SPO11-1 and -2 are shown in bold 
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 Supplemental figure 3. Seed set in complementation experiments of spo11-1-3 and 

spo11-2-3 using interchanged SPO11 constructs. 

Relative seed set of A. thaliana plants containing an artificial SPO11 construct and none (WT) 

one (HT) or two (HM = homozygous) disrupted alleles of endogenous SPO11, compared to 

the seed set of the respective control carrying no construct (SPO11-1; SPO11-2). Seed sets are 

shown as mean seed set in % ± standard error of the mean (SEM), compared to the respective 

combined seed set of the corresponding wild type (WT) and heterozygous (HT) plants. 

(Welch´s T-test; P < 0,05) * = significant 
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Supplemental figure 4. Negative interference of SPO1swap2 on wildtype plants. 

(A) Flowering stem of a wild type plant carrying SPO1swap 2 construct, some siliques are 

normal developed but many remain small and show abnormal seed set. 

(B) Semiquantitative RT-PCR of SPO11-1 (2, 4, 5), SPO11-2 (3) and SPO1swap2 (1, 2) in 

eight different wildtype and heterozygous plants which showed negative interference. 1µl of 

cDNA was used for each reaction following primer sets were used: (1) SPO1 ATG and SPO2-

2 (located in the swap); (2) SPO1ATG and SPO1 Stop; (3) SPO2ATG and SPO2 Stop; (4) 

SPO1ATG and SPO1Ex8_rev (located in the interchanged region, missing in SPO1swap2); 

(5) SPO1Ex8 and SPO1 Stop. 
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Supplemental figure 5. Fluorescence micrograph of DAPI stained nuclei from spo11-

swap4 plants. 

Fluorescence micrograph of DAPI-stained nuclei from spo11-1-3 SPO1swap4 and spo11-2-3 

SPO2swap4 plants in different meiotic stages (as indicated). Neither a pairing of 

chromosomes and formation of bivalents during diplotene stage nor an ordered distribution of 

chromosomes during Telophase I could be observed. 
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Supplemental figure 6. Fluorescence micrograph of DAPI stained nuclei from spo11-

BraSPOg plants. 

Fluorescence micrograph of DAPI-stained nuclei from spo11-1-3 Bra SPO1g and spo11-2-3 

Bra SPO2g anthers in different meiotic stages (as indicated). An ordered distribution of the 

five sister chromatids per developing gamete could be observed in Ana- and Telophase II, The 

correct distribution of the five homologous chromosomes was observed in Teleophase I.  
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Supplemental figure 7. Relationship between the used organisms for the 

complementation approach. 

Unrooted, unscaled tree, showing the relationship between the different organisms used for 

the complementation approaches. 
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Supplemental figure 8. The Splicing landscape of endogenous SPO11-1 and -2 in A. 

thaliana. 

Schematic non scaled shema of the different splice forms of SPO11-1 (A) and -2 (a) from A. 

thaliana. Exons are numbered and shown as white blocks, spliced Introns as black lines. 

Intron retention events are illustrated as black boxes, alternative 5´splice site selection are 

shown as blue boxes and alterative 3´splice site selection as light green boxes. In case of exon 

skipping the corresponding white box is missing. Splice forms are named in greek letters 

(according to Sprink and Hartung., 2014) 
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Supplemental figure 9. Dual immunolocalization of ASY1 and RAD51 proteins in 

meiocytes of spo11-1-3-Cpa SPO1c. 

Meiocytes were counterstained with DAPI (blue) and dual immunolocalization of ASY1 

(orange) and RAD51 (green) was performed using rabbit polyclonal antibody against ASY1 

and rat polyclonal antibody against RAD51. Meiocytes in zygotene stage were used for 

localization. Green bar = 5µm. A restoration of RAD51 loading onto the chromosomes can be 

observed in  
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 Supplemental figure 10. Partial complementation of the sterile phenotype of spo11-1-3 

by the multiple expression of SPO11-1 cDNA from C. papaya. 

Flowering stems of wild type (Col-0), spo11-1-3 and spo11-1-3 CpaSPO1c are shown. 

Arrows indicate enlarged siliques in the complementation mutant. 
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Supplemental figure 11. Seed set in the complementation experiment of spo11-1-3 Cpa 

SPO1g with Spo11-2 cDNA from C. papaya. 

Relative seed set of A. thaliana plants containing an full genomic construct of C. papaya 

SPO11-1 and a complementary DNA construct of C. papaya SPO11-2 possesing  none (WT) 

one (HT) or two (HM = homozygous) disrupted alleles of endogenous SPO11, compared to 

the seed set of the respective control carrying no construct (SPO11-1; SPO11-2). Seed sets are 

shown as mean seed set in % ± standard error of the mean (SEM), compared to the respective 

combined seed set of the corresponding wild type (WT) and heterozygous (HT) plants. 

(Welch´s T-test; P < 0,05)  
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Supplemental figure 12. In scale exon-intron organization of Ath SPO11-1 and Ath 

SPO11-2. 

Schematic drawing of the Ath SPO11-1 and SPO11-2 genes, including the respective 

promoter region shown as green lines, 5´-UTR regions, represented as green boxes and 3´-

UTR regions shown in red boxes including introns (red lines). The T-DNA insertion is 

depicted as a red arrow. Primers used for genotyping of the respective mutants are shown as 

black arrows and indicated. 
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