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SUMMARY

SUMMARY
Two surveys were conducted to determine the frequency and abundance of plant-

parasitic nematodes associated with different crops at an organic farm in Egypt,

during autumn 2009 and 2011. Eleven genera of plant-parasitic nematodes were

detected. Root-knot nematodes (Meloidogyne spp.) showed the highest abundance

and frequency of all plant-parasitic nematodes during the two surveys. Commonly

detected genera were Tylenchorhynchus, Rotylenchulus, Helicotylenchus and

Pratylenchus. Further studies on Meloidogyne were carried out with regard to

discrimination among populations, attachment of microbes to juveniles (J2) in soil,

and biocontrol through bacterial strains which were known as antagonists of fungal

pathogens.

Meloidogyne incognita populations and/or races that showed differential pattern of

reproduction on a set of host plants, could be differentiated based on a newly

developed PCR-DGGE system to electrophorecically separate variants of the

pathogenicity gene msp1.

Three arable soils from different regions of Germany were shown to vary in the

suppressiveness of their indigenous microbial communities against Meloidogyne

hapla. Attachment of microbes to J2 in these three soils was investigated by

cultivation-independent methods to identify those which specifically interacted with

J2 in the most suppressive soil (Kleinwanzleben). The three soils differed in the

microbes attached to J2. PCR-DGGE fingerprints of amplified ITS fragments or 16S

rRNA genes showed many fungi and bacteria that were abundant on J2 but not in the

surrounding soil, some of which seemed to be present in all three soils while most

were soil type specific. Many bacteria associated with J2 from the most suppressive

soil were closely related to infectious species like Shigella spp., while most abundant

were Malikia spinosa and Rothia amarae as determined by 16S rRNA gene amplicon

pyrosequencing.

Nematode-fungus disease complexes can cause dramatic synergistic yield losses.

Bacterial strains known as antagonists of phytopathogenic fungi were evaluated with

respect to their biocontrol potential towards M. incognita. Seed inoculation with

most of the strains significantly reduced propagation of nematode on tomato roots.

The best strains Bacillus subtilis Sb4-23, Mc2-Re2, and Mc5- Re2 were further

studied for their mode-of-action. The strains were able to affect the nematodes
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directly by metabolites present in culture supernatants and indirectly by induced

systemic resistance of the plant. Experimental comparison of direct and plant-

mediated effects suggested that the latter was the major control mechanism of these

antagonists. Overall, these findings may improve the basis for integrated

management strategies of root-knot nematodes in organic farming.



ZUSAMMENFASSUNG

ZUSAMMENFASSUNG

In zwei umfassenden Untersuchungen im Herbst 2009 und 2011wurde die

Verbreitung und die Abundanz pflanzenparasitärer Nematoden an den verschiedenen

Feldfrüchten in einer Bio-Farm in Ägypten erfasst. Insgesamt wurden elf Genera

gefunden, von denen Wurzelgallen-Nematoden (Meloidogyne spp.) in beiden

Untersuchungen am häufigsten und mit der höchsten Anzahl in den Proben gefunden

wurde. Weitere oft gefundene Genera waren Tylenchorhynchus, Rotylenchulus,

Helicotylenchus und Pratylenchus. Davon ausgehend beschäftigten sich die weiteren

Arbeiten mit Meloidogyne, und zwar mit der Differenzierung von Populationen, der

Anheftung von Mikroorganismen an die Juvenile (J2) im Boden, und der

biologischen Kontrolle durch Bakterienstämme, die als Antagonisten von pilzlichen

Pathogenen bekannt sind.

Die untersuchten Populationen und/oder Rassen von Meloidogyne incognita zeigten

phänotypische Unterschiede in ihren Vermehrungsmustern an einem Set von

Wirtspflanzen. Damit einhergehend konnten auch genetische Unterschiede anhand

einer neu entwickelten Methode zur Amplifikation des Pathogenitätsgens msp1 und

der elektrophoretischen Auftrennung der PCR-Produkte von Genvarianten im

Denaturierungsgradienten (DGGE) nachgewiesen werden.

Für drei Ackerböden aus verschiedenen Regionen in Deutschland wurde

unterschiedliche Suppressivität ihrer mikrobiellen Gemeinschaften gegen

Meloidogyne hapla im Gewächshaus gezeigt. Mit Kultivierungs-unabhängigen

Methoden wurde untersucht, welche Mikroorganismen an die J2 in den Böden

anheften, um die zu identifizieren, die mit J2 im suppressivsten der drei Böden

spezifisch interagierten (Kleinwanzleben). Die Mikroorganismen, die an den J2 nach

Inkubation im Boden haften blieben, unterschieden sich zwischen den drei Böden. In

PCR-DGGE Fingerprints von ITS-Fragmenten bzw. 16S rRNA Genen wurden viele

Pilze und Bakterien detektiert, die an den J2 aber nicht im umgebenden Boden

abundant waren. Während sich einige davon in allen drei Böden an den J2

anreicherten, waren andere spezifisch für einen Bodentyp. Mittels

Pyrosequenzierung von 16S rRNA Gen-Amplikons konnten die mit J2 im

suppressivsten Boden assoziierten abundantesten Bakterienarten beschrieben werden.



ZUSAMMENFASSUNG

Viele davon waren verwandt mit infektiösen Arten wie Shigella spp., während

Malikia spinosa und Rothia amarae am häufigsten detektiert wurden.

Krankheitskomplexe aus Nematode und Pilz können erhebliche synergistische

Ertragsverluste verursachen. Bakterienstämme, die als Antagonisten von

phytopathogenen Pilzen bekannt sind, wurden auf ihr Potential zur biologischen

Kontrolle von M. incognita untersucht. Sameninokulation führte bei den meisten

Stämmen zu einer signifikanten Reduktion der Vermehrung des Nematoden an

Tomatenwurzeln. Für die drei besten Isolate, Bacillus subtilis Sb4-23, Mc2-Re2 und

Mc5- Re2, wurden die zugrundeliegenden Mechanismen untersucht. Die Stämme

konnten den Nematoden sowohl direkt durch Metabolite beeinträchtigen, die im

Kulturüberstand zu finden sind, als auch indirekt über Induktion systemischer

Resistenz der Pflanze. Im experimentellen Vergleich der direkten und Pflanzen-

vermittelten Effekte zeigte sich, dass letzteres der dominierende

Kontrollmechanismus dieser Antagonisten ist. Zusammen genommen könnten diese

Befunde als Basis für eine verbesserte Strategie zum integrierten Management von

Wurzelgallen-Nematoden im biologischen Landbau dienen.



Chapter I

General introduction and thesis outline
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Root-knot nematodes (Meloidogyne spp.)

Distribution and economic importance

Root-knot nematodes (RKN) are plant parasites of the genus Meloidogyne, family

Heteroderidae. Their common name refers to the characteristic galls or root-knots,

associated with nematode infestation. This genus comprises more than 90 species, with

some species having several races (Karssen, 2002). It also includes some of the most

widespread and economically damaging nematodes worldwide, like M. incognita, M.

javanica, M. arenaria, M. hapla, M. chitwoodi and M. enterolobii. Root-knot nematodes

occur throughout the world with some species being primarily distributed in tropical

and sub-tropical climates such as M. incognita, M. javanica, M. arenaria while others

are well adapted to temperate or cool climates such as M. hapla, M. chitwoodi and M.

fallax.

Overall, the most common species together parasite more than 5500 plant species,

including annual and perennial crops (Trudgill and Blok, 2001). Their worldwide

damage in terms of reduced yield and quality is estimated to be > $US 100 billion/year

(Bird and Kaloshian, 2003). The damage symptoms caused by nematode infection may

be apparent on parts of the plant both above and below the ground. Above-ground

symptoms include varying degrees of stunting, yellowing of foliage, wilting, symptoms

of nutrient deficiency and distortion of plant parts. Below-ground symptoms include

galls, lesions, stunting, malformation, biforking and excessive formation of side roots

(root beard). Severe infestation can cause plant death. Furthermore, nematode invasion

provides entrance points for secondary pathogens such as soil-borne fungi or bacteria

that can course synergistic yield losses.

Biology

Mature females of RKN remain with their head in the galled root tissue and deposit

up to 1000 eggs into a gelatinous matrix (egg sac or egg mass) that is protruding to the

posterior end of the female on the root surface (Fig. 1). The gelatinous matrix protects

the eggs from dehydration and attack by microorganisms (Sharon and Spiegel, 1993).
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Within eggs the embryo rapidly develops to a first-stage juvenile (J1) that molts within

the egg to the infectious second-stage juvenile (J2). After hatching the J2 migrates

through the soil in search of a suitable host which can be the parent plant or a nearby

new host. Juveniles invade the root in the zone of elongation. With the help of their

stylet they burrow into the root with no obvious damage. From the site of penetration

juveniles migrate intercellularly towards the root tip where they turn around and move

into the differentiating vascular cylinder (Wyss et al., 1992; Abad et al., 2003). Once

they have reached the zone of protoxylem development they initiate a feeding by

injecting pharyngeal gland secretions (the saliva) into root cells, which induces nuclear

division without cytokinesis (Gheysen and Fenoll, 2002). This process gives rise to

large, multinucleate cells, causing dramatic physiological changes in the parasitized

cells, transforming them into giant cells, which seriously impair plant nutrient and water

uptake (Trudgill and Blok, 2001).

Concomitant with giant cell formation, the surrounding plant cells enlarge and

divide rapidly, resulting in the formation of a gall (Williamson and Hussey, 1996). At

the site of penetration and/or gall formation secondary roots can form resulting in

extensive formation of lateral roots. With further juvenile development, the metabolic

capacity of the feeding site increases funnelling plant resources to the feeding nematode

(Williamson and Gleason, 2003; Caillaud et al., 2008). Within few days of feeding, the

J2s grow thick like a sausage and undergo three more molts before transforming into

adults. The fourth-stage juvenile (J4) already distinguishes between either male or

female. The vermiform males emerge from the root and migrate into the soil. Females

keep swelling to become saccate or pear-shaped. At this stage, the female is large

enough to be seen with the naked eye when galled root tissue is teased apart. Although

sexual propagation does occur in some RKN species, main propagation is by

parthogenesis (Castagnone-Sereno, 2006). With egg deposition the cycle is completed.

Under favourable condition, the life cycle may be completed within 30 days and several

generations can develop in one season.
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In this study, Meloidogyne was the most abundant genus among all nematode genera

detected during the surveys in SEKEM organic farm in Egypt (chapter I). Therefore,

further studies on identification, interaction with soil microbes and biological control of

this genus were conducted in chapters III, IV and V.

Fig. 1 Life cycle of root-knot nematodes (Meloidogyne spp.)
(http://www.apsnet.org/edcenter/intropp/lessons/Nematodes/Pages/RootknotNematode.aspx)



I: GENERAL INTRODUCTION

4

Nematode problems in organic farming

Demand for organically grown food is increasing throughout the world, as a result

of increasing concerns regarding food safety and environmental protection. This trend

became a common perception amongst the general public and reflects the extent of

consumers worrying about synthetic fertilizer, pesticides and their residuals routinely

found in non-organic produce. The total market value of organic products reached over

US-$55 billion in 2009 (Paull, 2011) and sales increased by over five billion US dollars

per year (Willer et al., 2009) Also, the land devoted to organic agriculture worldwide

has increased in the years 2001-2011 from 15.8 million hectares to 37.2 million hectares

at a compounding rate of 8.9% per annum (Paull, 2011).

Organic agriculture is a defined by the International Federation of Organic

Agriculture Movements (IFOAM) as “a production system that sustains the health of

soils, ecosystems and people. It relies on ecological processes, biodiversity and cycles

adapted to local conditions, rather than the use of inputs with adverse effects. Organic

agriculture combines tradition, innovation and science to benefit the shared

environment and promote fair relationships and a good quality of life for all involved”

(IFOAM 2009). Organic farming avoids or largely excludes synthetic inputs such as

fertilizers, pesticides, hormones, feed additives etc to maintain the vitality of the soil as

the basis for sustainable productivity, and relies as much as possible on natural

processes and cycles for managing pests, diseases, weeds and crop nutrition. Like in

conventional farming, continuing competition in global market requires that organic

farmers supply high-quality, disease-free produce with an acceptable shelf-life. Disease

management is therefore a critical consideration to the success of the organic farm.

They depend on exclusive agronomic practices (e.g. crop rotation, green manure and

compost) and natural pesticides (e.g. biocontrol agents or pesticide derived from organic

sources) to manage soil productivity and soil-borne diseases which in terms of

nematode control can be very challenging.

The management of PPN is difficult, especially in organic farming systems

compared to foliar diseases and insect pests, because feasible control methods and
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monitoring systems are not always available (Oka et al., 2007). Nematodes mostly

inhabit the soil and usually attack the underground parts of the plants, causing

symptoms comparable to water or nutrition deficiency making it difficult to diagnose

the disease (Stirling, 1991). Organic farmers struggle with nematode problems using

cultural, physical and biological control methods, especially during the transition period

from conventional to organic farming (van Bruggena and Termorshuizen, 2003).

However, in other cases, problems with plant-parasitic nematodes started 5 to 10 years

after conversion to organic system (Hallmann et al., 2007). Reasons for nematode build-

up under organic farming conditions are manifold, such as continuous growth of plants

that provide food for PPN throughout the year; high incidence of legumes in the rotation

for nitrogen fixation but being also an excellent host for RKN, and insufficient weed

control creating a reservoir for RKN even when no host plant is grown. It is assumed

that PPN should not be a problem in well-managed, long-term organic farms as

stimulating soil life by organic means will enhance the antagonistic potential in the soil

thus reducing PPN (Freckman, 1988; Griffiths et al., 1994; Hallmann et al., 2007).

However, the question remains if this is really the case. Based on Hallmann et al.

(2007) organic conditions can even stimulate nematode problems, at least under certain

conditions. The overall data basis is too little to allow general conclusions. Information

is especially missing for the tropical/subtropical regions. In this respect, the present

study evaluates the current status of plant-parasitic nematodes on an organic farm in

Egypt (chapter II).

Discrimination of Meloidogyne populations

Proper nematode management requires accurate information on the species, race or

even virulence of a given nematode population causing the crop damage (Adam et al.,

2007; Robertson et al., 2009). Most Meloidogyne species can be identified based on

distinctive morphological characters and host ranges. However, some species are

morphological very similar and even difficult to be distinguished by expert taxonomist.

Furthermore, races or populations of a given species are morphologically very similar or

even identical (Robertson et al., 2009), requiring different tools to distinguish them
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(Hussey, 1990). The North Carolina Differential Host Test is commonly used in

identifying the races of the four major species, i.e. four races of M. incognita, two races

of M. javanica, two races of M. arenaria and two races of M. hapla (Taylor and Sasser,

1978; Hartman and Sasser, 1985). Various populations/races of Meloidogyne spp. have

been differentiated into virulent (aggressive) and avirulent (nonaggressive) based on

their reproduction on different cultivars (Anwar and McKenry, 2007; Cortada et al.,

2008; Olowe, 2010). However, the identification of root-knot nematode

populations/races based only on the differential host test can be uncertain in cases of

mixed populations or occurrence of atypical populations (Fargette, 1987). Therefore this

method should only be used in conjunction with morphological, biochemical or

molecular assays (Hartman and Sasser, 1985). Identification of root-knot nematode

species by isozyme analysis is an effective method, but it requires females which are

usually not available in soil samples (Esbenshade and Triantaphyllou, 1990).

Recently, molecular techniques have been developed that overcome the limitations

of classical diagnostic techniques and are more reliable and less time-consuming.

Commonly used molecular methods for identifying root-knot nematode populations are

based on the detection of DNA polymorphisms between species, such as restriction

fragment length polymorphism (RFLP) of the amplified ITS region, random amplified

polymorphic DNA (RAPD), satellite DNA probes, sequence characterized amplified

regions (SCARs) primers, real-time PCR and high-resolution melting curve (HRMC)

analysis (Adam et al., 2007; Holterman et al., 2012). The RAPD technique has been

used to estimate the genetic relationship between individuals, populations and species of

the major four Meloidogyne species, however, the detected intraspecific polymorphisms

were rather low (Cenis, 1993; Chacon et al., 1994; Guirao et al., 1995). PCR-RFLP was

a useful tool for differentiating six Meloidogyne species based on restriction site

polymorphism (Fargette et al., 1996; Stanton J et al., 1997; Powers, 2004). The RAPD-

marker specific to some species of RKN were selected to convert them into SCAR

primers for identifying the species (Meng et al., 2004; Williamson et al., 1997; Zijlstra

et al., 2000). Microsatellites or Simple Sequence Repeats (SSRs) that are 1-6 base pair

(bp) nucleotide motifs randomly dispersed throughout the genome could be served as
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taxonomic markers to identify the species, such as the (GAAA) microsatellite region

defined in M. artiellia by De Luca et al (2002). The real-time PCR assay was a rapid

and precise method for the detection and quantification of M. chitwoodi, M. fallax

(Zijlstra and van Hoof, 2006) and M. incognita (Toyota et al., 2008). Moreover, HRMC

analysis has been used successfully in distinguishing M. chitwoodi, M. fallax and M.

hapla from each other and the group of the tropical species based on the second

intergenic spacer (IGS2) region (Holterman et al., 2012).

Denaturing gradient gel electrophoresis (DGGE) is a molecular tool that can be used

to display differences in DNA sequences or mutations of various genes. The principle of

this method is that sequence differences often cause a change in the melting behaviour

of DNA fragments; therefore, DNA fragments of the same length but differing in

sequence can be separated at different positions on the gel. DGGE was shown to be a

powerful tool to reveal different sequence types of ITS-2 within and among

geographical isolates of trichostrongyloid species (Gasser et al., 1996) or to distinguish

species of Steinernema from a mixed laboratory culture (Foucher and Wilson, 2002).

Previous studies using DGGE focused on assessing soil or marine nematode

communities (Bhadury et al., 2006; Waite et al., 2003; Foucher et al., 2004; Cook et al.,

2005; Okada and Oba, 2008), but its potential to distinguish  populations of plant-

parasitic nematodes has not yet been explored. Here PCR-DGGE technique has been

used to differentiate among populations/races of M. incognita (chapter III).

Suppressive soil

In biological control of PPN, the utility of nematode-suppressive soils is widely

accepted (Stirling, 1991). Such soils have been described as ''soils in which the

pathogen does not establish or persist, establishes but causes little or no damage, or

establishes and causes disease for a while but thereafter the disease is less important,

although the pathogen may persist in the soil” (Cook and Baker, 1983). In suppressive

soils, it is expected that there are beneficial microorganisms that suppress plant

pathogens. Nematode-suppressive soils are often first recognized when population

densities of the nematodes decline or do not increase despite a susceptible host and
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suitable environmental conditions. Ferris et al. (1976) observed that population

densities of M. incognita were low in old peach orchards in California despite presence

of a good host and favourable climatic conditions for nematode reproduction. Further

in-depth studies identified the fungus Dactylella oviparasitica as the suppressive agent

(Stirling and Mankau, 1978; Stirling et al., 1979). Soils with specific suppressiveness to

PPN are of interest to identify nematode-antagonistic microorganisms that could be

developed to biocontrol agents. Moreover, understanding the ecological factors enabling

these antagonists to persist, compete and function might help to optimize integrated

management strategies of PPN (Bent et al., 2008). Meloidogyne incognita egg masses

and H. glycines cysts were analyzed to identify microbes specifically interacting with

nematodes in suppressive soils based on culture-independent methods (Nour et al.,

2003; Yin et al., 2003; Bent et al., 2008). Although a broad range of bacteria and fungi

can parasitize PPN, only few groups of microorganisms are associated with

suppressiveness, such as egg-parasitic fungi, nematode-trapping fungi, endoparasitic

fungi (Gray, 1985; Kerry, 1988; Carris et al., 1989; Kim and Riggs, 1991; Stirling,

1991; Westphal and Becker, 2001) and obligate endoparasitic bacteria (Stirling, 1991;

Weibelzahl-Fulton et al., 1996). While nematode suppressiveness against cyst

nematodes has been widely reported, only little is known about suppressiveness against

root-knot nematodes (Bent et al., 2008). To further explore this aspect in the present

study, different soils were tested for their suppressiveness against M. hapla (chapter

IV).

Microbe-nematode interaction

The soil around roots that forms the rhizosphere represents a preferable habitat for

bacteria, fungi, viruses, protozoa and nematodes. About 30% of the carbon assimilated

by the plant is released into the rhizosphere (Lynch and Whipps, 1990 ), leading to

support microbial activity that may be 60 times greater for bacteria and 12 times greater

for fungi compared with the bulk soil. Therefore bacteria-feeding nematodes and

fungal-feeding nematodes are more abundant in this zone than in the bulk soil

(Griffiths, 1989; Henderson and Katznelson, 1961). Furthermore, root exudates contain
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compounds attractive to plant-parasitic nematodes. As a result, the rhizosphere of any

crop plant provides diverse interactions between microorganisms and plant-parasitic

nematodes (Mai and Abawi, 1987), ranging from mutualism to parasitism (Kerry, 2000;

Rae et al., 2008).

Plant-parasitic nematodes are obligate parasites that must pass the rhizosphere to

reach their host. However, the time spent in the rhizosphere depends on their parasitic

behaviour. The majority of PPN are ectoparasites that spend their entire time in the bulk

soil/rhizsophere where they interact with soil/rhizosphere microorganisms. In contrast,

endoparasites such as RKN spend only a short time in the bulk soil/rhizosphere before

they enter the plant tissue, thus interaction with soil/rhizosphere microorganisms is

limited. During their passage through the bulk soil/rhizosphere, plant-parasitic

nematodes are most exposed to soil microbes including plant pathogens and beneficial

as well as antagonistic microorganisms.

Some of those microorganisms might attach to the nematode cuticle. Well described

is the specific attachment of Pasteuria penetrans to the cuticle of several plant-parasitic

nematodes including Meloidogyne species (Davies et al., 2001). Various isolates of

Brevibacillus laterosporus were able to attach to the cuticle surface of Heterodera

glycines and Bursaphelenchus xylophilus (Tian et al., 2007b). After attachment to the

nematode surface, B. laterosporus strain G4 was able to penetrate the cuticle then digest

the organs and eventually kill the nematodes (Huang et al., 2005). Some endoparasitic

nematophagous fungi are able to form adhesive spores that attach to the nematode

cuticle, such as Drechmeria coniospora, Catenaria anguillulae and Hirsutella

rhossiliensis. Such obligate parasites may affect nematodes movement reducing

nematodes invasion of the roots (Kerry, 2000), or directly inhibiting or infecting

nematode stages (Stirling, 1991). For example, both P. penetrans and H. rhossiliensis

were found to limit nematode invasion of M. incognita, M. hapla, H. glycines and H.

avenae (Siddiqui and Mahmood, 1999; Liu and Chen, 2005). Aspergillus sp.,

Arthrobortis sp. and Cladosporium cladosporioides have been shown to attach to the J2

of Meloidogyne spp and vermiform stages of Rotylenchulus reniformis (Amer-Zareen

and Zaki, 2000; Castillo et al., 2010). Members of these fungal species have been
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reported as biological control agents against PPN (Amer-Zareen et al., 2001; Ayoub et

al., 2000; Kerry, 2000; Shamim A., 2012).

In general, attachment of microbes to the nematode cuticle may result in transport of

those microbes to the roots where they can colonize the rhizosphere or endorhiza and

might even induce plant defense mechanisms. Concerning to adhesion process, some

microbes appeared specificity for the adhesion site on the cuticle of different nematode

species. Conidia of D. coniospora adhere to the cuticle of many nematode species,

which showed three patterns of binding sites i. specifically to the head and tail

(Pratylenchus penetrans) ii. all over the body (Ditylenchus dipsaci) iii. very sparse no

binding (Aphelenchoides blastophthorus) (Jansson et al., 1988). Overall, there are

complex tritrophic interactions in the rhizosphere, in which PPN and microorganisms

act in antagonistic or synergistic associations affecting the plant host. In this thesis,

three arable soils were assessed for their suppressiveness against M. hapla and whether

there were specific soil microbes attached to the second-stage juveniles (chapter IV).

Interaction with soil-borne plant pathogens

Numerous interactions of PPN with the plant-pathogenic fungi and bacteria have

been described (Back et al., 2002). Plant-parasitic nematodes alone can invade the plant,

but can also facilitate infection of secondary pathogens that alone cannot infect the

plant. For examples, infection of roots by root-knot nematodes predisposes plants to

infection by root-infecting fungi causing the development of root-rot and wilt disease

(Armstrong et al., 1976). Root-knot nematodes (Meloidogyne spp.) are probably the

most recorded nematodes found in disease complexes with fungi, and the interaction

with Fusarium on cotton represents the first report of the synergistic interaction

between PPN and fungi (Atkinson, 1892). Since then, disease complexes caused by

Meloidogyne and Fusarium have been described on several hosts such as alfalfa, beans,

chickpea, tomatoes, peas, bananas and coffee (Bertrand et al., 2000; Griffin and Thyr,

1986; France and Abawi, 1994; Siddiqui et al., 1999; Jonathan and Rajendran G, 1998).

Also, Meloidogyne has been reported to be involved in disease complexes with

Verticillium and the root-rot pathogens Pythium, Phytophthora and Rhizoctonia (Back



I: GENERAL INTRODUCTION

11

et al., 2002). The interaction between plant-parasitic nematodes and plant pathogens is

considered synergistic when the combined effects of both pathogens on the host plant

cause more extensive damage than the sum of the damage caused by each pathogen

individually (Wallace, 1983 ).

Bacterial pathogens are less in number compared to fungal pathogens and therefore

fewer interactions between PPN and bacterial pathogens have been described. An

Agrobacterium-RKN interaction has been reported on crops such as A. tumefaciens-M.

javanica interaction on almond, A. radiobacter -M. incognita interaction on cotton and

A. vitis -M. hapla interaction on grapevine (Orion and Zutra, 1971; Dhanvantari et al.,

1975 ; Sule and Lehoczky, 1993 ; Zutra and Orion, 1982; Rubio-Cabetas et al., 2001).

The interaction of M. incognita with Ralstonia solanacearum caused synergistic effects

on wilt symptoms of several crops, especially tomato and eggplant (Reddy et al., 1979;

Napiere and Quinio, 1980; Swain et al., 1987; Chindo et al., 1991; Deberdt et al.,

1999). Simultaneous inoculation of M. incognita and Ralstonia solanacearum with

Fusarium exhibited more early disease symptoms on Coleus forskohlii and Withania

somnifera L. Dunal (Mallesh et al., 2009). Use of a strategy that is able to

simultaneously control several plant pathogens is highly desirable in this case. In the

present work, bacterial isolates known as antagonists of fungal pathogens were

investigated for their biocontrol potential against M. incognita (chapter V).

Antagonists and their mechanisms for nematode suppression

All organisms that can parasite, inhibit, repel, or kill plant-parasitic nematodes are

termed nematode antagonists. Fungi and bacteria are numerically the most abundant

organisms in soil and some of them are able to specifically infect plant-parasitic

nematodes, making them ideal candidates for biocontrol purpose (Dong and Zhang,

2006). Over the last decades, numerous bacteria and fungi have shown high potential as

biocontrol agents of PPN (Siddiqui and Mahmood, 1999; Dong and Zhang, 2006;

Sikora et al., 2007; Tian et al., 2007a). Although extensive work has been conducted to

assess the biocontrol potential of bacterial antagonists, little information is available on

their mechanisms in suppressing plant-parasitic nematodes when compared with that

known about antagonistic fungi. A better understanding of those control mechanisms
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will allow their optimization for a successful application in praxis (Sikora et al., 2007).

Previous studies demonstrated that bacterial antagonists affect nematodes by a variety

of mechanisms e.g. production of toxins or enzymes, parasitism, disruption of host

recognition, repellence and induced systemic resistance (Hasky-Gunther and Sikora,

1995; Hasky-Gunther et al., 1998; Siddiqui and Mahmood, 1999; Hallmann et al., 2001;

Reitz and Sikora, 2001; Sikora et al., 2007; Tian et al., 2007a).

Direct antagonism

Some bacteria produce metabolites or excretory enzymes that are harmful to plant-

parasitic nematodes (Hallmann et al., 1999). The adverse effect of these compounds

include the inhibition of egg hatch, juvenile survival and nematode reproduction

(Siddiqui and Mahmood, 1999). In in vitro assays, compounds produced by some

bacteria isolated from the plant rhizosphere caused immobility of second-stage juveniles

of M. incognita (Becker et al., 1988). Culture filtrates of isolates of Bacillus subtilis,

Pseudomonas fluorescens and Burkholderia cepacia inhibited egg hatch and J2 mobility

of different root-knot nematode species (Meyer et al., 2000; Li et al., 2005; Elbanna et

al., 2011). Bacillus cereus produced an extracellular enzyme having collagenolytic and

proteolytic properties that was able to damage the cuticle of M. javanica juveniles (Sela

et al., 1998). The antimicrobial metabolites 2,4-diacetylphloroglucinol (2,4-DAPG) and

pyoluteorin produced by P. fluorescens strain CHA0 inhibited egg hatch and juvenile

survival of M. javanica (Siddiqui and Shahid Shaukat, 2003). However, all studies were

conducted in-vitro leaving behind some uncertainty if such mechanisms also apply

under field conditions.

Competition

Competition between plant-parasitic nematodes and antagonistic bacteria for space

or nutrients is always present when they simultaneously occupy the same ecological

niche within the root system such as Meloidogyne spp. and endophytic bacteria (Sikora

et al., 2007). Competition for nutrients was postulated by Oostendorp and Sikora (1990)

as driving mechanisms for the interaction between the rhizobacterium P. fluorescens

and the sugarbeet cyst nematode Heterodera schachtii. In contrast, Siddiqui and
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Mahmood (1995) propagated niche exclusion as primary control mechanism of

Rhizobium suppressing Meloidogyne spp. To be effective, competition requires high

bacterial densities in close proximity to the nematode pathogen (Sikora et al., 2007).

Within this respect, Hallmann et al. (2001) observed high densities of the antagonistic

bacterium Rhizobium etli G12 within root galls caused by M. incognita.

Induced systemic resistance

Some bacterial biocontrol strains can elicit a state of defensive capacity in plants

against pathogens, termed induced systemic resistance (ISR). This process is based on

plant defence mechanism activated by an inducing agent. ISR can protect the plant

against a broad spectrum of pathogens (Wei et al., 1996). With regard to nematode

control, ISR was first reported by Hasky-Günther and Sikora (1995) and later shown for

several other bacteria-nematode interactions. Using a spilt-root system, both B.

sphaericus B43 and R. etli G12 caused ISR towards M. incognita on tomato resulting in

reduced juvenile penetration on the non-treated responder side of the root system

(Hauschild et al., 2000; Schäfer et al., 2006). ISR elicited by G12 resulted in a 36%

reduction in the number of eggs per female while ISR elicited by B43 caused a 25%

reduction in reproduction when compared to the untreated controls (Schäfer, 2007).

To better understand this mechanism, the bacterial determinants (inducer) of ISR

were studied. In the split-root system, both living and heat-killed cells of B. sphaericus

B43 and R. etli G12 caused ISR in potato against G. pallida. Quite interestingly, while

culture filtrates of B. sphaericus B43 produced ISR, culture filtrates of R. etli G12 did

not (Hasky-Gunther et al., 1998). For R. etli G12 the heat-stable inducing agent was

further studied indicating that the lipopolysaccharides functioned as main elicitor (Reitz

et al., 2000). On the plant side, ISR activates multiple defence mechanisms such as

physical thickening of the cell walls by lignifications, deposition of newly formed

callose and accumulation of phenolic compounds; increased activity of chitinase,

peroxidase and other pathogenesis-related proteins; and synthesis of phytoalexin and

other metabolites (Siddiqui and Mahmood, 1999; Tian et al., 2007a; Anita and

Samiyappan, 2012).



I: GENERAL INTRODUCTION

14

Few studies were conducted to have knowledge about physiological and biochemical

changes associated with ISR in plants towards PPN. The importance of modified protein

expression in bacteria-generated ISR in potato towards G. pallida has been reported by

Hasky-Günther (1996 ), who studied protein expression in plants inoculated with B43 or

G12. The results gave a novel protein band (38kDa) in plants inoculated with G12,

which was different from any of the typical PR-proteins associated with ISR, but did not

give any differences in protein patterns in the B43-inoculated plants when compared to

those of untreated plants, indicating the lack of PR-protein involvement.

Anita et al. (2004) studied induction of defence enzymes by P. fluorescens isolate Pf,

against challenge inoculation of M. incognita in tomato. The results showed that

activities of peroxidise (PO), polyphenol oxidase (PPO), phenylalanine ammonia lyase,

chitinase and catalase were significantly higher in bacterized tomato root tissues

challenged with the nematode compared to plants inoculated with the nematode alone or

untreated plants. Furthermore, isoform analysis revealed unique PO and PPO isoforms

induced in P. fluorescens-treated plants.

Siddiqui and Shaukat (2004) studied the role of salicylic acid biosynthesis in the

enhancement of defence mechanisms against M. javanica. They concluded that

Pseudomonas fluorescens strain CHA0 induce systemic resistance against a root-knot

nematode M. javanica via a signal transduction pathway, which is independent of

salicylic acid accumulation in roots. However, the signal transduction pathways for the

systemic resistance towards PPN are still unknown.

Repellence and/or disruption of nematode-host recognition

Antagonistic bacteria can affect nematode attraction by producing substances that

repel or inhibit nematodes movement toward the root (Oostendrop and Sikora, 1990).

This can be done by either altering the root-exudates pattern to be less attractive to

nematodes or depleting the oxygen in the root zone, making the root less attractive to

nematodes (Sikora et al., 2007). Within this respect, Padgham and Sikora (2007)

studied the influence of Bacillus megaterium on M. graminicola attraction to rice plants
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in a linked-pot chamber test. The results showed that M. graminicola preferentially

penetrated the roots of plants not inoculated with B. megaterium. Nematode penetration

into the root of plants treated with bacteria was 55% lower than in non-treated plants. In

the present work, bacterial isolates with antagonistic activity against soil-borne fungal

pathogens were investigated for their antagonistic potential against the root-knot

nematode M. incognita and for their mode-of-action (chapter V).
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THESIS OBJECTIVES

The overall objective of this thesis is to gain more knowledge about root-

knot nematodes Meloidogyne spp.- an economically important plant pathogen

and distributed worldwide. Focusing on some aspects that could provide new

opportunities for enhancing crop protection strategies, especially in organic

farming systems; including surveillance and monitoring, identification by

molecular assay, interaction with soil microbes and biological control.

Therefore these studies were carried out for achieving the following specific

objectives:

1. To study the occurrence of plant-parasitic nematodes associated with

different organically grown crops in Egypt and to identify the

predominant genera and species (chapter II).

2. To use PCR-DGGE molecular technique based on msp1gene to

differentiate populations and/or races of the root-knot nematode M.

incognita differing in their reproductive potential on different hosts

(chapter III).

3. To detect bacteria and fungi attached to second-stage juveniles of the

root-knot nematode M. hapla in suppressive soils using cultivation-

independent techniques (chapter IV).

4. To evaluate the antagonistic potential of bacterial antagonists of fungal

pathogens towards the root-knot nematode M. incognita, as well as, to

investigate their modes-of-action (chapter V).
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THESIS OUTLINE

Chapter I. General information about the distribution, economic importance, biology

and life cycle the root-knot nematode Meloidogyne spp. is presented.

Information on organic farming including prevalence and its problems

with plant-parasitic nematodes and management challenges is given.

Commonly used methods for identifying species, populations and races of

Meloidogyne spp. including bioassay, morphological and biochemical

assays are reported. Furthermore, suppressive soil, interaction between

nematodes and soil microbes, microbial attachments to the nematode

cuticle and mechanisms for nematode control including direct antagonism,

competition, induced systemic resistance and repellence are given.

Chapter II. Information on the occurrence, frequency and population densities of plant-

parasitic nematodes associated with different organic crops in SEKEM

farm in Egypt during two surveys in 2009 and 2011 is presented. The most

predominant genera during the surveys were identified to species level

based on morphological characters. Comparison of nematode frequencies

and population densities between both surveys is reported.

Chapter III. Within this chapter methods for differentiating M. incognita populations

and/or races were studied. A bioassay was used to differentiate among

populations and/or races based on variability in reproduction rate on

different crops/cultivars. A PCR-DGGE protocol was developed for

optimal separation of the pathogenecity gene msp1. The variation in the

msp1fragments amplified from genomic DNA of populations/races was

detected in DGGE analysis. Cloning and sequencing of different DGGE

bands was performed to display sequence differences in variants of the

msp1gene.
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Chapter IV.The suppressive activity of arable soils against M. hapla was investigated.

Microbial communities attached to second-stage juveniles of M. hapla were

analysed using cultivation-independent techniques. PCR-DGGE of 16S-

rRNA genes of bacteria and bacterial groups or fungal ITS from nematode

and soil samples were proposed to investigate the total microbial

communities. Cloning and sequencing was used to identify those bacteria or

fungi based on nematode-specific bands in DGGE. Barcoded amplicon

pyrosequencing was performed to determine bacterial 16S-rRNA gene

sequences from nematode and soil samples.

Chapter V. Bacterial soil isolates were screened for their antagonistic effects on M.

incognita juveniles in vitro (V-2). Assess bacterial isolates known as

antagonists of fungal pathogens for their biocontrol potential against the

root-knot nematode M. incognita in greenhouse (V-1). Seed treatment was

used to identify the top strains for further studies on their mode-of-action.

For the top strains the effect of bacterial culture supernatants towards

nematode reproduction was evaluated. A linked twin-pot chamber was used

to assess the effect of the antagonists on J2 attraction to tomato roots, while

a split-root chamber was used to test the potential of those antagonists to

induce systemic resistance. The effect of induced systemic resistance was

compared with the effect caused by co-inoculation of bacterial antagonists

and M. incognita in the same pot.

Chapter VI. Summarizes  the main findings, gives general conclusion and future

perspectives.
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Abstract

Two surveys were conducted at an organic farm, 60 km northeast of Cairo, Egypt, in

2009 and 2011 to study the occurrence, population density and distribution of plant-

parasitic nematodes associated with different crops. A total of 216 soil samples were

collected from vegetables, fruits and herbs during both surveys. Eleven genera of plant-

parasitic nematodes were detected. The most abundant genus was Meloidogyne, which

was detected in over 57% and 47% of all soil samples in 2009 and 2011, respectively.

This genus also reached the highest mean population densities of all genera detected.

Tylenchorhynchus was the next most abundant genus, occurring in over 29% of all soil

samples in both surveys. Other nematode genera found were Criconemella, Ditylenchus,

Hoplolaimus, Paratylenchus, Pratylenchus, Tylenchulus, and Xiphinema. High

population densities with up to 2600 and 2300 nematodes per 100 g soil were recorded

for the species Rotylenchulus and Helicotylenchus, respectively. In general, frequency

and population densities of plant-parasitic nematodes were lower in the 2011 survey

than in the 2009 survey which most likely was caused by variable agronomic and

climatic conditions between those years. Overall, the data suggested that plant-parasitic

nematodes pose a severe threat to organic farming under arid conditions, and that

control measures should be further developed and implemented.

Keywords. Meloidogyne incognita, organic farming, plant-parasitic nematodes,

Pratylenchus, root-knot nematode, survey, Tylenchorhynchus.
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INTRODUCTION

Organic agriculture is increasing steadily in developed as well as developing

countries. According to the latest statistics on organic farming worldwide, almost 37

million hectares (ha) in 160 countries are currently farmed organically, and the land

devoted to organic agriculture worldwide has grown by 135% over the last decade

(Willer and Kilcher, 2011). The total market value of organic products reached USD$55

billion in 2009 which is an increase of 16.3% compared with 2007 (Paull, 2011). In

Africa, there are slightly more than one million hectares of certified organic agricultural

land, representing 3% of the world’s total organic agricultural land. The majority of

certified organic produce is exported to the European Union. Certified organic products

are currently known only in a few local markets, including Egypt, South Africa,

Uganda, Kenya and Tanzania (Willer and Kilcher, 2011).

As for Egypt, the organic agricultural land has increased from 4,020 ha in 1998 to

9,342 ha in 2003, and 19,211 ha in 2008 representing an annual growth rate of 17%

(Sadek and Shelaby, 2011). In 2011, Egypt already had a total of 56,000 ha grown

organically (Paull, 2011). In the 1970’s, the Egyptian organic agriculture was started by

the SEKEM initiative and some growers in Fayoum and Kalubia governorates.

Nowadays, most organic farms are concentrated in Fayoum governorate, and a few

farms are located in reclaimed desert land in the Nile delta and in Upper Egypt (Radwan

et al., 2011).

The SEKEM initiative (SEKEM is ancient Egyptian and means "life force") was

founded in 1977 by the Egyptian pharmacologist and social entrepreneur Dr. Ibrahim

Abouleish "to restore and maintain the vitality of the soil and food as well as the

biodiversity of nature through sustainable, organic agriculture and to support social and

cultural development in Egypt’’. SEKEM was the first organization in the world to

cultivate and harvest biodynamic cotton based on the application of composts made of

various plant residues, fresh green material and manure (Merckens, 2000).
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As organic farmers lack the use of synthetic fertilizers and pesticides, they often

face problems with plant-parasitic nematodes, especially during the transition period

from conventional to organic farming (Hallmann et al., 2007; van Bruggen and

Termorshuizen, 2003). Nematode problems may not always be recognized as such by

the farmers or they might be confused with water or nutrition deficiency. Monitoring

systems and feasible control methods for plant-parasitic nematodes are less available

compared to foliar pathogens and insect pests. Furthermore, scientific data about

nematode problems in organic farming are still limited, and especially lacking in the

case of Egypt. Therefore, the objectives of this study were to determine the frequency

and abundance of plant-parasitic nematodes associated with organic crops in Egypt in

two years, and to identify the predominant genera and species.
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MATERIAL AND METHDOS

Sampling

The nematological surveys were conducted at the SEKEM organic farm located in

El-Sharkia governorate 60 km northeast of Cairo. A total of 114 and 102 samples were

taken during autumn 2009 and 2011, respectively. Samples were collected from field

and greenhouse plots representing the different crops grown at the 120 acre farm (Fig.

1). As a rule, one sample was taken per acre and plot; however, additional samples were

collected directly from poorly growing patches where the presence of plant-parasitic

nematodes was suspected. Each sample consisted of approx. 1500 g composed of 20

cores taken from the top 20 cm of soil. All samples were taken following a zigzag

pattern throughout the plot. Soil samples were kept in polyethylene bags and stored at

7°C until further processing.

For species identification of Meloidogyne, root samples were taken from bean

(Phaseolus vulgaris), eggplant (Solanum melongena), tomato (Solanum lycopersium),

pepper (Capsicum annuum), grape (Vitis vinifera) and various herbs such as artemisia

(Artemisia vulgaris), artichoke (Cynara cardunculus), moringa (Moringa oleifera),

roselle (Hibiscus sabdariffa), rosemary (Rosmarinus officinalis), sesban (Sesbania

sesban), black nightshade (Solanum nigrum) and white melilot (Melilotus distichum).

The roots were washed under tap water and females were isolated from the galled root

tissue and identified based on the perennial patterns of ten adult females (Taylor and

Sasser, 1978).

Nematode extraction

Soil samples were thoroughly mixed and 200 g aliquots were taken for nematode

extraction by using Cobb's sieving and decanting technique followed by a modified

Baermann technique (Hooper et al., 2005). Each soil sample was suspended in 3 litres

of water, and after settling of coarse soil particles the supernatant was poured through

two sieves of 200 µm and 25 µm aperture, respectively. This was repeated three times.

The debris including the plant-parasitic nematodes retained on the two sieves was

collected in 250-ml beakers. To clean the nematodes from remaining soil particles, the
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resulting suspension was transferred to a Baermann dish. Nematodes extracted within

48 hours were collected and counted under a binocular microscope and identified to

genus level. Nematode suspensions were then fixed in TAF (2 ml triethanolamine + 7ml

formalin + 91 ml distilled water) (Seinhorst, 1959), and mounted in glycerine.

Specimens of predominant genera were identified to species level.

Fig. 1. Map of the SEKEM farm showing the distribution of different crops on farm
sectors during 2009 and 2011.
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RESULTS

Genera and species of plant-parasitic nematodes at SEKEM farm

Eleven genera of plant-parasitic nematodes were found to be associated with

different organically grown plants at SEKEM farm during the surveys in 2009 and 2011

(Tables 1 and 2). Nine of them were detected in both surveys including the bulb

nematode Ditylenchus, the spiral nematode Helicotylenchus, the lance nematode

Hoplolaimus, the root-knot nematode Meloidogyne, the lesion nematode Pratylenchus,

the reniform nematode Rotylenchulus, the citrus nematode Tylenchulus, the stunt

nematode Tylenchorhynchus, and the dagger nematode Xiphinema. The ring nematode

Criconemella and the pin nematode Paratylenchus were only detected in the 2011

survey. Species identified were Helicotylenchus dihystera, Meloidogyne incognita,

Pratylenchus penetrans, Rotylenchulus reniformis and Tylenchulus semipenetrans.

Frequency of genera in soil

The frequency of nematode genera in soil samples collected from different

organically grown crops during the surveys in 2009 and 2011 are shown in Fig 2. Forty

percent of the soil samples contained only a single genus in both surveys, while 43%

and 58% of the soil samples contained two or more genera in 2009 and 2011,

respectively. Plant-parasitic nematodes were not detected in 17% and 2% of the total

samples in 2009 and 2011, respectively. Meloidogyne was the most frequent genus in

both surveys, which occurred in 57% and 47% of all soil samples collected in 2009 and

2011, respectively. The next most frequent genus was the stunt nematode

Tylenchorhynchus which occurred in 29% of all samples in both surveys. Other genera

commonly detected were Rotylenchulus, Helicotylenchus and Pratylenchus which all

occurred in between 20% and 29% of the samples. Genera observed with frequencies

below 20% included Ditylenchus, Hoplolaimus, Tylenchulus and Xiphinema (Fig. 2).

Occurrence of plant-parasitic nematodes in different organically grown crops

Approximately 85% of the surveyed plants were infected with three or more genera

while 15% of the surveyed plants were infected with only a single genus in both surveys

(Fig. 1, Tables 1 and 2).
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Table 1. Occurrence and population densities of plant-parasitic nematodes in different

crops grown at the organic SEKEM farm in 2009.

1) Number of collected samples is given in parenthesis.
2) Occurrence (%) = Number of positive samples / Number of total samples x 100

Host plant1) Genera Occurrence (%)2)
Population density/100 g soil

Mean Range
(Minimum-Maximum)

Apricot (6)
(Prunus armeniaca)

Helicotylenchus
Meloidogyne
Pratylenchus
Rotylenchulus
Tylenchorhynchus
Xiphinema

100.0
33.3
16.6
50.5
33.3
16.6

118
15

150
154
260
60

40-150
10-20
150

53-263
260
60

Bean (6)
(Phaseolus vulgaris)

Hoplolaimus
Meloidogyne
Rotylenchulus
Tylenchorhynchus

33.3
100.0
16.6
16.6

128
410
20
60

125-130
10-990

20
60

Grape (24)
(Vitis vinifera)

Helicotylenchus
Hoplolaimus
Meloidogyne
Pratylenchus
Rotylenchulus
Tylenchorhynchus

75.0
25.0
62.5
58.3

100.0
41.0

650
152
429
126
429
83

40-2300
10-550

10-2110
10-280

10-2600
10-260

Lemon (8)
(Citrus limon)

Ditylenchus
Helicotylenchus
Meloidogyne
Pratylenchus
Rotylenchulus
Tylenchorhynchus
Tylenchulus

25.0
50.0
50.0
25.0
12.5
25.0
37.5

35
207
182
85
70
40
63

30-40
20-420
20-420
30-160

70
20-60

30-110

Orange (12)
(Citrus sinensis)

Ditylenchus
Meloidogyne
Tylenchulus
Xiphinema

16.6
75.0
33.3
8.3

95
38

128
120

60-130
10-130
60-195

180

Squash (8)
(Cucurbita pepo)

Ditylenchus
Meloidogyne
Rotylenchulus
Pratylenchus
Tylenchorhynchus

25.0
62.5
12.5
12.5
62.5

30
108
70
78
66

20-40
65-175

70
78

10-260

Tomato (8)
(Solanum

lycopersicum)

Meloidogyne
Pratylenchus
Tylenchorhynchus

3.75
12.5
25.0

98
10
30

10-225
10

10-50

Eggplant (4)
(Solanum melongena)

Ditylenchus
Pratylenchus
Tylenchorhynchus

50.0
25.0
25.0

45
10
30

20-70
10
30

Pepper (35)
(Capsicum annuum)

Helicotylenchus
Meloidogyne
Pratylenchus
Tylenchorhynchus

2.8
62.8
5.7
5.7

10
2891
150
77

10
10-17030

150
77

Herbs (3) Meloidogyne 66.6 1855 1110-2600
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Table 1. Occurrence and population densities of plant-parasitic nematodes in different

crops grown at the organic SEKEM farm in 2011.

Host plant1) Genera Occurrence(%)2)

Population density/100 g soil

Mean Range
(Minimum-Maximum)

Alfalfa (5)
(Medicago sativa)

Ditylenchus
Helicotylenchus
Meloidogyne
Pratylenchus

40.0
20.0

100.0
20.0

28
60
62
75

15-40
60

10-105
75

Bean (3)
(Phaseolus vulgaris)

Meloidogyne 66.6 50 50

Chamomile (5)
(Chamomilla recutita)

Ditylenchus
Hoplolaimus
Meloidogyne
Pratylenchus
Rotylenchulus

20.0
20.0
20.0

100.0
20.0

18
18
20
75
75

18
18
20

20-130
20

Eggplant (3)
(Solanum melongena)

Ditylenchus 66.6 20 15-25

Grape (30)
(Vitis vinifera)

Helicotylenchus
Hoplolaimus
Meloidogyne
Pratylenchus
Rotylenchulus
Tylenchorhynchus

50.0
6.6

30.0
20.0
76.0
10.0

382
44

206
70

396
133

25-1870
42-45

42-900
25-100

25-2210
50-250

Lemon(9)
(Citrus limon)

Criconemella
Meloidogyne
Paratylenchus

44.4
44.4
22.2

41
56

127

50-62
18-138

127

Orange (15)
(Citrus sinensis)

Ditylenchus
Meloidogyne
Pratylenchus
Tylenchorhynchus
Tylenchulus
Xiphinema

20.0
46.6
20.0
53.0
6.6

20.0

55
19
46

198
12
24

12-90
12-36
12-90

12-450
12

18-38

Tomato (23)
(Solanum lycopersicum)

Ditylenchus
Helicotylenchus
Meloidogyne
Pratylenchus
Tylenchorhynchus

34.7
17.3
69.5
13.0
62.1

33
159
488
55
54

13-70
120

130-1200
25-100
13-140

Herbs (9) Ditylenchus
Helicotylenchus
Meloidogyne
Pratylenchus
Tylenchorhynchus

11.1
11.1
44.4
22.2
44.4

20
25

2091
197
263

20
25

75-5750
115-280
20-420

1) Number of collected samples is given in parenthesis
2) Occurrence (%) = Number of positive samples / Number of total samples x 100
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Overall, the most dominant genus for each crop was always identical in both surveys.

Meloidogyne was found to be associated with over 88% of all crops in both surveys.

Furthermore, it was the predominant genus associated with 70% and 55% of the crops

sampled in 2009 and in 2011, respectively. Meloidogyne was the dominant genus on

crops that were repeatedly planted in the same plots during both surveys, such as bean,

herbs, lemon (Citrus limon), and greenhouse tomato but also on some crops that were

planted during one or both surveys such as alfalfa (Medicago sativa), orange (Citrus

sinensis), squash (Cucurbita pepo) and greenhouse pepper, with 46% to 100%

occurrence. Tylenchorhynchus and Pratylenchus were found on the crops sampled. Few

nematode genera occurred in all samples taken from one given crop (= 100%

occurrence), such as Helicotylenchus being detected in all 6 samples taken from apricot

(Prunus armeniaca) in 2009 or Rotylenchulus found in all 26 samples taken from grapes

of the same year. Citrus was the preferable host for Tylenchulus semipenetrans which

only occurred in these plots. Criconemella and Paratylenchus were only detected in

samples taken from lemon and only in 2011. Furthermore, Hoplolaimus and Xiphinema

were only associated with one or two hosts at low frequency in both surveys (Tables 1

and 2).

Population densities of plant-parasitic nematodes

According to mean population densities of nematode genera detected in soil

samples collected from different crops grown in 2009 and 2011, Meloidogyne had the

highest mean densities of all nematode taxa in both surveys (Fig. 3). Rotylenchulus,

Helicotylenchus, Hoplolaimus, and Tylenchorhynchus achieved relatively high mean

densities during one or both surveys. Other genera had rather low densities in both

surveys including Ditylenchus, Pratylenchus, Tylenchulus, and Xiphinema (Fig. 3).

Concerning their mean and maximum densities on each crop separately, the highest

mean and maximum densities of all plant-parasitic nematodes on any crop in both

surveys was achieved by Meloidogyne with 2891 and 17,030 juveniles/100 g soil in

pepper in the 2009 survey, respectively (Tables 1 and 2). Also this genus exhibited

relatively high densities on herbs, grapes and tomatoes during both surveys (Tables 1
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and 2). The highest population densities of Rotylenchulus, Helicotylenchus and

Hoplolaimus were recorded on grapes in both surveys which reached up to 2600, 2300

and 550 nematodes per 100 g soil in 2009, respectively. The maximum densities for

Tylenchorhynchus and Pratylenchus were 450 and 280 nematodes/100 g soil on herbs in

2009, respectively. Other genera that were found at low densities were Criconemella,

Ditylenchus, Paratylenchus, Tylenchulus and Xiphinema (Tables 1 & 2).

Comparison of nematode frequencies and population densities between both

surveys

In general, the frequency and mean population densities of most nematode genera in

soil samples (n=114) collected from different organically grown crops in 2009 were

lower than in soil samples (n=102) collected in 2011 (Fig. 2 and 3). The frequencies of

Meloidogyne, Rotylenchulus, Tylenchulus, Helicotylenchus and Hoplolaimus in soil

samples collected in the 2011 survey were significantly lower (less than 4-10%) in the

2009 survey. Also, in the 2011 survey, the first three genera were found in association

with fewer crops than in the 2009 survey, and their occurrences on the same crops

planted in both surveys were less in 2011, especially in case of Meloidogyne and

Rotylenchulus. On the contrary, in the 2011 survey, Ditylenchus and Xiphinema were

detected in more samples than in the 2009 survey, and Ditylenchus was associated with

more crops and at higher occurrences than in 2009. Pratylenchus and Tylenchorhynchus

exhibited almost consistent frequencies but inconsistent occurrence in different crops

during both surveys. Tylenchorhynchus was associated with fewer crops in the 2011

survey than in the 2009 survey (Tables 1, 2 and Fig. 2).

In the 2011 survey, mean population densities of Ditylenchus, Meloidogyne,

Helicotylenchus, Hoplolaimus, Tylenchulus, and Xiphinema were significantly lower

than in 2009 (Fig. 3). Also, maximum population densities recorded of these genera on

different crops in 2011 were about 18-93% lower than those recorded in 2009, e. g. the

maximum density of Meloidogyne on pepper in 2009 was 17,030 nematodes/100 g soil

while it was 5750 nematodes/100 g soil on herbs in 2011. In contrast, mean population

densities of Rotylenchulus and Tylenchorhynchus in all samples collected during the
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2011 survey were significantly higher than in those collected during the 2009 survey.

Pratylenchus had maximum and mean densities almost equal in both surveys (Fig. 3).

Fig. 2. Frequency of nematode genera in all soil samples collected from different crops
during the surveys in 2009 and 2011.

Fig. 3. Mean densities of frequent nematode genera detected at the SEKEM farm during
the surveys in 2009 and 2011.
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2011 survey were significantly higher than in those collected during the 2009 survey.

Pratylenchus had maximum and mean densities almost equal in both surveys (Fig. 3).

Fig. 2. Frequency of nematode genera in all soil samples collected from different crops
during the surveys in 2009 and 2011.

Fig. 3. Mean densities of frequent nematode genera detected at the SEKEM farm during
the surveys in 2009 and 2011.
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Pratylenchus had maximum and mean densities almost equal in both surveys (Fig. 3).

Fig. 2. Frequency of nematode genera in all soil samples collected from different crops
during the surveys in 2009 and 2011.

Fig. 3. Mean densities of frequent nematode genera detected at the SEKEM farm during
the surveys in 2009 and 2011.
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DISCUSSION

Organic agriculture has expanded in many countries worldwide as a consequence of

the increasing demands for organic food in both domestic and export markets.

Agricultural practices in organic farming are supposed to lead to a higher biodiversity of

soil organisms and increase their activity, which may affect plant-parasitic nematodes

(Freckman, 1988; Griffiths et al., 1994; Hallmann et al., 2007). However, our study on

the frequency and abundance of plant-parasitic nematodes associated with different

organic crops in SEKEM farm showed that current practices in organic farming are

insufficient to prevent infection by plant-parasitic nematodes. All genera and species of

plant-parasitic nematodes detected in surveys, have already been identified among 54

genera and 160 species under traditional farming system in Egypt (Tarjan, 1964; Oteifa

and Tarjan, 1965; Ibrahim et al., 1976; Abou-Elnaga, 1979; Abou- Elnaga et al., 1985;

Ibrahim et al., 1986; Abou-Elnaga, 1989; Ibrahim, 1990; Ibrahim et al., 1994; Oteifa et

al., 1997; Ibrahim et al., 2000; Ibrahim and El- Sharkawy, 2001; Mokbel et al., 2006;

Ibrahim et al., 2010).

Plant-parasitic nematodes commonly detected in SEKEM organic farm were the

genera Meloidogyne, Tylenchorhynchus, Rotylenchulus, Helicotylenchus, and

Pratylenchus, which were the same genera mainly found in conventional farming in

Egypt under similar environmental conditions, i. e. sandy soil and desert climate

(Mokbel et al., 2006; Ibrahim et al., 2000 and 2010). However, the same genera, albeit

not the same species, have been reported from organically grown crops in Germany

(Hallmann et al., 2007). The most frequently found genus was Meloidogyne, which

occurred in over 57% and 47% of soil samples in 2009 and 2011, respectively. This is

comparable to the occurrence reported for non-organic farming in the new reclaimed

lands in Egypt (62.5%) (Ibrahim et al., 2010), or for organic farming in Germany (51%)

(Hallmann et al., 2007). The next most abundant nematode was Tylenchorhynchus

occurring in over 29% of soil samples in both surveys, which together with

Pratylenchus was also the most dominant genus with an incidence of over 90% of the

samples in organic farming in Germany (Hallmann et al., 2007), and with 49.5%

occurrence in conventional farming in Egypt (Ibrahim et al., 2010). In another study,



II: DISCUSSION

45

Tylenchorhynchus dubius was found significantly more frequently in organically

managed soils, particularly in sandy soils than in conventionally managed soils (van

Diepeningen et al., 2006).

Meloidogyne incognita was associated with over 88% of all crops in both surveys,

and particularly occurred at high densities on solanaceous crops. Pepper and tomato

grown in greenhouses were preferable hosts for M. incognita which was able to reach

mean densities up to 2891 juveniles/100 g soil in pepper. Van Bruggen and

Termorshuizen (2003) observed that the root-knot nematode population increased in

organic tomato production in greenhouses in the Netherlands over the past years,

although other pests and diseases were kept at an acceptable level. In conventional

vegetable production under similar environmental conditions as the SEKEM farm,

Meloidogyne was reported to reach population densities of only 233 juveniles/100 g soil

(Haroon and  Osman, 2003; Bakr et al., 2011). Pratylenchus, which was associated with

67% - 70% of all crops at the SEKEM farm, was also commonly found on organically

grown vegetables in Germany (Hallmann et al., 2007).

Despite the presence of lemon in both surveys, which is a good host for

Criconemella and Paratylenchus, these genera were only detected in the second survey.

This is likely as a result of the population densities which might have been below the

detection level in the first survey, or both genera were associated with legumes that

were intercropped with citrus before sampling in the second survey. Tylenchulus was

only detected in citrus plots, which is considered a major plant-parasitic nematode on

citrus in sandy soil especially in the new reclaimed lands in Egypt (Bakr et al., 2011).

Also, Ditylenchus was found in association with citrus, cucurbits, legumes and

Solanales, which was more common in the 2011 than in the 2009 survey, depending on

the presence of its suitable hosts during each survey. It was also detected with these

hosts in non-organic farming in Egypt (Mokbel et al., 2006).

Concerning their population densities in different crops, Meloidogyne on pepper had

the highest mean and maximum densities of all plant-parasitic nematodes on any crop in
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both surveys. The mean and maximum densities were higher than those that were

achieved by the same genus on organically grown vegetables of 109 and 3312

nematodes/100 ml soil, respectively (Hallmann et al., 2007). Highest mean nematode

densities detected in grape plots were achieved by Helicotylenchus and Rotylenchulus,

with mean densities of 650 and 429 nematodes/100 g soil, respectively. Slightly lower

densities were reported from conventional grape plots in Egypt, with 402 and 300

nematodes/100 g soil, respectively (Mokbel et al., 2006). Tylenchorhynchus and

Pratylenchus with their preferable host (herbs) had relatively high mean densities of

263 and 197 nematodes/100 g soil, respectively, compared with 49 and 55

nematodes/100 ml soil, respectively, on organically grown vegetables in Germany

(Hallmann et al., 2007).

Overall, in the 2011 survey the frequency and mean population densities of most

nematode genera in soil samples were lower than in soil samples during the 2009

survey. For example, differences in mean densities of Meloidogyne were 44%. This

might be caused by various factors such as, differences in the crops and their growth

stages, (e.g. greenhouse tomato were in the senescence stage in the 2011 survey while

they were in flowering and fruiting stages in the 2009 survey), or application of some

agricultural practices that promote natural control such the application of composts or

direct application of some biocontrol agents. It may also be due to some differences in

the soil moisture and temperature between the two surveys.

In conclusion, plant-parasitic nematodes are a severe problem in the SEKEM farm

and most probably also in other organic farms in Egypt. Meloidogyne showed the

highest abundance and frequency of all plant-parasitic nematodes during the two

surveys, which might result in economic damage to most crops. The results may help in

identifying the most common nematode taxa occurring on each crop grown at the

SEKEM farm as a prerequisite to develop effective nematode management strategies.

Further research is needed to study dynamics and community structure of plant-parasitic

nematodes during different seasons in several organic farms located in different regions

of Egypt.
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Abstract

Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was

used to differentiate among M. incognita populations and/or races based on msp1 gene

variation. Seven populations and races varied in their reproduction rate on different

crops or cultivars. Principle component analysis (PCA) of the bioassay data separated

them into two differential groups. A DGGE protocol was developed for optimal

separation of msp1 gene variants amplified from genomic DNA of populations/races.

The UPGMA analysis of DGGE patterns separated the population/races into two major

groups similar to those that were obtained from the phenotypic data, but it was more

successful in separating each population/race in a separate cluster than PCA analysis

that showed some of them overlapped. A correlation between the presence of a

particular gene variant and the reproductive potential on particular hosts was not

observed. The presented results indicated that PCR-DGGE could be a promising tool for

answering unresolved questions regarding population genetics of plant-parasitic

nematodes and genetic variation within the nematode species.

Keywords: genetics, host preference, Meloidogyne incognita, pathogenicity gene, PCR-

DGGE, root-knot nematode, technique

.
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INTRODUCTION

The root-knot nematode Meloidogyne incognita is one of the most economically

damaging agricultural pests worldwide, with a wide host range of at least 1,700 plant

species (Sasser et al., 1983). This sedentary endoparasite has evolved a highly

specialized and complex relationship with its host plants by inducing the root tissue to

form specific feeding sites, the so-called giant cells (Williamson and Hussey, 1996;

Hussey and Grundler, 1998). Although M. incognita reproduces by obligate mitotic

parthenogenesis, it exhibits high capacities of adaptation to environmental constraints,

e.g. its ability to alter avirulent to virulent population able to reproduce on resistant

cultivars (Castagnone-Sereno, 2006).

The use of resistant or non-host crops is an effective and environmentally friendly

method to mange M. incognita on many crops and at the same time to reduce chemical

nematicides (Williamson and Kumar, 2006). For successful nematode management

using resistant plant cultivars or appropriate crop rotations, the differentiation among

locally occurring nematode populations and/or races need to be known. Various

populations of M. incognita have been differentiated into races based on their

susceptibility to the differential hosts (Robertson et al., 2009; Devran and Sogut, 2011)

or into virulent (aggressive) and avirulent (nonaggressive) populations based on their

reproduction on different cultivars (Anwar and McKenry, 2007; Olowe, 2010).

However, identification of M. incognita populations using solely differential hosts can

be unreliable due to presence of atypical populations that in the past were identified as

races of other species based on morphological and biochemical analysis (Fargette,

1987). Therefore, differentiation among M. incognita populations by method race

biotest should be used in conjunction with morphological characterization or molecular

methods to obtain a trustworthy diagnose.

In general, Meloidogyne species can be identified based on distinct morphological

and biochemical characters, but populations or races of the same species cannot be

directly defined by these techniques. High similarity among races of some species or

poor taxonomic descriptions between populations resulted in intra-species merging of
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morphological characters and difficulty in distinguishing between populations or races

of Meloidogyne species based on morphological characters (Robertson et al., 2009).

Currently, molecular assays have become the preferred methods for routine

identification of root-knot nematodes as they are faster and more accurate than

morphological assay. A number of molecular methods to identify Meloidogyne species

have been used, e.g. restriction fragment length polymorphisms (RFLPs), random

amplified polymorphic DNA (RAPD), satellite DNA probes, sequence characterized

amplified regions (SCARs), real-time PCR and high-resolution melting curve (HRMC)

analysis (Holterman et al., 2012). However, molecular assay that can determine race or

virulence within the same species of Meloidogyne has not been obtained yet (Cortada et

al., 2011). Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-

DGGE) is a molecular method that can detect differences in DNA sequences or

mutations of various genes based on differential denaturing characteristics of the DNA.

Despite its speed and potential to discern changes in a single nucleotide base pair of

same length DNA fragment, PCR-DGGE in nematology has so far been limited to

analysis of soil or marine nematode communities (Okada and Oba, 2008).

The Mi-msp1 gene is highly expressed in preparasitic and parasitic J2 of M.

incognita but not in adults (Ding et al., 2000). The Mi-msp1 cDNA contained an open

reading frame encoding 231 amino acids with the first 21 amino acids being a putative

secretion signal. The secreted protein plays a key role in the initial infection of the host

plant (Ding et al., 2000). It is considered a member of the SCP/TAPS family of secreted

proteins that is found in several nematode species and is similar to the allergen antigen 5

of extracellular proteins from hymenopteran insect venom (King et al., 1990; Gao et al.,

2001). The objective of this research was to differentiate M. incognita populations

and/or races which showed variability in their reproduction rate on different hosts by

PCR-DGGE based on msp1gene variation.
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MATERIALS AND METHODS

Nematode sources: The seven nematode populations and races used in this study

originated from three different countries (Table 1). Four populations (E1, E2, G1, G2)

were identified as M. incognita by molecular diagnostic analysis using the intergenic

spacer (IGS2) of the ribosomal DNA cistron, while three races were identified and

supplied by Prof. Stephen Thomas, New Mexico State University in USA. All

populations and races were isolated from single egg masses and propagated on tomato

(Solanum lycopersicum) cv. Moneymaker under greenhouse conditions.

Table 1. Meloidogyne incognita populations or races used in this study and their origin.

Code Geographic Origin Original host

E1 Sekem organic farm, El-Sharkia, Egypt Pepper

E2 Sekem organic farm, El-Sharkia, Egypt Tomato

G1 Reichenau, Baden-Württemberg, Germany Bur cucumber

G2 Reichenau, Baden-Württemberg, Germany Cucumber

R1 Ken Barker, USA a Tomato

R2 Ken Barker, USA a Tobacco

R3 Mexico, USA a Chile pepper

a Kindly provided by Prof. Stephen Thomas (New Mexico State University).

Greenhouse test: Different crops/cultivars were used to differentiate between

populations and/or races, including pepper (Capsicum annuum cv. California wonder),

cotton (Gossypium hirsutum cv. DP 61) and three cultivars of tomato (Solanum

lycopersicum) cv. Moneymaker (susceptible), cv. Tomasa (tolerant), cv. Sparta

(resistant). Two week-old seedlings were transplanted into 11-cm-diam. plastic pots

containing about 400 g of pasteurized field-soil:sand mix (1:1, v:v). Two weeks later,

each seedling was inoculated with 200 freshly hatched second-stage juveniles (J2) in 2

ml water by pipetting into four holes 3 cm deep around the plant base. The inoculum

was prepared by extracting nematode eggs from tomato roots using 1.5% NaOCl as

described by Hussey and Barker (1973). Suspension of eggs were placed on a modified
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Baermann dish and incubated at 25 ± 2°C for 7-10 days to separate hatched J2 from

eggs (Hooper et al., 2005). The hatched J2 were collected daily. Only freshly hatched J2

collected within 48 h were used for experiments. Eight replicates of each host and

population or races combination were used. The pots were arranged in a randomized

block design. The plants were watered as needed and fertilized weekly with 10 ml of

commercial fertilizer (WUXAL® Super NPK fertilizer, 8-8-6 with micronutrients, 2.5 g

liter-1). Pots were kept in the greenhouse at 22 ± 2°C and 16-h photoperiod.

The experiment was terminated 50 d after inoculation when 30-50% of the eggs of

one egg mass produced on Moneymeker showed folded juveniles inside the egg. Plants

were removed from their pots, and root systems were carefully washed free of adhering

soil by dipping the roots in a bucket of water with changing the water several times. Egg

masses were stained by submersing the roots in 4% cochenille red (Brauns-Heitmann,

Warburg, Germany) for 15 min to aid visualizing the egg masses. Immediately before

examination excess stain was removed by gently washing the root in water. After

counting the number of galls and egg masses on the entire root system of each plant, the

root was transferred into a plastic bottle half filled with 2% chlorine solution. Roots

were vigorously shaken for 3 min to free the eggs from the gelatinous matrices. The

suspension was thoroughly washed with tap water through a 250 µm sieve sitting on a

20 µm sieve. The root debris on the top sieve was discarded. Eggs collected on the 20

µm sieve were transferred into a glass bottle and the number of embryonic eggs (black

inside), juvenile eggs (folded juveniles recognizable within egg) and juveniles (hatched

juveniles) were counted. By dividing total number of eggs per root with number of egg

masses per root, the number of eggs per egg mass was obtained.

DNA extraction: Genomic DNA was extracted from individual J2 from the

populations listed in Table 1 using ZR Tissue and Insect DNA MicroPrepTM kit (ZYMO

RESEARCH, USA). Ten individual newly hatched J2 for each of the populations or

races were transferred by pipetting into ZR BashingBeadTM lysis tube and then lysed in

a FastPrep instrument (MP Biomedicals, Heidelberg, Germany) for 40 s at high speed.

The tubes were then centrifuged for 1 min at 10,000 g, the supernatant transferred to a



III: MATERIALS AND METHODS

56

Zymo-spinTM IV Spin Filter and then processed according to the manufacturer’s

instructions.

PCR–DGGE to differentiate msp1 gene variants: The msp1 gene fragments were

amplified from DNA isolated from J2 for denaturing gradient gel electrophoresis

(DGGE) using the primers msp410f (with GC-clamp) 5´GC-clamp-

TTGATGATTGATGCCTGTAATGC and MImsp596r

ATAACGACAATCAATCAAAT that were designed based on an alignment of

published sequences of Meloidogyne hapla and M. incognita. PCR was conducted in a

25 µl volume of 1 µl of template DNA, 1x TrueStart buffer, 0.2 mM deoxynucleoside

triphosphates, 3.75 mM MgCl2, 4% (vol/vol) acetamid, 0.2 µM of each primer, and 1.25

U TrueStart Taq polymerase (Fermentas, St Leon-Rot, Germany). PCR was carried out

using the following thermal cycles: 95°C for 5 min, then 40 cycles at 94°C for 45 s,

46°C for 30 s, and 72°C for 30 s and a final extension step of 72°C for 5 min. Before

DGGE analysis, the PCR products were examined by running 5 µl aliquots of the

reaction mixtures in a 1% agarose gel. DGGE was performed with a gradient of 29% to

56% denaturants for analysis of msp1 gene fragments (where 100% denaturant was

defined as 7 M urea plus 40% formamide). Approximately 4-12 μl aliquots of PCR

products prepared from DNA extracted from J2 of the populations and races were

loaded side by side on a DGGE gel with four replicates each. The DGGE gel was run in

a PhorU2 apparatus (Ingeny, Goes, The Netherlands), in 1× Tris-acetate-EDTA buffer at

60°C with a constant voltage of 100 V for 16 h. The gel was silver stained as described

by Heuer et al. (2001). GelCompar II 6.6 was used for pairwise comparisons of DGGE

profiles of nematode populations using Pearson correlation for estimating similarity

coefficients and the unweighted pair group method with arithmetic averages (UPGMA)

for cluster analysis.

Cloning and sequencing: For sequencing of the different bands of msp1gene

fragment that showed at different positions in the DGGE gel, PCR products obtained

with the primers msp410f and MImsp596r were cloned using the vector pGEM-T and

Escherichia coli JM109 high-efficiency competent cells (Promega, Madison, WI, USA).

Based on PCR-DGGE, cloned amplicons corresponding in electrophoretic mobility to
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different bands were sequenced (Macrogen, Amsterdam, The Netherlands). The

obtained sequences were compared with nucleotide sequences in the Genbank using the

BLAST Software (http://blast.ncbi.nlm.nih.gov) to determine similarities. Sequences

were aligned using Mega 5.1 program to show areas of variability and areas of

conserved regions.

Statistical analysis: The numbers of egg masses, embryonic eggs, juvenile eggs, and

hatched J2 from each of the five plants were compared between the seven nematode

populations. To account for correlations in this multivariate dataset and to reduce

dimensionality, principal component analysis (PCA) using SPSS Statistics 19 was

performed. The first two principal components, which explained 89% of the variance,

were used for univariate analyses of variance with Tukey adjustment to test for

significant differences between the nematode populations.
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RESULTS

Phenotypic differentiation among M. incognita populations: The patterns of

embryonic eggs, juvenile eggs, and hatched J2 generated on the five host plants varied

among populations and/or races (Fig. 1A). As expected, all populations and races

reproduced well on the susceptible tomato cv. Moneymaker showing the highest

number of eggs. This cultivar already allowed to differentiate among populations or/and

races. For example, populations G1, G2, R2 and E1 produced fewer eggs and J2 on

tomato cv. Moneymaker than R3 (P ≤ 0.05). Eggs produced by population E2 on cv.

Moneymaker developed faster to juvenile eggs than those from the other populations

and races, with 23% of the total eggs developed to J1 (P ≤ 0.05). In contrast, the

resistant tomato cv. Sparta suppressed reproduction of all M. incognita populations and

races, except for population E1 which was able to reproduce, achieving the greatest

quantity and development of eggs. For the tolerant tomato cv. Tomasa, no significant

differences in the quantity or development of eggs was observed among all populations

or/and races, except that the total number of eggs produced by G1 was significantly

lower than those produced by R1 (P = 0.002). Pepper cv. California wonder apparently

differentiated between the three races but did not distinguish between German and

Egyptian populations. On cotton cv. DP 61 only R3 and G2 were able to reproduce,

with R3 resulting in a significantly higher number of eggs than G2 (P ≤ 0.05). Principal

component analysis on the selected nematode parameters for the different host plants

and analysis of variance of the first and second principal component (PC1 and PC2)

showed significant differences between all populations/races, expect that E1 and E2

were not different from R1 (Fig. 1A). The biplot of PC1 and PC2 showed good

discrimination of the two populations E1 and G1 and the two races R2 and R3, but was

overlapping for the populations E2 and G2 and race R1 (Fig. 1B). The PC1 that

explained 73% of the total variance was mainly based on the number of embryonic eggs

on tomato cv. Moneymaker, while PC2 explained an additional 16% of the total

variance and was mainly based on the number of embryonic eggs on pepper. Based on

PC1 the analyzed populations and races could be divided into two groups; one including

R2, R3 and G2 and the other including E1, E2, G1 and R1 (Fig. 1B).
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Fig.1. Phenotypic differentiation of Meloidogyne incognita populations by their

reproduction on tomato cv. Moneymaker (M), tomato cv. Tomasa (T), tomato cv. Sparta

(S), pepper cv. California wonder (P), and cotton cv. DP61 (C). A: Progeny and

developmental stages of eggs were determined for each plant 50 days after inoculation

of 200 J2 of Egyptian populations (E1, E2), German populations (G1, G2), or the races

R1, R2, or R3. The reproduction pattern of the populations / races on the different host

plants was compared by principal component analysis of the multivariate dataset and

pairwise analysis of variance of principal components 1 (PC1) and 2 (PC2) using

Tukey’s adjustment (n = 10, P < 0.05). Different upper or lower case letters in a row

indicate significant differences between populations with respect to PC1 or PC2,

respectively. Error bars represent SD of total numbers of eggs. B: Biplot of PC1 and

PC2.
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Differentiation of M. incognita populations based on msp1 gene variation: The

msp1 gene was used to differentiate between M. incognita populations and/or races by

separation of amplified sequence variants in DGGE analysis. DGGE profiles of all

populations and races showed a good separation of msp1 fragments by five major bands

detected at different positions in the denaturing gradient (Fig. 2A). Among them, the

variants R1-A and R2-B were abundant in all replicate DNA samples from all

populations and races. R1-A was the dominant band in all samples. Other bands seemed

to be specific for some populations or races. For example, gene variants G2-A and G2-

B were abundant in the population G2, R2, and R3 (but only in two of the replicates

from ten J2), while much less abundant in the populations E1, E2, G1, and R1. Band

E1-B was weak and only appeared for population E1 and R2 (Fig 2A).

UPGMA analysis of DGGE patterns of the different populations and races revealed a

clear separation in two main clusters (Fig 2B). One large cluster was formed by G2, R2,

R3 (two replicates) and E1 (one replicate) and the other one by G1, E2, R1, E1 (except

for one replicate) and R3 (two replicates). With the exception of R3, replicates of each

population or race (at least three replicates) were clearly separated forming together a

separate cluster with < 95% similarity. Sequencing of cloned amplicons, which

corresponded to different bands, displayed 97-99% similarity with sequences of msp1

genes of M. incognita in the Genbank (AF013289, ASM18041v1). Sequence variations

close to the reverse primer among the gene variants corresponding to the five DGGE

bands could explain the different melting behavior in the denaturing gradient (Fig 2C).
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Fig. 2. Genetic differentiation of Meloidogyne incognita populations based on variants

of their pathogenicity gene msp1. A: Denaturing gradient gel electrophoresis (DGGE)

of the msp1 genes from two Egyptian populations (E1, E2), two German populations

(G1, G2), and the races R1, R2, and R3. Each of four replicates per population were

derived from DNA of ten J2. Cloned and sequenced amplicons representing the

different gene variants were combined in a marker (M) as indicated on the left side. B:

UPGMA cluster analysis of the DGGE fingerprints. C: Alignment of DNA sequences of

the msp1 gene variants representing major bands in DGGE. Dots indicate the same base

as in the sequence of the G2-A variant. Primer sequences were not included.
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DISCUSSION

Recently, molecular techniques became alternative ways to overcome some gaps of

the traditional diagnostic techniques. In this study, a PCR-DGGE technique was

developed to differentiate populations and/or races of M. incognita, which have

exhibited variability in their reproduction on different crops/cultivars. PCA scatter plot

analysis was able to separate the seven populations/races into two differential groups.

Parameters that were related to egg production and embryonic development were good

indicators for characterizing populations/races, and might be better discriminating than

gall numbers as described by Anwar and McKenry (2007) and Verdejo-Lucas et al.

(2012). However, PCA did not allow complete separation of all populations and/or

races, as populations the Egyptian populations and Race 1 could not be distinguished.

None of the selected host plants on its own was able to differentiate among all

populations and/or races. Reproduction on tomato cv. Moneymaker discriminated well

among the populations, while mostly pepper enabled to distinguish among the races.

Tomato cv. Sparta differentiated population E1 from others, while cotton cv. DP 61

differentiated Race 3 from other population or races. These results indicate that the

differentiation using plant hosts affords many crops / cultivars and nematode parameters

to achieve a discrimination among M. incognita populations. Despite its problems with

speed and accuracy, bioassays are still the most common method used to differentiate

M. incognita populations (Anwar and McKenry, 2007; Olowe, 2010; Thies, 2011).

To the best of our knowledge, this is the first report on the use of PCR-DGGE to

distinguish among populations of one species of plant-parasitic nematodes. Despite its

high rapidity and efficiency as a diagnostic tool, DGGE in nematology has so far only

been applied to compare soil or marine nematode communities based on the 18S rRNA

gene (Cook et al., 2005; Okada and Oba, 2008). Here, we developed a DGGE protocol

for optimal separation of msp1 gene variants. We were able to show that M. incognita

populations / races differ in their msp1 variants and therefore, this method was able to

differentiate populations or races. Hence, DGGE banding patterns could be used to
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visualize similarity or dissimilarity among populations / races based on these different

bands.

Interestingly, UPGMA analysis of DGGE patterns separated the populations or races

into two major groups similar to those that were obtained from PCA analysis of the

bioassay data. Although the variability in the msp1 gene was sufficient for separation,

no relation between the gene variants and the reproductive potential of the population

on different hosts was observed. This agrees with Gerič Stare et al. (2012) showing that

sequence variability of the expB2 gene was not sufficient to distinguish pathotypes of

Globodera rostochiensis.

In general, the PCR-DGGE method should be taken into account as a molecular tool

that could address many unresolved questions of genetic variation and population

genetics of plant parasitic nematodes. This approach is expected to be a useful tool to

resolve allele frequencies to differentiate populations using effector genes of plant-

parasitic nematodes, or to study population-level epidemiology and population-specific

infectivity.
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ABSTRACT

Understanding the interactions of plant-parasitic nematodes with antagonistic soil

microbes could provide opportunities for novel crop protection strategies. Three arable

soils were investigated for their suppressiveness against the root-knot nematode

Meloidogyne hapla. For all three soils, M. hapla developed significantly fewer galls,

egg masses, and eggs on tomato plants in non-sterilized than in sterilized infested soil.

Egg numbers were reduced by up to 93%. This suggested suppression by soil microbial

communities. The soils significantly differed in the composition of microbial

communities and in suppressiveness to M. hapla. To identify microorganisms

interacting with M. hapla in soil, second-stage juveniles (J2) baited in the test soil were

cultivation-independently analyzed for attached microbes. PCR-denaturing gradient gel

electrophoresis of fungal ITS or 16S rRNA genes of bacteria and bacterial groups from

nematode and soil samples were analyzed, and DNA sequences from J2-associated

bands were determined. The fingerprints showed many species that were abundant on J2

but not in the surrounding soil, especially in fungal profiles. Fungi associated with J2

from all three soils were related to the genera Davidiella and Rhizophydium, while

Eurotium, Ganoderma, and Cylindrocarpon were specific for the most suppressive soil.

Among the 20 highly abundant operational taxonomic units of bacteria specific for J2 in

suppressive soil six were closely related to infectious species like Shigella spp., while

most abundant were Malikia spinosa and Rothia amarae, as determined by 16S rRNA

amplicon pyrosequencing. In conclusion, a diverse microflora specifically adhered to J2

of M. hapla in soil and presumably affected female fecundity.

Keywords: Meloidogyne hapla; biocontrol; soil suppressiveness; cuticle; plant-parasitic

nematodes; bacterial antagonists; fungal antagonists.
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INTRODUCTION

Root-knot nematodes (Meloidogyne spp.) are among the most damaging pathogens

of many crops worldwide, and are important pests in Europe (1). Chemical nematicides

are costly and restricted due to their adverse impact on the environment and human

health, whereas cultural control or host plant resistance are often not practical or not

available (2). Alternative management strategies could include biological control

methods. Microbial pathogens or antagonists of root-knot nematodes have high

potential for nematode suppression. Many fungal or bacterial isolates have been found

that antagonize root-knot nematodes either directly by toxins, enzymatically,

parasitically, or indirectly by inducing host plant resistance (3). Indigenous microbial

communities of arable soils were occasionally reported to suppress root-knot nematodes

(4-7).

Soils that suppress to Meloidogyne spp. are of interest for identifying antagonistic

microorganisms and the mechanisms that regulate nematode population densities.

Understanding the ecological factors that enable these antagonists to persist, compete

and function may improve the basis for integrated management strategies. Cultivation-

independent approaches were used in several studies to analyze the diversity of bacteria

or fungi associated with the plant-parasitic nematode genera Bursaphelenchus (8),

Heterodera (9-11), or Rotylenchulus (12). Papert et al. (13) showed by PCR-DGGE of

16S rRNA genes that the bacterial colonization of egg masses of Meloidogyne fallax

differed from the rhizoplane community. A rRNA sequence most similar to that of the

egg-parasitizing fungus Pochonia chlamydosporia was frequently detected in egg

masses of Meloidogyne incognita that derived from a suppressive soil (4).

Root-knot nematodes spend the majority of their life protected inside the root. After

hatch second-stage juveniles (J2) of root-knot nematodes migrate through soil to

penetrate host roots. During this searching, they are most exposed to soil microbes.

Root-knot nematodes do not ingest microorganisms, and their cuticle is the main barrier

against microbes. The collagen matrix of the cuticle is covered by a continuously shed

and renewed surface coat mainly composed of highly glycosylated proteins, which
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likely is involved in evasion of host immune defense and microbial attack (14).

Attachment of microbes to the J2 cuticle while dwelling through soil may result in

transport of microbes to roots, endophytic colonization, co-infection of roots, or defense

response of the plant triggered by microbe-associated molecular pattern. Attached

microbes may also directly inhibit or infect J2, or later colonize eggs of nematodes (15).

Despite its potential ecological importance, the microbiome associated with J2 of root-

knot nematodes has not yet been analyzed by cultivation-independent methods.

In this study three arable soils were investigated for their suppressiveness against the

root-knot nematode Meloidogyne hapla. The bacteria and fungi attached to J2 incubated

in these soils were analyzed based on their 16S rRNA genes or internal transcribed

spacer (ITS), respectively, and compared to the microbial communities of the bulk soil.

The objectives were (i) to test whether a specific subset of soil microbes attaches to J2

of M. hapla, (ii) to test whether attached species differ between soils of varying

suppressive potential, and (iii) to identify bacteria and fungi that putatively interact with

J2 of M. hapla.
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MATERIALS AND METHODS

Soils. Soils were obtained from three different locations in Germany and included a

Luvic-Phaeozem with medium clayey silt and 17.2% clay (loess loam, pH 7.3, organic

carbon content Corg 1.8%) from a field of the plant breeder KWS Saat AG in Klein

Wanzleben (Kw), a Gleyic-Fluvisol with heavy sandy loam and 27.5% clay (alluvial

loam, pH 6.7, Corg 1.8%) from a lettuce field in Golzow (Go), and an Arenic-Luvisol

with less silty sand and 5.5% clay (diluvial sand, pH 6.1, Corg 0.9%) from a field in

Großbeeren (Gb). These soils were selected because of a low abundance of M. hapla

despite the presence of suitable environmental conditions and susceptible plants. The

soils were previously characterized in detail (16), and data on microbial communities

were available. Soil samples were collected from eight plots within each field. Each

sample consisted of approximately 3 kg composed of 12 soil cores taken from the top

30 cm. All samples were kept in polyethylene bags and stored at 4°C until further

processing.

Greenhouse assay for soil suppressiveness. The suppressiveness against M. hapla

of the microbial communities in the three soils was determined by comparing the

reproduction of inoculated J2 on tomato plants in natural and sterilized soil. Native soil

without inoculated J2 served as control for putative indigenous root-knot nematodes.

Thus, each of the eight replicate soil samples of each soil was divided into three

portions for the three treatments. The portion for the J2-inoculation into sterilized soil

was autoclaved at 134°C for 10 min to kill indigenous microbes, followed by a 20 min

dry cycle,. Each portion of the soil samples was separately mixed with steamed loamy

sand at a ratio of 1:1 to improve physical soil properties for greenhouse culture, and

placed in 1.2 kg portions in 15-cm diameter pots. Two week-old seedlings of Solanum

lycopersicum ‘Moneymaker’ were transplanted into the pots. One week after

transplanting, 1,600 freshly hatched J2 of M. hapla were inoculated into each pot,

except the control for putative indigenous root-knot nematodes. The J2 were inoculated

by transferring 1 ml of a suspension with 200 J2 ml-1 into each of eight holes at the

periphery of the pot (7 cm from stem base, 2 cm deep), so that the J2 could interact with

soil microbes before penetrating tomato roots. The pots were arranged in a randomized
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block design, so that in total 72 pots (8 replicate blocks x 3 soils x 3 treatments) were

maintained in the greenhouse at 20 ± 2°C at ambient light. Plants were watered and

fertilized as needed. Two months after inoculation, root systems were washed free of

adhering soil and weighted. Egg masses attached to the roots were stained with 0.4%

cochenille red solution (Brauns-Heitmann, Warburg, Germany) for 15 min. Galls and

egg masses were counted. Roots were vigorously shaken for 3 min in 2% chlorine to

free the eggs from the gelatinous matrices. The suspension was poured through a 250

µm aperture sieve to remove roots. Eggs were collected on a 20-µm sieve and counted.

Soil baiting with J2 and DNA extraction. To analyze the microorganisms

attaching to J2 when they move through soil, J2 were inoculated in each soil and

extracted after exposure to the microbial communities in the three soils. Four replicate

tubes per soil type with 2000 inoculated J2 in 50 g soil were kept at 20 ± 2°C in the dark

for 7 days. The soil moisture was adjusted to 15%. J2 were extracted from the soil by

centrifugal flotation with MgSO4 solution (17), collected on 25 µm aperture sieves, and

transferred with sterile water into Petri dishes. Under the stereomicroscope 100 J2 from

each replicate, which were morphologically identified as root-knot nematodes, were

captured by needle. DNA from J2 with adhering microorganisms was extracted using

the FastPrep FP120 bead beating system (MP Biomedicals, Santa Ana, CA) for 30 s at

high speed, the FastDNA Spin Kit for soil (MP Biomedicals), and the GENECLEAN

Spin Kit (MP Biomedicals) for further purification. In parallel, total soil DNA was

extracted from 0.5 g bulk soil of each tube by the same method for comparison of the

microbial communities from nematode samples to those of the surrounding soil.

PCR-DGGE of fungal ITS and bacterial 16S rRNA gene fragments. PCR

amplifications of fungal ITS and of 16S rRNA genes of bacteria or bacterial groups

from total DNA of soil and J2 samples, and separation of the PCR products in DGGE

was done as previously described (18). Shortly, bacterial 16S rRNA gene fragments

were amplified either directly from total DNA using the primer pair F984GC / R1378,

or via PCR with primers that were designed to target the bacterial groups

Alphaproteobacteria, Betaproteobacteria, Pseudomonas, Actinobacteriales,

Enterobacteriaceae, or Bacillus (all primer sequences are shown in Table S1). The
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fungal ITS fragments were amplified using a nested PCR approach with primer pairs

ITS1F / ITS4 and ITS1FGC / ITS2. DGGE was done using the PhorU2 system (Ingeny,

Goes, The Netherlands) as previously described (18).

Analysis of ribosomal sequences of microbes attached to J2. For the DGGE

fingerprints of bacterial groups and fungal ITS fragments that showed nematode-

specific bands, PCR products were cloned and sequenced to identify the corresponding

microbial species by sequence comparison to GenBank entries. For

Alphaproteobacteria and Pseudomonas, PCR products obtained with primers F984GC /

R1378, for Bacillus, products produced with primers BacF / R1378, and for fungal

profiles, products of the primers ITS1FGC / ITS2 were used (Table S1). PCR products

were cloned using the vector pGEM-T and Escherichia coli JM109 high-efficiency

competent cells (Promega, Madison, WI). Based on the PCR-DGGE analysis, cloned

amplicons corresponding in electrophoretic mobility to nematode-specific bands were

sequenced (Macrogen, Amsterdam, The Netherlands).

Barcoded amplicon pyrosequencing was used to analyze 16S rRNA genes of total

J2-associated bacteria. PCR with universal bacterial primers F27 / R1494 was done as

previously described (19). The products were purified with the Minelute PCR

Purification Kit (Qiagen, Hilden, Germany) and used as target to amplify the V3–V4

region of 16S rRNA genes with fusion primers containing the Roche-454 A and B

Titanium sequencing adapters, an eight-base barcode sequence in adaptor A, and

specific sequences V3F / V4R targeting the ribosomal region. Library preparation and

sequencing were done on a 454 Genome Sequencer FLX platform according to standard

454 protocols (Roche – 454 Life Sciences, Branford, CT) by Biocant (Cantanhede,

Portugal). Pyrosequencing data were evaluated according to Ding et al. (20). Briefly,

sequences matching the barcode and primer were selected for blastn searches in the

database SILVA 115 SSU Ref (21) and a subset of that containing the strains with

species name. Chimera were truncated, barcodes and primers removed, and sequences

shorter than 200 bp discarded. Multiple alignments and operational taxonomic unit

assignment (OTU, > 97% similarity) were done using the software package Mothur

v1.14.0 (22). OTU were regarded as specific for J2 that comprised more than 1% of all
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sequences of J2 samples, and that were not detected in soil or had at least 100 times

higher relative abundance on J2 compared to soil.

Statistical analysis. For the greenhouse experiment, numbers of galls, egg masses,

eggs per gram of root, and eggs per egg mass after propagation of inoculated J2 were

compared between pots with native and sterilized soil for each soil type. Data were log-

transformed and a linear model with soil, treatment, and soil*treatment as fixed effects,

and block as random effect  was applied (Table S2). For pairwise comparisons between

soil types the Tukey-Kramer adjustment was applied.

Sequence accession numbers. Sequences for DGGE bands were deposited in

GenBank with accession no. KF225704-KF225718 and KF257370-KF257399.

Pyrosequencing data were deposited at the NCBI Sequence Read Archive under the

study accession number SRP029944.
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RESULTS

Microbes of the three soils reduced progeny of M. hapla to different extent. To

assess the suppressive effect of the microbial soil communities on M. hapla, the

nematode propagation on tomato was compared between sterilized and native soils.

Significantly fewer galls, egg masses, eggs, and a reduced rate of fecundity (eggs per

egg mass) were found on roots from native soils than in sterilized soils eight weeks after

J2 inoculation (P<0.001, ANOVA with soil origin and sterilization as fixed effects, see

Table S2). Also soil origin had a significant effect on nematode counts and fecundity

(P<0.015), except for egg masses (P=0.055). In non-sterilized soil Kw the lowest

numbers of galls, egg masses, eggs and eggs per egg mass were found compared to soils

Go and Gb (Table 1). The number of eggs was reduced by 93% in native soil Kw

compared to the sterilized control and was significantly lower than for the other soils,

suggesting that the microbial community of soil Kw had a more suppressive effect. The

reduction in galls and egg masses for soil Kw was less pronounced than egg reduction

(58% and 68%, respectively). The least suppressive soil Go had significantly more

galls, egg masses, and eggs in the non-sterilized treatment than soil Kw (Table 1), with

significantly lower reductions compared to the sterilized control (30%, 38%, and 63%,

respectively).

In contrast to the native soils, in sterilized soils the numbers of galls and egg masses

were highly similar between soils. Egg numbers and fecundity in sterilized soils were

fewest for Go and highest for Gb, while sterilized soil Kw did not show the lowest

counts among the soils as seen for the soils with indigenous microbial communities

(Table 1). This suggested a minor role of the physico-chemical soil differences

compared to biotic factors. In control pots without J2 inoculation, indigenous root-knot

nematodes developed only 5 galls on one tomato plant in soil Kw, which was too low to

confound nematode counts of the inoculated non-sterilized pots (data not shown).
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TABLE 1. Effect of soil biota on fertility of M. hapla on tomato planted in three infested soils

a Values are means of eight replicate root systems. Different letters within a row indicate a
significant difference between means either for sterilized or native soils (P<0.05, Tukey-Kramer
adjustment).

Fungal attachment to M. hapla in soil. The fungi sticking to J2, which were

extracted from the three soils and washed, were analyzed by PCR-DGGE of fungal ITS

fragments. ITS profiles of DNA from J2 showed 20 (for soil Kw) to 40 (for soil Gb)

clearly visible bands while profiles of fungal soil communities were much more

complex (Fig. 1). Several fungal ITS-types were abundant in all replicate DNA samples

from J2 of one or more soils but not in the surrounding soil suggesting specific

attachment to the J2 in soil (Fig. 1; bands 2, 3, 4, 6, 9, 11, 13, 15).

Some of the fungal ITS types associated with J2 were also abundant in soil but the

relative band intensity within the profile was higher for the J2 samples than for soil

which indicated an enrichment on J2 (Fig. 1; bands 1, 5, 7, 8, 10, 12, 14). The most

reproducible patterns were detected on J2 from replicates of the most suppressive soil

Kw evidencing the most specific fungal attachment compared to those from the other

two soils. The DNA sequences of ITS types were determined to identify fungal species

that potentially interacted with the J2 in soil. The sequences corresponded to fungal ITS

of eight genera of Ascomycota, five genera of Basidiomycota, Rhizopodium

(Chytridiomycota), and Mortierella (Fungi incertae sedis) (Table 2).

Parameter Soil treatment

log10 (number g-1 root fresh weight) ± SD a

Soil Kw Soil Go Soil Gb

Galls
Sterilized 1.53 ± 0.18 A 1.57 ± 0.21 A 1.54 ± 0.11 A

Non-sterilized 1.09 ± 0.33 a 1.45 ± 0.06 b 1.17 ± 0.19 a

Egg masses
Sterilized 1.47 ± 0.17 A 1.49 ± 0.20 A 1.45 ± 0.11 A

Non-sterilized 0.86 ± 0.44 a 1.28 ± 0.13 b 0.91 ± 0.39 ab

Eggs
Sterilized 4.48 ± 0.08 AB 4.45 ± 0.14 A 4.58 ± 0.12 B

Non-sterilized 3.31 ± 0.19 a 3.95 ± 0.27 b 3.86 ± 0.21 b

Fecundity
(Eggs / egg mass)

Sterilized 3.01 ± 0.13 AB 2.96 ± 0.07 A 3.13 ± 0.10 B

Non-sterilized 2.45 ± 0.35 a 2.67 ± 0.24 ab 2.95 ± 0.41 b
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Bands 9 and 15, of which the DNA was most closely related to the genera

Davidiella and Rhizophydium, respectively, were associated with J2 from all three soils,

even though they were mostly below detection limit in the soil fungal communities.

Some bands were common on both nematodes and soil samples in the three soils, such

as bands 1, 12 and 14 that were corresponding to Malassezia restricta, Mortierella sp.

and Ascomycete sp., respectively (Table 2). Eight of the ITS-types associated with J2

were soil type specific, four of which were only detected on J2 (Table 2; bands 3, 4, 6,

13), while the other four were obtained from both J2 and soil samples (Table 2; bands 5,

7, 8, 10). The sequences of these bands exhibited 98-100% similarity with known

sequences of fungal species in GenBank (Table 2).

Furthermore, two of the attached ITS-types seemed to be specific for J2 samples in

two of the three soils (Table 2; bands 2, 11). The ITS-type of band 2 was found in J2

samples from the two most suppressive soils, Kw and Gb, and corresponded to

Aspergillus penicillioides (99.7% identities). In contrast to J2 from soils Go and Gb,

those extracted from the most suppressive soil Kw were specifically associated with

ITS-types closely related to Eurotium sp., Ganoderma applanatum, and Cylindrocarpon

olidum (Table 2; bands 6, 7, 13).

FIG. 1. DGGE profiles of fungal ITS fragments amplified from DNA of M. hapla J2
from three arable soils, and from total soil DNA. Fungal ITS-types are marked that were
enriched in nematode samples and characterized by sequencing (Table 2).
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Bacterial attachment to M. hapla in soil. The bacteria associated with J2 in the

three soils were analyzed by PCR-DGGE and 454-pyrosequencing of 16S rRNA genes.

DGGE profiles of DNA from J2 showed fewer and more intense bands than those from

directly extracted soil DNA indicating that only a subset of the species in soil were

present on the J2 (Fig. 2). The bacterial communities differed among the three soils, as

did the communities on the J2 from the three soils. Some bacteria seemed to be attached

to the nematodes in all soils. The bacterial community associated with J2 displayed a

higher degree of variability than the fungal community structure. In the most

suppressive soil Kw, J2 were most frequently colonized with some highly abundant but

variable species, while the patterns associated with J2 from the other two soils were

more consistent.

FIG. 2. DGGE profiles of bacterial 16S rRNA genes amplified from DNA of M. hapla

J2 from three arable soils, and from total soil DNA.

Some bacterial groups, that were suspected to interact with root-knot nematodes,

were investigated by DGGE fingerprinting using group-specific 16S rRNA gene

primers for Actinobacteriales, Alphaproteobacteria, Betaproteobacteria, Bacillus,

Enterobacteriaceae, and Pseudomonas. The fingerprints were highly variable among

replicate J2 samples (Fig. S1).
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TABLE 2. Identification and frequency of the dominant nematode-specific DGGE bands

Number of samples where
band was found%

Iden-
tities

Closest GenBank match
DGGE
band no. SoilNematodes

GbGoKwGbGoKw
Fungi DGGE

44444498.7Malassezia restricta EU4005871
00020499.6Aspergillus penicillioides GU0174962
000040100Cryptococcus pseudolongus AB1053533
00004098.2Chaetomium globosum JX5012994
040040100Arthopyreniaceae FJ4395845
000004100Eurotium sp. AM9017026
00200499.6Ganoderma applanatum JX5013117
400400100Cladosporinum cladosporioides AJ3003358
00044499.6Davidiella sp. JX1640649
440400100.0Cryptococcus sp. JX16407610
00004498.3Trichosporonales EF06072011
44424499.6Mortierella sp. JF43948912
00000499.0Cylindrocarpon olidum GU19818313
44444499.2Ascomycete AM41060914
00024498.7Rhizophydium sp. DQ48561715

Bacillus DGGE
00003097.9Bradyrhizobium pachyrhizi NR_0430371
00031199.4Sphingomonas insulae NR_0441872
000444100Staphylococcus epidermidis NR_0369043
00044499.6Staphylococcus epidermidis NR_0369044
00043398.6Micrococcus endophyticus NR_0443655
00044499.7Bacillus megaterium NR_0434016
44444499.2Micrococcus luteus NR_0371137
444444100Propionibacterium acnes NR_0408478
000312

97.2
Methylobacterium rhodesianum
NR_041028

9

000300100Streptococcus thermophilus NR_07482710
Alphaproteobacteria DGGE

03313299.8Solirubrobacter soli NR_0413651
00030199.8Janthinobacterium lividum NR_0263652
00044499.8Rhizobium phaseoli NR_0441123
44433196.0Pedomicrobium australicum NR_0263374
04223499.5Ochrobactrum anthropi NR_0742435
44432391.0Maricaulis maris NR_0419676
00003296.3Nitrospira moscoviensis NR_0292877
00022292.8Anderseniella baltica NR_0426268
44423096.6Devosia chinhatensis NR_044214|9
00032096.0Kaistia soli NR_04430210
000131

96.3
Magnetospirillum gryphiswaldense
NR_027605

11
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Nematode-specific bands representing attachment to J2 in the three soils were

mainly detected in DGGE fingerprints generated with primers, which were designed to

preferentially target 16S rRNA genes of Alphaproteobacteria, Bacillus, and

Pseudomonas. Bacterial 16S rRNA genes amplified based on the selective specificity of

primer BacF were most clearly enriched in J2 samples (Table 2). Among them, four

intense bands were detected in most J2 samples from all soils (Table 2; Fig S1 A, bands

3-6), of which the sequences belonged to the genera Staphylococcus, Micrococcus, and

Bacillus (Table 2).

The majority of cloned 16S rRNA genes amplified based on the specificity of

primer F203α belonged to the Alphaproteobacteria (Table 2). Despite the high

variability of these bacteria from nematode samples, a few bands were dominant on

most J2 from the three soils (Table 2; Fig. S1 B), which were related to Rhizobium

phaseoli (99.8% identities) or Bosea sp., respectively. Bacteria from J2 samples that

were much more abundant for the most suppressive soil Kw were not apparent, but

more intense bands were related to sequences of the actinobacterial species

Solirubrobacter soli, and the alphaproteobacterial species Ochrobactrum anthropi and

Anderseniella sp. (Table 2).

In Pseudomonas-specific DGGE fingerprints, bands related to P. koreensis were

most clearly associated with J2 from soil Kw (Table 2, bands 3, 6; Fig. S1 D). Other

pseudomonads that were relatively more abundant in J2 samples than in the soil samples

were similar to P. asplenii, P. tuomuerensis, P. jessenii, or P. taetrolens. DGGE

00044495.5Bosea eneae NR_02879812
44444496.3Rhodobacter blasticus NR_04373513

Pseudomonas DGGE
00003099.5Pseudomonas asplenii NR_0408021
44423299.1Pseudomonas tuomuerensis NR_0439902
000003100Pseudomonas koreensis NR_0252283
34033199.3Pseudomonas jessenii NR_0249184
40031199.1Pseudomonas jessenii NR_0433145
00010399.8Pseudomonas koreensis NR_0748346
44444498.9Pseudomonas taetrolens NR_0369097
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fingerprints from 16S rRNA genes of Actinobacteriales, Betaproteobacteria, and

Enterobacteriaceae showed high variability among replicate J2 samples so that bacteria

specifically attached to the nematodes were hardly distinguishable from randomly

attached bacteria (Fig. S1 C, E, F).

Bacteria on J2 based on 16S rRNA gene amplicon pyrosequencing. Bacterial

16S rRNA gene sequences from nematode and soil samples were determined by

barcoded amplicon pyrosequencing. In total 22,347 sequences from 12 nematode

samples were obtained and analyzed together with sequences from all three bulk soils.

The sequences were grouped, based on 97% identity, into 12,425 OTU, of which 87%

were unique to soil samples, 9% had a higher relative abundance on J2 than in soil, and

6% were unique to J2 samples. Thus the diversity of bacterial OTU associated with the

J2 in soil was strongly reduced compared to soil. The overlap of abundant OTU

between J2 and soil samples was low. The 24 OTU that were most abundant in

nematode samples (>1%) but not detected in soil, or that were at least 100 times higher

in relative abundance on J2 than in soil, are shown in Table 3. They mainly belonged to

the Alpha-, Beta-, and Gammaproteobacteria, Firmicutes, and Actinobacteria.

Nineteen of the OTU had more than 99% sequence identity with strains of well

studied species, nine of which are associated with infectious diseases (Streptococcus

salivarius, Peptoniphilus gorbachii, Mycoplasma wenyonii, Brucella sp., Paracoccus

yeei, Neisseria mucosa, Shigella flexneri, Acinetobacter schindleri, Acinetobacter

johnsonii). In the most suppressive soil Kw, J2 were especially associated with 18 OTU,

of which the most abundant OTU were related to the species Rothia amarae, Malikia

spinosa, Shigella spp., Janthinobacterium lividum, Geobacillus stearothermophilus, and

Pseudomonas kilonensis. Three of the OTU, which were mainly detected on J2 from

soil Kw but also on J2 from soil Gb, were closely related to yet uncultured bacteria of

the Gemmatimonadetes, Deltaproteobacteria, or Rhodospirillaceae, respectively.
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TABLE 3. OTU of bacteria that were highly enriched on soil-derived J2 of M. hapla

compared to the bacterial community in soil, based on 16S rRNA gene amplicon

pyrosequencing

Most similar cultured species or environmental sequence of the
OTU specific for J2 (Acc. No., identities) a

Number of sequences

J2 from
Kw

J2 from
Gb

J2 from
Go

Micrococcus yunnanensis (KC469953, 100%) 9 21 612

Rothia amarae (T) (AY043359, 100%) 835 0 0

Geobacillus stearothermophilus (T) (AB021196, 99.2%) 394 74 0

Streptococcus salivarius (T) (AY188354, 100%) 0 651 0

Anaerococcus octavius (T) (Y07841, 99.2%) 91 4 177

Peptoniphilus gorbachii (T) (DQ911241, 100%) 118 0 28

Clostridium disporicum (T) (Y18176, 99.6%) 202 3 0

Mycoplasma wenyonii (CP003703, 99.7%) 110 1 3

Uncultured Gemmatimonas in rhizosphere (EU159980, 98.9%) 101 1 0

Uncultured delta proteobacterium (HE613616, 100%) 96 3 0

Ochrobactrum sp. / Brucella sp. (AJ242584 / AY594216, 99.8%) 147 17 0

Hirschia maritima (T) (FM202386, 96.0%) 128 0 0

Haematobacter missouriensis (T) (DQ342315, 100%) 222 0 0

Paracoccus yeei (T) (AY014173, 100%) 161 0 0

Uncultured Rhodospirillaceae (GQ263062, 100%) 261 5 0

Malikia spinosa (AB077038, 98.5%) 962 0 48

Janthinobacterium lividum (T) (Y08846, 99.8%) 480 13 0

Neisseria mucosa (HG005351, 99.8%) 104 0 0

Vogesella indigofera (AB021385, 99.2%) 0 421 0

Shigella flexneri / S. fergusonii (T) (X96963 / AF530475, 100%) 518 0 109

Acinetobacter schindleri (T) (AJ278311, 99.6%) 0 76 305

Acinetobacter johnsonii (X81663, 100%) 0 229 67

Enhydrobacter aerosaccus (T) (AJ550856, 100%) 172 3 67

Pseudomonas kilonensis (T) (AJ292426, 99.8%) 281 9 0

Total sequences 7647 8664 6164
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DISCUSSION

This study has revealed by cultivation-independent techniques that diverse microbial

communities attached to J2 of M. hapla when they were moving through soil. Several

fungal and bacterial types were abundant on J2 but not in the surrounding soil, while

other types detectable in soil were highly enriched on J2 relative to other soil microbes.

This suggested a specific attachment of these microbes to the cuticle surface of J2.

Evidence is gathering that species-specific characteristics of cuticle and surface coat

determine microbial attachment to J2, and that the highly glycosylated mucins of the

surface coat play a role in specificity (14). Bacterial adhesion changes with genetically

determined modification of the complex carbohydrates of the surface coat (23, 24). The

Gram-positive obligate parasites of root-knot nematodes, Pasteuria spp., are highly host

specific in endospore attachment to the cuticle. So far only a few examples for non-

parasitic attachment of bacteria or fungi to the cuticle of plant-parasitic nematodes have

been described (25, 26), and images of the J2 surface by scanning electron microscopy

indicated a rather low abundance of microorganisms with the exception of highly

specialized parasites (27). Also we found evidence for a rather low number of microbes

on the cuticle, evidenced by high variation between microbial DGGE fingerprints from

J2, and low amounts of direct PCR products from DNA of J2 samples. The importance

of the surface coat of the nematode cuticle in the recognition by nematode parasites has

been recognized but studies have focused on highly specialized nematode parasites (28),

and more recently on potential human pathogens (29).

In our study, soil suppressiveness to M. hapla was most likely caused by

indigenous soil microbes as it was not observed in sterilized controls. In addition,

differences in suppressiveness between the three soils investigated corresponded to

differences in microbial soil communities and J2 attached microbes, while progenies of

M. hapla in the sterilized soils were rather similar or did not correlate with the

differences in the soils with indigenous microbial communities. However, some fungi

and bacteria were found attached to J2 from all three soils, which therefore have not

severely contributed to the differences in suppressiveness between the soils. It cannot be

ruled out that some of these common microbes were already associated with the
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inoculated J2. In previous studies, sensitivity to pasteurization or biocide treatment also

provided evidence of the biological nature of soil suppressiveness to plant-parasitic

nematodes (4, 30).

For all three soils, the reduction in numbers of egg masses and eggs was more

pronounced than the effect on galling. This observation suggested a mode of action

directed against nematode reproduction rather than against J2 vitality or the initial

infection by juveniles. We surmised that reduction of reproduction was mediated by

microbial attachment to juveniles in soil while searching for host plant roots. This

attachment may have resulted in the transport of microbes into the root to the location of

egg development. Although no indication of the presence of known parasites became

evident this mode of action points to the involvement of antagonists that get attached to

J2 in soil and then reduce the fecundity in females of the target nematode, as reported

for Pasteuria penetrans, or egg-parasitic fungi (31, 32). Accordingly, a similar baiting

assay as we used had been successful in searching for egg-parasites of root-knot

nematodes (33). Transport of cuticle-attached microbes, which are not egg-parasites, to

the host plant of the nematode has been shown for the phytopathogenic fungus

Dilophospora alopecuri adhering to the J2 cuticle of Anguina funesta (34). Other

attached microbes may establish as endophytes. Specific endophytes were observed to

significantly reduce progeny of root-knot nematodes probably by indirect mechanisms

based on endophyte-plant interactions rather than directly by nematicidal activity (35).

In our study by cultivation independent methods, we identified bacteria and fungi

associated with J2 in soils with different suppressiveness against M. hapla. Two fungi

were found on J2 from all tested soils that have been reported as attachments to

nematode surface. A fungus of the genus Rhizophydium was previously reported as

attachment to Criconemoides sp. (36), and fungi related to Malassezia restricta have

been found in association with the soil nematodes Malenchus sp. and Tylolaimophorus

typicus (37). In our study, a fungus related to Cylindrocarpon olidum was only abundant

on J2 from the most suppressive soil Kw. Isolates of this genus were shown to reduce

the number of galls of M. javanica on tomato roots (38), or to inhibit egg hatch of

Meloidogyne spp. by metabolites (39). Cladosporinum cladosporioides, that was only
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associated with J2 from the Gb soil, was previously found to be associated with

Meloidogyne sp. females (40), and with Rotylenchulus reniformis vermiform stages and

eggs (12).

Genera or species of the bacterial attachments to J2 from the three soils were also

found in association with different plant-parasitic nematodes in previous studies (8, 9,

41, 42). J2 from the most suppressive soil Kw were often associated with OTU similar

to species that were reported to be involved in infectious diseases (Mycoplasma

wenyonii, Peptoniphilus gorbachii, Brucella sp., Paracoccus yeei, Neisseria mucosa,

Shigella flexneri). These OTU may have in common with their pathogenic relatives that

they efficiently attach to tissue surfaces as part of their life style, and thereby become

enriched on the cuticle of J2. Other J2-enriched OTU were related to soil bacteria as

Rothia amarae, Malikia spinosa, Janthinobacterium lividum, Geobacillus

stearothermophilus, or Pseudomonas kilonensis. These bacteria might antagonize M.

hapla after cuticle attachment but have not yet been found associated with root-knot

nematodes. This can be explained by the bias of cultivation approaches which were used

in most previous investigations. In a study on the bacterial community associated with

cysts of Heterodera glycines, less than 5% of the bacteria could be cultured, and there

was limited resemblance of the dominant species detected by DGGE analysis and the

plating method (9).

In conclusion, a diverse microflora specifically adhered to J2 of M. hapla in soil,

which might lead to colonization of eggs and play a role in nematode suppression.

Several bacteria and fungi from soil enriched on the baiting J2 extracted from soil

reportedly possess some nematicidal properties against plant parasitic nematodes. These

should be evaluated for their potential as biocontrol agents. The sequence tags of these

microbes could be useful to develop targeted cultivation methods for these species, for

cultivation-independent study of the in situ interaction with M. hapla, and to survey

their population increase in response to soil treatments. Management of arable soils to

increase the abundance of antagonistic bacteria and fungi could become a substantial

part in nematode control.
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TABLE S1. Primers used in this study

Specificity Primer Sequence (5’–3’) Ta

°C

Refe-

rence

Bacteria F984GC
R1378

GC-clampa-AACGCGAAGAACCTTAC
CGGTGTGTACAAGGCCCGGGAACG

53
(1)

Bacteria F27
R1494

AGAGTTTGATCMTGGCTCAG
CTACGGYTACCTTGTTACGAC

56 (2)
(3)

Bacteria R1492 TACGGYTACCTTGTTACGACT 56 (2)

Bacteria V3F
V4R

ACTCCTACGGGAGGCAG
TACNVRRGTHTCTAATYC

44
(4)

Alpha-
proteobacteria

F203α CCGCATACGCCCTACGGGGGAAAGATTT
AT

56 (5)

Beta-
proteobacteria

F948β CGCACAAGCGGTGGATGA 64 (6)

Actino-
bacteriales

F243HGC GGATGAGCCCGCGGCCTA 63 (1)

Entero-
bacteriaceae

F234
R1423

GATGWRCCCRKATGGGA
AKCTAMCTRCTTCTTTTGCAA

57
(7)

Pseudomonas F311Ps
R1459Ps

CTGGTCTGAGAGGATGATCAGT
AATCACTCCGTGGTAACCGT

63 (8)

Bacillus and
related taxa

BacF GGGAAACCGGGGCTAATACCGGAT 65 (9)

Fungi ITS1FG
C ITS4
ITS2

GC-clamp-CTTGGTCATTTAGAGGAAGTAA
TCCTCCGCTTATTGATATGC
GCTGCGTTCTTCATCGATGC

55
(10)

a 5’ GC-clamp CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCACGGGGGG
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TABLE S2. Statistical analysis of the effect of soil biota on fertility of M. hapla

feeding on tomato planted in infested soils

Dependent variable
Significance of fixed effects a

soil sterilized soil*sterilized

logGalls P=0.015 P<0.001 P=0.070

logEggmasses P=0.055 P<0.001 P=0.096

logEggs P<0.001 P<0.001 P<0.001

logEggs

P<0.001 with

sterilized=0 P=0.044

with sterilized=1

P<0.002 with

soil=Kw, Go, or Gb
not applicable

fecundity P=0.003 P<0.001 P=0.097
a Data and statistical analysis by SAS package 9.3:
data M_hapla;
input block soil$ sterilized galls eggmasses eggs; /* per gram root
freshweight*/
datalines;
1 Kw 0 26.1 19.9 3569.7
2 Kw 0 6.2 4.0 1968.7
3 Kw 0 14.3 10.1 1204.5
4 Kw 0 18.7 14.1 2145.9
5 Kw 0 3.8 1.0 1085.6
6 Kw 0 23.3 8.6 3506.5
7 Kw 0 5.7 3.7 1824.8
8 Kw 0 23.9 20.5 2424.2
1 Kw 1 45.6 38.6 32362.2
2 Kw 1 37.1 32.8 32861.9
3 Kw 1 37.8 32.4 25784.0
4 Kw 1 37.8 30.1 29014.1
5 Kw 1 31.2 25.9 26210.2
6 Kw 1 49.9 48.1 44296.4
7 Kw 1 32.5 31.8 30723.2
8 Kw 1 13.4 12.5 26215.0
1 Go 0 23.6 14.2 4829.7
2 Go 0 34.6 28.7 20323.7
3 Go 0 24.5 11.0 7300.6
4 Go 0 27.9 18.5 7541.0
5 Go 0 27.8 17.9 15363.6
6 Go 0 31.5 21.5 17770.4
7 Go 0 25.2 20.7 3952.9
8 Go 0 34.2 24.3 6818.2
1 Go 1 28.3 25.8 25055.9
2 Go 1 43.6 35.1 32651.0
3 Go 1 40.9 31.1 27985.5
4 Go 1 13.8 11.9 13071.9
5 Go 1 39.0 33.5 33246.5
6 Go 1 34.3 27.4 28133.0
7 Go 1 63.9 50.0 37230.2
8 Go 1 65.0 50.6 35150.5
1 Gb 0 9.1 8.1 2673.9
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2 Gb 0 17.0 17.9 9242.2
3 Gb 0 7.8 2.0 6736.8
4 Gb 0 15.7 8.1 7037.0
5 Gb 0 12.5 2.3 10242.8
6 Gb 0 19.4 12.7 7870.0
7 Gb 0 17.5 12.6 5909.5
8 Gb 0 29.9 24.0 14403.0
1 Gb 1 21.3 17.2 29278.6
2 Gb 1 40.4 35.1 43593.3
3 Gb 1 48.6 35.1 38557.2
4 Gb 1 33.0 22.1 23832.9
5 Gb 1 35.2 31.9 45328.3
6 Gb 1 42.2 30.8 31615.6
7 Gb 1 31.6 27.8 50319.1
8 Gb 1 34.6 30.3 53750.7
;
data M_hapla; set M_hapla; /* log transformation */
fecundity = log(eggs / eggmasses);
logGalls= log(galls); logEggmasses= log(eggmasses); logEggs=log(eggs);

/* General tests */
proc mixed data=M_hapla; /* Effect of soil and soil sterilization on gall no.
*/
class block soil sterilized;
model logGalls = soil sterilized soil*sterilized / ddfm=kr; random block;
proc mixed data=M_hapla; /* Effect of soil and soil sterilization on eggmass
no. */
class block soil sterilized;
model logEggmasses = soil sterilized soil*sterilized / ddfm=kr; random block;
proc mixed data=M_hapla; /* Effect of soil and soil sterilization on eggs no.
*/
class block soil sterilized;
model logEggs = soil sterilized soil*sterilized / ddfm=kr; random block;
proc mixed data=M_hapla; /* Effect of soil and sterilization on eggs per
eggmass */
class block soil sterilized;
model fecundity = soil sterilized soil*sterilized / ddfm=kr; random block;

/* Tukey-Kramer tests for sterilized and native soils separately: */
proc sort data=M_hapla; by sterilized soil block;
proc mixed data=M_hapla; by sterilized; /* difference between soils in gall
no. */
class block soil;
model logGalls = soil / ddfm=kr; random block;
lsmeans soil / ADJUST=TUKEY;
proc mixed data=M_hapla; by sterilized; /* egg masses compared between soils
*/
class block soil;
model logEggmasses= soil / ddfm=kr; random block;
lsmeans soil / ADJUST=TUKEY;
proc mixed data=M_hapla; by sterilized;/* no. of eggs compared between soils
*/
class block soil;
model logEggs = soil / ddfm=kr; random block;
lsmeans soil / ADJUST=TUKEY;
proc mixed data=M_hapla; by sterilized; /* fecundity compared between soils */
class block soil;
model fecundity = soil / ddfm=kr; random block;
lsmeans soil / ADJUST=TUKEY;
proc sort data=M_hapla; by soil sterilized block;
proc mixed data=M_hapla; by soil; /* For verification of general effects
after */
class block sterilized; /* a significant interaction
soil*sterilized */
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model logEggs = sterilized / ddfm=kr; random block;run;
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Fig. S1. PCR-DGGE profiles of 16S rRNA genes of bacterial subgroups amplified in

nested PCR from DNA of M. hapla juveniles from three arable soils (Kw, Go, Gb), and

from total soil DNA. Ribotypes are marked that were enriched in nematode samples and

characterized by sequencing (Table 2).

A) PCR-DGGE for “Bacillus” (based on specificity of primer BacF):

B) PCR-DGGE for Alphaproteobacteria (based on specificity of primer F203α):
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C) PCR-DGGE for Betaproteobacteria (based on specificity of primer F948β):

D) PCR-DGGE for Pseudomonas (based on specificity of primers F311Ps / R1459Ps):
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E) PCR-DGGE for Enterobacteriaceae (based on specificity of primers F234 / R1423):

F) PCR-DGGE for Actinobacteriales (based on specificity of primer F243HGC):
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E) PCR-DGGE for Enterobacteriaceae (based on specificity of primers F234 / R1423):

F) PCR-DGGE for Actinobacteriales (based on specificity of primer F243HGC):
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Abstract

The potential of bacterial antagonists of fungal pathogens to control the root-knot

nematode Meloidogyne incognita was investigated under greenhouse conditions.

Treatment of tomato seeds with several strains significantly reduced the numbers of

galls and egg masses compared with the untreated control. Best performed Bacillus

subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their

mode of action with regard to direct effects by bacterial metabolites or repellents, and

plant mediated effects. Drenching of soil with culture supernatants significantly reduced

the number of egg masses produced by M. incognita on tomato by up to 62% compared

to the control without culture supernatant. Repellence of juveniles by the antagonists

was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on

the side without inoculated antagonists. All tested biocontrol strains induced systemic

resistance against M. incognita in tomato, as revealed in a split-root system where the

bacteria and the nematodes were inoculated at spatially separated roots of the same

plant. This reduced the production of egg masses by up to 51%, while inoculation of

bacteria and nematodes in the same pot had only a minor additive effect on suppression

of M. incognita compared to induced systemic resistance alone. Therefore, the plant

mediated effect was the major reason for antagonism rather than direct mechanisms. In

conclusion, the bacteria known for their antagonistic potential against fungal pathogens

also suppressed M. incognita. Such “multi-purpose” bacteria might provide new options

for control strategies, especially with respect to nematode-fungus disease complexes

that cause synergistic yield losses.

Key words: Meloidogyne incognita, Bacillus subtilis, antagonism, induced systemic
resistance, plant-parasitic nematode, repellence
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INTRODUCTION

Root-knot nematodes (Meloidogyne spp.) are among the most damaging sedentary

endoparasitic nematodes worldwide. The various species within this genus have an

overall host range covering approximately 5500 plant species [1]. The species

Meloidogyne incognita which is the most important under economic aspects can infect

1,700 plant species [2]. Root-knot nematodes also interact with fungal pathogens. A

nematode-fungus interaction was first recorded by Atkinson in 1892, who observed that

infection by root-knot nematodes always increased the severity of Fusarium wilt [3].

Such interactions often result in a disease complex causing synergistic yield losses [4]

as described for root-knot nematodes and soil-borne fungal pathogens like Thielaviopsis

basicola, Rhizoctonia solani, Verticillium dahliae and Fusarium oxysporum [5].

Controlling just one of the pathogens might not fully solve the problem. Combinations

of nematicidal and fungicidal treatments are possible but not always desired due to their

negative impact on the environment and human health. An alternative could be the use

of microorganisms with dual antagonism against both the nematode and the fungal

pathogen.

Bacteria represent an important group of biocontrol agents and several commercial

products are nowadays available to control plant-parasitic nematodes [6] or fungal

pathogens [7]. Only few studies previously investigated concomitant effects of bacterial

antagonists against fungal and nematode pathogens. Bacterial isolates of the genera

Pseudomonas and Streptomyces were described to control both V. dahliae and M.

incognita [8]. A strain of Pseudomonas aeruginosa was found to be antagonistic

towards Meloidogyne javanica and the fungal pathogens Macrophomina phaseolina, R.

solani, Fusarium solani, and F. oxysporum [9]. Considering the broad spectrum of

microbial antagonists reported over the past decades, different and more efficient

microbial antagonists might be around waiting for discovery. The present work focused

on bacterial strains. The mechanisms of bacteria to antagonize plant-parasitic nematodes

include parasitism, pathogenesis, competition, repellence and induced systemic

resistance [10-13]. Understanding their mode of action will help improving their

effectiveness [10].
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In the present work, bacterial isolates of the species Bacillus subtilis, Pseudomonas

trivialis, Pseudomonas jessenii, and Serratia plymuthica were selected to study their

antagonistic potential against the root-knot nematode M. incognita on tomato under

greenhouse conditions. All strains have previously shown antagonistic potential towards

soil-borne fungal pathogens [14-17]. From the first experiment, the top three bacterial

strains plus Rhizobium etli G12 as positive control were selected for further studies on

their mode of action. The objectives of this study were i) to evaluate the biocontrol

potential of fungal antagonists towards M. incognita, and ii) to investigate their mode of

action.
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MATERIALS AND METHODS

Bacterial isolates. In total, nine bacterial isolates were tested in various

experiments (Table 1). Four bacterial isolates (Sb3-24, Sb4-23, Mc5-Re2, Mc2-Re2)

have previously shown in-vitro activity against fungal pathogens and M. incognita

juveniles [17]. Three bacterial isolates (3Re2-7, C48, Ru47) are known antagonists of

fungal pathogens [14-16]. Finally, the nematode antagonistic bacterium R. etli G12

served as positive control and Escherichia coli JM109 as negative control, respectively.

Table 1. Bacterial isolates used in this study.

Strain Bacterial species Isolation source Pathogen suppressed Reference Source a

Sb3-24 Bacillus subtilis
Soil

Verticillium dahliae,
Rhizoctonia solani,

Fusarium culmorum,
Meloidogyne

incognita

[17]

GB
Sb4-23 Bacillus subtilis GB

Mc5-Re2 Bacillus subtilis Endorhiza of
chamomile

GB

Mc2-Re2 Bacillus subtilis GB

3Re2-7 Pseudomonas trivialis
Endorhiza of potato

plants
Rhizoctonia solani [14] GB

C48 Serratia plymuthica
Rhizosphere of

oilseed rape
Verticillium dahliae [16] GB

Ru47 Pseudomonas jessenii Suppressive soil Rhizoctonia solani [15] KS

G12 Rhizobium etli
Rhizosphere of
potato plants

Meloidogyne
incognita

[37] RS

JM109 Escherichia coli Non-antagonistic P
a GB: G. Berg, University of Technology, Graz, Austria; KS: K. Smalla, Julius Kühn-Institut,
Braunschweig, Germany: RS: R. Sikora, Bonn University, Germany; P: Promega, Mannheim,
Germany.

Nematodes. The root-knot nematode M. incognita used in all experiments was

propagated on tomato (Solanum lycopersicum) cv. Moneymaker under greenhouse

conditions. For gaining nematode inoculum, eggs were extracted from heavily galled

tomato roots. Roots were cut into 1-2 cm pieces, transferred to a 500 ml plastic bottle

half filled with a 1.5% chlorine solution and vigorously shaken for 3 min to free the

eggs from the gelatinous matrix [18]. The suspension was then thoroughly washed with

tap water through a 250 µm aperture sieve, and eggs retained on the 20 µm sieve. To

separate hatched second-stage juveniles (J2) from eggs the egg suspension was placed
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on a modified Baermann dish and incubated at 25 ± 2°C for 7-10 days [19]. Hatched J2

were collected daily and stored at 6°C until further use in the experiments.

Plants and growing conditions. Tomato cv. Moneymaker was used in all

experiments. Tomato seeds were grown in plastic pots containing a mixture of field-soil

and sand (1:1, v:v). The plants were watered as needed and fertilized weekly with 10 ml

of commercial fertilizer (WUXAL® Super NPK fertilizer, 8-8-6 with micronutrients,

2.5 g liter-1). Pots were kept in the greenhouse at 25 ± 2°C and 16-h photoperiod.

Experimental evaluation. Nematode penetration was determined seven days after

inoculation by staining the roots with a 1% acid fuchsine solution. Stained roots were

kept in the refrigerator overnight to intensify the staining process. Excess acid fuchsine

was removed by washing the roots in tap water. Roots were cut into 1 cm pieces and

macerated twice for 15 s with a commercial blender (Waring, Torrington, CT, USA)

and the number of juveniles in the root suspension was counted at 20 x magnification

under a stereomicroscope.

Nematode reproduction was determined 50 days after nematode inoculation by

counting the number of galls, egg masses and eggs produced by M. incognita on the

tomato roots. Roots were gently washed to remove adhering soil. Fresh weights of

shoots and roots were taken. Egg masses attached to the roots were stained with a 0.4%

cochenille red (Brauns-Heitmann, Warburg, Germany) solution for 15 min. After

excessive stain was removed by washing the roots in tap water the number of galls and

egg masses was counted. Thereafter, roots were cut in 1-2 cm pieces and transferred

into a glass bottle half filled with a 2% chlorine solution. Roots were heavily shaken for

3 minutes and the suspension was then thoroughly washed with tap water through a 250

µm sieve to remove root debris. Eggs collected on a 20 µm sieve were transferred into a

glass beaker and counted.
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Experiment 1: Potential of seed-inoculated strains to control M. incognita.

Seven bacterial strains were investigated for their antagonistic activity against M.

incognita in pot experiments. Tomato seeds were mixed in a bacterial lawn grown

overnight on tryptic soy agar (Merck, Darmstadt, Germany) at 28°C for 24 h until the

seed surface was completely covered by bacteria. The treated seeds were left a few

minutes under a laminar flow hood for drying, and then each seed was transferred in 11-

cm diameter plastic pots containing 400 g of soil watered to field capacity. Pots

containing seeds that were treated with cells of strain G12 served as positive control,

and pots with E. coli treated or untreated seeds served as negative controls. Each

treatment was replicated 12 times. Pots were arranged in randomized block design in the

greenhouse and kept under the experimental conditions described above. Three weeks

later, each pot was inoculated with 1,000 freshly hatched J2 in four holes of 2 cm depth

at 3 cm distance from the stem base. The numbers of generated galls and egg masses per

plant were counted 50 days after J2 inoculation.

Experiment 2: Effect of bacterial culture supernatants towards M. incognita.

As an outcome of experiment 1 the top three bacterial isolates were selected for

studying their mode of action: Sb4-23, Mc2-Re2, and Mc5-Re2. Bacterial isolates G12

and E. coli served as positive and negative control, respectively. Bacterial cultures were

grown from 200 µl pre-culture in 100 ml tryptic soy broth (TSB, Merck, Darmstadt,

Germany) for 24 h at 28°C with shaking, and centrifuged at 7500 g for 20 min. Three-

week-old tomato seedlings were grown in 7x7x8 cm pots, each containing 300 g soil.

The top soil layer (2 cm) was removed. The soil surface was drenched with 20 ml of the

respective bacterial culture supernatant or sterile TSB and covered with the previously

removed soil. Three days later, a suspension with 1,000 J2 was inoculated into four

holes at 2 cm distance from the stem of each plant. Each treatment was replicated ten

times and arranged in a randomized block design in the greenhouse. All plants were

kept under the experimental conditions described. Fifty days after nematode inoculation

the fresh weight and length of shoot and root, and the numbers of leaves, galls, egg

masses, and eggs were determined for each pot.
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Experiment 3: Effect of antagonistic strains on repellence of J2. This

experiment was conducted using the linked twin-pot chamber as described in a previous

study [20]. The two plastic pots of 7x7x8 cm were filled with 300 g soil and connected

by a plastic tube of 1 cm diameter and 4 cm length filled with soil (Fig. 1A). Tomato

seeds were coated with bacterial cells as described. The treated seeds were grown in the

right pot while untreated seeds were grown in the left pot. In the control both pots

received untreated seeds. The bacterial culture of these bacterial isolates was prepared

following the procedure described above, and then centrifuged at 7,500 g for 20 min.

The supernatant was discarded and the resulting pellet was washed then resuspended in

sterile tap water. The bacterial density was adjusted to 0.8 at 560 nm, corresponding to

3.2 × 107 cfu ml-1 (Sb4-23), 2.4 × 107cfu ml-1 (Mc2-Re2), 1.8 × 107cfu ml-1 (Mc5-Re2),

1.2 × 107cfu ml-1 (E. coli) and 4 × 107cfu ml-1 (G12). Three weeks later, the right pots

were inoculated with 10 ml of a bacterial suspension (OD560 = 0.8). The bacterial

suspension was added into four holes of a depth of 2 cm around the stem base. After

three days, 2,000 J2 in 1 ml water were inoculated through a small hole in the centre of

the tube. The hole was sealed with plastic to maintain moisture. Each treatment was

replicated ten times. The linked twin-pot chambers were arranged in a randomized

block design in the greenhouse and kept under the experimental conditions described.

Seven days after nematode inoculation the numbers of J2 penetrated into the roots on

both sides of the linked twin-pot chambers were determined.

Experiment 4: Induced systemic resistance towards M. incognita. Tomato

plants were grown in a split-root system as described in a previous study [21]. Three

7x7x8 cm plastic pots were used with one pot placed on top of two pots (Fig. 2A). One

tomato seed was placed in the centre of the upper pot half filled with soil. Roots grew

through holes in the bottom equally into the two lower pots which were completely

filled with soil. After three weeks, one of the two bottom pots termed inducer side was

inoculated with 20 ml of a bacterial suspension in tap water (OD560 = 2, corresponding

to 8 × 109 cfu ml-1 for strain Sb4-23, 5 × 109 cfu ml-1 for Mc2-Re2, 4 × 109 cfu ml-1 for

Mc5-Re2, 1 × 109 cfu ml-1 for E. coli, or 1.2 × 1010 cfu ml-1 for G12). Plants treated at

the inducer side with an equivalent amount of tap water served as control. Three days
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later, each bottom pot opposite to the inducer side, termed responder side, was

inoculated with 1,000 J2. Each treatment was replicated ten times, and arranged in a

randomized block design. Fifty days after nematode inoculation galls and egg masses

were counted on the roots of the inducer and the responder side.

Experiment 5: Comparison of the effects by direct and plant-mediated

antagonism. In this experiment it was evaluated whether the indirect effect of the

bacteria via the plant could fully explain the inhibition of M. incognita, or whether co-

inoculation in the same pot could enhance the effect through direct antagonism. Three-

week-old tomato seedlings grown in the spilt-root systems as described above were

divided into three groups: i) plants treated with bacteria on the inducer side and J2 on

the responder side, ii) plants kept untreated on the inducer side and treated with bacteria

and J2 on the responder side, and iii) plants kept untreated on the inducer side and

inoculated with J2 on the responder side (control). Bacteria were applied by drenching

20 ml of a bacterial suspension (OD560 = 2) into holes made at the inducer side. Three

days later, 1,000 J2 in 2 ml water were inoculated into holes made at the respective pot

side. Each treatment was replicated ten times and arranged in a randomized block

design in the greenhouse. A duplicated setup of the experiment was sacrificed after

seven days to evaluate J2 penetration into roots as described above. After 50 days the

numbers of galls, egg masses, and eggs per plant were determined.

Statistical analysis. Analysis of variance was done using the procedure GENMOD

of the statistical software SAS 9.3 (SAS Institute Inc., Cary, NC, USA) to fit

generalized linear models. For count data (numbers of galls, egg masses, eggs, J2 in

roots) the procedure was used to perform a Poisson regression analysis with a log link

function and specification of a scale parameter (Pearson) to fit overdispersed

distributions. Class variables were treatment (strain or uninoculated control) and block

(accounting for the randomized block design of experiments). For multiple comparisons

of strain effects the p-value was adjusted by the method of Tukey. Repellence

(experiment 3) was statistically tested using the procedure GENMOD as explained to

compare the numbers of J2 in roots at the uninoculated side of the linked twin-pot

system between treatments. The effect of the different strains on growth of plants
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infected by M. incognita was tested by MANOVA using the SAS procedure GLM, with

the dependent variables root weight, root length, shoot weight, shoot length, and

number of leaves. For multiple comparisons of the effect of antagonistic strains to the E.

coli control the p-value was adjusted by the method of Dunnett.



V-1: RESULTS

113

RESULTS

Potential of seed-inoculated strains to control M. incognita. In total nine

bacteria were tested for their antagonistic potential towards M. incognita by seed

inoculation (experiment 1). The number of galls and egg masses developed by M.

incognita was highest in the non-inoculated control and the treatment with the non-

antagonistic strain E. coli JM109 (Table 2). Significantly less galls and egg masses than

in these controls were found in the treatments with the biocontrol strains, except for

Sb3-24 and 3Rc2-7. The highest control potential was achieved by strain Sb4-23, which

did not significantly differ from the well studied positive control G12. It caused 86%

reduction in the number of galls and 96% reduction in number of egg masses compared

with the untreated control. Good biocontrol was also achieved by the two other Bacillus

subtilis isolates Mc2-Re2 and Mc5-Re2 with over 60% reduction in number of galls and

over 70% reduction in number of egg masses. Based on these results, the isolates Sb4-

23, Mc2-Re2, and Mc5-Re2 were selected for studying their mode of action in

nematode suppression.

Table 2. Effect of bacterial seed treatment on number of galls and egg masses of M.
incognita after propagation on tomato plants.

a Tukey-Kramer grouping for least squares means (α = 0.05): Means followed by the same letter
are not significantly different (n = 12).

Bacterial inoculant
Galls per plant

(± stdev)

Treatment effect

on no. of galls a

Egg masses per

plant (± stdev)
Treatment effect on

no. of egg masses a

Culture medium 331 ± 35 A 269 ± 38 A

E. coli JM109 316 ± 39 B A 193 ± 48 B

Sb3-24 267 ± 87 B A C 164 ± 64 B

3Rc2-7 240 ± 58 B D C 135 ± 37 C B

C48 195 ± 48 D C 104 ± 31 C D

Ru47 185 ± 62 E D 76 ± 32 D

Mc2-Re2 122 ± 73 E F 70 ± 47 E D

Mc5-Re2 80 ± 27 G F 35 ± 17 E F

G12 (+ control) 48 ± 25 G 12 ± 10 G F

Sb4-23 45 ± 24 G 11 ± 14 G
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Effect of bacterial culture supernatants on M. incognita. The isolates Sb4-23,

Mc5-Re2, and Mc2-Re2 selected from experiment 1 were tested for negative effects of

their metabolites on M. incognita (experiment 2). Application of cell-free culture

supernatants of all three tested strains and the positive control G12 significantly reduced

the number of galls, egg masses, and eggs on tomato roots compared to the treatments

with E. coli culture supernatant or sterile culture medium (Table 3). The lowest average

number of galls was observed in the Sb4-23 treatment, which did not significantly differ

from Mc2-Re2 and the positive control G12 but from Mc5-Re2. Among the bacterial

antagonists, no differences were observed in numbers of egg masses and eggs per root.

The number of eggs per egg mass was significantly lower for the treatments with Sb4-

23 and G12 metabolites than for the negative controls.

Table 3. Effect of bacterial culture supernatants on reproduction of M. incognita on

tomato plants.

Applied culture Average no. per plant ± stdev. a

supernatant Galls Egg masses Eggs (x 1,000) Eggs / egg mass

Culture medium 172 ± 14 A 129 ± 16 A 41 ± 6 A 322 ± 67 A

E. coli JM109 136 ± 16 B 98 ± 15 A 32 ± 7 A 330 ± 67 A

Mc5-Re2 98 ± 20 C 67 ± 22 B 19 ± 6 B 282 ± 31 AB

G12 83 ± 20 CD 60 ± 18 B 14 ± 7 B 224 ± 41 C

Mc2-Re2 80 ± 13 CD 49 ± 11 B 13 ± 3 B 275 ± 49 ABC

Sb4-23 75 ± 17 D 54 ± 21 B 13 ± 5 B 253 ± 23 C

a Tukey-Kramer grouping for least squares means: Means followed by the same letter
within each column are not significantly different (α = 0.05, n = 10).
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The culture supernatants of the strains significantly differed in their effect on plant

growth during nematode exposure, as revealed by MANOVA of the length and weight

of root and shoot, and the number of leaves 50 days after nematode inoculation (P =

0.005, Table 4). Among the three strains tested, only metabolites of Mc2-Re2

significantly enhanced plant growth compared to the E. coli control, as evidenced by

increased root length (P = 0.006, Dunnett test) and number of leaves (P = 0.03). G12

had a positive effect on root length.

Table 4. Effect of bacterial culture supernatants on plant growth of tomato infected with M.
incognita.
Applied culture
supernatant

Root Shoot No. of
leavesLength (cm) Weight (g) Length (cm) Weight (g)

Culture medium 12.1 ± 1.7 2.9 ± 0.5 33.8 ± 3.8 11.4 ± 1.5 8.5 ± 1.3

E. coli JM109 12.9 ± 1.3 3.2 ± 0.7 35.5 ± 1.8 11.9 ± 0.8 8.8 ± 0.8

Mc5-Re2 14.1 ± 1.9 3.2 ± 0.5 39.1 ± 3.8 12.6 ± 0.8 9.4 ± 0.7

Sb4-23 14.1 ± 1.4 3.3 ± 0.4 37.2 ± 4.4 11.6 ± 0.9 9.6 ± 0.8

G12 14.8 ± 1.4 * 3.5 ± 0.6 34.0 ± 2.0 12.2 ± 0.8 9.5 ± 0.7

Mc2-Re2 15.0 ± 1.1 * 3.1 ± 0.6 38.0 ± 3.6 12.0 ± 1.1 9.7 ± 0.7 *

* Significantly different (P≤0.05, Dunnett adjustment, n = 10) to both control

treatments (JM109 culture supernatant and sterile culture medium).

Effect of antagonistic strains on repellence of J2. A linked twin-pot set-up

was used to evaluate the effect of bacterial antagonists on attraction of M. incognita J2

to tomato roots (experiment 3, Fig. 1A). One week after inoculating the nematodes at

the centre of a tube connecting two pots planted with tomato, the numbers of J2 that

moved to one or the other side and penetrated the roots were counted (Fig. 1B). As a

trend, slightly more J2 were found in the roots at the uninoculated side of linked twin-

pot systems that were treated with biocontrol strains compared to the treatment with E.

coli or the control. However, the difference was not statistically significant (P = 0.10).

None of the treatments with biocontrol strains significantly differed from that with E.
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coli. Pots which were inoculated with biocontrol strains showed a trend for less

penetrated J2 in the roots compared to the linked uninoculated pots.

Figure 1. Effect of bacterial antagonists on repellence of M. incognita juveniles.

Juveniles were attracted by tomato roots and moved from a tube connecting two pots

either to the side inoculated with an antagonistic strain or to the opposite side. Controls

were inoculated on one side with the not antagonistic strain E. coli JM109, or left

uninoculated. Juveniles penetrated into the roots were counted on both sides. Error bars

represent standard deviations. Different letters indicate significant differences at P ≤

0.05 according to Tukey's test (n = 10).
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Induced systemic resistance towards M. incognita. To test the potential of

bacterial antagonists to induce systemic resistance, bacteria and M. incognita were

applied spatially separated on tomato roots within a split-root system (experiment 4,

Fig. 2A). The treatment on the inducer side had a significant effect on the number of

galls and egg masses on the responder side (P < 0.0001). In split-root systems with the

three tested biocontrol strains or G12 significantly less galls and egg masses were

detected 50 days after inoculation of the nematodes compared to the untreated control or

plants treated with E. coli (Fig. 2B). The number of galls or egg masses was 40% to

51% lower in treatments with the biocontrol strains. The highest reduction on average

was obtained by the strains Mc2-Re2 and Mc5-Re2, but differences between the four

antagonistic bacteria were not significant. The negative control E. coli was not different

from the uninoculated control, thus induction of resistance was not detectable for this

non-antagonistic bacterium.

Figure 2. M. incognita reproduction affected by bacterial antagonists through
induced systemic resistance of tomato. Juveniles and bacteria were inoculated in
opposite pots of split root systems. Controls were inoculated with the not antagonistic
strain E. coli JM109, or left uninoculated. A: Experimental setup of the split root
system. B: Mean numbers of galls (white bars) and egg masses (gray bars) counted 50
days after nematode inoculation; error bars represent standard deviations, different
letters indicate significant differences at P ≤ 0.05 according to Tukey's test (n = 10).
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Plant-mediated rather than direct effect of biocontrol strains on M. incognita.

In split-root systems the plant-mediated effect of the bacteria on M. incognita was

compared to the combined plant-mediated and direct effect when bacteria and J2 are co-

inoculated in the same pot (experiment 5). One week after nematode inoculation, all

antagonistic bacteria significantly reduced J2 penetration compared to the negative

control E. coli, which did not differ from the control without inoculated bacteria (Fig.

3A). The lowest numbers of penetrated juveniles were observed for G12 and Mc2-Re2,

corresponding to of 67% and 52% reduction compared to the control, respectively.

Three-factorial analysis of variance revealed a significant difference between stains in

their effect on root penetration of J2 (P < 0.0001), and a significant decrease of J2 by

co-inoculation with bacteria (P = 0.01). However, J2 in roots were only slightly

decreased by co-inoculation of J2 and biocontrol strains, so that most of the biocontrol

effect on J2 can be explained by induced systemic resistance alone.

Fifty days after nematode inoculation, in all treatments with bacterial antagonists

significantly less galls, egg masses, and eggs were found compared to the treatment

with E. coli, or the untreated control (Fig. 3B-D). Three-factorial analysis of variance

revealed a significant difference between stains in their effect on nematode reproduction

(P < 0.0001). Co-inoculation did not have a detectable effect on numbers of galls or

eggs (P = 0.3 or 0.2, respectively), and only a slight effect on egg masses (P = 0.049).

Thus, most of the biocontrol effect on reproduction can be explained merely by induced

systemic resistance. The three tested biocontrol strains did not significantly differ in

their potential to suppress M. incognita. The positive control strain G12 could slightly

better reduce the number of eggs compared to strain Mc5-Re2 in this experiment. No

significant effect of the bacteria on the number of eggs per egg mass was detected (Fig.

3E).
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Figure 3.Comparison of the effects by direct and by plant-mediated antagonism on root
penetration by juveniles. M. incognita juveniles (J2) and bacterial strains were inoculated
spatially separated in opposite pots of one split-root system (white bars), or co-inoculated with J2
in one pot of another split root system (gray bars). Controls were inoculated with J2 and the not
antagonistic strain E. coli JM109, or only with nematodes. J2 penetrated into tomato roots were
counted 10 days after inoculation (A). Numbers of galls (B), egg masses (C), eggs per root (D),
and eggs per egg mass (E) were determined 50 days after J2 inoculation. Error bars represent
standard deviations. Different letters indicate significant differences at P ≤ 0.05 according to
Tukey's test (n = 10). .
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DISCUSSION

Within this study seven antagonistic bacteria with known antagonism towards fungal

pathogens were selected and tested for their potential to control M. incognita on tomato.

Five of the bacterial antagonists significantly reduced M. incognita infestation on

tomato after seed treatment. It was shown that individual bacterial antagonists have a

much broader control spectrum than originally thought by concomitantly controlling

fungal pathogens and plant-parasitic nematodes. The results are in accordance with

previous work where potato-associated strains of Pseudomonas and Streptomyces

inhibited both the soil-borne fungal wilt pathogen V. dahliae and the root-knot

nematode M. incognita [8]. Similarly, Tariq et al. [9] were able to show that a strain of

P. aeruginosa inhibited both the root-rotting fungi M. phaseolina, R. solani, F. solani,

and F. oxysporum as well as the root-knot nematode M. javanica infecting chili roots.

In the present study nematode antagonism was shown for strains belonging to the

species B. subtilis, P. jessenii, and S. plymuthica. All antagonistic bacteria were able to

significantly reduce galls and egg masses on tomato compared with the untreated

control. While other strains of B. subtilis and S. plymuthica have been reported as

nematode antagonists before [22-25], strains with biocontrol potential belonging to the

species P. jessenii were first reported in this study. The positive control R. etli G12

confirmed its good biocontrol potential [26]. Within experiment 1, bacterial isolates

were applied as a seed treatment. The good results achieved by this method raises

optimism that seed treatment could be an efficient and economical way for bacterial

delivery in practise as already reported for other bacterial antagonists [27, 28].

Besides seed treatment also a soil drench with culture supernatants of the

antagonistic bacteria resulted in a significant reduction in galls, egg masses, and eggs

produced by M. incognita. Nematode suppression by bacterial culture supernatants has

previously been reported when testing for antibiosis under in vitro conditions [29, 30].

Unfortunately, still very little is known about the active compounds of culture

supernatants causing nematode antagonism. Siddiqui et al. [31] found that for P.

aeruginosa the ethyl acetate extract caused 64% inactivity of M. javanica juveniles
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within 24 h and assumed that the active compound was of proteinaceous or

glycoproteinaceous nature. The active compound was described as heat sensitive,

sensitive to extreme pH values, polar in nature and with a molecular weight smaller than

8,000 Da [32].

Padgham and Sikora reported that Bacillus megaterium caused repellence of

Meloidogyne graminicola from rice roots [12]. Production of repellent substances or

modification of the plant’s exudates by the antagonistic bacteria were suggested as

mechanisms for this effect [10]. In our study, a trend for repellence of M. incognita by

the tested biocontrol strains was observed, although it was not statistically significant

due to high variation between replicates. A complete different mechanism involved in

bacteria-mediated nematode control is induced systemic resistance of the plant. In

relation to nematode control, induced systemic resistance was first reported by Hasky-

Günther and Sikora [33]. In our study using a split-root system, all four antagonistic

bacteria tested induced systemic resistance towards M. incognita in tomato. Galls and

egg masses were reduced between 40% and 51%, respectively, which was in the range

of control rates reported for similar studies [34-36]. For the positive control strain R. etli

G12 used in the present study it was shown that viable as well as dead bacterial cells

were able to trigger the systemic resistance response in potato against the potato cyst

nematode Globodera pallida. Furthermore, it turned out to be the oligosaccharides of

the core-region of the bacterial lipopolysaccharides to be the main trigger of the

resistance response [36].

Our experimental setup allowed for the first time to compare between the plant-

mediated antagonistic effect of the strains and direct effects of the bacteria on the

nematode caused by nematicidal, nematostatic or repellant bacterial compounds or

parasitism on juveniles or eggs. In comparison with induced systemic resistance the

application of the antagonistic bacteria together with the nematodes on the responder

side of the split-root system only slightly enhanced the biocontrol effect. Thus induced

systemic resistance was identified as the major control mechanism of the antagonists in

this study (experiment 5). For all tested strains bacterial cells and cell-free culture
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supernatants caused similar reductions in galls, egg masses, and eggs. Together with the

just mentioned result of experiment 5, this suggested that systemic resistance in tomato

was induced by compounds from the bacteria that can also be found in the culture

supernatants.

In conclusion, all bacterial antagonists with known antifungal capacity tested in this

study also showed antagonistic activity against the root-knot nematode M. incognita.

The control potential of the three B. subtilis strains Sb4-23, Mc2-Re2, and Mc5-Re2

was within the range of the positive control R. etli G12. For all tested strains seed

treatment with bacterial cells as well as bacterial culture supernatants caused similar

reductions in number of galls, number of egg masses and total number of eggs per plant.

The results achieved with B. subtilis were especially stimulating since it produces

spores that are a lot easier to formulate and store than Gram-negative bacteria such as R.

etli G12 or the tested Pseudomonas strains. Overall best nematode control in this study

was achieved by B. subtilis Sb4-23 making this isolate a promising candidate for dual

biocontrol of M. incognita and seed-borne fungal pathogens under field conditions.
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Abstract

Plant protection via disease-suppressive bacteria in desert farming requires
specific biological control agents (BCAs) adapted to the unique arid conditions.
We  performed an ecological study of below-ground communities in desert
farm soil and untreated desert soil, and based on these findings, selected antag-
onists were hierarchically evaluated. In contrast to the highly specific 16S rRNA
fingerprints of bacterial communities in soil and cultivated medicinal plants,
internal transcribed spacer profiles of fungal communities were less discrimina-
tive and mainly characterised by potential pathogens. Therefore, we focused on
in vitro bacterial antagonists against pathogenic fungi. Based on the antifungal
potential and genomic diversity, 45 unique strains were selected and character-
ised in detail. Bacillus/Paenibacillus were most frequently identified from agri-
cultural soil, but antagonists from the surrounding desert soil mainly belonged
to Streptomyces. All strains produced antibiotics against the nematode Meloido-
gyne incognita, and one-third showed additional activity against the bacterial
pathogen Ralstonia solanacearum. Altogether, 13 broad-spectrum antagonists
with antibacterial, antifungal and nematicidal activity were found. They belong
to seven different bacterial species of the genera Bacillus and Streptomyces.
These Gram-positive, spore-forming bacteria are promising drought-resistant
BCAs and a potential source for antibiotics. Their rhizosphere competence was
shown by fluorescence in situ hybridisation combined with laser scanning
microscopy.

Introduction

While desertification is recognised as a major  threat to
biodiversity,  the conversion of desert soil into arable,
green landscapes is a global vision (Clery, 2011; Marasco
et al., 2012). Desert farming, which generally relies on
irrigation, is one way to potentially realise this goal. In
Australia, Israel, California and A f r i c a , desert farming
areas are expanding. For example, desert farming in Egypt
will have grown by 40% by 2017 (Reuters, 2007). How-
ever, emerging problems with soilborne pathogens, which
can substantially limit crop yield, are often reported after
several years of agricultural land use (Krikun et al., 1982).

These soilborne pathogens include various taxonomic
groups, for example, fungi (Fusarium culmorum, Rhizocto-
nia solani, Verticillium dahliae), bacteria (Ralstonia solan-
acearum) and nematodes (Meloidogyne incognita)
(Klosterman et al., 2009; Messiha et al., 2009; Neher,
2010). Because of its depleting effect on the ozone layer,
the extensively used broad-spectrum soil fumigant methyl
bromide was banned by the  Montreal Protocol in  1987
and phased out in most countries by 2005. Now, there is
an urgent demand for ecologically compatible and effi-
cient  strategies to suppress soilborne  pathogens  in both
conventional and organic  desert agriculture (Bashan &
de-Bashan, 2010).                                 .
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Biological control based on naturally occurring antago-
nists offers sustainable solutions for plant protection
(Weller, 2007; Berg, 2009; Lugtenberg & Kamilova, 2009;
Raaijmakers et al.,   2009). However, beneficial plant–
microorganism interactions are highly specific, and only a
few broad-spectrum antagonists have been reported
(Zachow et al., 2008; Hartmann et al., 2009). Gram-negative
bacteria, especially those from genus Pseudomonas, were
identified as the dominant members of  the indigenous
antagonistic communities under humid conditions  (Berg
et al., 2005; Haas & D efago, 2005; Costa et al.,
2006; Zachow et al., 2008) and as a  major group of
disease- suppressive bacteria through pyrosequencing
(Mendes et al., 2011). Although there are problems with
the for- mulation and shelf life of Pseudomonas, strains
have still been   developed as commercial BCAs (Weller,
2007; Berg, 2009). Gram-positive bacteria have also been
widely used as BCAs and plant growth-promoting
rhizobacteria (PGPRs), even though their ability to
colonise the rhizo- sphere has been controversial (Hong et
al., 2009; Fan et al., 2011). Their ability to form durable,
heat-resistant endospores allows for easy formulation
(Emmert & Han- delsman, 1999; Adesemoye et al.,
2009), but their use as BCAs in desert agroecosystems is
not been established so far.

Desert soils are characterised by arid conditions, which
include a combination of extreme temperatures and des-
iccation, high soil salinity, low nutrient levels, high UV
radiation levels and physical instability caused by strong
winds (Cary et al., 2010). In one of the most prominent
examples of organic desert farming in Sekem (Egypt), we
found a strong correlation between long-term organic
agriculture and bacterial community composition in soils.
Bacterial communities in agricultural soil showed a higher
diversity and a better ecosystem function for plant health
compared to the surrounding natural desert soil (Koöberl et
al., 2011).  A comprehensive analysis explained these
structural differences: the proportion of Firmicutes repre-
sented by antagonistic Bacillus and Paenibacillus in field
soil was significantly higher (37%) than in the desert soil
(11%). In contrast, Actinobacteria occurred in farmland
in lower concentrations (5%) than in the  desert (21%),
and antagonistic  isolates of Streptomyces were only iso-
lated from native desert soil (Koöberl et al., 2011). A high
presence of Actinobacteria in soil of the North  American
Sonoran  Desert was also found by 454-pyrotag analyses
(Andrew et al., 2012) as well as in soil of the hyperarid
Atacama Desert in north-west Chile (Neilson et al.,
2012). From the latter, several so far unknown Streptomy-
ces spp. were recently described (Santhanam et al., 2012a,b,
2013). In addition,  a study examining soil bacterial com-
munities in the Negev Desert in the south of Israel even
revealed a higher abundance of Actinobacteria in barren

soils compared to soils under shrub canopies (Bachar et al.,
2012). However, the indigenous desert microbiome should
contain BCAs that are adapted to the specific biotic and
abiotic conditions of desert habitats as well as strains that
produce novel bioactive compounds, because the  genus
Streptomyces is known as a unique source of novel antibi-
otics (Goodfellow & Fiedler, 2010; Niraula et al.,  2010;
Nachtigall et al., 2011). The potential for both has been
until now poorly understood and used.

The objective of this study was to analyse microbial
communities from agricultural desert habitats (e.g. from
the rhizospheres and endorhiza)  in comparison with the
surrounding desert soil for their biocontrol potential and
to   specifically select and characterise broad-spectrum
antagonists against soilborne pathogens regarding this
potential.

Materials and methods

Experimental design and sampling

Microbial diversity in organic desert farming was studied
at Sekem farms (www.sekem.com) in Egypt (30°22′88″N,
31°39′41″E) in comparison with surrounding desertsoil
(30°35′01″N, 32°25′49″E; 35°59′0″N, 41°2′0″E). The sam-
pling strategy is described in detail in Koöberl et al. (2011).
Briefly, at each site, four composite samples of soil in a
horizon of 0–30 cm depth were collected. Furthermore,
roots with adhering soil were obtained from three different
species of medicinal plants (Matricaria chamomilla L.,
Calendula officinalis L. and Solanum disti- chum
Schumach. and Thonn.) planted on a Sekem farm. From
each plant species, four independent   composite samples
consisting of 5–10 plants were taken. Samplings were
performed in October 2009 and in April 2010. Phys- ico-
chemical data of the soil are provided in Luske & van der
Kamp (2009).

Microbial fingerprints from single-stranded
conformational polymorphism analysis of the
ITS and 16S rRNA region (PCR-SSCP)

Total community DNA was isolated from bulk soil, rhi-
zosphere and endorhiza of the medicinal plants according
to Koöberl et al. (2011). Fingerprinting of microbial com-
munities by SSCP was performed as described by Schwie-
ger & Tebbe (1998). Amplification of the fungal internal
transcribed spacer  (ITS) fragment was performed by  a
nested  PCR approach with  primer pairs  ITS1/ITS4 and
ITS1/ITS2P (White et al., 1990). Nested PCR was per-
formed as described by Zachow et al. (2008). SSCP analy-
sis of bacterial 16S rRNA gene sequences is specified in
Koöberl et al. (2011). Sequences of excised and re-amplified
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bands were submitted   to EMBL Nucleotide Sequence
Database under accession numbers FR854281-FR854290,
FR871639-FR871646 and HE655458-HE655480.

SSCP profiles of the microbial communities generated
with universal fungal and bacterial primers were further
applied for multivariate analysis. According   to the
distance of the bands, the SSCP gels were theoretically
divided into operational taxonomic units (OTUs). The
presence or absence of individual amplified product DNA
bands in each group was scored. OTUs served as response
variables for principal component analysis (PCA) using
Canoco 4.5 for Windows (Lep s & Smilauer, 2003).
Matrices based on Pearson correlation were subjected to
significance tests of pairwise similarities by applying per-
mutation analyses (P < 0.05) using the permtest package
of R statistics version 2.13.1 (The R Foundation for
Statistical Computing, Vienna, Austria) with 105 random
permutations of sample elements (Kropf et al., 2004;
R Development Core Team, 2011).

Screening for in vitro activity against
soilborne bacteria and nematodes

Forty-five promising strains with antagonistic activity
against pathogenic fungi (Koöberl et al., 2011) were tested
for antibacterial activity against Ralstonia solanacearum
1609 and B3B. The activity of all isolates against both
R. solanacearum strains was identical; therefore, the data
in Table 2 are presented in singular form. For the screen-
ing, yeast peptone glucose (YPG) medium was used, and
Tetrazolium Violet (Sigma-Aldrich,  Saint Louis, USA)
was added to the  medium prior to pouring as a redox
indicator of bacterial growth (Adesina et al., 2007; Tsuka-
tani et al., 2008).

For testing the activity of the selected antagonists
towards the phytopathogenic nematode Meloidogyne
incognita (Kofoid and White) Chitwood, culture superna-
tants from the bacteria were prepared. For this, the bacte-
rial isolates were grown at 28 °C for 24 h on R2A agar
(Merck, Darmstadt, Germany).  A preculture was grown
over night from a single colony in  5 mL of tryptic  soy
broth (TSB) (Merck) with 50 mg L 1 rifampicin at 28 °C
with shaking at 150 r.p.m. 200 µL of the preculture were
added to 100 mL sterile TSB and incubated for 24 h at
28 °C with shaking. The bacteria were then removed from
the culture by centrifugation at 7500 g for 20 min,
followed by sterile filtration of the supernatants through
membranes with 0.22 µm pore size. The sterile culture
supernatants were kept a t 4 °C un t i l application. To
study the effect of extracellular bacterial products on the
mortality of M. incognita juveniles (J2), 500 µL of a
juvenile suspension containing approximately 100 freshly
hatched J2 was mixed with 1 mL of each bacterial filtrate

in a Petri dish with 500 µL of an antibiotic solution con-
taining 300 mg L 1 streptomycin  and 300 mg L 1 peni-
cillin to  suppress microbial growth. Each treatment was
replicated 4 times. Controls consisted of TSB, water and a
culture supernatant of the nonantagonistic strain Escheri-
chia coli JM109, respectively. All dishes were kept at 25
± 2°C in the dark. Numbers of motile and nonmotile
nematodes were counted after 6, 12, 24 and 48 h using a
binocular microscope. To distinguish between nonmotile
and dead J2, the nematodes were transferred to water at
the end of the exposure time. Juveniles that did not
recover and become motile again were considered dead.
The rate of mortality was determined using linear regres-
sion of the percentages of dead J2 after 0, 6, 12 and 24 h.

Fluorescence in situ hybridisation (FISH) and
confocal laser scanning microscopy (CLSM)

Samples were fixed in 4% paraformaldehyde and stained
by in-tube FISH according to the protocol of Cardinale et
al. (2008).   An equimolar mixture of Cy3-labelled
EUB338, EUB338II and EUB338III probes (Amann et al.,
1990; Daims et al., 1999) was used for the detection of all
bacteria and a Cy5-labelled HGC236 probe (Erhart et al.,
1997) for the detection of Actinobacteria. As a negative
control, nonsense FISH probes labelled with both fluoro-
chromes  (NONEUB; Wallner et al., 1993) were applied.
Confocal images were obtained using a Leica TCS SPE
confocal laser scanning microscope (Leica Microsystems
GmbH, Mannheim, Germany).

Results

Molecular fingerprinting of microbial below-
ground communities

All investigated SSCP fingerprints of the ITS and 16S rRNA
gene fragments from both the rhizosphere and endorhiza
of the medicinal plants and bulk soil showed a high diver-
sity. According to the statistical cluster analysis, there is a
clear plant-specific effect on both communities in the rhi-
zosphere (Fig. 1, Table 1). Furthermore, microenviron-
ment-specific SSCP patterns of the microbial communities
were detected, and statistically significant differences
between the rhizosphere and the endorhiza of the medici-
nal plants were calculated (Fig. 1, Table 1). Additionally,
plant-associated microenvironments were compared with
the surrounding soil. The composition of the bacterial and
fungal communities in soil differed significantly from the
plant-associated communities (P values: fungal communi-
ties 0.0241; bacterial communities 0.0266) and between
agricultural and desert soil (P values: fungal communities
0.0291; bacterial communities 0.0289).
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(a) (b)

Fig. 1. PCA of OTUs identified  by SSCP fingerprinting for fungal (a) and bacterial (b) communities. Samples were encoded using a combination
of letters and numbers indicating (1) soil type  or plant species (Wb = desert soil, Sb = Sekem soil, Mc = Matricaria chamomilla, Co = Calendula

officinalis, Sd = Solanum distichum), (2) replicate (1–4) and (3) microenvironment (Re = endorhiza, rhizosphere and soil have no further
designation).

Table 1. Statistical analysis of microbial fingerprints obtained by

PCR-SSCP.

Microenvironment Fungal communities Bacterial communities

P values for pairwise comparisons between
medical plants*

Alternaria was also found  in desert soil from Sinai (first
sampling) as well as from Saqqara (second sampling). In
addition, Cladosporium (teleomorph Davidiella) was iden-
tified in fingerprints from both samplings. In rhizosphere
and soil samples from the first sampling, Epicoccum (clos-

est database match Epicoccum nigrum, 100% similarity to
Rhizosphere†

Mc-Co 0.0276 0.0281

Co-Sd 0.0284 0.0286
Mc-Sd 0.0296 0.0286

Endorhiza†

Mc-Co 0.0297 0.0556

Co-Sd 0.0719 0.0283
Mc-Sd 0.0282 0.0293

Medicinal plant P values for comparisons between
rhizosphere and endorhiza*

JN578611) was assigned to a dominant band. In soil from
the Sinai desert, the black fungus Aureobasidium (closest
database match Aureobasidium proteae, 99% similarity to
JN712490) was additionally identified. Similarly, Verticil-
lium dahliae (closest database match V. dahliae var. longi-
sporum, 100% similarity to AB585937) was identified as a
dominant band found in  almost all plant samples from
the second sampling time, which  apart from Fusarium
spp. was one of the main soilborne phytopathogens on

Matricaria chamomilla 0.0290 0.0287
the Sekem farms. In samples from the second sampling,
the obligate root-infecting pathogen Olpidium (closestCalendula officinalis 0.0288 0.0287

Solanum distichum 0.0287 0.0281 database match Olpidium brassicae, 99% similarity to

*Analysed by permutation test (P < 0.05) using R statistics.
†Mc, Matricaria chamomilla; Co, Calendula officinalis; Sd, Solanum
distichum.

The fingerprints of the fungal community represented
a high diversity in all microenvironments and were simi-
lar for the first and second samplings (Fig. 2). In general,
potential plant pathogens were frequently found within the
fungal communities.  In fingerprints from both sam-
plings, Alternaria (closest database match Alternaria tenu-
issima, 100% similarity to   JN620417) and Fusarium
(closest database matches Fusarium chlamydosporum,
100% similarity to HQ671187 and Fusarium solani, 99%
similarity to FJ865435) were most commonly found.

AB625456), belonging to the fungal phylum Chytridiomy-
cota, and Sarocladium (closest database match Sarocladi-
um strictum,  100% similarity to JN942832; previously
recognised in Acremonium) were found. Although several
other ITS fragments were not identified, due to this high
content of potential phytopathogens in the  fungal com-
munities, the selection of antagonists was focused on the
bacterial communities.

Detailed characterisation of selected
antagonistic strains

A screening of 1212 bacterial isolates resulted in 162 anti-
fungal antagonists against the main fungal soilborne
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(a)

(b)

Fig. 2. ITS PCR-SSCP profiles of the fungal
communities in soil, rhizosphere and endorhiza

of the medicinal plants from first (a) and
second (b) sampling time. Std.: 1 kb DNA
ladder. (a) From fingerprints of the first
sampling (October 2009), the following bands
were identified as: 1. Epicoccum nigrum, 100%
similarity to JN578611; 2. Pichia jadinii, 99%
similarity to FJ865435; 3. Gibellulopsis

nigrescens, 100% similarity to JN187998; 4.
Emericella nidulans, 99% similarity to JN676111;
5. Alternaria tenuissima, 100% similarity to
JN620417; 6. Davidiella tassiana, 99%
similarity to JN986782; 7. Fusarium

chlamydosporum, 100% similarity to
HQ671187; 8. Exserohilum rostratum, 99%

similarity to JN179081; 9. Fusarium solani, 99%
similarity to FJ865435; 10. Aureobasidium

proteae, 99% similarity to JN712490. (b) From
the second sampling (April 2010), the following
bands were identified: 1. Cryptococcus

carnescens, 99% similarity to GU237051; 2.
Olpidium brassicae, 99% similarity to
AB625456; 3. Preussia minimoides, 96%

similarity to AY510422; 4. Verticillium dahliae

var. longisporum, 100% similarity to
AB585937; 5. Alternaria tenuissima, 100%
similarity to JN620417; 6. Fusarium

chlamydosporum, 99% similarity to EU556725;
7. Cladosporium cladosporioides, 100%
similarity to JN986781; 8. Ulocladium

oudemansii, 100% similarity to FJ266488; 9.
Sarocladium strictum, 100% similarity to
JN942832.

pathogens (V. dahliae, R. solani and F. culmorum) (Kööberl
et al., 2011). These fungi were identified in Sekem soil by
cultivation and, with the exception  of R. solani, in the
molecular fingerprinting analyses. Altogether, 45 genotypi-
cally unique antifungal strains were selected to assess their
antibacterial activity against R. solanacearum (Table 2). Of
these isolates, 33.3% were able to inhibit the growth of the
soilborne bacterial pathogen in vitro, including most iso-
lates of Streptomyces (3 of 4 isolates) and some strains of
the Bacillus subtilis group (12 of 30 isolates).

Plant-parasitic nematodes often positively interact with
soilborne fungal pathogens. Therefore, the selected bacte-
rial isolates were additionally evaluated in vitro for their
effects aga i n s t juveniles of the root-knot nematode
M. incognita. All bacteria accumulated inhibitory sub-
stances in the culture medium to some degree, while the
medium itself and water had no effect. The percentage of
dead J 2 continuously increased during the incubation

period  of 48 h reaching over 70% for 11 strains with a
maximum of 89% for strain Mc5Re-2, while only 28% of
J2 were dead in the E. coli control (Table 2). On average,
the increase in mortality was highest within the first 12 h
of exposure and declined thereafter.  The ten most effi-
cient strains caused between 47% and 63% mortality in
the first 24 h, with the highest rates observed for strains
Sb4-23, Mc5Re-2, Mc1Re-3 and   Sb3-24 (Fig. 3). The
seven most efficient antagonists were all isolates of
Bacillus subtilis obtained from either agricultural soil or
from the endorhiza of M. chamomilla.

In situ visualisation of Actinobacteria in the
rhizosphere

FISH-CLSM analysis confirmed generally high bacterial
abundances and occurrence of Actinobacteria in below-
ground habitats under arid conditions. Using an
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Table 2. List of selected bacterial antagonists isolated from different microenvironments with their antagonistic properties.

Antagonistic activity towards‡

Meloidogyne incognita¶

ARDRA
group*

Isolate
number

Closest database match† (accession
number), similarity (%)

Verticillium

dahliae§
Rhizoctonia

solani§
Fusarium

culmorum§
Ralstonia

solanacearum

Dead J2

after 48 h
(%)∥

Mortality

rate (%
J2 per day)**

A Wb2n-1 Bacillus vallismortis (NR_024696),
99%

+ ++ + + 73 ± 6 49 ± 4

A Sb1-6 Bacillus subtilis subsp. subtilis
(NR_027552), 99%

+ - + + 54 ± 4 32 ± 2

A Sb3-5 Bacillus subtilis subsp. subtilis

(NR_027552, 99%
+ ++ + + 46 ± 3 25 ± 3

A Sb3-13 Bacillus atrophaeus (NR_024689),
99%

+ ++ + + 33 ± 3 17 ± 1

A Sb3-21 Bacillus subtilis subsp. spizizenii

(NR_024931), 99%
+ ++ + - 68 ± 7 52 ± 4

A Sb3-24 Bacillus subtilis subsp. subtilis

(NR_027552), 99%
+ ++ + - 78 ± 7 57 ± 4

A Sb4-14 Bacillus vallismortis (NR_024696),
99%

+ + + - 45 ± 5 23 ± 1

A Sb4-23 Bacillus subtilis subsp. subtilis
(NR_027552), 99%

+ + + + 84 ± 5 63 ± 3

A Mc3-4 Bacillus mojavensis (NR_024693),
98%

+ ++ ++ + 67 ± 8 30 ± 2

A Mc5-18 Bacillus subtilis subsp. subtilis

(NR_027552), 99%
++ ++ ++ - 29 ± 2 14 ± 2

A Mc5-19 Bacillus subtilis subsp. subtilis

(NR_027552), 99%
+ + - + 35 ± 4 17 ± 2

A Co1-6 Bacillus subtilis subsp. subtilis

(NR_027552), 99%
++ ++ ++ + 70 ±7 37 ± 3

A Co2-14 Bacillus subtilis subsp. spizizenii

(NR_024931), 99%
+ + ++ - 72 ± 12 40 ± 5

A Co7-19 Bacillus subtilis subsp. spizizenii
(NR_024931), 100%

++ + + - 48 ± 5 26 ± 1

A Sd1-14 Bacillus subtilis subsp. spizizenii

(NR_024931), 99%

+ ++ ++ - 56 ± 5 35 ± 3

A Sd3-12 Bacillus subtilis subsp. subtilis

(NR_027552), 100%

+ + ++ - 29 ± 2 17 ± 1

A Sd3-21 Bacillus subtilis subsp. spizizenii

(NR_024931), 99%
+ ++ + - 57 ± 4 35 ± 5

A Sd7-15 Bacillus subtilis subsp. spizizenii

(NR_024931), 100%
+ ++ + - 43 ± 4 26 ± 2

A Mc1Re-3 Bacillus subtilis subsp. subtilis

(NR_027552), 99%

+ ++ ++ - 80 ± 4 56 ± 7

A Mc2Re-2 Bacillus subtilis subsp. spizizenii

(NR_024931), 99%

+ ++ + + 83 ± 4 54 ± 4

A Mc2Re-9 Bacillus subtilis subsp. subtilis

(NR_027552), 99%

+ + ++ - 61 ± 3 38 ± 2

A Mc2Re-18 Bacillus subtilis subsp. subtilis

(NR_027552), 99%

+ + ++ - 82 ± 2 50 ± 6

A Mc2Re-21 Bacillus subtilis subsp. subtilis

(NR_027552), 99%

- + ++ - 66 ± 5 46 ± 3

A Mc3Re-13 Bacillus subtilis subsp. subtilis

(NR_027552), 98%
+ + + + 61 ± 3 43 ± 3

A Mc5Re-2 Bacillus subtilis subsp. spizizenii

(NR_024931), 100%

+ + + - 89 ± 3 59 ± 3
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∥

Table 2. Continued

Antagonistic activity towards‡

Meloidogyne incognita¶

ARDRA
group*

Isolate
number

Closest database match† (accession
number), similarity (%)

Verticillium

dahliae§
Rhizoctonia

solani§
Fusarium

culmorum§
Ralstonia

solanacearum

Dead J2

after 48 h
(%)∥

Mortality

rate (%
J2 per day)**

A Mc5Re-15 Bacillus subtilis subsp. subtilis

(NR_027552), 99%

+ + + + 33 ± 2 22 ± 1

A Sd2Re-10 Bacillus mojavensis (NR_024693),

100%

++ ++ ++ - 52 ± 7 24 ± 2

A Sd8Re-6 Bacillus subtilis subsp. spizizenii

(NR_024931), 100%
+ + + + 22 ± 2 13 ± 2

A Sd8Re-7 Bacillus subtilis subsp. subtilis

(NR_027552), 99%
++ ++ ++ - 24 ± 2 12 ± 1

A Sd8Re-23 Bacillus subtilis subsp. spizizenii

(NR_024931), 100%
++ + + - 26 ± 2 14 ± 1

C Wb1-13 Bacillus endophyticus (NR_025122),
99%

- + + - 21 ± 2 14 ± 2

C Mc4-18 Bacillus endophyticus (NR_025122),
99%

- + + - 56 ± 5 21 ± 2

D Wb2-3 Paenibacillus polymyxa

(NR_037006), 99%

- + + - 49 ± 4 34 ± 4

D Sb3-1 Paenibacillus kribbensis

(NR_025169), 99%
+++ ++ + - 44 ± 6 23 ± 1

D Mc2-9 Paenibacillus brasilensis

(NR_025106), 99%
++ ++ + - 64 ± 6 24 ± 1

D Mc5-5 Paenibacillus brasilensis

(NR_025106), 99%
++ - ++ - 58 ± 5 26 ± 1

D Mc6-4 Brevibacillus limnophilus
(NR_024822), 99%

+++ - ++ - 77 ± 4 39 ± 2

D Mc2Re-16 Paenibacillus brasilensis

(NR_025106), 98%
++ + - - 57 ± 9 31 ± 4

D Mc5Re-14 Paenibacillus polymyxa

(NR_037006), 99%
++ + ++ - 52 ± 3 38 ± 1

D Sd5Re-24 Paenibacillus brasilensis

(NR_025106), 99%
++ + ++ - 20 ± 2 11 ± 2

E Wb1n-4 Streptomyces scabiei (NR_025865),
98%

+ ++ + + 70 ± 2 47 ± 4

E Wb2n-2 Streptomyces peucetius

(NR_024763), 98%
++ ++ + + 66 ± 3 40 ± 1

E Wb2n-11 Streptomyces subrutilus
(NR_026203), 99%

+++ +++ + + 76 ± 7 48 ± 6

E Wb2n-23 Streptomyces peucetius

(NR_024763), 98%
++ +++ + - 26 ± 3 15 ± 1

F Mc1-3 Lysobacter enzymogenes

(NR_036925), 99%
+ ++ ++ - 63 ± 6 23 ± 2

*The letters represent the different amplified rRNA gene restriction analysis patterns (A-F); group B (Bacillus cereus group) was completely
excluded (Köberl et al., 2011).
†According to 16S rRNA gene sequencing.
‡Dual culture assay: +…0–5 mm, ++…5–10 mm, +++…> 10 mm radius of zone of inhibition, - …no suppression.
§Results of a previous study performed b y Koöberl et al. (2011).
¶Control with Escherichia coli showed 28% dead J2 after 48 h, and a mortality rate of 21%, at controls with media and water both values
were 0%.
Standard deviation.

**Determined by linear regression of the percentages of dead J2 after 0, 6, 12 and 24 h, ± error of slope.
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Fig. 3. In vitro effects of extracellular bacterial products on the
mortality of Meloidogyne incognita juveniles. Depicted are the impacts
of the four most efficient isolates in comparison with the  control with
Escherichia coli JM109.

Actinobacteria-specific probe, some of these bacterial colo-
nies could be identified in the rhizosphere of Matricaria
chamomilla as  well when grown under organic desert
farming conditions (Fig. 4).

Discussion

One of the major challenges of the 21st century will be to
develop an environmentally sound and sustainable crop
production. Desert agriculture opens up new possibilities
to address diverse problems: to produce enough food for
poor regions, to produce renewable crops for industrial
applications, and to capture and restore CO2 in soil. The
accumulation of soilborne pathogens is another impor-
tant ecological problem,  which can cause dramatic yield
losses. To solve this problem, we analysed associated

microbial communities, which were  found specific for
each plant species and microhabitat. ITS profiles of fungal
communities were less discriminative than bacterial
fingerprints and characterised mainly by potential path-
ogens. Therefore, we selected bacterial antagonists against
these and the well-known pathogens.

The dominance of Gram-positive bacteria in the group
of antagonists in plant-associated and soil communities
under arid conditions is in contrast to other studies per-
formed under humid, temperate climate conditions. Here,
mainly members of the genus Pseudomonas were found as
antagonists (Berg et al., 2006; Costa et al., 2006; Weller,
2007), as it is well-studied for its beneficial plant–microor-
ganism interaction (Haas & Defago, 2005; Lugtenberg &
Kamilova, 2009). To verify our result, Pseudomonas-selec-
tive medium was used to monitor Pseudomonas isolates
(King et al., 1954), but only a few colonies were detected
(data not shown). This differing ecology between arid and
humid environments can be explained by the extreme
abiotic conditions, such as the combination of extreme
temperatures and desiccation, high soil salinity, low nutri-
ent levels and high   UV radiation levels in deserts.
Recently, in a farm located in the northwestern desert
region of Egypt, Marasco et al. (2012) reported a predom-
inant role of Bacillus within the plant growth-promoting
microbiome associated with the drought-sensitive pepper
plant, which supported this conclusion. In addition, in the
rhizosphere of Antarctic vascular plants, another extreme
environment, Firmicutes were also identified as the most
abundant phylum using a deep-sequencing approach
(Teixeira et al., 2010). However, in the microbiome of the
sugar beet rhizosphere, Firmicutes represent 20% of the
bacterial phyla with Proteobacteria as the dominant mem-
ber (39%) (Mendes et al., 2011). Bacillus, Paenibacillus
and Streptomyces are spore-forming bacteria, and spore
production a ids in survival under suboptimal conditions

(a) (b) (c)

Fig. 4. In situ visualisation of Actinobacteria in the rhizosphere of Matricaria chamomilla. Fluorescent in situ hybridisation (FISH) showed a high

colonisation of chamomile roots with bacteria in general (a), of which some colonies could be identified  as Actinobacteria (b). The overlay (c) of
the fluorochrome signals (a and b) with the autofluorescence of the root (blue)  shows examples for Actinobacteria (yellow) amidst other
eubacteria (red). Scale bar = 5 µm.                                                                          .
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(Nicholson, 2002). However, it is still unclear whether
these Gram-positive bacteria were alive and active in soil.
Once considered their habitat, the soil may simply just
serve as a reservoir (Hong et al., 2009). While rhizosphere
colonisation was recently shown by the BCA Bacillus
amyloliquefaciens FZB42 (Fan et al., 2011), we also found
Actinobacteria colonisation as well.

Bacillus/Paenibacillus and Streptomyces species are well-
known for their biocontrol potential (Schisler et al., 2004;
Berg, 2009). Several strains of Bacillus subtilis are already
in use as biological pesticides (Fan et al., 2011), and the
antagonistic potential of Paenibacillus polymyxa towards a
wide range of mycotoxin-producing fungi such as F.
culmorum is well documented (Tupinamb a et al., 2008).
Furthermore, a broad disease-suppressive activity has been
detected for strains of Lysobacter (Postma et al., 2011), the
only Gram-negative genus selected. Despite this fact, we
know that the biocontrol effect and mode of action are
strongly strain-specific (Berg et al., 2006; Berg, 2009). In
our   study, we detected plant species and microhabi- tat-
specific bacterial antagonists, but also strain specificity
was confirmed. Altogether, 13 broad-spectrum antagonists
with antibacterial, antifungal and nematicidal activity were
found which belong to seven different bacterial species of
the genera Bacillus (B. atrophaeus, B. mojavensis, B. subtilis
subsp. div., B. vallismortis) and Streptomyces (S. peucetius,
S. scabiei, S. subrutilus). On their basis, biocontrol prod-
ucts specifically for arid conditions can be developed.

In this study, we linked ecological data with the selec-
tion strategy for antagonists. Within the fungal commu-
nity, mainly potential phytopathogens were identified.
Therefore, we focused on the selection of bacterial antag-
onists. In the cultivation-independent and dependent
approach, strains of Bacillus/Paenibacillus were found as
the key players in bacterial communities in arid agricul-
tural systems. Conversely, members of the genus Strepto-
myces were important in the natural desert ecosystem.
This was also confirmed by a comparative deep-sequenc-
ing approach of desert and field soil (Koöberl et al., 2011).
Gram-positive, spore-forming bacteria of the genera
Bacillus,  Paenibacillus and Streptomyces were selected
using our hierarchical procedure;  all of them belong to
risk group  1 (no risk for humans and the environment)
and are promising drought-resistant and heat-resistant
biocontrol candidates. Furthermore, they showed a
remarkable antibiotic activity.
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MAIN FINDINGS

- Plant-parasitic nematodes occur widely on the SEKEM organic farm; eleven

genera were detected during the surveys 2009 and 2011, with nine genera being

detected in both surveys.

- Meloidogyne was the most frequently encountered genus in both surveys. Other

genera commonly detected were Tylenchorhynchus, Rotylenchulus,

Helicotylenchus and Pratylenchus.

- Meloidogyne incognita populations and/or races varied in their reproduction

rate on different hosts and based on PCR-DGGE of the msp1 gene.

- Three arable soils from different regions in Germany significantly differed in

the composition of microbial communities and suppressiveness towards M.

hapla.

- DGGE fingerprints of those three German soils showed many ribotypes that

were abundant on M. hapla second-stage juveniles (J2) but not in the

surrounding soil, some of which seemed to be present in all three soils while

most were soil type specific.

- Determination by 16S rRNA amplicon pyrosequencing indicated that M. hapla

J2’s from the most suppressive German soil Kw were associated with OTU's

that were closely related to Shigella spp., while most abundant were Malikia

spinosa and Rothia amarae.
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- Following application as seed treatment, all tested bacterial antagonists of

fungal pathogens also showed antagonistic potential against M. incognita; the

highest nematode control was achieved by B. subtilis strains Sb4-23, Mc2-Re2,

Mc5- Re2 and R. etli G12.

- The top four bacterial antagonists controlled M. incognita by a combination of

mechanisms including metabolites causing nematode inhibition and repellency,

or inducing systemic resistance.
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GENERAL CONCLUSION

Plant-parasitic nematodes (PPN) are one of the most important groups of pests on many

crops worldwide. Control of PPN is difficult, especially in organic farming systems, because

feasible control methods and monitoring systems are not always available compared to foliar

diseases and insect pests. Most nematodes are soil-borne pathogens that rarely cause

symptoms on the foliage, or cause symptoms similar to water or nutrition deficiency making it

difficult to diagnose the disease. Therefore, surveillance and monitoring for PPN is an

important requisite for developing effective nematode management strategies (chapter II).

Regular monitoring of PPN will also allow to detect increasing infestation levels long before

economic damage appears but also to identify suppressive soils (chapter IV).

In this study, the occurrence, distribution and abundance of PPN associated with

different organic crops at SEKEM farm in Egypt were determined (chapter II). Our results

showed that Ditylenchus, Helicotylenchus, Hoplolaimus, Meloidogyne, Pratylenchus,

Rotylenchulus, Tylenchulus, Tylenchorhynchus, and Xiphinema occurred widely at the

SEKEM farm and threatened most agricultural crops. The commonly detected genera

Meloidogyne, Tylenchorhynchus, Rotylenchulus, Helicotylenchus and Pratylenchus in both

surveys have a broad host spectrum making their management difficult. Genera that were only

detected depending on the presence of their suitable hosts during each survey suggested that

the use of resistant or non-host crops is useful to limit their prevalence. Especially the

population densities of Meloidogyne, Rotylenchulus and Helicotylenchus reached levels that

were damaging to most crops. Other genera were detected at relatively low densities, but

might increase under susceptible crops to damaging levels within a relatively short period of

time. Overall, the monitoring identified the most common nematode taxa occurring on each
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crop grown at the SEKEM farm. Especially the wide distribution of root-knot nematodes

(RKN) across all sectors of the farm covering different crops poses a significant threat to

organic farming in Egypt. Therefore, this nematode taxe received main focus in this thesis

(chapter III, IV, and V).

Accurate identification of RKN is crucial to select the appropriate management

strategy. Within this study Meloidogyne incognita was identified as the primarily occurring

RKN species (chapter II). As populations of this species can vary a lot regarding their

virulence on resistant cultivars, further differentiation is required, which is not possible using

morphological analysis and may be uncertain using differential hosts. Within this respect, one

of the thesis objectives was to accurately and rapidly discriminate M. incognita

populations/races using molecular methods. PCR-DGGE was applied to differentiate M.

incognita populations/races originated from different countries (chapter III). These

populations and races of M. incognita differed in their reproduction rate on specific crops

and/or cultivars. PCR-DGGE of the msp-1gene amplified from those populations and races

facilitated the discrimination among them based on variants of this gene. Interestingly, the

UPGMA analysis of the DGGE patterns separated the population/races into two major groups.

Compared to principle component analysis, DGGE was more successful in separating each

population/race in a separate cluster. This indicates that DGGE is a useful tool to differentiate

M. incognita populations/races. Furthermore, it is a promising tool for studying population

genetics between and within PPN species.

Studying the interaction of root-knot nematodes with soil microbes may result in

discovering natural antagonists as potential candidates for biocontrol purpose. This might
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especially be the case when using suppressive soils. The discovery of low densities of M.

hapla in threearable soils from Germany despite the presence of a susceptible host and

suitable environmental conditions lead to in-depth studies on the biological origin of those

low nematode numbers (chapter IV). Suppressive soils are known to contain numerous

beneficial microorganisms that reduce plant-parasitic nematodes. The three German soils

were used for baiting M. hapla second-stage juveniles (J2) to determine whether specific

microbes attached to the J2 cuticle. PCR-DGGE and 454-pyrosequencing of 16S rRNA genes

techniques were useful tools to reveal diverse microbial communities attached to J2 and to

directly identify the specific attachment of bacteria and fungi without the need to culture. The

sequences of these microbes could be useful to develop cultivation methods for these species,

or for cultivation-independent analysis of the interaction with M. hapla. Results showed that

species of fungi and bacteria attached to the J2 cuticle that were not detected from the

surrounding soil, indicating a specific attachment to the nematode cuticle. Furthermore, it was

shown that differences in suppressiveness to M. hapla among the three German soils

corresponded to differences in microbial soil communities and microbes attaching to J2

cuticle. In particular, fungi and bacteria from J2’s of the most suppressive soil Kw were more

abundant and diverse than those from the other two soils. Some of those “enriched”

microorganisms have been previously reported as antagonist of root-knot nematodes. Thus

managing arable soil towards increased abundance of antagonistic bacteria and fungi could

become a substantial part in nematode control.
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Root-knot nematodes are probably the most recorded nematodes found in disease

complexes with fungal plant pathogens. Therefore, the use of microorganisms with dual

antagonism against RKN and fungal pathogens are highly desirable. This study has shown

that bacterial isolates with antagonistic activity against soil-borne fungal pathogens also

possessed antagonistic potential against the root-knot nematode M. incognita (chapter V). By

applying bacterial cells on seeds, all antagonists caused a significant reduction in numbers of

galls and egg masses on tomato compared with the untreated control. Based on seed treatment

results, the top four strains B. subtilis Sb4-23, Mc2-Re2, Mc5-Re2 and R. etli G12 were

selected for studying their mode-of action. Understanding their mechanisms in suppressing

the nematode will allow optimization of the biocontrol potential for a successful application in

praxis. Our results demonstrated that these four isolates affected nematodes by a variety of

mechanisms including direct effect by culture supernatants, repellency and induced systemic

resistance. The latter was identified as the major control mechanism of the antagonists based

on two reasons: i) In split-root experiment to compare direct antagonism and induced

systemic resistance, the co-inoculation of bacterial antagonists with M. incognita in the same

pot did not enhance suppression of the nematode compared to spatially separated inoculation;

ii) In the repellence test the effect of the antagonists was within the range of that achieved by

induced resistance, and repellance therefore did not add to this effect.
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RECOMMENDATIONS FOR FURTHER WORK.

The research that has been undertaken for this thesis has provided the following

insights for future work:

 To study dynamics and community structure of plant-parasitic nematodes

throughout the seasons in organic farms located in different regions of

Egypt.

 PCR-DGGE techniques should be developed for other effector genes of

Meloidogyne spp., which could resolve allele frequencies to differentiate

populations and study population-specific epidemiology and infectivity.

 Investigation should be strengthened to confirm if the German soils

possess specific suppressiveness against M. hapla, and if those

microorganisms attached to the nematode cuticle are involved in this

suppressiveness.

 The bacteria and fungi found to be attached to the cuticle of J2’s should be

evaluated for their biocontrol potential of M. incognita.

 The dual control potential of the three B. subtilis strains Sb4-23, Mc2-Re2,

Mc5-Re2 against M. incognita and fungal plant pathogens should be

further exploited under field conditions.
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