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Summary

Differential gene expression patterns were studied

during the ripening process of grape berries (Vitis vinifera

cv. Chardonnay). Thirty PstI + MseI primer combinations

were used to generate 213 fragments that appeared to be

differentially expressed of which 94 % were successfully

re-amplified. Reverse northern dot-blot analysis indicated

that 35 % of the fragments had similar gene expression

profiles to cDNA-AFLPs regarding developmental-stage

specificity. Northern blot analyses confirmed the tissue and/

or developmental stage specific expression of three of these

cDNA fragments. This work illustrates that developmentally

regulated sequences can be identified from grape berry

tissue using cDNA-AFLP technology.

K e y    w o r d s :  differential expression, cDNA-AFLP, berry

ripening, Vitis vinifera.

Introduction

The understanding of the regulation of gene expression

during fruit development has important agricultural implica-

tions. Fruit-specific genes can be used as molecular tools to

modify the fruit ripening process (EDWARDS and CORUZZI 1990).

Methods such as differential screening have been used to

identify and isolate differentially expressed sequences/genes

in grape berries during ripening (DAVIES and ROBINSON 2000).

Other methods used for the identification of differentially

expressed sequences include random sampling, subtraction

cloning and differential display. All these methods are in-

valuable tools to select differentially expressed sequences

but some of them suffer several drawbacks including the

fact that these methods are labor intensive and time con-

suming (SAGERSTRÖM et al. 1997). cDNA-AFLP technology

largely overcomes these limitations, produces more reliable

results than differential display (HABU et al. 1997) and is a

broadly applicable technique for the identification of

developmentally regulated genes (BACHEM et al. 1996). How-

ever, the suitability of this methodology has been evaluated

in a very limited number of plant species.

With respect to grape, a non-climacteric fruit, extensive

research on fruit ripening has been conducted to identify

certain biochemical and physiological changes during de-

velopment (COOMBE 1992). Major changes in several charac-

teristics (shape, size, colour and metabolic changes) occur

during fruit development and ripening which eventually have

an effect on taste and quality (ARCHER 1981). However, suc-

cess in biotechnological applications will only be possible if

a better understanding is gained in the biochemical control

and gene expression patterns in grape berries.

The implementation of an effective gene manipulation

strategy is dependent on the isolation and characterization

of genes that are specifically expressed in grape berry tis-

sue. In this article we report on the isolation of differentially

expressed fragments. It will be shown that the cDNA-AFLP

technique allows the rapid identification of differentially ex-

pressed genes during grape berry ripening.

Material and Methods

P l a n t   M a t e r i a l :  Grape berries (Vitis vinifera L. cv.

Chardonnay) were collected at 6 dates during development.

The first date was 26 d after anthesis, the last when berries

reached maturity (105 d after anthesis). Berries were

deseeded, crushed in liquid nitrogen and stored at -80 °C

until use.

S u g a r   a n d   o r g a n i c   a c i d   e x t r a c t i o n :  50 mg

of frozen material was transferred to 2 ml Eppendorf tubes

and suspended in 1.5 ml 80 % (v/v) EtOH containing 100 mM

Hepes (pH 7.5) and 20 mM MgCl
2
. The suspension was

incubated at 70 oC for 14 h and the insoluble material re-

moved through centrifugation.

H P L C   a n a l y s i s :  Sugars and organic acids were

prepared for HPLC as previously described (WHITTAKER and

BOTHA 1997). All analyses were conducted on a Shimadzu

SCL-10AVP HPLC system. Sugars were separated for 20 min

on a SupelcoTM LC-NH
2
 column using with 80 % (v/v)

acetonitril as the mobile phase and a flow rate of 1.2 ml·min-1.

Sugars were quantified by differential refractometry

(Shimadzo RID-10A). Organic acids were separated over a

15 min period on a Aminex ion exclusion HPX-87H column

with 0.02 M H
2
SO
4
 as the mobile phase, flow rate 0.6 ml·min-1.

Organic acids were quantified by UV spectrometry at 210 nm

(Shimadzo SPD-10AVP UV/Vis).

R N A   i s o l a t i o n   a n d   c D N A   s y n t h e s i s :  Total

RNA was extracted from 4 g of ground, frozen berry material

by a modified Na-perchlorate method (REZAIAN and KRAKE

1987). The extraction buffer contained 5 M sodium

perchlorate; 1M Tris-HCl (pH 8.3); 10 % (m/v) SDS; 20 %
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(m/v) PEG 6000; 10 % (m/v) PVPP and 1 % (v/v)

b-mercaptoethanol. RNA was quantified fluorometrically

(BIO-TEK® Instruments Inc., Winooski, Vermont, USA) and

quality was visualised in ethidium bromide-stained 2 %  (m/v)

agarose gels.

5 mg total RNA, from each tissue sample, were used for

first strand cDNA synthesis (Superscript�II, GibcoBRL Life

Technologies Inc., Gaithersberg, MD, USA) followed by

second strand cDNA synthesis (Universal Riboclone®

cDNA synthesis system, Promega Corporation, Madison,

USA).

c D N A - A F L P   a n a l y s i s :  All AFLP-associated

procedures were carried out according to a modified method

(VOS et al. 1995).

Double strand cDNA templates were digested with 2.5 U

of both MseI and PstI restriction enzymes at 37 °C over-

night. Non-phosphorylated adaptor sequences were ligated

to the restriction fragments at 20 °C overnight. The restric-

tion-ligation products were subjected to 30 cycles of pre-

amplification (94 °C denaturation, 30 s; 56 °C annealing, 1 min;

72 °C polymerization, 1 min) using primers with no selective

nucleotides to obtain a sufficient amount of template. The

pre-amplification products were diluted 1:10 with 1 x TE

(10 mM Tris pH 8.0; 0.1 mM EDTA) and visualized in ethidium

bromide-stained 1.5 % (m/v) agarose gels with expected sizes

ranging from 100 bp to 1000 bp. The PstI forward primer was

radioactively labelled using 0.5 mCi g33P-ATP. Selective am-

plification was performed with 30 combinations of PstI primer

(5'-GACTGCGTACATGCAG+N-3') and MseI primer

(5'-GATGAGTCCTGAGTAA+N-3') extensions where �N� rep-

resent two or three selective nucleotides (Tab. 1). Thirty-

five cycles of amplification (12 cycles: 94 °C denaturation,

30 s; 65 °C annealing, 30 s; 72 °C polymerization; 1 min then

23 cycles: 94 °C denaturation, 30 s; 56 °C annealing, 30 s;

72 °C polymerization, 1 min) were carried out where the an-

nealing temperature was lowered gradually from 65 °C to

56 °C at which efficient primer binding occurs. Thermocycling

was started at 65 °C annealing temperature for optimal primer

selectivity.

Amplified products were heated at 95 °C for 5 min after

addition of an equal amount of formamide dye (98 % (v/v)

formamide, 10 mM EDTA pH 8.0 and 1 mg·ml-1 each of

bromophenol blue and xylene cyanol) and immediately

chilled on ice. Fragments were separated in 5 % (m/v) dena-

turing polyacrylamide gels and all gels were developed at

80 W for about 100 min. Gels were dried on to Whatman 3M

paper on a slab gel dryer (Biorad Laboratories Inc., Hercules,

CA, USA).

Radioactively labelled cDNA fragments were visualized

on BioMAX MR film (Eastman Kodak Company, Rochester,

New York) after exposure times ranging between 18 h and

72 h. Fragments that appeared to be selectively expressed

were excised from the dried gels. cDNA was recovered from

each band after heat treatment of 95 °C in 30 ml distilled

water for 10 min. Fragments were re-amplified using the same

selective primers and PCR conditions as used in the initial

pre-amplification procedures and all re-amplified cDNA frag-

ments were visualized in ethidium bromide-stained 2 % (m/v)

agarose gels.

R e v e r s e   n o r t h e r n   d o t - b l o t   a n a l y s i s :

A total of 192 fragments were selected and 2 ml of each re-

amplified cDNA product was dot blotted on a nylon mem-

brane (Boehringer Mannheim, Mannheim, Germany) in a

2 x 96 well PCR-plate configuration. Seven identical mem-

branes were prepared. cDNA were denatured (1.5 M NaCl;

0.5 M NaOH), neutralized (1 M Tris pH 7.4; 1.5 M NaCl),

rinsed in 2 x SSC (0.15 M NaCl; 0.015 Tri-sodium citrate

pH 6.8; citric acid) and UV cross-linked before hybridization

began.

Single strand cDNA probes were prepared from 5 µg

total RNA at each stage of berry ripening and leaf samples

using reverse transcriptase and an equimolar mix of primer

5'-AGTCTGCAGT
12

-N-3', with �N� representing A, C or G

respectively (Superscript�II, Gibco BRL Life Technologies

Inc., Gaithersberg, MD, USA). Modifications regarding

10 mCi 32P-dCTP incorporation were made in our laboratory.

Equal counts (1.5 x 107 cpm·ml-1) of cDNA probes were used

to probe the membranes. Hybridization was visualized by

autoradiography. Dot intensities of sequences were analyzed

using the AlphaImager�2000 documentation and analysis

system (Alpha Innotech Corporation, San Leandro, USA).

Fragments were selected according to fruit-specificity and/

or abundant expression. Promising fragments based on dif-

ferential expression were cloned using pGEM®-T Easy Vec-

tors (Promega Corporation, Madison, USA) to be used for

Northern analysis.

S e q u e n c e   a n a l y s i s :  Selected cDNA clones were

sequenced (ABI PRISM� dye terminator cycle sequencing)

using a reaction kit with AmpliTaq® DNA polymerase (The

Perkin Elmer Corporation, Norwalk, USA). The cDNA se-

quences were edited to discard the vector/linker and primer

sequences.

N o r t h e r n   b l o t   a n a l y s i s :  Northern blot

membranes were prepared using total RNA (visualised in

ethidium bromide-stained 1 % (m/v) agarose gels) of berries

at grape ripening stages 1 to 6 and young grapevine leaves

T a b l e  1

Total PstI and MseI primers used in combinations with two or

three selective nucleotides

PstI primer extension/s MseI primer extension/s

1) GT* CAA, CAC, CAG

2) CT* CAA, CAC, CAG

3) GTA TG, CAT, CTG

4) TTT TG, CAT, CTG

5) TTT, GTA, GT CA

6) GTA* CAA, CAC, CAG

7) GA CAA, CAC, CAG

8) GC CAA, CAC, CAG

9) GT TG, CAT, CTG

10) TTT CAA, CAC, CAG

*PstI-primer extensions +GT, +CT and +GTA in combinations

  with MseI-primer extensions +CAA, +CAC and +CAG which

  generated the highest amount of polymorphic fragments.



and roots (10 mg per track). RNA was transferred to a posi-

tively charged nylon membrane (Boehringer Mannheim) by

upward capillary blotting (SAMBROOK et al. 1989) using

10 x SSC (standard saline citrate). The RNA was UV cross-

linked and all hybridization (using ULTRAhyb�

ultrasensitive hybridization buffer) and washing procedures

were carried out as described by the manufacturer (Ambion,

Austin, USA). For preparation of probes, the re-amplified

fragment of interest was radioactively labelled using 25 mCi

[a-32P] dCTP by 4 cycles re-amplification PCR using the

same conditions as used in the initial pre-amplification pro-

cedures of this study. Hybridization was visualized using

the Cyclone� Storage Phosphor System (Packard Instru-

ment Co., Inc., Meriden, USA).

Results and Discussion

S t a g e s   o f   f r u i t   d e v e l o p m e n t :  It is evident

that the berries collected at stages 1 and 2 are typical berries

prior to veraison, i.e. they contain similar levels of reducing

sugars and sucrose and high levels of acid (Tab. 2). Stage 3

is characterised by a very rapid increase in both, glucose

and fructose and a decrease in malate levels. Stage 6 repre-

sents fully ripened fruit where total sugars are in excess of

15 % of the total fresh mass and the acid levels are low.

c D N A - A F L P   a n a l y s i s :  Total RNA was extracted

from grape berry tissue and a decline of RNA yield (24 mg·g-1

to 2.75 mg·g-1 fresh weight) could be observed over the pe-

riod from early to late berry ripening stages. cDNA pre-am-

plification products ranged in size from 200 bp to 1 kbp. For

cDNA-AFLP PstI and MseI in combinations according to

different selective nucleotide extensions on the primers were

used. Although 6-bp restriction enzyme recognition sites

would be present in only a minimal fraction of cDNA species

(HABU et al. 1997), we retrieved 213 putative polymorphic

bands with the primer combinations used for this study.

cDNA-AFLP reproducibility was examined by compar-

ing reaction products that were derived from two sets of

independent samples of total RNA, prepared from early and

late developmental stages. Two different primer combina-

tions, PstI +CT with MseI +CAT and +CTG gave identical

band patterns (Fig. 1). A total of 213 polymorphic fragments

were isolated after visual analysis of cDNA-AFLP profiles

using 30 PstI + MseI primer combinations. PstI-primer exten-

sions +GT, +CT and +GTA in combinations with MseI-primer

extensions +CAA, +CAC and +CAG generated the highest

amount of polymorphic fragments. Stage-dependent expres-

sion as well as the gradual increase or decrease of gene

expression intensities were observed (Fig. 2). cDNA-AFLP

analysis conducted over the 6 stages of berry development,

verified the presence or absence of bands at different ripen-

ing stages. This analysis was repeated in leaf material from

the same cultivar. Ninety-four percent of all the fragments

excised, could successfully be re-amplified (Fig.3).

T a b l e  2

Sucrose, glucose, fructose and malate levels in the grape berries isolated at different stages during development and ripening.

Each value is the average (± SD) of three extractions

Stage Sucrose Glucose Fructose Malate

mol g-1 fresh weight

1 21.0 ± 2.65 21.3 ± 2.08 23.3 ± 2.08 286.7 ± 30.55

2 19.3 ± 1.53 25.7 ± 1.53 24.0 ± 2.65 328.3 ± 16.07

3 17.3 ± 1.53 214.0 ± 12.29 211.3 ± 8.74 195.0 ± 13.23

4 19.0 ± 3.61 300.7 ± 11.02 330.0 ± 26.46 158.3 ± 18.93

5 18.7 ± 3.51 352.0 ± 14.11 355.0 ± 21.79 108.3 ± 10.41

6 25.3 ± 1.53 366.3 ± 14.57 392.7 ± 22.48 63.3 ± 18.93

Fig. 1: Four sections of an autoradiograph with primer combina-

tion PstI +CT with MseI +CAT (A) and PstI +CT with MseI

+CTG (B). Reproducibility examined with two independent total

RNA samples of stage 1 (lanes 1 and 2 and lanes 5 and 6) and two

independent total RNA samples of stage 5 (lanes 3 and 4 and lanes

7 and 8).
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R e v e r s e   n o r t h e r n   a n d   d i f f e r e n t i a l

e x p r e s s i o n   a n a l y s i s :  The reverse northern dot-blot

technique is an effective method to test the feasibility of

differential screening (ZHANG et al. 1996). Dot-blot results

confirmed changes in gene expression patterns from early

to late stages of berry development (Fig.4).

Reverse northern dot-blot analysis revealed the pres-

ence of the 98 most abundantly expressed fragments of which

58 were only expressed in the berry and not in the leaf, and

designated as 'fruit-specific' during this study. Expression

levels of 10 randomly chosen fragments were examined

(Fig. 5). Analysis over a period of early to late stages of

berry development revealed that 60 % (Fig. 5, fragments

A, B, C, E, H, and I) of these fragments showed differential

gene expression patterns similar to cDNA-AFLP profiles.

Collectively these data indicate that approximately 35 % of

the fragments identified during the initial cDNA-AFLP analy-

sis are truly differentially expressed. Most of the fragments

analyzed (Fig.5, fragments A, B, C, D, E, F, H and I) showed

an increase of expression levels from early to late develop-

ment with the highest expression occurring in the late stages

of ripening. Some fragments (Fig.5, fragments G and J) re-

vealed high expression levels in both early and late stages

of berry development with lower expression between stages

1 and 6.

N o r t h e r n   b l o t   a n d   s e q u e n c e   a n a l y s i s :

Ten PCR fragments, abundantly differentially expressed as

visualized with reverse northern analysis, and irrespective

of their tissue and/or stage specificity, were selected and

successfully cloned (Fig.6). Fragments excised from dried

polyacrylamide gels usually contain more templates than

the desired one, therefore two clones of each PCR product

were isolated and successfully re-amplified. A total of

20 cloned fragments, designated as M1.A/M1.B to

M10.A/M10.B (Fig. 6), were sequenced and analyzed

(Tab. 3). Sequence-search (ALTSCHUL et al. 1990) results re-

vealed two of the clones, M2.B and M8.A, to be homo-

logues to known grape ripening related �Grip� genes (DAVIES

and ROBINSON 2000) and fragment M10.A had homology to a

H+-pyrophosphatase gene from Vitis vinifera (AF 192308.1).

These three cDNA clones, M2.B, M8.A and M10.A, which

had sequence similarity to grape genes were used as probes

for northern blot analysis (Fig. 7). Fragment M10.A showed

constitutive expression during berry ripening but was not

Fig. 2: Autoradiograph sections with primer combination PstI +GT

and MseI +CAC showing (A) stage-specific expression and primer

combination PstI +CT and MseI +CAA showing (B) gradual change

of expression levels from early to late stages of grape develop-

ment. Lanes 1 to 6 represent cDNA from ripening stages 1 to 6 and

lane 7 is cDNA from young, field-grown leaf material.

Fig. 3: Fragments excised and re-amplified with primer combina-

tion (A) PstI +GTA and MseI +CAC and (B) PstI +GTA and MseI

+CAA. CDNA fragments range in sizes from 100 bp to 500 bp.

Lane 1 is the 100 bp DNA ladder (Promega Corporation, Madison,

USA).

Fig. 4: Identical sections of original reverse northern blot membranes with examples of (A) stage-specific and (B) constitutive gene

expression during berry ripening. Sections 1 to 6 represent membranes probed with cDNA from ripening stages 1 to 6 and

section 7 probed with cDNA from young leaf material.



T a b l e  3

Putative sequence identities of clones M1A/B to M10.A/B. The clones of 5 selected PCR products M1, M4, M5, M6

and M9 were identical

Clone no. Length (bp) Sequence similarity (accession no.)

M1.A=M1.B 296 Arabidopsis thaliana unknown protein (MBK23.13/AT5g41600) mRNA

(AY035169.1)

M2.A 62 Arabidopsis thaliana chromosomeII section 208 of 255 of the complete

sequence (AC005499.2)

M2.B* 237 mRNA for putative proline-rich cell wall from Vitis vinifera (AJ237982.1)

Similarity to genes �Grip� 3, 4, 13 and 15

M3.A 291 No significant similarity to plant sequences

M3.B 308 No significant similarity to plant sequences

M4.A=M4.B 179 Arabidopsis thaliana DNA, chromosome 5, BAC clone F21E1 (AL391716.1)

M5.A=M5.B 315 Bradyrhizobium japonicum putative epoxide hydrolase EphB (ephB),

putative stress-induced protein Ohr (U33833.2)

M6.A=M6.B 193 Arabidopsis thaliana genomic DNA, chromosome 5, P1 clone:MNB8

(AB018116.1)

M7.A 173 Arabidopsis thaliana chromosome 1 BAC T22A15 genomic sequence

(AC021666.5)

M7.B 170 Arabidopsis thaliana unknown protein (F12M12_190/AT3g46220) mRNA

(AY034937.1)

M8.A* 292 mRNA for putative ripening-related protein from Vitis vinifera (AJ237986.1)

Similarity to gene �Grip� 31

M8.B 272 No significant similarity to plant sequences

M9.A=M9.B 128 No significant similarity to plant sequences

M10.A* 289 mRNA for H+-pyrophosphatase from Vitis vinifera (AF192308.1)

M10.B 289 Rafflesia pricei 19S ribosomal RNA gene, mitochondrial gene for mitochondrial

rRNA (U96694.1)

*Fragments of which gene expression profiles were evaluated during berry maturation (Fig.7).

Conclusion

The reverse northern dot-blot technique confirmed dif-

ferential expression similarity of isolated fragments to cDNA-

AFLPs. Both methods used in conjunction, proved to be

powerful and effective tools to identify and screen large

quantities of polymorphic bands in grapevine. Northern blot

results confirmed tissue and/or stage specific expression

verifying the authenticity of the selected differentially ex-

pressed sequences. As mentioned before, a putative, poly-

Fig. 5: Gene expression patterns, only visible in the berry, of 10 ran-

domly selected sequences (A to J) from early to late berry devel-

opment (stage 1 to stage 6).

present in leaf RNA. Fragments M8.A and M2.B were fruit-

specific and showed gradual increase and stage specific

expression patterns during ripening.

It has been shown in another study (SINGH and CHEAH

2000), using the differential display technique (LIANG and

PARDEE 1992), that the lack of homology to known sequences

in GenBank could be due to the fact that the cloned cDNAs

were only fragments (200-600 bp). However, in this study we

obtained partial cDNAs (62-315 bp) of which only 4 se-

quences showed no homology to known plant sequences.

Other cDNAs had homology to genes from Vitis vinifera

and to known DNA sequences, mostly from Arabidopsis

thaliana. Sequences M1 and M7.B (Tab. 3) had similarity to

expressed but as yet unidentified proteins. Analyses have

also revealed sequence similarity to a putative epoxide hy-

drolase EphB gene from Bradyrhizobium japonicum which

could be stress-induced and to a 19S ribosomal RNA gene

from Rafflesa pricei (Tab. 3).
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morphic fragment initially excised from the dried gel, could

be a mixed template and this can be considered as a major

drawback. Therefore, cloning of excised fragments is a pre-

requisite for final evaluation and analysis. Nevertheless, re-

sults obtained during northern blot and sequence analysis

suggest that the cDNA-AFLP method is a fast and reliable

technique for identifying differentially expressed genes of

grapevine.
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Fig. 6: Numbers 1 to 10 represent the 10 most abundantly ex-

pressed PCR fragments isolated after dot-blot analysis. Two am-

plified clones (A and B) of each PCR product can be visualized.

Lanes m1 and m2 are the molecular weight markers III and V

respectively (Boehringer Mannheim, Mannheim, Germany).

Fig. 7: Northern blot results of selected, tissue-specific fragments

(marked by asterisks in Tab. 3) expressed constitutively M10.A

and differentially M2.B and M8.A. Panels I and II show approxi-

mately equal amounts of intact total RNA with lanes 1 to 6 repre-

senting RNA from ripening stages 1 to 6 and lanes 7 to 8 represent-

ing RNA from young leaf and root material respectively.


