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Summary

Self-organizing maps generated by Kohonen neural net-

works provide a method to transform multidimensional prob-

lems common in ampelography into lower dimensional prob-

lems. In this study the clustering efficiency of Kohonen

neural networks was evaluated to characterize and identify

10 Sangiovese-related and 10 �coloured� (fruit gives in-

tense red colour to the wine) grapevine accessions, on the

basis of the elliptic Fourier coefficients of the leaves. The

non-supervised learning algorithm used allowed a priori

classification of the accessions. The results enabled us to

distinguish between 16 accessions and to denote two pairs

of synonyms. To obtain quantitative information regarding

relationships among these accessions, Kohonen neural net-

works were trained with different numbers of neurons in

the Kohonen output layer permitting the graphical repre-

sentation of the similarity by construction of a dendrogram.

In agreement with previous studies based on molecular

markers and neural network technology, a high similarity

was found for the ecotypes (1) Prugnolo acerbo, Prugnolo

dolce  and Prugnolo medio and (2) Brunelletto and Prugnolo

gentile. Among the Sangiovese-related accessions the so-

called Casentino ecotype diverged from all the others, prob-

ably indicating a different origin. Producing easily com-

prehensible low-dimensional maps, the Kohonen neural net-

works approach proposed here allows to study complex

ampelographic data elucidating relationships that can not

be detected by traditional data analysis tools.

K e y    w o r d s :  ampelography, Kohonen network, cultivar

identification, neural network, Vitis vinifera.

Introduction

The number of methods to classify and identify grape-

vine varieties has increased rapidly in the last two decades.

Ranging from classical OIV-IBPGR-UPOV charts (e.g.  ANONY-

MOUS 1983) to isoenzymatic  markers (SUBDEN et al. 1987;

BENIN et al. 1988) or molecular characterization by DNA analy-

sis (BOWERS et al. 1993; THOMAS et al. 1994; XU et al. 1995),

numerous methods to distinct between the different grape-

vine genotypes have been proposed.

Recently the use of Backpropagation Neural Networks

(BPNN) on the basis of phyllometric parameters has been

proposed for grapevine, olive and chestnut genotypes

(MANCUSO et al. 1998, 1999; MANCUSO 1999 a; MANCUSO and

NICESE 1999). The internal representation used by these net-

works are non-linear and are built up by a learning process

based on examples. Moreover, the learning method used is a

supervised learning process, and relies upon an existing

structural classification. In other words, the BPNN learn to

classify examples in a priori defined structural classes; in

the case of phyllometric parameters these classes are most

often represented by varieties. However, the definition of

structural classes may disregard possible relationships or

similarities between the accessions which could be impor-

tant in ampelography.

Conventionally, at least in viticulture, reduction of

multivariate data is normally carried out using principal com-

ponents analysis or hierarchical clustering analysis (EVERITT

1993). Nevertheless, it is difficult to handle the high interde-

pendence of phyllometric variables by statistical methods.

Methods based on decision trees are also not suitable for

ampelographic interpretation, since they lead to a sharp di-

vision of the populations analysed. Kohonen neural net-

works seem not to suffer from the problem encountered by

the other methods and is used in many domains for data

classification (KOHONEN 1984;  JONGMAN et al. 1995).

There are many different types of Artificial Neural Net-

works (ANN) and a common feature is that once structured

for a particular application they must be trained. There are

two approaches to training, supervised and unsupervised.

The most often used ANN is a fully connected supervised

network with a backpropagation learning rule, which works

excellently for prediction and/or classification tasks (see for

example MANCUSO et al. 1998). Another extensively used

ANN is the Kohonen network (or Self Organising Map) that

uses an unsupervised learning process: it requires no a pri-

ori information on classes and therefore classifies examples

only by intrinsic characteristics.

After a short introduction to Kohonen networks and its

learning process, the present work shows results obtained

by using the elliptic Fourier coefficients (MANCUSO 1999 a)

of  leaves as input in a Kohonen neural network for the

clustering of grapevine genotypes.

Material and Methods

P l a n t   m a t e r i a l   a n d   i m a g e   a c q u i s i t i o n :

The study was carried out with 9 putative Sangiovese-re-

lated ecotypes, the registered clone Sangiovese R 10 and

10 accessions of �coloured� grapevines (fruit gives intense

red colour to the wine). The 20 ecotypes (Tab. 1) which were
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utilised in previous studies (MANCUSO et al. 1998; MANCUSO

1999 a, b) and characterised by DNA marker technology

(SENSI et al. 1996), were selected because they offered the

possibility to verify the Kohonen neural network technique.

Samples were collected from the grapevine germplasm

collection of the Department of Horticulture of the Univer-

sity of Florence. At veraison, from 15 plants per accession

65 fully expanded, healthy looking leaves, located between

the 7th and 11th node (ALLEWELDT AND DETTWEILER 1986) were

selected according to uniformity of appearance, growth habit

and exposure.

Leaf images were acquired at 360 x 360 d.p.i., 256 gray

scale, by using an optical scanner. The contour for each leaf

(xy-coordinates of 1500 points equally spaced) was then

obtained by image analysis.

E l l i p t i c   F o u r i e r   a n a l y s i s  (EFA) :  In the present

study EFA was performed to calculate the first 100 harmon-

ics and a total of 400 coefficients (4 per harmonic) for each

leaf using the method previously described in MANCUSO

(1999 a). The contribution of the 400 EF coefficients was

redistributed in 13 logarithmically spaced intervals (DIAZ et al.

1991) including the following harmonics: 1, 2, 3, 4, 5-6, 7-8,

9-12, 13-17, 18-24, 25-34, 35-49, 50-69, 70-100. The 52 result-

ing (4 coefficients x 13 intervals) elliptic Fourier coefficients

for each outline was then treated as inputs in a Kohonen

neural network.

K o h o n e n   n e u r a l   n e t w o r k :  This section will

recall only the basic principles of Kohonen networks in or-

der to give a short account of Kohonen�s SOM (Self-Organ-

ising Maps). For a complete definition and discussion, see

KOHONEN  (1984) and SMITH (1994).

In the brain of mammals, i.e. in areas of the neurocortex,

neurons are organised in a way that reflects some physical

characteristics of the signals that stimulate them. Of all ANN

architectures and learning schemes, the Kohonen ANN re-

sembles the biological NN probably most closely (KOHONEN

1984). Self-organizing feature maps or Kohonen networks

are designed to map or project input signal vectors of arbi-

trary dimension onto a structured set of processing units,

�neurons�. These units interact in such a way that the final

trained network produces an output pattern which exhibits

topological relationships of the set of input vectors. In sim-

pler terms, input signals originating from similar cases

(which can be thought of as neighbouring points in the multi-

dimensional space spanned by the components of the input

vectors) are projected onto neighbouring neurons.

Fig. 1 depicts schematically the principle of such a net-

work. There are input neurons (organized in a linear array

sometimes called �retina�) which establish the interface be-

tween the network and the world outside. They serve to

enter the data vectors into the model. For a specific problem

one uses as many input neurons as are needed; in the present

study, processing 52 elliptic Fourier coefficients on each

leaf, 52 such neurons were used. The number of leaves proc-

essed in the training phase was 60 for each genotype.

T a b l e  1

Grapevine accessions included in this study

Coloured accessions Sangiovese-type accessions

1 Abrostine 11 Prugnolo gentile

2 Abrusco 12 Brunelletto

3 Colorino americano 13 Prugnolo acerbo

4 Colorino di Lucca 14 Prugnolo dolce

5 Colorino di Pisa 15 Prugnolo medio

6 Grand noir 16 Casentino

7 Granoir 17 Chiantino

8 Morone 18 Morellino

9 Nereto 19 Morellino di Scansano

10 Tinturié 20 Sangiovese R10

Fig. 1: An example of Kohonen-type neural network architecture.

The elliptic Fourier coefficients describing leaves of different geno-

types are applied to the input layer (represented here by 8 neu-

rons; in the present work the number of neurons was actually 52)

which activates a neuron or a group of neighbouring neurons in the

Kohonen layer (represented here as having 3 x 3 neurons).

The input neurons send the incoming information, modi-

fied according to the specific synaptic weight factors, onto

a two-dimensional array of neurons which is somehow

topologically related to each other in a way that neighbour-

hood relationships are defined (simple rectangular scheme

was used). These neurons constitute the �Kohonen layer�

and they, upon receiving information from the input neu-

rons, become activated. The Kohonen technique applies a

�winner take all strategy�, i.e. the neuron responding

maximally to a given input is allowed to adjust its weight

factors such that its response to a repeated stimulation with

the same input will be even stronger. Few surrounding neu-

rons are allowed to participate in this learning step; all other

neurons do not adjust their synaptic weights during this

step.

Thus, the network adjusts its internal connections (via

the weight factors) autonomously, without reference to an

external �teacher�. The whole process is driven only by re-
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peated representations of the input vectors and the applied

learning rule. Interestingly, by doing so, an internal struc-

ture of the network emerges which allows visualisation of

topological relationships hidden in the input data set.

There are many variations of basic algorithm of com-

petitive learning. In the present study the one implemented

in the �Stuttgart Neural Network Simulator, SNNS� was used.

A technically oriented description of the algorithm can be

found in the SNSS user manual.

Of the 65 leaves per accession studied, 60 were used in

the Kohonen learning phase and 5 for the verification phase.

Results and Discussion

The result of the Kohonen network is a 2-dimensional

map of neurons each of which carries a �label� that has

excited it at the final verification test. It is expected that

neurons excited by leaves of the same class (accession) will

form clusters of small regions on such a map. If the test leaf

falls into such a cluster it can be classified as belonging to

the group that forms this cluster. The regions with neurons

not excited by any object between two or more excited re-

gions are called empty spaces. Empty spaces do not appear

only between classes, they can be located within the region

of a class as well.

After trying several Kohonen architectures: 9 x 9, 10 x 10,

etc., a good separation between all 20 accessions studied

was obtained with a Kohonen architecture having a layout

equal to or larger than 13 x 13. After the Kohonen learning

was completed, the EFA parameters of 100 leaves (5 for each

accession) were sent through the 13 x 13 final Kohonen

neural network and the excited neurons were marked by the

label specific for each grapevine accession. In this way the

map shown in Fig. 2 was obtained.

The separation and identification of all accessions was

very good, except for Grand noir and Granoir (labeled by

#6 and #7) which are obviously synonyms (MANCUSO et al.

1998) and Abrostine and Abrusco (#1 and #2) which were

supposed to be two clones of the same vine variety (MANCUSO

et al. 1998).

Although a single Kohonen network provides no quan-

titative information on the similarity of the accessions within

groups, they do provide qualitative information about the

groups. By using Kohonen layers of increasing sizes, finer

discrimination may be sought and therefore some quantita-

tive information can be obtained. Thus, networks with

Kohonen layers of 1 x 1, 1 x 2, 2 x 2, 3 x 3, �.. 13 x 13 neurons

were used to group the accessions. The details of the clus-

ter formed at the 14 different discrimination levels are given

in Tab. 2. When analysing many samples these tables are

often difficult to interpret and it is therefore necessary to

display the results in a more simplified graphical representa-

tion. It is evident from Tab. 2 that quantitative information

on accession relationships can be elucidated, thus it should

be possible to depict these details in a dendrogram format.

The construction of the dendrogram (Fig. 3) begins when

only a single neuron is used in the Kohonen layer and all

20 accessions necessarily group together; by increasing the

number of neurons in the output layer of the network more

detailed discrimination is found and, finally, if the number

of neurons in the output layer was 169 (13 x 13) all acces-

sions were recovered separately except for the synonymy

cases (Grand noir and Granoir; Abrusco and Abrostine).

The dendrogram separated early two different groups

among the grapevine genotypes. The first group comprises

the coloured accessions while the second group consists of

all the Sangiovese-related ecotypes. In each of the two

groups an intruder was found: Casentino in the first group

and Morone in the second group. However, the affiliation of

Casentino to the Sangiovese group is quite doubtful and

previous works showing the high degree of divergence of

Casentino from the other Sangiovese-related ecotypes, sug-

gested a different origin for this accession (MANCUSO 1999

a, b).

Regarding the presence of Morone in the Sangiovese

group, it must be pointed out that the coloured accessions

do not have the same origin, being linked only by the in-

tense red colour of fruit and wine, thus the presence of the

Morone in the Sangiovese group could be due either to a

common origin or to a mere morphological similarity.

The results showed a high degree of relatedness both

for Prugnolo acerbo, Prugnolo medio, Prugnolo dolce and

for Brunelletto and Prugnolo gentile which agrees with the

results of studies based on molecular markers (SENSI et al.

1996) and on backpropagation neural networks (MANCUSO

1999 a).

The method of identification and classification of grape-

vine accessions using unsupervised learning with artificial

neural networks has proved to be a reliable and effective

analysis tool. Kohonen mapping of EFA parameters allows

to distinct between vine accessions and to obtain natural

grouping inside the data set. Applied to unlabeled data that

contain only input data directly from EFA parameters, it pro-

Fig. 2: The final 13 x 13 self-organizing map. There is a clear

separation of each of the 20 accessions, except in the case of prob-

able synonymy of Abrostine (#1) and Abrusco (#2) and Grand

noir (#6) and Granoir (#7) (circled). For labels of the grapevine

accessions see Tab. 1.
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vides unambiguous clustering on a two-dimensional plane.

In term of grouping the input data, the Kohonen network

could resemble to conventional multivariate statistical meth-

ods. From the aspect of reducing dimension it is similar to

Principal Component Analysis (PCA). MELSENN et al. (1993)

mentioned, however, that using a great number of data vari-

ables may result in a large number of significant principal

components in PCA so that it may not retain sufficient infor-

mation if only a few principal components are used for visu-

alising the multidimensional data space. LOHNINGER and

STANEL (1992) compared the Kohonen mapping and the

k-nearest neighbour clustering in classification of mass spec-

tral data in chemical compositions. They reported that the

former was superior in all cases tested. This might be due to

the fact that the classes did not form distinct clusters but

had rather large areas of data space in common, and this

overlap might be a disadvantage for k-nearest clustering.

In conclusion, the construction of self-organized maps

allows both identification of �unknown� grapevine acces-

sions and close examination of the relationships existing

among them. The effectiveness of Kohonen networks in

producing easily comprehensible low-dimensional maps ex-

tracting essential features out of complex data sets, may be

especially helpful in comprehensive understanding of

ampelographic data allowing to elucidate relationships that

can not be detected by traditional data analysis tools.
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