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Summary

A technique was developed (1) to digitise grapevine

leaves, (2) to split the images obtained in the three compo-

nents of the RGB (red, green and blue) colour system, ob-

tain the fractal spectrum for each colour component of the

leaf and (3) to calculate 15 different fractal parameters.

The system, consisting of a scanning device, a personal

computer and the code written in the C language, was then

tested to characterize and identify 12 Sangiovese-related

grapevine accessions. The results enabled us to distinguish

between all accessions with a better discrimination than

that obtained in previous studies with molecular markers

or elliptic Fourier analysis. More, all the fractal param-

eters calculated for leaves of Sangiovese R10 grown in very

different environments did not show any significant modifi-

cation, revealing that fractal features can be considered

environment-independent. The fractal analysis approach

proposed, on the basis of the results obtained, gives the

opportunity to verify the characters of distinction, uniform-

ity and stability (DUS) requested by the Union for the Pro-

tection of Plant Varieties (UPOV) before plant breeders

rights are granted.

K e y   w o r d s :  ampelography, fractal spectrum, cultivar

identification, shape analysis, Vitis vinifera.

Introduction

The application of the fractal dimension to describe the

structure of biological objects has been reported by several

scientists (LOGAN and WILKINSON 1990; MOGHADDAM 1991;

AVNIR et al. 1992; COX and WANG 1993; ANDERSON et al.

1996; SMITH et al. 1996). Classic fractal analysis involves

estimation of the perimeter of an object using rulers of dif-

ferent lengths. As the size of the measuring unit decreases,

the estimated perimeter increases. These data, plotted as

log of perimeter versus log of measuring unit are linearly

codependent. This is known as the Richardson plot and the

fractal dimension = D, where 1-D is the slope of the regres-

sion line. This is illustrated by the 'Coast of Britain' effect

which, although reported by Lewis Richardson in the 1920s,

was not widely known until the publication of Benoit

Mandelbrot�s seminal work, 'The Fractal Geometry of Na-

ture' (MANDELBROT 1977).

Judging by the wealth of publications, the concept of

fractal scaling is well understood and has been succesfully

applied for the characterisation of structures and processes

in plants (MANCUSO 1999 a; HORGAN 2001; RICE et al. 2001).

The classical approach in the description of complicated

structures such as grapevine leaves relies on system de-

composition into constituent simpler parts. This approach

proved its limitations in many cases, when important prop-

erties emerge from the relations between the parts at differ-

ent scales, between systems at different hierarchic levels.

Fractal theory is specifically meant to approach structural

relations, long range correlations in space and time, rela-

tions between hierarchic levels, in an effective way. In the

case of the irregular shapes of grapevine leaves, simplicity

acquired by assimilation with figures of Euclidean geometry

would not do. Fractal theory is able to help capture the fin-

gerprint of highly complex, irregular structures, paving the

way to new horizons both in scientific research and in prac-

tical applications.

MANDELBROT (1977), in formulating the principles of

fractal geometry illustrated that natural objects have a finite

range over which they are approximately fractal curves and

this was proved true also for grapevine leaves that exhibit a

precise 'fractal range' (MANCUSO 1999 a). Thus, the measur-

ing units should range from the magnitude of the smallest

feature of interest to the largest feature of interest. The range

over which an object exhibits apparent self-affinity or self-

similarity is determined by the structural and functional prop-

erties of the analysed structure. Therefore, it is imperative

when estimating the fractal dimension that the size of the

lower and upper limits of the structure have been deter-

mined. More, an object such as a leaf can be constituted by

numerous fractal structures. In fact analysing the fractal

geometry of a leaf and taking in consideration all the points

of the leaf that show the same intensity of colour, will result

in a fractal structure for each considered intensity of colour.

Accordingly, if we want to characterize objects, like a grape-

vine leaf, as fractal, we don�t know which part of colour

information should be masked to form corresponding fractal.

As a consequence we have to form all possible fractals,

determine their fractal dimension and then examine fractal

dimension as a function of the masking conditions. In other

words, we have to create a fractal spectrum of the leaf.

The aims of this study are to devise a reproducible

method for the calculation of the fractal spectrum of grape-

vine leaves and to show that the fractal spectrum can be
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used to discriminate grapevine leaves belonging to differ-

ent genotypes using a backpropagation neural network in

the analysis of the data.

Material and Methods

P l a n t   m a t e r i a l   a n d   i m a g e   a c q u i s i t i o n :

The study was carried out with 11 putative Sangiovese-

related ecotypes and the registered clone Sangiovese R 10

as reference (Tab. 1). The 12 accessions which were utilised

in previous studies (MANCUSO et al. 1998; MANCUSO 1999 a, b;

MANCUSO 2001 a) and characterised by DNA marker tech-

nology (SENSI et al. 1996), were selected because they of-

fered the possibility to verify the technique.

strength of each primary. For example, pure red has a red

value of 255, a green value of 0, and a blue value of 0. Yellow

has a red value of 255, a green value of 255, and a blue value

of 0. The absence of the three primary colours results in

black; when all three have values of 255, they produce white.

Levels of R, G, and B can each range from 0 to 100 % of full

intensity. Each level is represented by the range of decimal

numbers from 0 to 255 (256 levels for each colour), equiva-

lent to the range of binary numbers from 00000000 to

11111111. The total number of available colours is 256 x 256

x 256, or 16,777,216 possible colours.

Thus a full representation of the colour of an object

requires just the specification, for each single pixel, of the

three-dimensional distribution (R,G, B).

In the present work each leaf image was (1) splitted in

the three constituting channels, (2) each channel was

thresholded for a colour value between 0 and 255 and (3) the

fractal dimension for each colour value was calculated. Fig. 1

exemplifies the different phases of the fractal analysis per-

formed.

T a b l e  1

Grapevine accessions of this study

# Genotype

1 Prugnolo gentile

2 Brunellone

3 Brunelletto

4 Prugnolo acerbo

5 Prugnolo dolce

6 Prugnolo medio

7 Casentino

8 Chiantino

9 Morellino

10 Morellino di Scansano

11 Piccolo precoce

12 Sangiovese R 10

Samples were collected from the grapevine germplasm

collection of the Department of Horticulture of the Univer-

sity of Florence. At veraison, from 15 plants per accession

65 fully expanded, healthy looking leaves, located between

the 7th and 11th node (ALLEWELDT and DETTWEILER 1986) were

selected according to uniformity of appearance, growth habit

and exposure. Leaves of the clone Sangiovese R10, origi-

nating from three very different sites in central and northern

Italy were utilized to test the stability of the fractal dimen-

sion in relation to the environment.

Leaf images were acquired at 300 x 300 d.p.i., 16 million

colours, by using an optical scanner.

C o l o u r :  All colours we perceive are determined by

the response they produce in three retina cell types with

well known spectral responses. Thus, most technological

handling of colour (television, computer monitor, digital cam-

era) imitates these three components with the familiar RGB

(red, green, and blue) system. The three colours are com-

bined in various proportions to produce all the colours dis-

played on the screen. They are referred to as additive be-

cause combined they produce white. Primary colours are

measured as values from 0 to 255. The colours produced by

combining the three primaries are a result of the relative

Fig. 1: Diagram of the operations.

F r a c t a l   d i m e n s i o n   a n d   f r a c t a l   s p e c t r u m :

Fractal dimension was assessed using the box-counting

method. The implementation of these methods has been

described in detail by DENNIS and DESSIPRIS (1989) and

MANCUSO (1999 a). In brief, the typical technique for deter-

mination of the BCD consists in partitioning the image space

in boxes of size d x d and counting the number N(d) of boxes

that contain at least one part of the shape to be investi-

gated. Several values of d are chosen and the least square

fitting of log[N(d)] x log(d) is used to determine the value of

BCD. However, this approximation will suffer from effects



caused by spatial quantization as well as the limited fractality

of most natural objects (such as grapevine leaves). There-

fore, the curve log[N(d)] x log(d) will exhibit two distinct

regions. The error is minimised by calculating D in the re-

gion where the curve is most linear. Such guidelines were

applied in the present research on grapevine leaves to ob-

tain their Ds.

The fractal dimension was calculated and plotted against

the colour intensity to obtain the fractal spectrum for the

three channels red, green and blue. A baseline was drawn

corresponding to the fractal dimension of 1 (by definition an

object is a fractal just for values of the fractal dimension

higher than 1) and 5 parameters were calculated. Fig. 2 shows

the parameters considered.

Results and Discussion

Fig. 3 shows a characteristic example of the spectra of

the three colour channels obtained from each leaf. The first

spectrum from the right-hand side characterizes the proper-

ties of the leaf in the blue channel, whereas the second and

third spectrum in the graph reflects the properties of the red

and green channels, respectively. The baseline drawn for a

value of the fractal dimension of 1 separates the fractal (>1)

from the non-fractal (<1) zone of the spectrum. The param-

eter fractal peak is linked in to the shade of colour. If the

position of the peak is close to zero, the total shade of the

colour channel is darker. The parameter fractal area corre-

sponds, in some way, to the cover ability of the colour chan-

nel and represents the total �fractality� of the leaf.

Fig. 2: Graphical representation of the 5 fractal parameters calcu-

lated from each colour channel. In this example the 5 parameters

are calculated from the green channel spectrum.

N e u r a l   n e t w o r k s :  A back-propagation neural

network (BPNN) program was written and implemented in a

personal computer, following the methods previously de-

scribed in MANCUSO et al. (1999). In brief, the networks were

designed using a total of 15 inputs represented by the fractal

analysis parameters (5 parameters for each colour channel).

12 outputs, represented by the accessions under examina-

tion, were used. In order to optimize the neural network ac-

tivity, the number of 'hidden neurons' was modified. Mini-

mum error was reached with 25 hidden neurons positioned

on one level. The activation function of the neurons was a

sigmoidal function, 1/(1+e-x). Back-propagation of error was

performed using formulas previously described by MANCUSO

and NICESE (1998). Details in back-propagating errors can be

found in MANCUSO (2001 b).

The learning phase in all the BPNNs tested was pro-

tracted until the RMS (root mean square) error was <0.06

and the difference between the RMS in two consecutive

epochs was <0.0001. The ANNs were tested with sets of

fractal parameters in inputs for which the output was known,

so that the predicted and actual outputs could be compared.

These data had not been used previously to train the net-

work.

Fig. 3: Example of the appearance of the fractal spectra for the red,

green and blue channel of a single grapevine leaf.

The mean values of the fractal parameters of a homoge-

neous sample of leaves from the clone Sangiovese R10, uti-

lized as example, are reported in Tab. 2. The average stand-

ard error for the 5 fractal parameters studied was under 1 %

(n=65). According with previous work showing, for the fractal

dimension of the leaves, a very small variability among plants

(MANCUSO 1999 a), the fractal parameters demonstrate a vari-

ability that is much smaller than the variability obtained with

traditional ampelographic parameters. Moreover, the fractal

parameters measured in leaves of cv. Sangiovese R10 grown

in very different Italian environments showed no significant

T a b l e  2

Fractal parameters of homogeneous sets of leaves in the clone

Sangiovese R10

Green S.E. Red S.E. Blue S.E.

Fractal area 15.85 0.03 13.78 0.05 10.14 0.08

Fractal peak 107.00 1.51 78.00 1.11 1.00 0.00

MFD* 1.50 0.00 1.39 0.00 1.72 0.00

First X 79.67 0.82 45.91 0.40 1.00 0.00

Last X 132.40 1.31 102.62 1.10 24.36 0.60

* Maximum Fractal Dimension

Discrimination of grapevine leaf shape 139
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difference. A summary of results of this experiment is given

in Tab. 3. The fractal parameters of the leaves are really sta-

ble in different environments. These results, also confirmed

with other genotypes (data not published), lead us to con-

sider the fractal parameters to be environment-independent.

To assess the usefulness of fractal measures in the task

of automated plant identification from their leaves, a back-

propagation neural network was designed and trained for

the specific job of discrimination among different grapevine

accessions. As input the BPNN was designed to use the

15 fractal parameters derived from the fractal spectra of the

leaves. Tab. 4 shows the outputs of the recognition phase

of the BPNN. Each row illustrates the ANN output for inputs

represented by the fractal parameters of 15 leaves of a given

accession. The neural network was able to easily discrimi-

nate among all the unknown accessions. Some accessions

showed high output values also in columns different from

the correct one. For example, in Prugnolo medio despite of

the higher value (0.60) of the BPNN recognition phase out-

put resulted in the correct column (Prugnolo medio), we have

another high value of output in the column of the Prugnolo

dolce (0.32). In this case the output shows a similarity be-

tween two accessions.

Comparing the present results with the results obtained

with the same genetic material by PCR-based marker tech-

nologies (SENSI et al. 1996) or with elliptic Fourier analysis

(EFA) (MANCUSO 1999 b) demonstrates a higher capacity of

fractal parameters in the distinction of different grapevine

accessions. In fact, all the accessions were clearly differen-

tiated in the present work, whereas (1) the accessions

Morellino di Scansano, Prugnolo gentile and Sangiovese

R10 were not distinct with PCR-based marker technologies

(SENSI et al. 1996), and (2) Chiantino and Brunelletto were

not distinct by EFA (MANCUSO 1999). Moreover, a high de-

gree of information can be achieved with the fractal meas-

ures if compared with the parameters derived from EFA. This

means that with a minor number of fractal features, com-

pared with EFA, it is possible to have a better or even com-

plete discrimination.

Starting from the RGB colour system many parameters

measuring differences or similarities between two images

can be obtained. For example, the cumulative distribution

F(R,G, B) or the proportion of pixels with a given red or green

or blue value. Working on the discrimination of Brussels

sprouts, HORGAN et al. (1995) achieved a good discrimina-

tion between varieties using the mean value of R, G and B

together with the proportion of pixel for which G>200 and

for which G>225. The results obtained in the present work

are encouraging as they demonstrate that the fractal spec-

trum carries all the information useful to discriminate differ-

ent grapevine accessions. In other words, the fractal spec-

trum offers a unique quantitative framework for integrating

all the information on colour, complexity and shape neces-

sary to describe a grapevine leaf.

In conclusion, fractal parameters seem to be a useful

tool for the identification of grapevine accessions on the

basis of quantitative ampelographic traits. Therefore, this

image analysis-based technique could be easily used for

plant breeders right purposes, providing the opportunity to

verify the characters of distinction, uniformity and stability

(DUS) requested by the Union for the Protection of Plant

Varieties (UPOV) before plant breeders right are granted.

T a b l e  3

Effect of different environmental conditions on the fractal parameters in leaves of Sangiovese R10

Colour Parameter   Tuscany Umbria     Veneto

G Fractal area 15.85 ± 0.03 15.61 ± 0.02 15.9 ± 0.02

r Fractal peak 107.00 ± 1.51 106.21 ± 1.66 105.32 ± 1.96

e MFD* 1.50 ± 0.00 1.49 ± 0.00 1.51 ± 0.00

e First X 79.67 ± 0.82 77.3 ± 0.44 78.3 ± 0.78

n Last X 132.40 ± 1.31 131.5 ± 1.6 132.3 ± 1.20

Fractal area 13.78 ± 0.05 13.25 ± 0.03 13.66 ± 0.00

R Fractal peak 78.00 ± 1.11 77.6 ± 1.23 77.32 ± 1.11

e MFD* 1.39 ± 0.00 1.37 ± 0.00 1.26 ± 0.00

d First X 45.91 ± 0.40 44.23 ± 0.33 43.20 ± 0.56

Last X 102.62 ± 1.10 102.3 ± 1.52 101.9 ± 1.36

B Fractal area 10.14 ± 0.08 9.98 ± 0.09 9.75 ± 0.11

l Fractal peak 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

u MFD* 1.72 ± 0.00 1.65 ± 0.00 1.56 ± 0.00

e First X 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Last X 24.36 ± 0.60 23.63 ± 0.47 23.22 ± 0.72

* Maximum Fractal Dimension
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