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Summary

Field studies were conducted to investigate ontogenic
changes in photosynthesis of a single grapevine leaf (Vitis
vinifera L. cv. Pinot noir) subtending the fruit. A 40-day-old
leaf was physiologically most active with regard to net pho-
tosynthetic (Pn) and electron transport rates. Variable to
maximum fluorescence ratios of dark-adapted leaves (Fv/Fm
= 0.77) were higher in mature leaves than in expanding
(0.66) or senescent ones (0.65). Lower Fv/Fm values in these
stages seemed to be caused not by photoinhibition but by a
low photochemical capacity as suggested from the chloro-
phyll a/b ratios. In isolated thylakoids, lower rates of whole
chain and PSII activity were observed in expanding and se-
nescent leaves, while higher rates were observed in mature
leaves. A similar trend was noticed for Rubisco and total
soluble proteins. The artificial exogenous electron donors
Mn2+ failed to restore the loss of PSII activity in senescent
leaves, while DPC and NH2OH significantly restored the
loss of PSII activity. The marked loss of PSII activity in
senescent leaves was primarily due to the loss of 33, 28-25,
23 and 17 kDa polypepides. A marked loss of Rubisco activ-
ity in senescent leaves is mainly due to the loss of 15 (SSU)
and 55 (LSU) kDa polypeptides.

K e y   w o r d s :  chlorophyll fluorescence, donor side,
electron transport, photosystem.

A b b r e v i a t i o n s :  Car = carotenoids, Chl = chlorophyll,
DCBQ = 2,6-dichloro-p-benzoquinone, DCPIP = 2,6-dichloro-
phenol indophenol, DPC = diphenyl carbazide, Fo = minimal fluo-
rescence, Fm = maximum fluorescence, LSU = large subunit, MV =
methyl viologen, PS = photosystem; Rubisco = ribulose-1,5-bis-
phosphate carboxylase, SDS-PAGE = sodium dodecylsulphate-
polyacrylamide gel electrophoresis, SSU = small subunit.

Introduction

Ontogenetic changes in photosynthetic properties of
grape leaves have been studied by KRIEDEMANN et al. (1970)
and INTRIERI et al. (1992). Photosynthetic rates typically in-
crease with leaf expansion and the maximum rate of photo-
synthesis is achieved prior to full expansion with rates often
declining when the leaves become senescent (CONSTABLE

and RAWSON 1980, ROPER and KENNEDY 1986). Several re-
ports indicate that the rate of Pn changes with individual
leaf age (DAVIS and MCCREE 1978, KENNEDY and JOHNSON

1981) as well as on a whole canopy basis during the grow-
ing season (CHRISTY and PORTER 1983, WELLS 1988). Maxi-
mum photosynthetic activity under optimal conditions and
ambient CO2 concentration is typically reached at, or slightly
before the time when leaves reach full expansion (ALLEWELDT

et al. 1982). During further leaf development, photosynthetic
capacity, stomatal conductance (SCHULTZ et al. 1996), leaf
dry mass per area, nitrogen (PONI et al. 1994), protein (BETTNER

et al. 1986) and photosynthetic enzymes including Rubisco
(HUNTER et al. 1994) decrease.

During ontogeny of photosynthetically active leaves,
i.e. from their unfolding to senescence, the ultrastructure of
chloroplasts in the mesophyll cells changes substantially
(HUDAK 1997, KUTIK 1998). The main features of this devel-
opment are increase of chloroplast size in maturing leaves
and decline of their number during leaf senescence, accu-
mulation of starch in the chloroplasts of just mature leaves,
accumulation of plastoglobuli during leaf senescence, and
quantitative changes of the thylakoid system and in the
thylakoid stacking degree during whole leaf ontogeny.

During leaf development studies on several woody per-
ennials showed that a high CO2 assimilation rate was ob-
served in mature leaves (full-leaf expansion), which then
declined (KENNEDY and JOHNSON 1981, ROPER and KENNEDY

1986). However, patterns of leaf photosynthesis as a func-
tion of leaf age vary among fruit species. In apple, mature
well-exposed leaves showed little variation in assimilation
for about 4 months (KENNEDY and FUJII 1986). In sour cherry
leaf photosynthesis increased 4 to 5-fold during the period
of rapid lamina expansion, was stable for 4 weeks and then
decreased gradually (SAMS and FLORE 1982). In grape leaf
photosynthesis showed a peak approximately 35-40 d after
unfolding and a decline thereafter (KRIEDEMANN et al. 1970,
KRIEDEMANN 1977). In this paper, we report the concurrent
changes of leaf pigments, electron transport activities, Chl
fluorescence, total soluble proteins, Rubisco and nitrate re-
ductase activities in grapevine leaves (cv. Pinot noir) during
their ontogeny.

Material and Methods

P l a n t   m a t e r i a l   a n d   e x p e r i m e n t a l   d e s i g n :
Leaves of Vitis vinifera L. cv. Pinot noir were collected from
selected 10-year-old plants grafted to 3309 C and grown
under field conditions with upright growing shoots (Cor-
don Royat) in the Istituto Agrario di San Michele all’ Adige,
Italy. The leaf age classes were: expanding leaf (stage 1;
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5-10 d), just fully expanded leaf (stage 2; 15-20 d), mature
leaf (stage 3; 35-40 d), old mature leaf having very small
black spots (stage 4; 65-70 d), and marked yellowish senes-
cent leaf (stage 5; 100-120 d).

P i g m e n t   d e t e r m i n a t i o n :  Chl was extracted with
100 % acetone from liquid N2-frozen leaves and stored at
-20 °C. Chl and Car were analyzed spectrophotometrically
according to LICHTENTHALER (1987).

G a s   e x c h a n g e :  Gas exchange was measured using
a portable gas analyzer system, model LCA-2 (Analytical
Development Co., Hartford, UK). These measurements were
taken on 15-20 leaves at >1000 µmol quanta m-2 s-1, about
33 °C leaf temperature and at about 34 Pa ambient partial
pressure of CO2.

M o d u l a t e d   C h l   f l u o r e s c e n c e :  Chl
fluorescence was measured on leaf discs using a PAM 2000
fluorometer (H. Walz, Effeltrich, Germany). Before the meas-
urements, the leaves were dark-adapted for 30 min. Fo was
measured by switching on the modulated light (0.6 kHz);
PPFD was < 0.1 µmol m-2 s-1 at the leaf surface. Fm was meas-
ured at 20 kHz with a 1 s pulse of 6,000 µmol m-2 s-1 of white
light.

E l e c t r o n   t r a n s p o r t :  Thylakoid membranes were
isolated from the leaves as described by BERTHHOLD et al.
(1981). Whole chain electron transport (H2O → MV) and
partial reactions of photosynthetic electron transport medi-
ated by PSII (H2O → DCBQ) and PSI (DCPIPH2 → MV)
were measured as described by NEDUNCHEZHIAN et al. (1997).
Thylakoids were suspended at 10 µg Chl ml-1 in the assay
medium containing 20 mM Tris-HCl, pH 7.5, 10 mM NaCl,
5 mM MgCl2, 5 mM NH4Cl and 100 mM sucrose supple-
mented with 500 µM DCBQ.

D C P I P   p h o t o r e d u c t i o n :  The rate of DCPIP
photoreduction was determined as the decrease in absorb-
ance at 590 nm using a Hitachi 557 spectrophotometer. The
reaction mixture (3 ml) contained 20 mM Tris-HCl, pH 7.5,
5 mm MgCl2, 10 mM NaCl, 100 mM sucrose, 100 µm DCPIP
and thylakoid membranes equivalent to 20 µg of Chl. Where
mentioned, the concentrations of MnCl2, DPC and NH2OH
were 5, 0.5 and 5 mM, respectively.

T o t a l   s o l u b l e   p r o t e i n s :  Total soluble proteins
were extracted by grinding two leaves (0.3-0.5 g fresh weight)
in a mortar with 6 ml of 100 mM Tris-HCl, pH 7.8 containing
15 mM MgCl2, 1 mM EDTA, 10 mM 2-mercaptoethanol,
10 mM PMSF in the presence of liquid nitrogen. Homo-
genates were filtered through nylon cloth. The extract was
clarified by centrifugation at 11,000 g for 10 min. The clear
supernatant was decanted slowly and used as the soluble
proteins. The concentration of soluble proteins was deter-
mined by the method of BRADFORD (1976). Bovine serum
albumin was used as the standard.

E x t r a c t s   a n d   a s s a y   o f   R u b i s c o   a c t i v i t y :
Fully expanded leaves were cut into small pieces and ho-
mogenized in a grinding medium of 50 mM Tris-HCl, pH 7.8,
10 mM MgCl2, 5 mM DTT and 0.25 mM EDTA. The extract
was clarified by centrifugation at 10,000 g for 10 min. The
clear supernatant was decanted slowly and used for Rubisco
analysis. The assay for Rubisco activity was carried out as
described by NEDUNCHEZHIAN and KULANDAIVELU (1991).

N i t r a t e   r e d u c t a s e   a c t i v i t y :  Leaves (100 mg)
were suspended in a glass vial containing 5 ml of the assay
medium consisting of 100 mM KH2PO4-KOH, pH 7.0, 100 mM
KNO3, 1 % (v/v) n-propanol. The vial was sealed and incu-
bated in the dark at room temperature at 27 °C for 60 min.
Suitable aliquots of the assay medium were removed for
nitrate analysis. The amount of nitrate formed was expressed
as µmol NO2

- formed g-1 tissue h-1 (JAWORSKI 1971).
S D S - P A G E :  Thylakoid membranes and crude leaf

extracts were separated using the polyacrylamide gel sys-
tem of LAEMMLI (1970), with the following modifications. Gels
consisted of a 12-18 % gradient of polyacrylamide contain-
ing 4 M urea. Samples were solubilized at 20 °C for 5 min in
2 % (w/v) SDS and 60 mM DTT and 8 % sucrose using a
SDS-Chl ratio of 20:1. The final chlorophyll concentration of
the membrane sample was adjusted to 0.5 mg Chl ml-1. Be-
fore loading onto the gel, the membrane samples were heated
at 100 °C for 3 min and the insoluble material was removed
by centrifugation at 15,000 g for 5 min. Electrophoresis was
performed at 20 °C with constant current (5 mA). Gels were
stained in methanol/acetic acid/water (4:1:5, v/v/v) contain-
ing 0.1 % (w/v) coomassie brilliant blue R and destained in
methanol/acetic acid/water (4:1:5, v/v/v).

Results and Discussion

The contents of Chl and Car per unit of leaf area, and the
Chl a/b ratio increased with leaf development and then de-
clined (Tab. 1). Similar changes were observed in cotyle-
dons whose area and total Chl contents increased during
the 15-40 d of their metabolic activity, the result being an
increase and decline in the Chl amount per cotyledon
(MILLERD et al. 1971, HONG and SCHOPER 1981). The low
content of Chl a in expanding and senescent leaves was
manifested by low Chl a/b ratios. Our observations are in
agreement with earlier reports (FEDTKE 1973, DIEPENBROCK

and GEISLER 1978). The reduction of Chl content in senes-
cent leaves was probably related to an enhanced activity of
chlorophyllase (REDDY and VORA 1986). At early develop-
mental stages, the higher Chl concentration in mature leaves
confirms the findings of other investigators (MARINI and
MARINI 1983, HUNTER and VISSER 1989, PETRIE et al. 2000).

The Chl a/b ratio was markedly higher in mature leaves
than in expanding and senescent leaves (Tab. 1). The de-
crease in Chl a/b ratio in senescent leaves is mainly due to a
decrease in Chl a with leaf aging (HUNTER and VISSER 1989).
This is in agreement with findings of KRIEDEMANN et al. (1970)
for grapevine leaves of various ages. Since Chl a is consid-
ered to reflect a more exact characteristic of photosynthetic
activity (SESTÁK 1966), the tendency towards a higher con-
tent might partially explain the higher photosynthetic rates
found in mature leaves. Chl/Car ratios varied from >5 in
young and adult leaves to <4 in senescent leaves (Tab. 1).
The Car breakdown between maturity and senescence was
29 % compared to 54 % for Chl. The Chl/Car ratio decrease in
senescent leaves reflected the relatively high retention of
Cars. The changes of photosynthetic pigments during leaf
development and senescence in grapevine was similar to
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that found in other species (SESTAK 1985, SIFFEL etal . 1993).
Ground fluorescence (Fo) reflecting the size of antenna Chl
of PSII (KRAUSE and WEISS 1984) did not change consist-
ently with leaf age (Tab. 1). By contrast variable fluores-
cence (Fv) and variable to maximum fluorescence ratios
(Fv/Fm) of dark-adapted leaves reached peaks in mature leaves
(stage 3) while lower values were obtained in growing and
senescent leaves (Tab. 1). Hence, photons absorbed by the
photosynthetic apparatus were used more efficiently by
mature leaves than by young or senescent leaves. High Fv/Fm
values obtained at stage 3 are typical for non-photoinhibited
mature leaves (DEMMIG and BJORKMAN 1987). High Fv/Fm is a
result of a high photochemical capacity of PSII reaction
centers and is independent from Chl concentration. Lower
Fv/Fm values in expanding and senescent leaves in compari-
son with mature ones are probably not due to photoinhibition
but to a low photochemical capacity as suggested from the
Chl a/b ratios. During leaf ontogeny, a rapid increase in the
capacity of PSII photochemistry (increasing Fv/Fm) to leaf
maturity and a decline with senescence has been reported
(LICHTENTHALER 1987, SIFFEL et al. 1993).

However, studies with isolated thylakoids from differ-
ent stages indicated that all photosynthetic electron trans-
port activities increased with leaf development and then de-
clined (Tab. 1). The PSII-mediated electron transport H2O →
DCBQ and H2O → DCPIP increased from young to mature
leaves and then declined (Tab. 1). A similar trend was no-
ticed for whole chain electron transport (H2O → MV) ac-
tivity. The high PSII rate in mature leaves, found in our ex-
periments, agrees with earlier reports (STRNADOVA and SESTAK

1974, SESTAK et al. 1978).

DCPIP collects electrons after PQ (LIEN and BANNISTER

1971, OUITRAKUL and IZAWA 1973) but benzoquinone at the
reducing side of PQ (LIEN and BANNISTER 1971) in PSII. In the
presence of the above PSII electron acceptors, the loss of
PSII activity in senescent leaves was approximately the same.
Thus, senescence-induced changes must be prior to PQ in
the electron transport. Among the artificial electron donors
tested DPC and NH2OH donates electrons directly to the
PSII reaction center (WYDRZYNSKI and GOVINDJEE 1975). In
senescent leaves the PSII activity was reduced to about
69 % when water or MnCl2 served as electron donor (Tab. 2).
In contrast, a significant restoration of PSII-mediated DCPIP
reduction was observed when NH2OH and DPC were used
as electron donors (Tab. 2). Thus the inhibition of PSII may
be ascribed to an alteration of the water splitting system,
since the addition of DPC and NH2OH restored significantly

T a b l e  1

Chlorophyll (Chl) [µmol m-2] and carotenoid (Car) [mg m-2] contents and their ratios, values of ground (Fo) and variable fluorescence (Fv),
ratio of Fv and maximum fluorescence (Fv/Fm), net photosynthetic rate (Pn) [µmol m-2 s-1], electron transport activities [whole chain
(H2O → MV), PSII (H2O → DCBQ; H2O → DCPIP), and PSI (DCPIPH2 → MV) [µmol(O2) mg -1(Chl) h-1], total soluble proteins
[g kg-1 (fr.m.)], Rubisco [mmol(CO2) mg-1(protein) h-1] and nitrate reductase [mmol(NO2

-1) mg-1(fr.m.) h-1] as a function of leaf age. Pinot
noir leaves were expanding (stage 1), fully expanded (2), mature (3), old mature (4), and senescent (5). Each value is the mean of 10 (pig-

ments), 10-15 (fluorescence) or 5 (electron transport, Rubisco, nitrate reductase) measurements for each leaf stage

Stages of leaf age
Expanding Expanded Mature Old mature Senescent

Chl a+b 225 ± 11 304 ± 15 420 ± 21 318 ± 15 196 ± 9
Chl a/b 2.4 ± 0.1 3.2 ± 0.2 4.6 ± 0.2 3.4 ± 0.1 2.7 ± 0.1
Car 42.3 ± 2.0 56.4 ± 2.4 73.6 ± 3.1 68.2 ± 2.9 52.1 ± 2.4
Chl/Car 5.3 ± 0.2 5.4 ± 0.2 5.7 ± 0.2 4.7 ± 0.2 3.8 ± 0.1
Fo 0.5 ± 0 0.7 ± 0 0.5 ± 0 0.5 ± 0 0.5 ± 0
Fv 1.1 ± 0.1 1.6 ± 0.1 1.8 ± 0.1 1.3 ± 0.1 1.0 ± 0
Fv/Fm 0.7 ± 0 0.7 ± 0 0.8 ± 0 0.7 ± 0 0.7 ± 0
Pn 2.4 ± 0.1 7.2 ± 0.3 11.8 ± 0.5 5.1 ± 0.2 2.7 ± 0.1
Whole chain [H2O → MV] 104.8 ± 4.9 132.5 ± 6.3 164.2 ± 7.6 100.4 ± 5.1 48.5 ± 2.2
PSII [H2O → DCBQ] 114.0 ± 5.6 122.2 ± 5.9 156.0 ± 7.2 104.8 ± 4.8 59.3 ± 2.9
PSII [H2O → DCPIP] 129.8 ± 6.1 134.3 ± 5.4 172.8 ± 8.1 110.6 ± 5.4 54.3 ± 2.6
PSI [DCPIPH2 → MV] 234.4 ± 12.1 288.2 ± 13.2 358.6 ± 16.2 315.5 ± 15.0 290.4 ± 13.8
Total soluble proteins 28.4 ± 1.3 32.7 ± 1.2 43.7 ± 1.9 31.6 ± 1.5 19.9 ± 0.9
Rubisco 24.2 ± 1.0 38.9 ± 1.4 47.7 ± 1.9 32.8 ± 1.6 20.3 ± 1.1
Nitrate reductase 31.8 ± 1.4 49.7 ± 2.2 71.2 ± 3.2 51.9 ± 2.0 29.5 ± 1.3

T a b l e  2

Effect of exogenous electron donors on PSII activity (H2O →
DCPIP) in thylakoids (µmol(DCPIP red.) mg -1(Chl) h-1) isolated
from mature and senescent leaves. Each value is the mean of 5 meas-

              urements for each leaf stage

Exogenous donors Mature leaf Senescent leaf

H2O → DCPIP 172.8 ± 8.5 54.3 ± 2.6
DPC → DCPIP 180.2 ± 7.9 158.3 ± 7.4
NH2OH → DCPIP 178.4 ± 8.1 156.1 ± 7.1
MnCl2 → DCPIP 173.6 ± 8.5 62.4 ± 2.9
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its activity. This is in good agreement with findings that the
water-oxidizing system is sensitive to ageing (BISWAL and
BISWAL 1988, NEDUNCHEZHIAN et al. 1995).

The inactivation of PSII electron transport activity in
senescent leaves is supported by the fact that the related
protein(s) is (are) exposed at the thylakoid surface (SEIDLER

1994). A comparison of thylakoids from senescent leaves
with those of mature leaves showed specific losses of 33,
28-25, 23 and 17 kDa polypeptides (Figure). The three extrin-
sic proteins of 33, 23 and 17 kDa associated with the lumenal
surface of the thylakoid membranes are required for optimal
functioning of the oxygen evolving machinery (MURATA etal .
1984, ENAMI et al. 1994). Our results indicate that the signifi-
cant losses of 33, 23 and 17 kDa extrinsic polypeptides and
28-25 kDa LHCP2 polypeptides could be the reason for
marked losses of O2 evolution in senescent leaves. Similar
observations were made with in dark-adapted Vigna seed-
lings during senescence (NEDUNCHEZHIAN et al. 1995).

losses of SSU (chloroplast encoded protein - 15 kDa) poly-
peptides were observed in senescent leaves (Figure). The
loss of LSU and SSU is one of the reasons for marked losses
of Rubisco activity in senescent leaves. Similar results were
also found in dark-adapted Vigna seedlings during senes-
cence (NEDUNCHEZHIAN et al. 1995).

In vivo, a marked reduction of nitrate reductase activity
was noticed in senescent leaves. This may reflect a balance
between the synthesis of the active nitrate reductase en-
zyme or its activation on the one hand and degradation or
inactivation on the other. The decreased nitrate reductase
activity might reflect the reduction in nitrate uptake by the
roots. This reduced uptake might be due to the feed back
inhibition of amino acids formed in leaf blades and trans-
ported from there to the shoot (CLARKSON 1986).
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