Vitis 45 (1), 45-46 (2006)
Research Note

Lime-induced chlorosis and physio-
logical responses in grapevine (Vitis
vinifera L. cv. Pinot blanc) leaves

L. Bavaresco!), M. BErtamini® and F. Tacono?

Distituto di Frutti-Viticoltura, Universita Cattolica del Sacro
Cuore, Piacenza, Italy
2Dipartimento di Produzione Agricola e Alimentare, Istituto
Agrario di San Michele all’ Adige (Trento), Italy

Key words: Vitis vinifera, lime-induced chlorosis, Chl
fluorescence, photochemical quenching, stomatal conductance, net
photosynthetic rate.

Abbreviations: Chl: chlorophyll; E: transpiration rate;
ETR: apparent electron transport; Fo: minimal fluorescence; Fm:
maximum fluorescence; Fv: variable fluorescence; gs: stomatal con-
ductance; PPFD: photosynthetic photon flux density; Pn: leaf net
photosynthetic rate; qp: photochemical quenching.

Introduction: Lime-induced iron chlorosis is a major prob-
lem of grapevine and high value fruit trees growing espe-
cially in the mediterranean region or in other semi-arid areas.
Chlorotic plants are characterized by the development of
pronounced interveinal yellowing, occurring first in the
youngest leaves, and by yield reduction.

Most of the knowledge of iron chlorosis was obtained
with annual plants grown in hydroponics. These plants were
usually grown in greenhouses or chambers under control-
led environmental conditions. Relatively few studies have
focused on the consequences of iron deficiency on the pho-
tosynthetic performance of perennials growing outside
(NEDUNCHEZHIAN et al. 1997, MoRrALES et al. 2000, BERTAMINI
etal.2002).

Iron plays a fundamental role in several physiological
processes; e. g. iron is a constituent of electron transport
chains in mitochondria and chloroplasts. Therefore, it may
be concluded that a shortage of physiologically active iron
leads to a decrease of the electron transport rate, the photo-
synthetic pigments (VAL et al. 1987), as well as to a lowering
of the efficiency of PSII Fv/Fm photochemistry (MORALES
et al. 2000, BErtaMINI et al. 2002).

The objective of this study was to determine possible
changes in parameters of photosynthesis as affected by
iron chlorosis of grapevine leaves inserted at different posi-
tions.

Material and Methods: Plant material: Three-
year-old Vitis vinifera L. cv. Pinot blanc vines grafted on the
lime-susceptible rootstock 3309 C (V. riparia Michx. x
V. rupestris Scheele) were potted (pot volume = 10 1) in a
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non-calcareous and a calcareous soil. The main soil charac-
teristics were as follows (non calcareous vs. calcareous soil,
respectively): sandy clay-loam (for both soils), pH 7.3/8.2;
3/67 % total carbonates; 1.5/16.5 % active lime, 38/6 mgkg'1
Olsen P, 80/14 mg-kg ! available Fe (extracted by DTPA 0.005
M +CaCl, 0.01 M + triethanolamina 0.1 M). 10 pots per soil
type with one plant each were placed outside on a platform
covered by a hail-protection net. During summer, when the
average shoot length was about 150 cm, one representative
shoot per plant was choosen and three leaves in the basal,
medial and apical part were tested. These “old”, “intermedi-
ate” and “young” leaves were green when grown on non-
calcareous soil, while they were chlorotic when grown on
calcareous soil.

Leaf net CO, exchange rates (Pn), stomatal conduct-
ance (gs) and transpiration rates (E) of test leaves were meas-
ured at 11:00 a.m. with a portable photosynthesis system
(CI-310, CID Inc., Camas, WA 98607, USA).

Chlorophyll fluorescence was measured using a PAM
2000 fluorometer (H. Walz, Effeltrich, Germany). Fo was de-
termined with modulated light (0.6 kHz); PPFD was less than
0.1 umol'm2-s! at the leaf surface. Fm was measured at 20 kHz
with a one s pulse of 6000 umol m2s! (white light). Induc-
tion kinetics of fluorescence quenching coefficient qp (pho-
tochemical quenching) was determined by the saturation
pulse method according to SCHREIBER ef al. (1986) using
200 pmol-m™-s! of actinic radiation at ambient CO, concen-
tration. Apparent electron transport rate (ETR, imol-m2-s™")
was calculated as described by GENTY et al. (1989).

Leaf area, leaf weight and iron content:
After the above mentioned measures, leaves were sampled,
weighed, and leaf area was assessed according to the gravi-
metric method of SESTAK et al. (1971). Leaf blades were then
oven dried (70 °C, 3 d) and after wet digestion (H,SO,/H,0,)
of the dry matter iron was analysed by atomic absorption
spectrometry (CoTTENIE 1980).

Results and Discussion: The iron content of control
and chlorotic leaves was similar for apical and medial leaves
while basal chlorotic leaves had a lower iron content than
control leaves. According to HAUSSLING et al. (1985), only
leaves of the same insertion (same physiological age) can
be compared and considering a lower leaf number of chlo-
rotic shoots due to growth inhibition, apical leaves of chlo-
rotic shoots have to be compared with medial leaves of green
shoots. Such a shift results in a lower Fe content in chlorotic
leaves.

The leaf area, as well as fresh and dry matter of chlorotic
plants were lower than those of control plants. The marked
reduction of leaf dry matter in chlorotic plants was due to a
reduction of leaf thickness and area indicating that cell divi-
sion and expansion were significantly impaired assumably
as a consequence of reduced CO, fixation.

In fact, chlorotic plants had lower rates of leaf net pho-
tosynthesis (Pn), stomatal conductance (gs) and transpira-
tion (E) compared to the control; this confirms previous
results with table grapes (Bavaresco and Poni 2003). A sig-
nificant reduction of Pn was noticed in apical chlorotic leaves
as compared to the control (-56 %), while Pn of medial and
basal chlorotic leaves was reduced by 47 % and 30 %, re-
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Table

Morphological and physiological parameters of leaves as affected by chlorosis and shoot position. Mean values + SE; n=6

Apical Medial Basal
Control Chlorotic Control Chlorotic Control Chlorotic

Fe (ug-leaf ') 25+1 271 63+4 60+4 T7+4 57+3

Leaf area (cm?) 56+2 34+3 95+10 68+3 94+6 EY)

Fresh weight (g-leaf ') 1.04+£0.04 0.60+£0.08 1.76 £0.22 1.12+0.08 1.60+0.14 1.16+£0.18
Dry weight (g-leaf ') 0.35+0.04 0.22+0.04 0.59+0.03 042+0.03 0.52+0.05 0.42+0.05
Pn (umol CO-m?2-s1) 945+0.54 4.18+0.27 10.26+1.10 541054 8.23+£0.54 5.94+041
E (mmol-m?-sT) 2.34+0.18 1.35+0.18 240+0.12 1.47+0.12 2.11x£0.12 1.59+0.24
gs (mmol-m?2-s™) 11515 7.6+0.5 109+1.3 7.9+£0.5 127+1.5 10.2+0.5
Fo 0.28+£0.01 0.27+0.03 0.25+0.01 0.28 £0.02 0.29+0.01 0.36+0.01
Fm 1.22+0.05 0.70+0.14 1.20+0.02 0.72+£0.04 1.24+£0.04 0.84+0.14
Fv/Fm 0.76+0.03 0.60+0.03 0.79£0.05 0.67+£0.02 0.79+0.03 0.69+0.03
qp 0.62+0.04 041£0.04 0.55+0.03 0.39+£0.04 0.46+0.03 0.38+0.01
ETR (Wmol-m2s™) 78+4 372 73+3 4242 522 3242

spectively. Decreased leaf Pn due to iron chlorosis was
closely related to lower stomatal conductance and transpi-
ration rates. Leaf gs of chlorotic plants was decreased by
42 %, 39 % and 25 % respectively for apical, medial and
basal leaves. As expected leaf net photosynthetic rate, tran-
spiration rate and stomatal conductance were positively re-
lated. In order to investigate whether the decreased Pn of
chlorotic leaves was associated with changes of PSII activ-
ity and Fv/Fm, reflecting the quantum yield of PSII photo-
chemistry, leaves were dark-adapted for 30 min by moving
the plants to a dark room. Control leaves showed a high
Fv/Fm ratio while the ratio was decreased for chlorotic leaves.
The effect of iron chlorosis was prominent on variable fluo-
rescence without altering Fo in apical leaves. This is charac-
teristic for inhibition of the donor side of PSII in chlorotic
leaves. In contrast, the Fv/Fm ratio of dark-adapted chlo-
rotic leaves was always lower than that of control leaves,
while a substantial (poor) increase of the Fo level was ob-
served for chlorotic basal (medial) leaves, respectively. Iron
chlorosis reduced the apparent electron transport (ETR) and
photochemical quenching (gp).
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