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Section 1 – Risk Assessment 
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Abstract 
One of the key assumptions in the EFSA guidance on the risk assessment of plant protection products on bees 
(2013) concerns the value of honeybee forager background mortality. This background mortality is crucial 
because its value feeds directly into the trigger value used in the Tier-1 risk assessment. Low forager 
background mortality results in conservative trigger values, whereas higher forager mortality values result in 
less conservative triggers. A proper estimate of forager background mortality is therefore key to a realistic and 
robust risk assessment. 

Data underlying the current estimate of forager mortality mostly originate from studies performed outside of 
Europe, with only one European study being available in the city centre of Basel. The value used in Tier 1 (5.3% 
mortality per day) is the measurement from Basel because this was the lowest value found.  Since the city 
centre of Basel is not representative for European agricultural environments, a new study was performed that 
was focussed on the estimation of forager mortality in a realistic agricultural setting in the Netherlands. Freshly 
emerged honeybees (age <24h) from two hives were tagged every two weeks with micro-transponder RFID 
chips at the outdoor experimental station ‘De Sinderhoeve’ . Tagging continued from June to October and 
every tagged cohort was followed in time. Bees were detected: a) upon tagging, b) when they left the hive and 
c) when they entered the hive. First results of data evaluation indicate that already within 1 week some bees 
left the hive briefly but that foraging commenced usually after two weeks and lasted in individual cases for 
more than 5 weeks after tagging. Based on the obtained data sets, first estimates reveal a honeybee forager 
background mortality of at least 10% indicating that the EFSA assumption is conservative. 

1.2 Three cardinal numbers to safeguard bees against pesticide exposure: LD 50 , 
NOEC (revised) and the Haber exponent. 
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Abstract 
Regulators often employ cardinal indicators to justify measures to protect the health of farmland bees from 
pesticides used in crop protection.  Previously, in evaluating the likely hazard of a compound, they have made 
extensive use of its LD 50  (‘lethal dose to 50% of exposed subjects’), and NOEC (‘no observable effect 
concentration’).  Here, I argue that regulators should also use a third indicator, namely the Haber exponent.  
The Haber exponent qualifies the meaning of the LD 50  by revealing the relative hazard of environmentally 
relevant exposures longer than that used to determine the LD 50  originally.  Additionally, I show how the 
experimental protocol used to determine the Haber exponent will also produce a well-founded, parametric 
value of the NOEC. Taken together, these three numbers establish a strong foundation on which to evaluate 
the potential impact of an agrochemical on bees. 

Introduction 
Regulators need scientific evidence to justify measures to protect the health of farmland bees 
from pesticides used in crop protection.  The best evidence is provided by experiments that 
closely simulate realistic scenarios, such as field trials that reveal the degree of harm that a 
pesticide causes to bees when used in farming practice.  However, regulators also can make use of 
cardinal indicators, by which I mean certain numbers whose values carry information about either 
the comparative toxicity or absolute hazard of an active substance.  Two of the cardinal values are 
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the LD 50  (‘lethal dose to 50% of exposed subjects’), and the NOEC (‘no observable effect 
concentration’).  Here, I propose a third: the Haber exponent.  Below, I argue that establishing 
these three numbers for an agrochemical makes a strong foundation on which to evaluate the 
potential impact of a compound on bees.   

First cardinal number: LD 50 
The LD 50  is not useful to regulators as a ‘protection threshold’, or a maximum permissible level of 
exposure because it safeguards only half of the population, which is not normally sufficient.  
Useful protection thresholds can, however, be derived from the LD 50 .  For example, regulators 
may consider imposing a threshold of LD 50/10 , which has the following theoretical justification.  
The LD 50  is a percentile on the cumulative distribution of the frequency distribution of dose 
tolerances in the exposed population.  If the frequency distribution of tolerances (minimum lethal 
doses of toxicant) in the population is normally distributed, then the cumulative distribution is 
sigmoidal and the LD 50  coincides with the mode (and mean) of the frequency distribution (Fig. 1).  
If the population varies little in tolerance, the sigmoidal cumulative distribution rises steeply, 
otherwise it is shallow.  If we require that the frequency distribution of tolerances is unimodal, 
then a theoretical asymptote arises when the frequency distribution of tolerances is flat (Fig. 1, 
asymptotic case).  Arguably, this is a ‘worst case scenario’ because some members of the 
population have no tolerance to the exposure and others have virtually none.  In this hypothetical 
worst case, the cumulative distribution is a straight line (Fig. 1) and it is possible to be very precise 
about the death rate at an exposure of LD 50/10 ; specifically, it is (50/10)% = 5%.  Since this is a worst 
case, we can say that a protection threshold of LD 50/10  will result in the death of no more than 5% 
of the population – and less if the distribution of tolerances is unimodal and normal, which is more 
likely in realistic scenarios.  Note that LD 50/10  becomes more effective as a protection threshold as 
populations vary less in tolerance. 

 

Fig. 1 Relationships between the dose-response curve (upper panels) and the frequency distribution of dose 
tolerances (lower panels) in each of three populations (the upper and lower panels are paired within the three 
columns: similar, variable and asymptotic case).  The within-population variability among individuals in dose 
tolerance increases progressively left-to-right across the three columns.  Vertical dashed lines indicate the 
modes of the frequency distributions and the horizontal dashed lines indicate the LD 50  (i.e. the response 
endpoint is fatality).  

The second use of the LD 50  is as a comparative indicator.  Over time, toxicologists have 
determined the LD 50  of many compounds so that by comparing the LD 50  of a new compound to 
the known impacts of compounds in past use, regulators can quickly form an opinion about the 
likely relative hazard of the new one. 
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Fig. 2 Relationship between (x-axis) and typical agricultural application rate (y-axis) for a collection of 
neurotoxic insecticides.   denotes DDT;  = carbamate,  = pyrethroids,  = neonicotinoids,  = 
organophosphates. The diagonal dashed curve indicates a decrease in application rate that is proportional to 
increasing LD 50 .  I.e. many of the more potent compounds are applied at higher rates than DDT, relative to 
their toxicity.  Redrawn from Cresswell (2016). 

For regulatory purposes, the limitation of the LD 50  is that it is highly specific to the laboratory 
conditions that were used to determine it, which may not be environmentally realistic.  For 
example, the conventional laboratory tests in honey bees use only healthy, newly emerged 
individuals whereas realistic in-hive populations comprise bees of mixed age and varied health 
status.  Also, the LD50 is normally established in short-term, ‘acute’ exposures – typically a 48 hour 
exposure - which does not reveal whether toxicity could be amplified as the duration of the 
exposure increases.  In actuality, the LD 50  can become lower as the duration of the exposure 
increases (see below). 

Overall, of course, the LD 50  justifies its place among the cardinal indicators because it can be used 
both in setting protection thresholds and as a comparator.  However, its limitations indicate that it 
should not be the sole cardinal number. 

Second cardinal number: the NOEC 
The unit of concentration specified by the NOEC (no observable effect concentration) may refer to 
the concentration of the toxicant in either the subject’s environment or diet.  Regulators can use 
the NOEC directly as a protection threshold, because it safeguards the focal species from obvious 
toxic effects.  Where the test endpoint is fatality, the NOEC restricts permissible exposures to levels 
that do not increase the death rate above normal background levels.  The NOEC does not preclude 
harm when used as a protection threshold, because the impact may be subtle (i.e. not observable 
under the examination used); only the NEC (no effect concentration) provides complete 
protection. 

In relation to the NOEC, the term ‘observable’ can be taken to mean ‘detectable by a specified 
experimental method’.  Where the experimental method used to determine the NOEC is factorial 
(i.e. a particular number of treatments of various dosing levels are implemented), then 
detectability in practice means ‘statistically different from the control’.  Specifically, when this 
factorial design is used, the NOEC is taken to be the lowest of the tested doses in which the 
measured response of the exposed subjects is not statistically different from the response of 
undosed controls.  Statistical tests between factor levels conventionally are based on the standard 
errors of the treatment means (e.g. ANOVA or t-tests), which depend on sample size because SE = 
SD/√n.  Consequently, an undesirable situation arises where the NOEC is designated to be the 
smallest dose that causes a response different to the control given the size of the experiment; 
specifically, the value of the NOEC has no biological basis, but instead changes with the power of 
the experimental design.  The NOEC has been criticised for this failing (Laskowski, 1995).  What 
remedy is there?  Instead of a factorial experiment, it is better in principal to characterise the dose-
response relationship by curve-fitting (i.e. a regression approach) and then to estimate the NOEC 
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from the best fit.  The question then becomes: where is the NOEC on the best-fit dose-response 
curve? 

Insect physiologists have faced an analogous problem in estimating ‘basal temperature’, which is 
the lowest temperature at which metabolic activity begins.  Their solution (Wigglesworth, 1965) 
has been to extrapolate from the linear section of the sigmoidal temperature-vs.-metabolic-rate 
relationship and to solve for an intersection with the x-axis, which is a point where metabolic rate 
(y-axis) is zero.  It is straightforward to apply the same technique to the problem of the NOEC (Fig. 
3).  Here, I denote this x-intercept by NOEC* (to distinguish it from the conventional NOEC).  The 
advantage of this approach is that experiments based on differently sized experiments will all 
estimate the same theorised value (the x –intercept, NOEC*) and the size of the experiment (the 
number of experimental subjects) affects only the confidence intervals around the estimate.  In 
estimating NOEC*, therefore, statistical power affects only the precision of the outcome and does 
not bias the value of the estimator itself, unlike with the factorial/ANOVA approach described 
above.  In an important sense, therefore, NOEC* is precisely defined and ‘parametric’ – it is the x -
intercept of the extrapolation from the central inflection point of a sigmoidal dose-response curve.   

 

Fig. 3. A hypothetical sigmoidal dose-response relationship with a straight-line extrapolation (dashed line) to 
the x-axis from the inflection of the sigmoidal curve, which can been used to estimate the NOEC*.    

A additional theoretical parameter, NEC (no effect concentration), is located where the dose-
response curve leaves the abscissa (x-axis), and NOEC* is a sensible proxy for NEC under the 
proviso that concentrations below NOEC have an acceptably ‘negligible’ effect.   It is an 
undesirable outcome that the magnitude of the so-called negligible effect is related to the 
gradient of the central linear section of the dose-response curve.  Specifically, the extrapolation 
from the linear section of the dose-response curve will require slightly greater responses to be 
designated as ‘negligible’ in populations that vary more in tolerance (i.e. shallower dose-response 
curve; see Fig. 1).  This is not entirely satisfactory and therefore we will look elsewhere for a more 
consistent estimator of the NOEC (see below). 

Third cardinal number: Haber exponent, b. 
The Haber exponent qualifies the meaning of the LD 50  as both a comparator and a protection 
threshold.  Its use has been recommended to toxicologists generally (Rozman, 2000) and for those 
interested in bee-pesticide interactions (Tennekes & Sanchez-Bayo, 2011).  To discover its value, 
consider the impact on a regulator’s decision of using the Haber exponent in conjunction with the 
LD 50  to compare the hazard of two hypothetical compounds, A and B.  The two compounds are 
intended for application as pesticides to a mass-flowering crop that blooms for several weeks.  A 
and B have 48-hour LD 50  values of 4 ng honey bee-1 and 2 ng bee-1, respectively.  The regulator 
who makes a decision based on the conventional comparison between the LD 50  values alone 
concludes that A and B pose a similar hazard to bees.  The conventional regulator therefore 
approves both A and B for use provided that the application guidelines of the compounds meet 
satisfactory standards.  Suppose, however, that the Haber exponents of compounds A and B are 
bA = 1 and bB = 2, respectively.  The better-informed regulator who compares the LD 50  values and 
takes into account the Haber values concludes (correctly) that B is much more hazardous to bees 
than A because the environmentally realistic exposure (several weeks) is longer than 48 hours.  
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The better-informed regulator safeguards farmland bees by permitting only compound A to 
proceed to market.  What is the basis of this crucial distinction between b = 1 and b = 2?    

To interpret the value of a Haber exponent, it is necessary to introduce the concept of ‘toxic load’.  
Assume that an exposed bee is slightly injured at a constant rate by each molecule of toxicant that 
is inside its body.  Each small injury is permanent and the bee dies when the total accumulation of 
injuries exceeds its individual tolerance threshold, which varies among bees (Fig 1).  The toxic load 
is defined as the total injury accumulated by an individual bee after any particular exposure time.   

The Haber exponent refers to the rate of increase of toxic load over time during an exposure; 
specifically, a sustained exposure to compound A (bA = 1) produces a straight-line increase in toxic 
load over time (Fig. 4, trajectory A) and sustained exposure compound B (bB = 2) produces a quasi-
exponential increase (Fig. 4, trajectory B).  (Appendix 1 presents a toxicodynamic model that 
relates the trajectory of toxic load to the Haber exponent.)  Fig. 4 reveals an important 
generalisation about the relative hazard of exposure to compounds like A (b = 1) vs. B (b = 2) that 
have similar LD 50  values; compounds whose Haber exponent approximates a value of b = 2  are 
more hazardous than compounds whose Haber exponent approximates a value of b = 1 (all else 
equal) provided that the case involves exposures longer than that used to determine the LD 50  
originally.  In such cases, the Haber exponent is an important discriminator among toxicants.   

 
Fig. 4. Increase in toxic load (y-axis) over time (x-axis) in sustained exposures to two hypothetical compounds, 
A and B, that differ in the value of their Haber exponents (A: b A  = 1, which indicates a straight-line increase in 
toxic load; and B: b B  = 2, which indicates a quasi-exponential rate of increase).   

Consequently, a regulator better safeguards bees by using the LD 50  in conjunction with the 
corresponding Haber exponent.     

If, as I have argued, the Haber exponent is an important qualifier of LD 50 , how is it measured?  
Simply, it requires an analysis of the results of a series of ‘time-to-effect’ experiments, each of 
which is conducted at a different dose (Baas et al. 2010).  A time-to-effect experiment measures 
the duration of exposure that is required to cause a specified effect, such as 50% mortality among 
exposed subjects.  Typically, varied exposure levels are used in the laboratory to yield a series of 
‘dose-duration’ combinations that cause the specific effect.  For example, 20 cages each of 10 
honey bees might be each exposed to one of four dietary concentrations of toxicant X (i.e. five 
replicates per concentration) and the investigator records the time at which the median fatality 
occurs in each cage.  The results of the experimental series are four combinations of dose 
(expressed as toxicant concentration (C) and duration of exposure (t) that produce a specified 
effect, such as 50% mortality [ i.e. (C1, t1); (C2, t2); (C3, t3); and (C4, t4)].  Normally, the duration of 
the required exposure, t, increases as the concentration of the toxicant, C, declines.  The Haber 
exponent of X is evaluated by estimating the slope of the concentration-vs.-duration relationship 
(C-vs.-t) on a log-log plot (Appendix 1 provides a justifying explanation). 

Alert readers have noticed that the preceding description makes no mention of a control 
treatment, which should comprise unexposed test subjects.  And, in actuality, none is required in 
the calculation of the Haber exponent.  However, a valid exponent must be estimated only from 
subjects under toxic exposures, because the Haber exponent is a measure of dose-dependence; 
dose-independent variation confounds the analysis.  In order to evaluate dose-dependence, our 
analysis must include only C-vs.-t data recorded on subjects that the dose has detrimentally 
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affected.  In practice, it is impossible to distinguish fatality due to the toxicant and fatality due to 
senescence, which can occur in individuals that tolerate the low-level doses.  To exclude 
individuals that have not suffered fatality due to the toxicant, it is necessary to establish a 
statistical confidence interval on the performance of control subjects.  Once this is achieved (Fig. 
5), the Haber exponent can be established by regression. 

 
Fig. 5 An idealized C-vs.-t relationship on log-log scales for a hypothetical toxicant that causes the criterion 
effect (kills 50% of exposed bees in a cage) in one day when the exposure is at a concentration of 125 parts per 
billion (ppb).  Four less concentrated exposures were tested (results also denoted by ) and the least-squares 
regression has a slope of b = -2 (the dashed diagonal shows b = 1 for reference).  In unexposed cages, 50% of 
bees died by senescence in µ = 40 days and the standard deviation among cages was 5.1 days.  A 95% 
confidence interval on the criterion in unexposed bees yields a lower boundary of 30 days (depicted by the 
grey-filled area).  The NOEC** based on the intercept between the C-vs.-t relationship and the confidence 
interval is C = 0.14 ppb, which compares to the reference NOEC (b =1) of C = 4.2, which is thirty times higher. 

Extrapolation of the C-vs.-t relationship on log-log scales (Fig. 5) enables another estimate to be 
made of NOEC, which I denote NOEC** (to distinguish it from the conventional NOEC and the x-
intercept estimate, NOEC*).  Specifically, the intercept between the log(C)-vs.- log(t) regression 
and the lower confidence interval on the responses of the control population (Fig 5) is, in theory, 
the lowest toxic dose.  It is a parametric datum whose true value is independent of sample size 
because the confidence interval is determined using the standard deviation (average distance of 
individuals from the population average), which is a population attribute (unlike the standard 
error, which is an attribute of the sampling procedure).       

Conclusions 
The Haber exponent can serve as an important qualifier of the widely used LD 50 . The protocol 
used to measure the Haber exponent also enables the NOEC to be estimated.  In a hypothetical 
but realistic example (Fig. 5), the NOEC varies by a factor of 30 depending on the magnitude of the 
Haber exponent, which indicates its value in evaluating the hazard a pesticide poses to bees.  In 
future, statistical investigation will be required to establish the efficient sizes for quantifying Haber 
exponents.   
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Appendix 1: A toxicodynamic basis for the value of the Haber exponent 
Assume that the bee is slightly injured by each molecule of toxicant that is inside its body at a 
constant rate.  Each small injury is permanent and the bee dies when the accumulation of injuries 
exceeds its individual tolerance threshold, denoted T, which varies among bees (Fig 1).  The toxic 
load, denoted Lt, is defined as the total accumulated injury after any exposure time, t, and the bee 
dies when Lt > T.  Now consider two possible scenarios.   

Scenario A: the internal concentration of toxicant at its target site, C, is constant over time.  
Therefore, the rate of injury is constant, Lt is proportional to the duration of the exposure, t, and 
we can write: 

Lt ∝ Ct                                                                                         Eq. 1 

This scenario pertains when the internal concentration of a toxicant equilibrates rapidly and the 
biological half-life (i.e. in-body residence) of the toxicant is short relative to the total duration of 
the exposure, which arises if the toxicant is metabolically degraded or otherwise eliminated with 
rapidity. 

Scenario B: the internal concentration of the toxicant at its target site increases over time as 
exposure continues because its biological half-life is short relative to the duration of the exposure 
(i.e. the toxicant bioaccumulates in the bee’s body).  The internal concentration is therefore a 
variable, denoted φt, whose value depends on the current duration of the exposure.  Therefore, 
the rate of injury increases over time.  If the toxicant accumulates in the bee’s body at a constant 
rate, k1, then φt is given by: 

φt = k1t                                                                                         Eq. 2 
 

Under these circumstances, we can write an expression for the bee’s toxic load at time t by 
replacing the constant C in Eq 1 by the mean value of φt over the time span t, which is 0.5k1t 
(because at the start of the exposure φt = 0 and at the end of the exposure it is k1t).  Hence, we can 
write: 

Lt ∝  t2                                                                                         Eq. 3 

In summary, toxic load increases at different rates under the two scenarios.  Specifically, we have: 

Lt ∝ t  (scenario A) vs.  Lt ∝  t2 (scenario B) 

In theory, therefore, the exponent takes the value b =1 if the toxicant reaches steady-state and b = 
2 if the toxicant bioaccumulates.  

Haber’s constant product law dictates: 

𝐶𝐶𝑡𝑡𝑏𝑏 = 𝑘𝑘                                                                            Eq. 4  

It is straightforward to evaluate b using data from a series of ‘time-to-effect’ experiments (Fig. 5) 
that quantify the exposure durations required to produce a specified level of injury in 
experimental subjects under various doses.  The procedure  involves fitting the C-vs.-t relationship 
and determining its slope on logarithmic axes (Bliss 1941), which estimates parameter b because 
the log-log version of Eq 4 is given by: 

𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) = −𝑏𝑏[𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)] + 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑘𝑘)                                              Eq. 5 

  


