provided by JKI Open Journal Systems (Julius Kühn-Institut)

10th International Working Conference on Stored Product Protection

Biological activity of essential oils of *Alpinia conchigera* rhizome against *Sitophilus zeamais* and *Tribolium castaneum*

Suthisut, D. *², Fields, P.G. #¹, Chandrapatya, A.² ¹ Cereal Research Centre, Agriculture & Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, R3T 2M9, Canada, paul.fields@agr.gc.ca ² Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand, 10900,

² Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand, 10900, dsuthisut@yahoo.com, chandrapatya@yahoo.com

* Corresponding author # Presenting author

DOI: 10.5073/jka.2010.425.098

Abstract

Research dealing with plant products is a new direction as an alternative to conventional insecticides for stored-product insect control (Shaaya et al., 1991, 1997). *Alpinia conchigera* Griffin (Zingiberaceae) is a native plant in southern Thailand, and it has a wide variety of the essential oils (Ibrahim et al., 2009). The toxicity and repellency of the water distilled essential oils from rhizome of *A. conchigera* was evaluated against the major stored-product insect pests, maize weevil, *Sitophilus zeamais* Motschulsky and red flour beetle, *Tribolium castaneum* (Herbst) 1-14 day-old adults at 29 ± 2 °C and $65\pm5\%$ r.h. In fumigation trials (Liu and Ho, 1999), the mortality was assessed at concentrations ranging from 74 to 667 µL/L in air with exposure times ranging from 3 to 24 h. There was complete mortality of *S. zeamais* at 222 µL/L after 24 h, whereas 593 µL/L for 24 h was required for complete mortality of *T. castaneum*. *Sitophilus zeamais* adults (LC₅₀, fiducial limits: 121, 114-129 µL/L) were more susceptible to essential oils of *A. conchigera* than *T. castaneum* (295, 203-369 µL/L) (Table 1). Contact toxicity was assayed by topical application to insect thoraxes (Liu and Ho, 1999) at different concentrations (10 to 40%). *Sitophilus zeamais* adults (LC₅₀, 27, 18-40 µg/mg) had the same mortality as *T. castaneum* (LC₅₀, 34, 28-47 µg/mg) (Table 2). A filter paper choice bioassay (Ko et al., 2009) of essential oils of *A. conchigera* in 100% ethanol showed that *T. castaneum* has repelled more than *S. zeamais* (Table 3).

Keywords: Alpinia conchigera, Sitophilus zeamais, Tribolium castaneum, Essential oils, Toxicity

Table 1	Fumigation toxicity of essential oils from Alpinia conchigera rhizome against Sitophilus zeamais	s and
	Tribolium castaneum at 29 °C after 24 h.	

Insect	LC ₅₀ (µL/L)	95% confidence Intervals (μL/L)	LC ₉₅ (µL/L)	95% confidence Intervals (μL/L)	Degrees of freedom	Chi-square
S. zeamais T.	121	113-128	180	168-196	8	0.395
castaneum	294	203-368	417	350-658	8	170.09

 Table 2
 Contact toxicity of Alpinia conchigera rhizome essential oils against Sitophilus zeamais and Tribolium castaneum at 29 °C after 24 h.

Insect	LC ₅₀ (µg/mg)	95% confidence Intervals (μg/mg)	LC ₉₅ (µg/mg)	95% confidence Intervals (μg/mg)	Degrees of freedom	Chi-square
S. zeamais	26	18-39	51	38-103	3	18.04
Τ.		28-46		47-101		
castaneum	34		60		3	9.33

			l	PR (Mean% <u>+</u>	SD)		
Insect	Oil (µg/cm ²)						
		1	2	3	4	5	PR (Mean%)
S. zeamais	0.16	32 <u>+</u> 59 b	36 <u>+</u> 59 b	56 <u>+</u> 38 b	68 <u>+</u> 41 a	60 <u>+</u> 47 a	50
	0.31	88 <u>+</u> 11 a	68 <u>+</u> 61 ab	76 <u>+</u> 26 ab	80 <u>+</u> 14 a	60 <u>+</u> 20 a	74
	0.47	96 <u>+</u> 9 a	96 <u>+</u> 9 a	88 <u>+</u> 18 a	72 <u>+</u> 30 a	72 <u>+</u> 33 a	85
	0.63	100 <u>+</u> 0 a	100 <u>+</u> 0 a	96 <u>+</u> 9 a	72 <u>+</u> 30 a	48 <u>+</u> 39 a	83
	0.79	100 <u>+</u> 0 a	96 <u>+</u> 9 a	96 <u>+</u> 9 a	80 <u>+</u> 45 a	60 <u>+</u> 14 a	86
T. castaneum	0.16	80 <u>+</u> 20 a	100 <u>+</u> 0 a	92 <u>+</u> 11 a	76 <u>+</u> 26 b	52 <u>+</u> 30 b	80
	0.31	72 <u>+</u> 18 a	80 <u>+</u> 25 b	92 <u>+</u> 11 a	80 <u>+</u> 14 ab	84 <u>+</u> 22 a	82
	0.47	84 <u>+</u> 17 a	96 <u>+</u> 9 ab	92 <u>+</u> 11 a	92 <u>+</u> 11 ab	100 <u>+</u> 0 a	93
	0.63	92 <u>+</u> 18 a	100 <u>+</u> 0 a	96 <u>+</u> 9 a	96 <u>+</u> 9 ab	80 <u>+</u> 28 ab	93
	0.79	96 <u>+</u> 9 a	96 <u>+</u> 9 ab	96 <u>+</u> 9 a	100 <u>+</u> 0 a	88 <u>+</u> 18 a	95

 Table 3
 Percent repellency (PR) of Alpinia conchigera rhizome essential oils against Sitophilus zeamais and Tribolium castaneum using treated filter paper test*

*Five replicates of 10 insects in each replication, for each insect, means in same column followed by the different letters are significantly (P>0.05) Duncan's multiple range test (DMRT).

References

- Ko, K., Juntarajumnong, W., Chandrapatya, A., 2009. Repellency, fumigant and contact toxicities of *Litsea cubeba* (Lour.) Persoon against *Sitophilus zeamais* Motschulsky and *Tribolium castaneum* (Herbst). Kasetsart Journal Natural Sciences 43, 56-63.
- Liu, Z.L., Ho, S.H., 1999. Bioactivity of the essential oil extracted from *Evodia rutaecarpa* Hook F. et Thomas against the grain storage insects, *Sitophilus zeamais* Motsch and *Tribolium castaneum* (Herbst). Journal of Stored Products Research 35, 317-328.
- Ibrahim, H., Aziz, A.N., Syamsir, D.R., Ali, N.A.M., Mohtar, M., Ali, R.M., Awang, K., 2009. Essential oils of *Alpinia conchigera* Griff. and their antimicrobial activities. Food Chemistry 113, 575-577.
- Shaaya, E., Kostjukovski, M., Eilberg, J., Sukprakarn, C., 1997. Plant oils as fumigants and contact insecticides for the control of stored-product insects. Journal of Stored Products Research 33, 7-15.
- Shaaya, E., Ravid, U., Paster, N., Juven, B., Zisman, U., Pisarrev, V., 1991. Fumigant toxicity of essential oils against four major stored-product insects. Journal of Chemical Ecology 17, 499–504.