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One of the key elements in dynamic contrast enhanced (DCE) image analysis is the arterial input

function (AIF). Traditionally, in DCE studies a global AIF sampled from a major artery or vein is

used to estimate the vascular permeability parameters; however, not addressing dispersion and

delay of the AIF at the tissue level can lead to biased estimates of these parameters. To find less

biased estimates of vascular permeability parameters, a vascular model of the cerebral vascular

system is proposed that considers effects of dispersion of the AIF in the vessel branches, as well

as extravasation of the contrast agent (CA) to the extravascular‐extracellular space. Profiles of the

CA concentration were simulated for different branching levels of the vascular structure, com-

bined with the effects of vascular leakage. To estimate the permeability parameters, the extended

model was applied to these simulated signals and also to DCE‐T1 (dynamic contrast enhanced T1)

images of patients with glioblastoma multiforme tumors. The simulation study showed that, com-

pared with the case of solving the pharmacokinetic equation with a global AIF, using the local AIF

that is corrected by the vascular model can give less biased estimates of the permeability param-

eters (Ktrans, vp and Kb). Applying the extended model to signals sampled from different areas of

the DCE‐T1 image showed that it is able to explain the CA concentration profile in both the nor-

mal areas and the tumor area, where effects of vascular leakage exist. Differences in the values of

the permeability parameters estimated in these images using the local and global AIFs followed

the same trend as the simulation study. These results demonstrate that the vascular model can

be a useful tool for obtaining more accurate estimation of parameters in DCE studies.

KEYWORDS

arterial input function, cerebral tumors, DCE‐MRI, dynamic contrast enhanced imaging, vascular

modeling, vascular permeability

1 | INTRODUCTION

One of the challenges in dynamic contrast enhanced (DCE) studies is

estimation of the time trace of local plasma contrast agent (CA)

concentration or the arterial input function (AIF) at the tissue level.

We previously introduced a vascular transfer function of the brain

that could model delay and dispersion of the CA concentration pro-

file at different levels of the vascular branching tree.1 This transfer

function is based on laws of fluid dynamics and vascular morphol-

ogy. Previously, Gall et al2 and Kellner et al3 had used a similar

approach and derived a vascular tree model to explain delay and dis-

persion of the arterial spin labeling (ASL) bolus4; they also used this

model to estimate the residue function for brain tissue in perfusion

measurements.5 These models assume that there is no leakage of

the CA to the extravascular‐extracellular space (EES). We used this

transfer function to derive a model and by applying it to dynamic

contrast enhanced computed tomography (DCE‐CT) images and

using the estimated model parameters, created an arrival time map

of the brain.

Abbreviations used: AIC, Akaike information criterion; AIF, arterial input

function; ASL, arterial spin labeling; BVM, basic vascular model; CA, contrast

agent; CBF, cerebral blood flow; DCE, dynamic contrast enhanced; DCE‐CT,
dynamic contrast enhanced computed tomography; DCE‐MR, dynamic

contrast enhanced magnetic resonance; DSC, dynamic susceptibility contrast;

EES, extravascular‐extracellular space; GBM, glioblastoma multiforme; kb,

inverse transfer rate constant; Ktrans, vascular transfer rate constant; MTT,

mean transit time; PET, positron emission tomography; SM, standard model;

SPGRE, spoiled gradient echo; SSE, sum of squared errors; ve, extravascular‐
extracellular space volume; vp, vascular plasma volume
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In the MRI field, dynamic susceptibility contrast (DSC) imaging is

the method of choice for perfusion studies in which mean transit time

(MTT), cerebral blood flow (CBF) and cerebral blood volume are esti-

mated6; DSC is based on changes of the T2* signal in the dynamic

images.6 In dynamic contrast enhanced magnetic resonance imaging

(DCE‐MRI) studies, dynamic series of T1‐weighted images are acquired

and are mainly used for estimation of vascular permeability parameters

such as vascular transfer rate constant (Ktrans), vascular plasma volume

(vp) and EES volume (ve).
8–10 Estimation of the permeability parameters

can be done using pharmacokinetic models and one of these which is

widely used is the standard model (SM) or extended Tofts model.11

One of the main components in this model is the AIF. Theoretically, this

should be the local AIF that is sampled directly at the inlet to the tissue

being studied; however, in practice usually the AIF sampled from a

major artery is used,12 which results in eliminating the effects of disper-

sion and delay of the AIF.13 Inaccurate estimation of the AIF at the tis-

sue level for use in permeability and perfusion analyses could

substantially add bias to the estimated hemodynamic and permeability

maps. Calamante et al used independent component analysis to show

that delay and dispersion of the AIF can cause underestimation of the

CBF and overestimation of the MTT in DSC studies.14 In their study,

they showed that, although the delay can be corrected using the infor-

mation of the arrival time of the bolus in the tissue, correcting for the

dispersion should be done using a vasculature model. Lee et al used a

model of tissue microcirculation based on tracer kinetics and Bayesian

probability theory to estimate the localized AIF in DSC images and used

this to estimate perfusion parameters15; permeability parameters found

by employing these local AIFs showed strong correlation with those

measured by quantitative positron emission tomography with H2[
15O].

In the DCE‐MR area, Fluckiger et al presented a method for blind

estimation of the local AIF based on the alternating minimization with

model (AMM) method16; to estimate the local AIF, they constrained it

with a model containing three gamma‐variate curves. Their results

show that, compared with using the local AIF, the current method of

using arterially measured AIFs biases the resulting parameters high,

especially in regions where more dispersion of the AIF is expected. In

one approach, to eliminate the need for direct AIF measurement,

Yankeelov et al proposed a method for quantitative analysis of DCE‐

MRI by comparing the CA concentration profile of tissues of interest

with that of a reference region. Using this method, Ktrans and ve were

estimated but a validation of the final results was not performed.17

In this paper, to address the effects of extravasation, we extend

our basic vascular model (BVM) that we previously introduced1 by

combining it with the SM. Next, by simulating the AIF at different

levels of the vascular system and also adding effects of vascular leak-

age to the simulated CA concentration profiles, we compare the results

of using our model‐corrected local AIF for estimating the permeability

parameters with the SM to those estimated using the global AIF.

Finally we perform the same comparison using DCE‐MR images of a

patient with a cerebral tumor.

2 | MATERIALS AND METHODS

All modeling and calculations were done in MATLAB (Release 2010b,

MathWorks, Natick, MA, USA).

2.1 | The basic vascular model

2.1.1 | Transfer function of the vascular pathway

We previously introduced a model to address dispersion and delay of

the CA profile when flowing from a main artery down to the lower

levels of the vascular tree in the brain.1,18 This model is mainly based

on a previously derived equation for describing the transfer function

of a single vessel with laminar flow.4,18 The transfer function is a func-

tion of t0n, the time required for the fluid on the central axis of the tube

to pass through the a vessel at the nth branching level:

hn tð Þ ¼
0 t<t0n
2t20
t3

t≥t0n
n ¼ 1; 2;…;6

8<
: (1)

Where

t0n ¼ D0n

v0n
: (2)

Here, D0n is the length and v0n the maximum velocity of blood in

the vessel (or the velocity along the central axis) at the nth level. The

interesting point about this transfer function is that it can describe

each vessel segment based on only one parameter (t0n). This parameter

is not related to the injection time of the CA, and based on Equation 2

depends only on the blood velocity in the vessel and its length. We will

refer to t0n as the branch delay, which is a characteristic of each

branch, assuming that blood flow is constant. We selected the maxi-

mum value of n = 6 based on the study done by Wright et al where

they measured the number of arterial branching levels in the different

brain regions using magnetic resonance angiography.19

Under certain assumptions, the delay time, t0n of each segment in

the vascular tree can be considered equal, and in this case the transfer

function of all the sequential branches can be considered identical. In

this case the parametric equation of the transfer function from the

opening of a main branch to the end of one of the sub‐branches at

the nth level of the vascular tree can be expressed as

h tð Þ1 t0 n ¼ g× h tð Þ1
� ��n

(3)

where “*n” denotes n repeated convolutions. Here g is a gain factor

compensating for the fractional volume of the vessels in the tissue.

By sampling the CA profile from a voxel in the DCE image series,

and also by sampling the AIF in a voxel representing the circle of Willis,

we can write the following equation:

AIFL tð Þ ¼ h tð Þ1 t0 n� AIF tð Þ: (4)

AIFL(t) is the local AIF in the tissue. If the vessels are intact and do

not have CA leakage, the CA profile sampled from a voxel in the DCE

images can represent AIFL(t). It should be noted that in this equation,

the effects of the capillaries on dispersing the AIF have not been con-

sidered. To find the transfer function that can best describe the rela-

tion between the AIF and AIFL(t) for each voxel in the image, we

developed a procedure based on the Nelder–Mead simplex search

method of Lagarias et al20 as a non‐linear fitting method with the
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sum of squared errors (SSE) as the cost function, along with the Akaike

information criterion (AIC),21 to find the best configuration of the

transfer function (based on the number of branching layers, n) that

can transform the AIF to AIFL(t). Since initially it is not known to which

branching level of the vascular tree the selected voxel belongs, the

fitting procedure is repeated separately for six configurations of one

to six layers of branching, to find the following set of parameters for

the transfer function for each configuration:

g; t01½ �: (5)

After finding the best fit transfer function for each configuration

of the vascular tree, using the fitting residual values, the best model

is selected using the AIC to represent the transfer function that trans-

fers the AIF to the selected AIFL(t).

The model described above (basic vascular model or BVM) has

been designed to explain dispersion and delay of the AIF in the vascu-

lar tree with no extravasation in any of the vessels. As we will explain

in the following sections, the model in its current form will not be able

to explain the profile of the CA concentration when the signal is sam-

pled from areas with leaky vessels.

2.2 | Extending the basic vascular model

When the tissue concentration signal is sampled from voxels in image

areas containing vessels with no leakage, the signal mainly represents

the CA concentration profile in the intravascular space. This profile is

generally a dispersed form of the AIF in major vessels; however, when

the CA leaks into the extravascular space, the sampled tissue concen-

tration signal will follow a different trend. Based on this observation, to

address the changes of the CA profile in areas with leaky vasculature

and to find a more accurate estimation of the intravascular (plasma)

CA concentration profile in these vessels, we modified the BVM to

include effects of leakage of the CA to the extravascular space.

2.2.1 | Adding permeability parameters to the basic vas-
cular model

One of the models describing tracer kinetics is the extended Tofts

Model or SM. According to the SM, which is a two compartmental

model,13,22 the relationship between Ct(t) (tissue concentration profile

of the CA) and Cp(t) (plasma concentration profile of the CA) can be

described as follows:

Ct tð Þ ¼ Ktrans∫
t
0e

−kb t−τð ÞCp τð Þdτ þ vpCp tð Þ: (6)

In this equation, the tissue concentration of CA, Ct(t), is composed

of two main components: The first term on the right,

Ktrans∫
t
0e

−kb t−τð ÞCp τð Þdτ represents the component of the signal that is

due to leakage of the CA to the extravascular space and is dependent

on the forward (Ktrans) and inverse (kb) transfer rate constants. The sec-

ond term, vpCp(t), basically represents the time trace of the plasma CA

concentration in the vessels that feed the tissue from which Ct(t) is

being sampled. Depending on the type of vasculature leakage, some

of the permeability parameters may not be taken into account and

Equation 6 may follow different models of vascular extravasation as

described below.10,23

I. Impermeable vasculature where the blood–brain barrier is intact

(Ktrans = 0, kb = 0, vp ≠ 0).

II. Moderate influx, which is observed as leakage without efflux

(Ktrans ≠ 0, kb = 0, vp ≠ 0).

III. Fast leakage, which leads to bidirectional exchange (Ktrans ≠ 0,

kb ≠ 0, vp ≠ 0).

Figure 1 shows a schematic diagram of the signal components of

the extended Toftsmodel and their relation. AIF(t) is the CA profile sam-

pled at the location of one of the major arteries. The cube in this figure

represents an imaginary voxel in the image from which the tissue CA

concentration profile, Ct(t), is being sampled. Cp(t) is the plasma CA

concentration in the vessel (or vessels) feeding the tissue in the voxel.

As we noted in the introduction section, in conventional methods

of calculating the permeability parameters using the pharmacokinetic

model, for the profile of Cp(t), the CA profile sampled from one of

the major arteries (in the image) or even veins (such as the superior

sagittal sinus) is usually used; however, this is not representative of

the CA profile in tissue since it does not address dispersion of the

CA profile at different levels of the vascular tree and can lead to biased

estimates of the permeability parameters. In image areas with non‐

leaky vessels, the sampled profile basically represents only the intra-

vascular CA concentration which can be described with the BVM. To

find an equation for describing the intravascular CA concentration pro-

file in leaky vessels, we added a new feature to the vascular transfer

function that we defined by Equation 3. If in Equation 6 we replace

the plasma CA concentration profile, Cp(t), with the local interpretation

of the AIF in tissue, the pharmacokinetic model can be written as

Ct tð Þ ¼ Ktrans

vp
∫
t
0e

−kb t−τð ÞAIFL τð Þdτ þ AIFL tð Þ

¼ Ktrans

vp
e−kbt�AIFL tð Þ� �þ AIFL tð Þ: (7)

FIGURE 1 Schematic diagram showing the main components of the
pharmacokinetic model and their location. AIF(t) is the CA profile
sampled at the location of one of the major arteries. The cube in this
figure represents an imaginary voxel in the image from which the
tissue CA concentration profile, Ct(t), is being sampled. Cp(t) is assumed
to be the plasma CA concentration in the vessel (or vessels) feeding the
tissue in the voxel
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By replacing AIFL(t) from Equation 4 we have

Ct tð Þ ¼ Ktrans

vp
e−kbt�AIF tð Þ�h tð Þ1 t0 n

� �þ AIF tð Þ�h tð Þ1 t0 n (8)

Or

Ct tð Þ ¼ AIF tð Þ� h tð Þ1 t0 n�
Ktrans

vp
e−kbt þ δ tð Þ

� �� 	
¼ AIF tð Þ�hE tð Þ (9)

Where

hE tð Þ ¼ h tð Þ1 t0 n�
Ktrans

vp
e−kbt þ δ tð Þ

� �
: (10)

The transfer function, hE(t), describes transformation of the AIF

profile to the measured tissue concentration signal at different loca-

tions of the vascular structure, with or without leakage of the vessels.

In the case where the vessels are intact (non‐leaky), Ktrans will be zero

and the measured signal will be basically the intravascular plasma con-

centration of the CA in the tissue, which can be described by convolv-

ing the AIF with h(t)1 t0 n. In the case where the vessels are leaky, Ct(t) is

the superposition of the intravascular and extravascular components

of the signal, which are the two main components of this equation.

To find the best function that transfers the AIF to the tissue con-

centration signal, in addition to the six configurations of the vascular

tree (as in the BVM), three configurations of the SM10,23 (Models I, II

and III) are also considered. Therefore for each signal, 18 different

combinations of the transfer function are studied, and using the fitting

residues for each, the best transfer function describing transformation

of the AIF to the tissue CA concentration profile is selected using the

AIC. After finding the curve that best fits to the sampled signal, using

the parameters found in the fitting procedure and also the two main

components of this transfer function, the transfer functions describing

the extravascular and intravascular components of the tissue concen-

tration signal can be constructed and by convolving them with the

AIF profile, each can be described as:

CI
t tð Þ ¼ AIF tð Þ�h tð Þest (11)

CE
t tð Þ ¼ Ktrans

vp
e−kbt�AIF tð Þ�h tð Þest: (12)

Here CI
t tð Þ and CE

t tð Þ are the intravascular and extravascular com-

ponents of the tissue CA concentration profile and h(t)est is the esti-

mated vascular transfer function.

2.3 | Subjects

Three treatment naïve patients with glioblastoma multiforme (GBM)

were scanned using the procedure described below. The study was

approved by the Henry Ford Health System Institutional Review Board

and written informed consent was obtained from all subjects.

2.4 | DCE‐MR image acquisition

DCE‐MR image acquisition was performed on a 3 T GE Excite HD MR

system (GE Healthcare, Waukesha, WI, USA) using a standard eight‐

channel phased‐array RF coil. Before CA administration, T1 mapping

was obtained using DESPOT1 (driven equilibrium single pulse observa-

tion of T1),
24 withTE/TR = 0.84/5.8 ms, 256 × 256 matrix size, 240 mm

FOV, 16 slices with 5 mm thickness and six flip angles of 2°, 5°, 10°,

15°, 20° and 25°. These images were used to create the pre‐contrast

T1 maps that were used as the baseline values for the 3D spoiled gra-

dient echo (SPGRE) DCE‐T1 procedure.10 The 3D SPGRE DCE‐T1

sequence included 70 image volumes acquired 5.9 s apart, all with a

20° flip angle, TE/TR = 0.84/5.8 ms, 256 × 256 matrix size, 240 mm

FOV, 16 slices with 5 mm thickness. Total data acquisition was

6.8 min. CA (Magnevist; Bayer Healthcare Pharmaceuticals, Wayne,

NJ, USA) was administered intravenously by power injection 20 s after

the start of the DCE‐T1 sequence, at a dose of 0.1 mmol/kg with a rate

of 4 mL/s.

It has been shown that changes in the relaxivity (ΔR1) are linearly

related to CA concentration in tissue25,26; we previously derived an

equation for extracting ΔR1 signals from T1‐weighted SPGRE MRI

data.9 If TE is selected such that TE ≪ T2*, the effects of T2* on ΔR1
calculated from the SPGRE DCE‐T1 data can be minimized,10 which

is the condition we had for acquiring our DCE‐T1 images. By applying

this equation to our DCE‐T1 data we produced the ΔR1 maps for this

image sequence. The voxelwise ΔR1 signals in these images were used

for estimation of the permeability parameters with the SM. To adjust

the equations for DCE‐MR applications, we replace Ct(t) with

(1 −Hct) ΔR1t(t) and AIF(t) with ΔR1a(t) in Equation 9:

1−Hctð ÞΔR1t tð Þ ¼ ΔR1a tð Þ�hE tð Þ: (13)

2.5 | Comparison of performance of the BVM and
the extended model in normal and leaky vessels

To compare the performance of the BVM with its extended form for

describing the CA concentration profile in brain areas with leaky or

non‐leaky vessels, we studied the tissue CA concentration signals sam-

pled from two regions of the brain in a patient with GBM: one from the

normal tissue and the other from the tumor area. For each model,

based on the procedure explained in the methods section, we sepa-

rately used the BVM and the extended model to find the best transfer

function describing the transformation of the AIF to the CA concentra-

tion profile in each of these regions.

2.6 | Applying the extended model to DCE‐T1
images for estimation of the permeability parameters

When using the extended model for estimation of the transfer func-

tion, for each voxel in the image, in addition to the parameters that

describe the vascular structure connecting the major artery and the

vessels passing through this voxel, the permeability parameters can

also directly be estimated as a byproduct of the method. Depending

on the model of leakiness that is being considered, at each branching

4 of 12 NEJAD‐DAVARANI ET AL.



level, the transfer function can have one (vp), two (vp, K
trans) or three

(vp, K
trans, Kb) parameters to represent one of the three configurations

of the SM. After estimating all 18 transfer functions based on the fitting

procedure and selecting the best fit model, the permeability parameters

can be estimated using the parameters of this model.

We previously reported another method that we had established

for estimating permeability parameters10 in DCE‐T1 images. This

method was also based on finding the best set of permeability param-

eters describing the three configurations of the SM. In this method, ini-

tially for each configuration, the best set of parameters that related the

global AIF to the tissue CA concentration in each voxel was estimated

using the simplex method. Next, using the F‐test,27 the best configura-

tion was selected and the parameters satisfying this configuration of

the SM were selected as the permeability parameters for this voxel.

The difference between this method and using the extended model

is basically using the global AIF versus the local AIF to solve the SM

or Tofts equation. To compare the results, and to evaluate the results

of employing the local AIF to estimate permeability parameters, we

estimated the permeability parameter maps from the DCE‐T1 images

of the brain of a patient with GBM, using both methods.

2.7 | Simulation study

One of our main goals for developing the vascular model is to estimate

the permeability parameters more accurately. We hypothesized that

by employing the local AIF and using this to solve the pharmacokinetic

model we will be able to find more accurate estimates of the perme-

ability parameters. To test this hypothesis, we simulated the three

models of vascular leakage at different branching levels of the vessels

and compared the estimated values of the permeability parameters

when using the global AIF versus the local AIF found by the vascular

model. Our assumption was that the artery or arteriole that feeds the

capillary bed can be from any of the six branching levels. Although this

is not necessarily true, we did this to make our simulation more robust.

In the first step, using the AIF sampled from the circle of Willis in

the ΔR1 image series estimated from the DCE‐MRI series of a human

subject (with image acquisition parameters described in the previous

section), we simulated curves of the dispersed AIF at six levels of the

vascular system using our vascular model with values close to those

in the arteries of the human brain. This provided the dispersed and

delayed CA concentration profile at each of these layers. For Model

I, which is considered to be the model with no vascular leakage, the

only parameter that we accounted for was the fractional plasma

volume, vp. Using four different values of vp (0.01, 0.02, 0.04 and 0.1),

tissue concentration signals were simulated at each level of the vascular

branching structure. To simulate the signals for Model II, the forward

transfer rate constant (Ktrans) was added to the equation to simulate

leakage of the vessels. We did the simulation for a fixed value of the

fractional plasma volume (vp = 0.01) and two values of the forward

transvascular transfer rate (Ktrans = 0.001/min and 0.005/min). Finally,

the tissue concentration signal was simulated using Model III of the

pharmacokinetic model in which a third parameter, Kb, was added.

Similar to the other two models, we estimated these three parameters

using the two methods and compared the results. The simulation was

done using Ktrans = 0.005 and vp = 0.01 and two values for Kb (0.2 and

0.5).

3 | RESULTS

3.1 | Applying the BVM to MRI data

Figure 2A shows one slice of a DCE‐T1 image from a patient with GBM

after injection of the CA. Figure 2B shows the CA concentration profile

(ΔR1(t)) sampled from the voxels in the circle of Willis (as marked in

Figure 2A) and Figure 2C shows the CA profile from an ROI sampled

from the normal white matter area. Using the procedure explained in

the methods section, we found the best transfer function (based on

the BVM) explaining the transformation of the AIF to this local AIF.

By convolving the AIF in Figure 2B with this transfer function, the bold

curve in Figure 2E is estimated. To explore the performance of this

model in other areas of the brain, we sampled a signal from an ROI in

the tumor area as seen in Figure 1A. The CA concentration profile sam-

pled from this ROI can be seen in Figure 2D. The tail of this profile

does not follow the trend that is seen in the CA profile in the normal

area. After applying the method above to this signal and finding the

best fit, the bold curve in Figure 2F is estimated. As seen here, the

BVM can only describe changes in the CA profile in intact vessels with

no leakage, and in cases where leakage vascular exists it does not

perform correctly

3.2 | Applying the extended model to MRI data

To test the extended model, we applied it to the CA concentration pro-

file sampled from the tumor area (Figure 2A). The bold curve in

Figure 3B shows the tissue CA concentration profile that was recon-

structed by convolving the best selected transfer function with the

AIF. As seen in this figure, this profile matches the original data very

well. We applied the extended model to the CA profile sampled from

the normal tissue and repeated the same procedure on it. Figure 3A

shows the reconstructed profile. This profile is the same as the profile

found using the BVM. Using the estimated parameters of the transfer

function, the tissue concentration profile was decomposed into the

intravascular and extravascular components. These can be seen in

Figure 3C,D. When the signal is sampled from the normal tissue, the

extravascular component appears to be non‐existent and is seen as a

flat line. However, for the signal sampled from the tumor area, these

two components are separated as two different profiles: the intravas-

cular signal and the extravascular signal, representing leakage of the

CA to the EES.

We applied both models to all voxels in a slice of the DCE‐T1

image series of the same patient. Figure 4 shows residual maps from

the fitting procedure using the two models for different levels of the

vascular tree. The residual values in the tumor area are much lower

for the extended model, which means that this model can explain

the trend of the CA profile in the leaky vasculature areas much bet-

ter than the BVM. Finding the best fit in the lower levels may be

due to the tumor being fed through a major artery in the lower

branching levels.
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3.3 | Estimation of permeability parameters in
DCE‐MR imaging using the extended model

Figure 5A, C and E shows the three permeability maps (vp, K
trans, Kb)

that were estimated by solving the pharmacokinetic model using the

global AIF for the DCE‐MR series of the slice shown in Figure 5G.

Figure 5B,D,F shows the same maps estimated using the local AIF

found by the extended model. As seen in the vp map, in the non‐leaky

areas the values found by the two methods are very close; however,

the vp values in Figure 5A show lower values in the tumor area com-

pared with Figure 5B. This can be interpreted as an underestimation

of the plasma volume fraction in leaky areas when the global AIF is

used. The outcome of the simulation study described in the next sec-

tion confirms these results. Comparison of the corresponding Ktrans

and Kb maps when the extended model is used show that the values

of Ktrans and Kb when using the global AIF are both underestimated.

FIGURE 2 A, One slice of a post‐contrast‐injection DCE‐MRI image from a patient with GBM with three ROIs from a major artery (AIF), normal
tissue (LAIF(N)) and the tumor area (LAIF(T)). B‐D, The CA profile sampled from the major artery (B) normal tissue (C, non‐leaky vasculature) and
the tumor area (D, leaky vasculature) from the DCE‐MR image series. E,F, Using our vascular model, the transfer function that gave the best fit for
each of the two CA profiles and the resulting local AIF was found. As seen here, in the case of non‐leaky vasculature, after reconstruction using the
best fit transfer function, the resulting local AIF can give a good estimation of the signal sampled from the tissue (E). However, in the case of the
signal sampled from the tumor area (F), the best fit signal cannot follow the trend of the AIF and the best fit model is erroneously selected as the
sixth level to minimize the residual error of the fitting procedure. The sum of squared errors (SSEs) for the fitted curves in E and F are 4.86 × 10−8

and 9.29 × 10−6 respectively
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FIGURE 3 A,B, The profiles representing the tissue CA concentration (thin line) and the reconstructed profile after fitting and model selection (bold
line) from the normal tissue (A) and the tumor area (B) as described in Figure 2. C,D, Intravascular and extravascular components of the
reconstructed tissue concentration profiles, based on the decomposition using the extended vascular model. As seen here, in the case where the
signal is sampled from the normal tissue (C), the extravascular component is a flat line, indicating no leakage to the extravascular space. However,
when the signal is sampled from the tumor (D) the intravascular and extravascular components are separated, which may indicate the flow or
extravasation properties of the vessels in the sampled region independently. The SSEs for the fitted curves in A and B are 4.86 × 10−8 and

2.98 × 10−7 respectively

FIGURE 4 Maps of the fitting residual values using the BVM and the extended model in a set of DCE‐MR images. Every voxel in each map
represents the residue of the best fit function at each branching level of the vascular structure. For better representation of these maps, they
have been scaled to log(108 SSE). In areas of the brain outside the tumor, the residual values are almost identical for the EVM and BVM at each
branching level, which indicates that the EVM can explain dispersion and delay of the AIF in non‐leaky vessels similarly to the BVM. As seen here,
the residual values in the tumor area are much lower for the EVM, which means that this model can explain the trend of the CA profile in the leaky
vasculature areas much better than the BVM. Finding the best fit for the tumor at the fourth level may be due to the tumor being fed through a
vessel at the fourth branching level
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The total time for processing one slice of the DCE‐MR images was

approximately 3 h on an Intel Core i7, 2.70 GHz processor. This

included 18 repetitions of the transfer function fitting algorithm for

each voxel and finally selecting the best fit transfer function.

3.4 | Simulation study

In Figure 6 the results of estimating vp using the two methods are pre-

sented. The signals were simulated for four values of vp (0.01, 0.02,

0.04 and 0.1). The observation in all these graphs is that when the

global AIF is used, starting from the first level of vascular branching,

the value of vp is underestimated, and the gap between the estimated

value and the nominal value increases as the tissue concentration sig-

nal gets more dispersed. However, the values estimated by the model

corrected local AIF remain very close to the nominal value at all levels

of vascular branching.

The plots in Figure 7 show the estimated values of Ktrans and vp in

the case of simulating Model II, calculated using the global AIF and the

model corrected local AIF, assuming that they are sampled from six dif-

ferent levels of the vascular tree. Figure 7A,B show the case where

vp = 0.01 and Ktrans = 0.001/min and Figure 7C,D represents vp = 0.01

and Ktrans = 0.005/min. As seen here, in both configurations, the Ktrans

values found using the global AIF are overestimated at all branching

levels, and as the vascular levels increase this value increases as well.

FIGURE 5 A,C,E, The three permeability maps (vp, K
trans, Kb) estimated by solving the pharmacokinetic model using the global AIF for the DCE‐MR

series of the slice shown in G. B,D,F Permeability maps estimated using the local AIF found by the vascular model. H, Model selection map
estimated using the residual sum of squares from the fitting procedure and finding the minimum AIC. I, The mean, standard deviation, minimum and
maximum values of vp, K

trans and Kb measured in the voxels representing the tumor
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In the case of the estimated vp (similar to the case of the first configu-

ration of the pharmacokinetic model), when using the global AIF, the

fractional plasma volume is underestimated starting from the first level

and is underestimated by about 80% of the nominal value when it

reaches the last level. In the case of using the extended model the esti-

mated value of vp is always accurate.

The graphs comparing the estimated values of Ktrans, Kb and vp,

using the two AIFs for two sets of Model III simulated signals, are plot-

ted in Figure 8. As seen in both signal sets, the values of vp, K
trans and

Kb estimated using the local AIF are the same as the nominal values.

Using the global AIF, the value of Ktrans may be overestimated as much

as 20‐fold and Kb as high as six times the nominal value.

4 | DISCUSSION AND CONCLUSION

We introduced a model of the brain vascular system that explains dis-

persion and delay of the AIF at different levels of the vascular struc-

ture, combined with the effects of extravasation of the CA to the

extravascular space. This model is an extension of a previous model

of the vessels (BVM), which did not include effects of extravasation.

The results of applying these models to DCE‐T1 images of patients

with GBM show that the extended vascular model is able to explain

the CA concentration profile at different levels of the vascular tree in

areas of the brain, with or without leakage of the vessels. Moreover,

simulation results showed that when solving the Tofts equation, if

the local AIF provided by the vascular model is used instead of the

global AIF, permeability parameters can be estimated more accurately.

The advantage of using the vascular model for solving the pharma-

cokinetic model as described by the Tofts equation is that it can pro-

vide an estimate the local AIF found in each voxel, which can lead to

more accurate estimation of the permeability parameters. One by‐

product of using this model is that it can be used to decompose the tis-

sue concentration signal of the CA into the intra‐ and extravascular

components, which are basically the flow and leakage components of

the signal. Extracting the extravascular component of the signal can

lead to estimation of the permeability parameters with fewer data

points and using shorter scan times. Overall, this model has the poten-

tial to address many open problems in DCE‐MRI and DSC‐MRI and

also in DCE‐CT applications, where this model can be used for simulta-

neous measurement of permeability and perfusion parameters. It

should be noted that, although this model in its current form gives a

reasonable estimate of the local AIF, a more complete model should

take into account the effects of the capillaries on the dispersion, which

can be added in future studies. However, the model in its current form

is a big step forward towards finding less biased estimates of the per-

meability parameters. Another point is that in our model we selected

the maximum number of branching levels as six levels; although there

FIGURE 6 A, The vp values estimated by solving the pharmacokinetic model equation using the global AIF and local AIF estimated with the
vascular model. When the model corrected local AIF is used, the estimated value of vp is much closer to the nominal value compared with using
the global AIF, which leads to underestimation of vp. B‐D, The estimated values of vp for simulating a fractional plasma volume of 0.02, 0.04 and 0.1
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is the possibility of existence of branches having higher number of

bifurcations, in such events, n = 6 would be selected as the best config-

uration of the function. One of the drawbacks of this method is the

relatively long processing time due to the 18 configurations of the

model that are being fit to the data. One solution to solving this would

be to use adaptive models for this part of the methods.

In the simulation study, although the full range of parameters was

not considered, the results show that when the local AIF is used, the

estimated parameters are less biased compared with the case of using

the global AIF. Although in this study the transfer function based on

the extended model was used to simulate the tissue concentration sig-

nals and transform the AIF, based on our model we expect the simu-

lated signals to be a reasonable estimation of the signals in real

tissue. The accuracy of the results shows the reliability of this model

for estimating the permeability parameters by decomposing the tissue

concentration signal into the intravascular and extravascular compo-

nents, which is the main advantage compared with using the global

AIF. Comparing these simulation results with the results obtained from

processing the DCE‐MRI data from the tumor patients confirms that

when the global AIF is used for solving the pharmacokinetic equation,

the permeability parameters estimated in the tumor area are

overestimated or underestimated with the same trend as the simula-

tion study. These results confirm the findings by Fluckiger et al when

they used a local AIF for measuring the permeability parameters.16

One issue with any suggested model in DCE studies is clinically

validating the estimated parameters in the human brain.28 Although

there have been attempts to address this issue by developing phan-

toms to simulate perfusion, most of these systems fail to establish

and accurately replicate physiologically relevant capillary permeability

and exchange performance. One approach to solving this problem

has been using concepts of physics and transport phenomena for bet-

ter understanding of CA kinetics. In one approach, Peladeau‐Pigeon

and Coolens28 used the results of a computational fluid dynamics sim-

ulation and DCE‐CT data obtained from a flow phantom to test

Tofts’29 enhanced model and Fick's principle.30 The phantom used in

this study contained a single tube. Our simulation is a similar approach

for simulating such a physical model; however, effects of dispersion

due to vascular branching and flow have also been incorporated in

FIGURE 7 Estimated values of Ktrans and vp calculated by solving the pharmacokinetic model using the global AIF and the local AIF estimated with
the vascular model for simulated signals. These signals were created assuming that they are sampled from six different levels of the vascular tree.
Also, leakage was added to the vessels based on the second configuration of the pharmacokinetic model, where only Ktrans and vp exist in the
equation. A,B, vp = 0.01 and Ktrans = 0.001/min; C,D, vp = 0.01 and Ktrans = 0.005/min. As seen here, in both configurations, the Ktrans values found
using the global AIF are overestimated at all branching levels, and as the vascular levels increase this value increases as well. In the case of
Ktrans = 0.001 the overestimation is about nine times the nominal value, and in the case of Ktrans = 0.005 it is about three times. In contrast, when
using the vascular model, the estimated value of Ktrans is equal to the nominal value. In the case of vp, similar to the case of the first configuration of
the pharmacokinetic model, in the case of using the global AIF the fractional plasma volume is underestimated from the first level and by the sixth
level is underestimated by about 80% of the nominal value. In the case of using the local AIF the estimated value of vp is always accurate
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our model. Although validation of the results for in vivo human data is

not possible, in the next step, to further investigate the accuracy of

these results, these methods will be applied to DCE‐T1 images of ani-

mals. Assessment of the accuracy of either method for estimating the

permeability parameters can be investigated using methods such as

histology or autoradiography; however, the results of the simulation

study lean towards accuracy of the values found by the extended

model.

In conclusion, we have introduced a model of the brain vasculature

that describes the flow of blood in the brain vessels and also leakage of

the CA to the EES. This model can be used to estimate the local AIF in

brain areas with vessels with or without leakage of the CA. Our simu-

lations show that using the local AIF estimated by this model to solve

the SM can give less biased estimations of the permeability parameters

compared with using the global AIF. Using this model on DCE‐MR

images of cerebral tumors to estimate the permeability parameters

yielded similar results as the simulations. One application of this model

may be simultaneous estimation of the intravascular component of the

CA concentration signal and the permeability parameters in areas with

vascular extravasation. To validate the accuracy of the method for esti-

mating the permeability parameters, it should be applied to DCE

images of animals. Further additions to this model can include effects

FIGURE 8 Estimated values of vp, K
trans and Kb, using the pharmacokinetic model and global AIF versus the local AIF corrected by the vascular

model. The curves on the left represent the case where Kb = 0.2 and the curves on the right represent Kb = 0.4. In both cases Ktrans = 0.01 and
vp = 0.02. As seen in both cases, the value of vp estimated using the vascular model is almost the same as the nominal value. The estimated values of
Ktrans and Kb are close to the nominal value, and even though at some of the branching levels they deviate from this value this is much less than in
the case of the estimates made using the global AIF. In this case, the value of Ktrans can be overestimated as much as 20‐fold and Kb is as high as six
times the nominal value
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of the capillaries on dispersion of the AIF so that this model can be

used for more accurate estimation of perfusion parameters in DCE‐CT

and DSC‐MR images.
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