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Abstract

Purpose

This study systematically investigates the predictive power of volumetric imaging feature

sets extracted from select neuroanatomical sites in lateralizing the epileptogenic focus in

mesial temporal lobe epilepsy (mTLE) patients.

Methods

A cohort of 68 unilateral mTLE patients who had achieved an Engel class I outcome post-

surgically was studied retrospectively. The volumes of multiple brain structures were

extracted from preoperative magnetic resonance (MR) images in each. The MR image

data set consisted of 54 patients with imaging evidence for hippocampal sclerosis (HS-P)

and 14 patients without (HS-N). Data mining techniques (i.e., feature extraction, feature

selection, machine learning classifiers) were applied to provide measures of the relative

contributions of structures and their correlations with one another. After removing redun-

dant correlated structures, a minimum set of structures was determined as a marker for

mTLE lateralization.

Results

Using a logistic regression classifier, the volumes of both hippocampus and amygdala

showed correct lateralization rates of 94.1%. This reflected about 11.7% improvement in

accuracy relative to using hippocampal volume alone. The addition of thalamic volume

increased the lateralization rate to 98.5%. This ternary-structural marker provided a

100% and 92.9% mTLE lateralization accuracy, respectively, for the HS-P and HS-N

groups.
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Conclusions

The proposed tristructural MR imaging biomarker provides greater lateralization accuracy

relative to single- and double-structural biomarkers and thus, may play a more effective role

in the surgical decision-making process. Also, lateralization of the patients with insignificant

atrophy of hippocampus by the proposed method supports the notion of associated struc-

tural changes involving the amygdala and thalamus.

1. Introduction

Hippocampal sclerosis is the most common abnormality observed in mesial temporal lobe epi-

lepsy (mTLE) patients [1]. The salient features of hippocampal sclerosis on MR imaging are vol-

ume loss on T1-weighted imaging and signal hyperintensity on T2-weighted or fluid-attenuated

inversion recovery (FLAIR) sequence. These features are seen in about 70% of cases [2] and

when they are ipsilateral to the side of seizure onset seen on electroencephalographic (EEG)

recordings, often lateralization of the epileptogenic side is assured [3, 4] permitting surgical

resection of mesial temporal structures without need for further invasive studies [5–7]. How-

ever, some patients with mTLE have insufficient structural asymmetry on MRI when evaluated

visually by experienced clinicians. Quantitative image analysis may detect structural asymmetry

that is not obvious by visual inspection alone [6], although further challenges remain regarding

lateralization accuracy in cases where hippocampal asymmetry is minimal or absent [4, 8–10].

Such analysis, when robust and concordant with scalp EEG and other clinical markers, may

provide sufficient justification to avoid invasive electrographic monitoring and its risks [11].

Several MR image-based lateralization methods have concentrated on hippocampal attri-

butes alone such as its volume [3, 12, 13] and signal intensity [14–16]. Recent studies have

shown that structural volume loss is not limited to the hippocampus. The amygdala and para-

hippocampal gyrus can also be affected, and often changes may extend to extratemporal corti-

cal regions and subcortical structures as well [17–19]. Some mTLE lateralization studies have

analyzed neighboring structures, in an attempt to improve the accuracy of lateralization [4, 9,

10, 20–22]. Cendes et al [20] showed that combined volumetric features of both the hippocam-

pus and amygdala resulted in a 92% lateralization accuracy concordant with EEG in a cohort

of 31 mTLE patients. Keihaninejad et al [4] demonstrated that hippocampal and parahippo-

campal gyral volumes in mTLE patients with and without hippocampal sclerosis can lateralize

mesial temporal epileptogenicity.

Although several multistructural lateralization studies [4, 9, 10, 20–22] have provided

ample evidence of the utility of additional structural quantitative analysis, it is unclear whether

there is an optimal limit to the number of such neuroanatomical sites that are needed to estab-

lish laterality. As increasing the number of neuroanatomical sites may lead to systematic errors

and decreasing this number may limit the benefits of multistructural analysis, optimization is

very important. By using data mining techniques [23], this study systematically weighs the

influence of different neuroanatomical sites upon the determination of laterality and estab-

lishes a classifier that employs a minimum number of effective sites for lateralization to create

a robust and reliable tool for mTLE cases.

2. Methods

This study investigates the contributions of select neuroanatomical regions toward the laterali-

zation of mTLE in order to establish a minimum set of regions that demonstrate a greater
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predictability than other common hippocampal or multistructural volumetric approaches. In

the proposed approach, the skull was stripped and neuroanatomical regions automatically seg-

mented from T1-weighted MR images. Volumes of these defined regions were determined

and normalized. A feature selection algorithm was applied to the extracted data to identify

the most discriminative features. Subsets of these features were reviewed with a hill-climbing

strategy in order to determine their roles in predicting the side of epileptogenicity. Logistic

regression and the Support Vector Machine (SVM) method were also used to evaluate the

performance of these markers for different classifiers. The rest of this section describes the

approach in detail.

2.1 Patient population and MR imaging

In this study, we used MR images of 68 TLE patients. All material were de-identified based on

a protocol that approved by IRB of Henry Ford Health System. Retrospective data from 68 uni-

lateral mTLE patients, including 30 males (mean age 39.69±12.83) and 38 females (mean age

40.37±11.11), were analyzed. Table 1 shows clinical profiles of the patients who underwent a

standard protocol of investigation that included inpatient scalp video-EEG, MRI, intracarotid

amobarbital study and neuropsychological testing to establish their condition. Patients requir-

ing extraoperative electrocorticography (eECoG) often underwent additional magnetoenceph-

alography (MEG) and/or ictal and interictal single photon emission computed tomography

(SPECT) or positron emission tomography (PET). The patients used in this study were all uni-

lateral mTLE cases who had achieved an Engel class I outcome following surgical resection at

Henry Ford Hospital between June 1993 and June 2009 and who also had acceptable FreeSur-

fer MRI segmentation results. The wide recruitment window allowed a sufficient number of

patients to be accrued for the study and suitable follow-up, exceeding three years in all cases,

was provided to declare a genuine outcome. Surgery consisted of an inferior temporopolar

topectomy with amygdalohippocampectomy. Resections were performed on the left side in 39

patients and on the right in 29. Of the 68 cases, 28 (41%) required extraoperative electrocorti-

cography (eECoG). The MR image characteristics of the patients were qualitatively evaluated

by neuroradiologists who identified the presence of hippocampal sclerosis (HS-P) in 54 cases

or its absence in the remaining 14 cases (HS-N). Their evaluations were based on hippocampal

volume loss on T1-weighted images and signal hyperintensity on FLAIR images. Although

pathological study of the excised tissue is not relevant to the decision-making process entailed

in surgical candidacy, it is included here as a correlative feature of interest. This revealed

either a qualitatively mild hippocampal sclerosis or a focal sclerosis in 3 of the 14 HS-N cases.

Among the 54 HS-P cases, 15 were qualitatively assessed to have the characteristically stringent

features of hippocampal sclerosis (HS) while a further 19 cases demonstrated a predominant

gliosis with variable cell loss that was judged to be less notable. Among 50 HS-P cases that had

undergone histopathological study, only five were judged normal in appearance and were

likely the result of sampling as the entire hippocampus was often not extracted. Moreover,

pathological expression throughout the hippocampus is not uniform as might be expected

from MR imaging [16]. Gliosis itself is responsible for the hyper intensity seen on T2 weighted

MR imaging [24, 25] so that there may be some variation in the interpretation of MTS among

a number of neuroradiologists. Ultimately, in the context of this study, it is the neuroimaging

that must be scrutinized as the preoperative measure of concern in order to establish its worth

as a qualifying metric.

There were two reasons for the inclusion of the HS-P patients in this study: 1) although the

hippocampal volume change is obvious for this group, volume changes of other neuroanatom-

ical sites and the extent of these changes in mTLE lateralization were unclear; and, 2) as HS-N

Data mining MR image features of select structures for mTLE lateralization
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Table 1. Clinical profiles of patients. Patients are identified by sex, race, handedness, seizure class, duration of epilepsy, age at surgery, side of surgery, the need for intra-

cranial electrographic study (II) in addition to the preliminary scalp EEG study (I) and follow-up period after surgery. Histopathology is indicated, when available. The

presence or absence of mesial temporal sclerosis (MTS) according to neuro-radiological report establishes the preoperative qualitative interpretation.

No. Sex Race Hnd Seizure Class Epilepsy Duration (y) Age at Surgery (y) Side EEG Pathology MTS

1 F W R CP 25 59 L I CD, GL N

2 F A R CP 14 30 R I,II GL N

3 M W R CP 7 27 R I ND N

4 F W R CP 39 53 L I, II HS N

5 F W R CP 23 30 L I, II GL N

6 F W L CP 15 38 R I, II NA N

7 F W R CP 22 39 R I, II ND N

8 F W R CP 12 48 L I FS N

9 F W R CP 24 25 L I, II HS N

10 M W R CP 9 43 R I, II ND N

11 F W R CP 31 33 R I, II NL N

12 M W R CP 46 56 L I NL N

13 F W R CP 29 45 R I, II ND N

14 F W R CP 4 47 L I, II NL N

15 M W L SP 59 61 L I HS Y

16 F NA R SP 36 56 L I GL Y

17 M W L CP 1 38 L I, II HS Y

18 F B R CP 19 37 R I FS Y

19 M NA Amb CP 34.5 36 R I GL Y

20 M W R CP 58.5 60 L I HS Y

21 M W R CP 40 48 R I ND Y

22 M W L CP 18 30 L I FS Y

23 M AI R CP 20.5 24 L I ND Y

24 F W R CP 44 55 L I HS Y

25 F W R CP 27 28 R I NL Y

26 F W R CP 17 48 R I FS Y

27 M W R CP 6 21 L I, II ND Y

28 F W R CP 18.4 20 L I, II NA Y

29 M W R CP 49 51 R I, II ND Y

30 F B R CP 37 49 L I, II FS Y

31 F W R CP 13 64 L I, II HS Y

32 M W R CP 25 30 L I, II NA Y

33 F W L CP 20 37 L I, II ND Y

34 M W R CP 33 56 R I GL Y

35 F W R CP 40 42 L I, II GL Y

36 M W L CP 29 31 L I, II GL Y

37 F W R CP 24 34 R I ND Y

38 M W R CP 47 47 L I ND Y

39 F W L CP 22 50 R I GL Y

40 F W R CP 35 38 R I GL Y

41 M W R CP 17 19 L I NL Y

42 F W R CP 20 31 R I GL Y

43 M B R CP 30 39 L I HS Y

44 F W L CP 9 28 L I GL Y

45 M W R CP 33 34 R I, II FS Y

46 F W R CP 26 34 R I ND Y

(Continued)

Data mining MR image features of select structures for mTLE lateralization

PLOS ONE | https://doi.org/10.1371/journal.pone.0199137 August 1, 2018 4 / 19

https://doi.org/10.1371/journal.pone.0199137


patients appear to constitute only 30% of mTLE patients [2], the sample size for HS-N cases

was relatively small, increasing the chance of overfitting in the machine learning process and

limiting generalization of the extracted rules.

The data of 68 mTLE patients included 39 left and 29 right laterality. The mean of epilepsy

duration for two groups of left and right were respectively 25.93±15.10 and 23.60±11.58 years.

These values for age at surgery were respectively 40.64±13.17 and 37.48±10.02 years. To statis-

tically evaluate the group differences in terms of epilepsy duration and age at surgery variables,

we applied a two-sample assuming unequal variances t-test on each variable. The p-values of

the t-tests for epilepsy duration and age at surgery variables were respectively 0.477 and 0.265,

which were greater than the significance level of 0.05, confirming no statistically significant

differences between the means of the corresponding groups.

Preoperative coronal T1-weighted MR images were acquired using inversion recovery

spoiled gradient echo (IRSPGR protocol) on a 1.5T or a 3.0T MRI system (Signa, GE, Milwau-

kee, USA). For the 1.5T MRI, the imaging parameters were: TR/TI/TE = 7.6/1.7/500 ms,

flip angle = 20˚, voxel size = 0.781 mm × 0.781 mm × 2.0 mm, matrix size = 256×192, and

FOV = 220 mm × 220 mm. For the 3.0T MRI, the imaging parameters were: TR/TI/TE =

10.4/4.5/300 ms, flip angle = 15◦, voxel size = 0.39 mm × 0.39 mm × 2.0 mm, matrix size =

320 × 192, and FOV = 200 mm × 200 mm. In all cases, the SNR was above 80. Materials for

generating T2 mapping were available for 40 cases (33 HS-P and 7 HS-N) in our institution.

Dual echo imaging protocol using echo times (TE) of 30 and 90 ms and repetition time of

Table 1. (Continued)

No. Sex Race Hnd Seizure Class Epilepsy Duration (y) Age at Surgery (y) Side EEG Pathology MTS

47 F W R CP 34 44 R I GL Y

48 F W R CP 10 23 R I, II GL Y

49 M W R CP 15 52 L I GL Y

50 F W R CP NA 48 L I GL Y

51 M W R CP 6 41 R I NL Y

52 M W R CP 20 25 R I NA Y

53 F W R CP 19 39 L I NA Y

54 F NA R CP 45 45 L I, II GL Y

55 M W R CP 22 32 R I ND Y

56 F W R CP 18 24 L I NL Y

57 M NA R CP 9 27 R I GL Y

58 F W R CP 10 14 R I, II GL Y

59 M W R CP 20 53 R I, II GL Y

60 F A L CP 30 51 L I HS Y

61 F W R CP 47 48 R I GL Y

62 M W R CP 2 20 L I, II NL Y

63 F W R CP 18 38 L I GL Y

64 M W R CP 27 28 L I CD Y

65 M W R CP 28 30 L I ND Y

66 M W R CP 33 53 L I, II HS Y

67 F NA R CP 44 43 L I HS Y

68 M W R CP 5 45 L I, II HS Y

Abbreviations: A: Asian, AI: American Indian, Amb: Ambidexterity, B: Black, CD: Cortical Dysplasia, CP: Complex Partial, F: Female, FS: Focal Sclerosis, GL: Gliosis,

Hnd: Handedness, HS: Hippocampal Sclerosis, L: Left, M: Male, MTS: Mesial Temporal Sclerosis, N: No, NA: Not available, ND: Non-diagnostic, NL: Normal, R: Right,

SP: Simple Partial, W: White, Y: Yes, y: Year

https://doi.org/10.1371/journal.pone.0199137.t001
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2.5 sec was employed to acquire axial images covering the whole brain with the slice thickness

of 5 mm, 2.5 mm gapping, FOV of 200×200 mm2, and the resulting image size of 256×256.

T2 maps were estimated by fitting a single exponential decay function to the data. For each

subject, the T2-weighted image with smaller TE value was registered to the T1-weighted

image using the coarse registration method implemented in SPM8 (http://www.fil.ion.ucl.ac.

uk/spm/). Then, the resulting transformation was used to align the T2 map to the T1-weighted

image for further processing.

2.2 Brain segmentation and feature extraction

Automatic segmentation of paired structures in each cerebral hemisphere (Fig 1) was per-

formed using FreeSurfer software [26] (version 5.3.0) under Linux Debian 6.0.5 release. The

volumetric features were extracted from the segmented structures using an in-house code writ-

ten in MATLAB and WEKA (Waikato Environment for Knowledge Analysis) [27]. Table 2

provides a list of all interhemispherically paired structures that were delineated by the subcor-

tical segmentation and cortical parcellation modules of FreeSurfer. The volume difference of

each pair of structures was normalized to their summation and multiplied by 100 to show the

percentage of the relative volume change:

f i ¼
vLi � vRi

vLi þ vRi
� 100 i ¼ 1; . . . ; 53 ð1Þ

where vLi and vRi are the left and right volumes, respectively, of the ith structure. We consider fi
as a feature for each pair of structures demonstrating a normalized volume difference of the

right structure relative to the left.

2.3 Feature selection

Cell death from recurrent excitation results in atrophy of hippocampal and parahippocampal

structures. Pathophysiological extension to extratemporal cortical and subcortical structures

transynaptically [17–19], may affect related sites in a similar fashion. Classifier performance

Fig 1. a) A coronal T1-weighted brain MRI. b) Brain structures segmented by FreeSurfer.

https://doi.org/10.1371/journal.pone.0199137.g001
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may decrease with the addition of correlated structures; therefore, correlated features should

be removed from the training set.

To eliminate the negative impact of both correlated and irrelevant features (i.e., structures)

in the decision-making process, a feature selection stage is required. A wrapper subset evalua-

tor [28] was used to establish an optimal subset of features that generated the highest classifica-

tion accuracy for lateralization. This approach employed a supervised learning algorithm to

evaluate different subsets of features. Since the search space is large and demands an extensive

search time, the wrapper algorithm expedited the process by identifying a suboptimal feature

set in a reasonable time. This algorithm worked on the basis of a hill-climbing strategy and

selected structures step-by-step with greater information content for mTLE lateralization.

2.4 Determination of epileptogenic side

Upon selection of an optimal set of structures, training of a learning machine proceeded using

retrospective training data. In this study, two different supervised classifiers, logistic regression

and support vector machine, were used and their results compared. These two classifiers are

described below.

Logistic regression. Logistic regression is a popular and robust supervised classifier

widely used in biostatistics [29]. In this study, in order to avoid overfitting, a multinomial

logistic regression with a ridge estimator [30] was used. As shown in Eq (2), the kernel of

the multinomial model function computed the probability of each class. In this equation, j is

the number of the current class, k is the total number of classes, f1..fm are features and b
j
0
::b

j
m

denote the coefficients that are optimized by the classification algorithm during the training

phase.

Pr jjf 1; f 2; . . . ; f m½ � ¼
eβ

j
0þβ

j
1f 1þβ

j
2f 2þ���þβ

j
mf m

1þ
Pk� 1

j¼1 eβ
j
0þβ

j
1f 1þβ

j
2f 2þ���þβ

j
mf m

ð2Þ

Support vector machine. The support vector machine (SVM) is a special kind of linear

model called the maximum-margin hyperplane. Eq (3) shows the general form of a hyperplane

Table 2. List of segmented hemispherically-paired neuroanatomical regions by FreeSurfer.

1. Cerebral Exterior 2. Cerebral White Matter 3. Cerebral Cortex 4. Lateral Ventricle 5. Inferior lateral

Ventricle

6. Cerebellum Exterior

7. Cerebellum White

Matter

8. Cerebellum Cortex 9. Thalamus 10. Caudate 11. Putamen 12. Pallidum

13. Hippocampus 14. Amygdala 15. Nucleus accumbens 16. Substantia Nigra 17. Ventral

Diencephalon

18. Vessel

19. Choroid plexus 20. Banks superior temporal

sulcus

21. Caudal anterior

cingulate cortex

22. Caudal middle frontal

gyrus

23. Cuneus cortex 24. Entorhinal cortex

25. Fusiform gyrus 26. Inferior parietal cortex 27. Inferior temporal gyrus 28. Isthmus-cingulate

cortex

29. Lateral occipital

cortex

30. Lateral orbital frontal

cortex

31. Lingual gyrus 32. Medial orbital frontal

cortex

33. Middle temporal gyrus 34. Para-hippocampal

gyrus

35. Para-central lobule 36. Pars opercularis

37. Pars orbitalis 38. Pars triangularis 39. Pericalcarine cortex 40. Post-central gyrus 41. Posterior-cingulate

cortex

42. Precentral gyrus

43. Precuneus cortex 44. Rostral anterior

cingulate cortex

45. Rostral middle frontal

gyrus

46. Superior frontal gyrus 47. Superior parietal

cortex

48. Superior temporal

gyrus

49. Supramarginal

gyrus

50. Frontal pole 51. Temporal pole 52. Transverse temporal

cortex

53. Insula volume

https://doi.org/10.1371/journal.pone.0199137.t002
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in the m-dimensional space as a function of features and weight coefficients. Here f1..fm are

features and w1..wm are coefficients that SVM tunes based on the training data. Fig 2 visualizes

how the SVM tunes the coefficients and forms a maximum-margin hyperplane in a two-

dimensional space with a two-class dataset that are linearly separable. At first, the SVM discov-

ers a small number of critical boundary instances (i.e., support vectors) in the training set.

Then, by tuning the w coefficients, it builds a linear discriminant function that separates sup-

port vectors as widely as possible.

Fðw; f Þ ¼ w0 þ w1f
1
þ w2f

2
þ � � � þ wmf m ð3Þ

In this study, SPegasos was used as an efficient version of linear support vector machines. It

applies a stochastic subgradient descent algorithm for optimizing w coefficients [31].

3. Results

3.1 Feature selection

The wrapper algorithm with logistic regression (i.e., the learner machine) was used to find

the best subset. The input feature set consisted of 53 volumetric features of the structure pairs

listed in Table 2 and segmented by FreeSurfer. The data was divided into 10 folds and feature

selection was done separately for each fold. The volumetric features selected most in each fold

defined the best subset demonstrating good lateralization performance. These included the

hippocampus, amygdala, thalamus, putamen, cerebral white matter, entorhinal cortex, inferior

temporal gyrus, paracentral lobule, postcentral gyrus and parahippocampal gyrus. These 10

structures were considered as a set of promising features and refined further in the classifica-

tion phase.

3.2 Classification using various subsets of features

In order to establish whether the 10 selected features shared dependency, a hill-climbing strat-

egy was used to find an optimal subset. Table 3 presents the classification results for the logistic

regression classifier using a leave-one-out cross-validation evaluation. In order to avoid

overfitting, this strategy was applied in all of the subsequent experiments. As a first step of

Fig 2. Linear discrimination, maximizing the margin in SVM.

https://doi.org/10.1371/journal.pone.0199137.g002
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the hill-climbing strategy, the hippocampus was found to be the best single marker for mTLE

lateralization.

With the initial structure now established, the hill-climbing strategy was applied to the

remaining structures sequentially. Sets of two features for mTLE lateralization were evalu-

ated at a time. The second step showed the hippocampus and amygdala predominate as the

best two structures for mTLE lateralization. In the third step, sets of three structures were

examined with the results demonstrated in Table 3. Logistic regression generated the most

accurate lateralization results using the hippocampus, amygdala and thalamus. The fourth

and fifth steps evaluated sets of four and five structures, respectively. Fig 3 summarizes the

results presented in the five steps. This diagram shows that the set of the three former struc-

tures provided optimal accuracy for lateralization without further reliance upon the remain-

ing structures.

3.3 Support vector machine

To evaluate the reliability of the selected features, experiments were repeated with a support

vector machine (SVM) as a linear classifier and the results compared with those found by

logistic regression (Fig 3). Although the logistic regression showed slightly superior perfor-

mance, the SVM results appeared very similar demonstrating that the selected structures bore

sufficient stability. Fig 3 shows that the proposed ternary-structural volumetric biomarker is

independent of the classifier in that the changing pattern of accuracy as a function of the num-

ber of structures selected is the same for the two classifiers used in the study.

Table 3. Effect of quantitative volumetry of different structures on the accuracy of mTLE lateralization.

1st Step H 1 A 2 T 3 P 4 CWM 5 EC 6 ITG 7 PCL 8 PCG 9 PHG 10

82.4% 73.5% 57.4% 55.9% 77.9% 64.7% 61.8% 57.4% 57.4% 72.0%

2nd

Step

H+A H+T H+P H+CWM H+EC H+ITG H+PCL H+PCG H

+PHG

94.1% 82.4% 80.9% 85.3% 82.4% 83.8% 80.9% 82.4% 82.4%

3rd Step H+A+T H+A+P H+A+CWM H+A+EC H+A+ ITG H+A+ PCL H+A+ PCG H+A

+ PHG

98.5% 94.1% 94.1% 92.6% 94.1% 91.2% 92.6% 91.2%

4th Step H+A+T+P H+A+T

+CWM

H+A+T+EC H+A+T+ITG H+A+T+PCL H+A+T+PCG H+A+T

+PHG

98.5% 97.1% 92.6% 95.6% 95.6% 95.6% 92.6%

5th Step H+A+T+P

+CWM

H+A+T+P

+EC

H+A+T+P

+ITG

H+A+T+P

+PCL

H+A+T+P

+PCG

H+A+T+P

+PHG

97.1% 95.6% 92.6% 94.1% 94.1% 91.2%

1 Hippocampus
2 Amygdala
3 Thalamus
4 Putamen
5 Cerebral White Matter
6 Entorhinal Cortex
7 Inferior Temporal Gyrus
8 Para-Central Lobule
9 Post-Central Gyrus
10 Para-Hippocampal Gyrus

https://doi.org/10.1371/journal.pone.0199137.t003
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3.4 Single-structure lateralization

In order to assess the utility of each of the three selected structures as a solitary marker of later-

ality, both the mean and standard deviation for each structure were evaluated individually. Fig

4(a)–4(c) shows the mean and standard deviation ranges of absolute volumes of the three

structures: hippocampus, amygdala and thalamus. These were categorized based on the indi-

vidual structure, mTLE group and side of epileptogenicity. The absolute volume for each struc-

ture was found to have sufficient overlap in both HS-N and HS-P groups to disqualify it as a

suitable marker for lateralization purposes. Fig 4(d)–4(f) shows the same values for normalized

volume differences (i.e., atrophy) based on Eq (1). Fig 4d shows that this normalized feature

for the hippocampus has no overlap in the HS-P group. In clinically relevant terms, as an indi-

vidual marker, atrophy of the hippocampus is sufficient for mTLE lateralization in the HS-P

group. Fig 4(e) and 4(f) shows atrophy of other structures (i.e., amygdala and thalamus) but

neither one is sufficient as a single structural marker for mTLE lateralization in either of the

HS-N and HS-P groups.

3.5 Multistructural lateralization

In order to establish the proposed three-structure marker for mTLE lateralization as a suffi-

cient discriminator, the probability of lateralization was computed for the logistic regression.

As the number of features was reduced to three following the feature selection phase, the gen-

eral form of the logistic probability function of Eq (2) was simplified to:

Pr Ljf
1
; f

2
; f

3
½ � ¼

eβL
0
þβL

1
f 1þβ

L
2

f 2þβ
L
3

f 3

1þ eβL
0
þβL

1
f 1þβ

L
2

f 2þβ
L
3

f 3

ð4Þ

where, f1, f2, f3 are the respectively normalized volumetric features (i.e., atrophies) for the hip-

pocampus, amygdala and thalamus and the values of the regression parameters, βL
0 , βL

1 , βL
2 and

βL
3 are, respectively, 1.402, -0.482, 0.350 and -0.488. The values were computed based on 1�10−8

for the ridge parameter. Fig 5a illustrates the probability of lateralization for all 68 mTLE

Fig 3. Best accuracy as a function of the number of selected structures.

https://doi.org/10.1371/journal.pone.0199137.g003

Data mining MR image features of select structures for mTLE lateralization

PLOS ONE | https://doi.org/10.1371/journal.pone.0199137 August 1, 2018 10 / 19

https://doi.org/10.1371/journal.pone.0199137.g003
https://doi.org/10.1371/journal.pone.0199137


Fig 4. Mean ± SD range for volume of different structures in HS-P and HS-N groups. a) Absolute volume of hippocampus. b) Absolute

volume of amygdala. c) Absolute volume of thalamus. d) Normalized volume differences (atrophy) of hippocampus. e) Normalized volume

differences of amygdala. f) Normalized volume differences of thalamus. Bar label pattern for a, b, and c is W.X-HS-Y-Z and for d, e, and f is

X-HS-Y-Z where, W is the side of structure (L/R means left/right), X is the brain structure (H/A/T means Hippocampus/Amygdala/Thalamus),

HS-Y identifies the group of patients (HS-N/HS-P) and Z is the side of epileptogenicity (L/R means left/right). For example: L.T-HS-P-R is Left

Thalamus volume of cases with Hippocampal Sclerosis and Right side of epileptogenicity.

https://doi.org/10.1371/journal.pone.0199137.g004
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patients. The proposed three-structure marker classifies all cases correctly except for one

HS-N case. Table 4 shows performance for mTLE lateralization in detail for the proposed bio-

marker, evaluated by the leave-one-out and 5-folds cross validation methods. Accuracy, true

left and right rates are calculated based on Eqs (5)–(7) below, where TL, FL, TR and FR are,

respectively, the number of true left, false left, true right and false right samples assigned by

the classifier. As the 5-folds cross-validation approach uses a smaller training set relative to the

Fig 5. Analysis of the logistic regression for decision-making using the proposed three-structure marker. a) Probability of lateralization to the left

for all mTLE cases based on Eq (4). b) Projection of logistic decision boundary for mTLE lateralization samples onto the amount of atrophy on the

hippocampus-amygdala space. c) Projection of logistic decision boundary for mTLE lateralization samples onto the amount of atrophy on the

hippocampus-thalamus space.

https://doi.org/10.1371/journal.pone.0199137.g005
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leave-one-out methodology, its learning power is less than the latter. Consequently, the perfor-

mance measures of the 5-fold method are smaller than those of the leave one out method.

Accuracy Rate ¼ ðTLþ TRÞ = ðTLþ FLþ TRþ FRÞ ð5Þ

True Lef t Rate ¼ TL = ðTLþ FRÞ ð6Þ

True Right Rate ¼ TR = ðTRþ FLÞ ð7Þ

In order to illustrate the discriminating role of each structure in mTLE lateralization, a deci-

sion boundary domain was computed for the logistic regression. Assuming a probability of 0.5

corresponds to the decision boundary, the decision boundary is determined as follows:

Pr½Ljf 1; f 2; f 3� ¼ 0:5 ð8Þ

eβL
0þβ

L
1 f 1þβ

L
2 f 2þβ

L
3 f 3 ¼ 0:5þ 0:5ðeβL

0þβ
L
1 f 1þβ

L
2 f 2þβ

L
3 f 3Þ ð9Þ

eβL
0þβ

L
1 f 1þβ

L
2 f 2þβ

L
3 f 3 ¼ 1 ð10Þ

βL
0 þ βL

1f 1 þ βL
2f 2 þ βL

3f 3 ¼ 0 ð11Þ

Eq (11) specifies a plane in the 3-dimentional feature space. In order to generate a practical

demonstration, the projection of this plane is drawn in two 2D spaces. Fig 5(b) and 5(c) shows

the logistic decision boundary, respectively, in the hippocampus-amygdala and hippocampus-

thalamus spaces. All HS-P and HS-N cases are also shown in these spaces. The diagrams distin-

guish the cases with hippocampi showing distinct volume differences, including most of the

HS-P cases, from the rest. In other words, the cases that appear outside the dotted lines can be

easily lateralized by the hippocampal feature individually. The cases without qualitative volu-

metric differences, including most HS-N patients, appear within the dotted area and are later-

alized by their amygdalar and thalamic features.

4. Discussion

A new and more expedient tristructural imaging biomarker is proposed for the lateralization

of mesial temporal epileptogenicity, based upon an analysis of normalized volumes of neuro-

anatomical sites within and outside of the limbic system. The goal was to identify a minimum

set of structures that, when considered together, would reliably predict laterality and outper-

form hippocampal or other multistructural options. Combined hippocampal and amygdalar

volume analysis correctly lateralized 94.1% of the cases compared to only 82.4% when hippo-

campal volumes were assessed solely in a cohort of patients manifesting a unilateral TLE.

With the addition of the corresponding thalamic volume, correct lateralization was achieved

in 98.5% of cases, a 4.4% improvement relative to that attained with analysis of hippocampal

Table 4. Results of the proposed three-structure volumetric marker for HS-P and HS-N groups.

Patient Groups Number of Samples Leave one out 5-folds cross validation

Accuracy Rate True Left Rate True Right Rate Accuracy Rate True Left Rate True Right Rate

HS-P 54 100% 100% 100% 94.4% 90.6% 100%

HS-N 14 92.9% 87.5% 100% 85.7% 85.7% 85.7%

Total 68 98.5% 97.5% 100% 92.6% 89.7% 96.6%

https://doi.org/10.1371/journal.pone.0199137.t004
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and amygdalar volumes. The tristructural metric correctly lateralized the epileptogenic side in

all cases with a demonstrated hippocampal sclerosis and in 92.9% of those without, supporting

the notion of an associated structural change involving both the amygdala and thalamus.

4.1 Overfitting avoidance

Overfitting avoidance is one of the main purposes of any adaptive modeling study. Actually,

there is a trade-off between underfitting and overfitting when the size of the training and test-

ing datasets are limited. In the present study, using four separate subsets of the data for train-

ing and testing (with 68/4 = 17 samples in each subset) for feature selection and classification

phases may reduce overfitting but causes underfitting and severely impacts the learning power

of the model. In order to keep a balance between underfitting and overfitting, cross-validation

was performed in all studies reported in this paper. However, different folding parameters

were used in different experiments to control the bias; 10-fold for feature selection and 5-fold

and leave-one-out for classification. This procedure is attractive for two reasons. First, the

greatest possible amount of data is used for training, which presumably increases the generali-

zation of the results and accuracy of the classifier. Secondly, the use of different folding param-

eters and averaging of the test results ensure that the results are not achieved by chance. A

multinomial logistic regression with a ridge estimator was also used for the same reason. Le

Cessie and Van Houwelingen [30] showed that ridge estimators could improve parameter esti-

mation and reduce prediction error with small population sizes.

4.2 FreeSurfer segmentation

The quality of image segmentation has a significant impact upon the extracted features and the

training of the classifiers. The FreeSurfer software is widely used as a segmentation tool [32–

34] although some studies have identified systematic errors. Using the Dice coefficient,

Akhondi-Asl et al [13] showed that hippocampal volumes extracted by FreeSurfer did differ

from that obtained by manual segmentation. Germeyan et al [35] applied FreeSurfer on a

mixed set of 1.5T and 3T images and demonstrated that hippocampal volumes extracted

by FreeSurfer software were larger than manually segmented hippocampi in both epileptic

patients and nonepileptic subjects. Hippocampal volume ratios (i.e., right:left), however, were

not altered significantly by the segmentation method. Keller et al [36] demonstrated that tha-

lamic volume extraction by a manual stereological approach was in agreement with that identi-

fied by FreeSurfer software.

The present study did not take into account any systematic error relevant to segmentation

that was inherent in the FreeSurfer software. Visual inspection of the segmented structures

allowed exclusion of the low quality images from the study. However, no absolute measures of

structural volumes were used to ensure consistency for comparison of cases. The data of the 68

mTLE patients used in the study included 42 1.5T and 26 3T images. Using 5-folds cross-vali-

dation, there were 3 and 2 wrong classification samples for 1.5T and 3T subsets, respectively.

In other words, accuracy rates for the proposed classifier were 92.9% and 92.3% for the 1.5T

and 3T subsets, respectively. These close accuracy rates confirm that the end result of the pro-

posed methods does not depend on the field strength.

4.3 Single modality approaches

Single modality MR imaging for mTLE has been shown to achieve limited accuracy in the

lateralization of epileptogenicity. Jafari-Khouzani et al [16] used hippocampal fluid-attenuated

inversion recovery (FLAIR) MR imaging in 25 nonepileptic control subjects and 36 mTLE

patients. Image intensity, represented by mean and standard deviation, was determined for the
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hippocampal region and a boundary domain established to distinguish results obtained from

control subjects. A lateralization accuracy of 75% was declared for all cases identified lying out-

side the boundary domain. A similar approach was used with subtraction single photon emis-

sion computed tomography (SPECT) imaging where SPECT images were coregistered to MRI

and a lateralization accuracy of 89% was achieved [22]. Kerr et al [37] developed an automated

computer-aided diagnostic (CAD) tool for localizing the epileptogenic focus in mTLE using

interictal fluorodeoxyglucose positron emission tomography (FDG-PET; iPET). Using long

term video-EEG monitoring outcomes as their only standard of laterality, the accuracy rate ran-

ged from 76% to 89% with different confidence intervals. Nazem-Zadeh, et al [38] investigated

the lateralization capability of diffusion parameters in 20 mTLE cases that had undergone sur-

gery and obtained Engel class I outcomes. Using an uncertainty analysis approach, they found

that the mean diffusivity (MD) of the hippocampus and the fractional anisotropy (FA) of the

posteroinferior cingulum and crus of the fornix could lateralize 18, 15 and 14 of the 20 cases,

respectively. Within this limited population, the lateralization accuracy of these biomarkers was

90%, 75% and 70%, respectively. Shishegar, et al [39] studied shape features of the hippocampus

for the lateralization of mTLE patients. They used the Laplace Beltrami operator and spherical

harmonics to extract shape features and support vector machine (SVM) classifiers to lateralize

their cases. On a database of 59 mTLE patients, they achieved 86% and 85% accuracy rates for

the Laplace Beltrami operator and the spherical harmonics methods, respectively. These results

demonstrate the limitations of single modality models for mTLE lateralization.

4.4 Multimodality approaches

Several studies have employed multimodality models for mTLE lateralization to better inform

the decision-making process. Zhang et al [40] reviewed 24 mTLE patients with and without

hippocampal sclerosis, some manifesting a bilateral temporal epileptogenicity. Presurgical

evaluation consisted of MRI, MR proton spectroscopy (1H-MRS), video-EEG with some

patients requiring further intracranial EEG study (i.e., eECoG). For patients with evident hip-

pocampal sclerosis, MRI and 1H-MRS showed a high (100%) concordant lateralization in

cases of unilateral mTLE, whereas, in the case of patients without hippocampal sclerosis,
1H-MRS showed moderate (i.e., 60–75%) concordance. Although a multimodal approach,

consisting of EEG, MRI, MRS and PET or SPECT, was suggested as a means of further distin-

guishing laterality in the more difficult cases, no quantitative results were presented in support.

Nazem-Zadeh et al [41] applied a multimodal response model to determine mTLE laterality

using T1-weighted MRI volumes, mean and standard deviation FLAIR intensity and the

means of normalized ictal-interictal SPECT intensity of the hippocampi in 45 mTLE cases

which had achieved an Engel class I outcome. These were compared to a cohort of 20 control,

nonepileptic subjects. A 100% lateralization accuracy was achieved although no indication was

given regarding the presence or absence of hippocampal sclerosis. Kim et al [42] proposed a

multispectral and multimodal approach based on high-resolution T1- and T2-weighted MRI

with hippocampal subfield segmentations, to carry out lateralization efforts in mTLE patients.

Fifteen mTLE patients with normal hippocampal volumes were studied and the proposed

approach correctly lateralized all. Coan et al [43] used both quantitative hippocampal volume

and T2 relaxometry to aid in defining hippocampal sclerosis. Their volumetry results showed

95% and 13% accuracy rates respectively on HS-P (125 cases) and HS-N (78 cases) groups.

After adding T2 values, they achieved 99% and 28% accuracy rates respectively on HS-P and

HS-N groups, showing 4% and 15% improvements.

As multimodal approaches used in the investigation of TLE appear to improve upon the

reliability of determining laterality when compared to single modality approaches, we
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investigated possible improvement by adding T2 relaxometry results to the present study simi-

lar to Coan et al [43] mentioned above. Materials for generating T2 mapping were available for

40 of the cases (33 HS-P and 7 HS-N). T2 map asymmetry analysis for the hippocampal region

showed 84.8% and 85.7% lateralization accuracy for the HS-P and HS-N groups, respectively,

but this information did not improve the 100% and 93% accuracy rates achieved by our multi-

structural technique.

4.5 Multistructural approaches

Multistructural approaches, similar to multimodal approaches, offer the same reliability in pre-

diction but at reduced cost and risk to the patient. Barron et al [44] proposed a multistructural

biomarker based on the functional connection strength among four structures: thalamus, hip-

pocampus, entorhinal cortex and amygdala. They predicted the seizure onset zone with an

86% sensitivity and 100% specificity in 24 mTLE patients. Their lateralization accuracy, albeit

with a smaller cohort and involving four sites, is comparable to that of the current study. In

another study, a similar multistructural volumetric approach was undertaken by Keihaninejad

et al [4]. However, a comparison with the current model shows that a reduction in the number

of chosen neuroanatomical sites expedites the analysis over that proposed by Keihaninejad

et al [4]. In those cases in which a hippocampal sclerosis was manifest, similarly robust out-

comes were demonstrated with four sites compared to three in our study. For those cases

without sclerosis, the current model proved 8% more accurate (93% vs 85%) with only three

structures contrasted to their 17 structures.

5. Conclusion and future work

The findings of the present study may increase efficacy of lateralization using MR imaging alone

in the treatment of drug-resistant mTLE patients. The greater accuracy and convenience of the

proposed tristructural MR imaging biomarker in determining laterality of ictal onset of mTLE

patients, relative to the conventional method of hippocampal analysis, makes it attractive for

epilepsy surgery decision-making. In the absence of definitive volumetric hippocampal asymme-

try, this approach makes use of associated changes in the epileptogenic network, specifically the

amygdala and thalamus, to provide a higher lateralization accuracy. We plan to extend the pro-

posed method to lateralize mTLE patients based on the multimodal imaging data prospectively

and to further increase accuracy and confidence in the surgery decision-making process.
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