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Vol 25, No 2, March 2018

EDITORIAL

Diabetes and the Kidney: Sweet Dreams

A spoonful of sugar makes the medicine go down.
—Robert B. Sherman, Richard M. Sherman; 1964

With apologies to Julie Andrews, a spoonful of sugar
might be considered child abuse in this modern

era of diabetes and obesity. As of 2015, more than 700
million adults worldwide have diabetes or impaired
glucose tolerance, and about half of these are unaware of
the diagnosis.1 Almost certainly, the glut of type 2 diabetes
has been fueled by the expanding obesity epidemic (pun
intended). In the United States, the prevalence of obesity
tripled from 13% in 1960 to 38% in 2014.2 With respect to
kidney disease, diabetes remains the most common cause
of ESRD in the US, with an adjusted prevalence of nearly
800 per million people and rising.3

This parade of dreary statistics is enough to make even
the most cheerful reader want to give up and eat a cookie.
However, therapy for diabetes is rapidly evolving, and ne-
phrologists and their patients have benefitted from many
hypoglycemic medications. Metformin, one of the most
effective and least expensive drugs, is now considered
safe to prescribe in patients with CKD, with an estimated
glomerular filtration rate (GFR) of at least 30 mL/min/
1.73 m2, without fear of lactic acidosis.4,5 Liraglutide, a
glucagon-like peptide 1 analog, decreases the risk of car-
diovascular (CV) death, nonfatal myocardial infarction,
and nonfatal stroke, all of which are common hazards of
CKD.6

However, no therapy in recent history has sparked as
much excitement as the sodium-glucose cotransporter 2
(SGLT2) inhibitors. SGLT2, one of 12 members of the
SGLT gene family, plays the dominant role in reclamation
of glucose by the kidney.7 Of the 180 g/d/1.73 m2 glucose
normally filtered through the glomerulus, 90% is reab-
sorbed by SGLT2 in a 1:1 ratio with sodium across the
brush border epithelium of the S1 segment of the prox-
imal tubule. The remaining 10% is reabsorbed by
SGLT1 in later segments of the proximal tubule. In dia-
betes, hyperglycemia increases glucose filtration, and
the proximal tubule undergoes hypertrophy in an
attempt to reabsorb the massively increased filtered
load of glucose. Because much more glucose is reab-
sorbed in the proximal tubule, and because glucose and

sodium absorption are linked, much less sodium is deliv-
ered to the distal tubule. The macula densa interprets this
low sodium (and chloride) delivery as low GFR and
decreases tubuloglomerular feedback (TGF).8,9 TGF is
the mechanism by which the macula densa causes
vasoconstriction of the afferent arteriole by releasing
adenosine, 20-hydroxyeicosatetraenoic acid, and other
signaling molecules. Inhibition of TGF allows the afferent
arteriole to vasodilate. This vasodilation is maladaptive
and causes glomerular hyperfiltration, which is thought
to underlie the pathogenesis of diabetic kidney disease
(DKD).10 Accordingly, patients with early DKD demon-
strate a “salt paradox,” in which dietary sodium restric-
tion actually increases GFR, often to more than 130 mL/
min/1.73 m2.11

SGLT2 inhibitors appear to disrupt this nefarious
cascade. These agents were ostensibly developed to
improve glycemic control by inducing glucosuria, but
maybe more importantly, they seem to improve CV
and kidney outcomes by inducing proximal tubule natri-
uresis.12 Restoring sodium delivery to the macula densa
should re-establish TGF and attenuate glomerular hy-
perfiltration. SGLT2 inhibitors act as advertised in ani-
mal models. In Akita diabetic mice, empagliflozin
normalized GFR at 12 weeks, with decreased urine albu-
min excretion (UAE), glomerular size, and kidney
weight.13 SGLT2 inhibitors also deliver in clinical trials.
In type 1 diabetics, empagliflozin 25 mg daily also
decreased GFR, measured by inulin clearance, at 8 weeks
(172 to 139 mL/min/1.73 m2), but only in subjects with
hyperfiltration. Those with normal glomerular filtration
were unaffected.10 Effective kidney plasma flow and kid-
ney vascular resistance also normalized in hyperfiltering
subjects. Parenthetically, afferent arteriolar vasodilation
and hyperfiltration injury may cause other lesions,
such as obesity-related glomerulopathy and some forms
of focal segmental glomerulosclerosis. In a trial of obese,
nondiabetic men with glomerular hyperfiltration,
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acetazolamide decreased GFR by 21% and increased kid-
ney vascular resistance by 12%, whereas furosemide pro-
duced no change.14 Acetazolamide and empagliflozin
seem to temper glomerular hyperfiltration by the same
mechanism: blocking a proximal tubule sodium trans-
porter, boosting sodium delivery to the macula densa,
and normalizing TGF and afferent arteriolar tone.
The icing on the cake was the EMPA-REG OUTCOME

(Empagliflozin, Cardiovascular Outcomes, and Mortality
in Type 2 Diabetes) trial, in which 7,020 type 2 diabetics
were randomized to receive empagliflozin or placebo for
about 3 years.15 This study showed a 32-38% reduction
in all-cause mortality, CV mortality, and hospitalization
for heart failure. A separate analysis also revealed a
38-55% reduction in progression to macroalbuminuria
(urine albumin-creatinine ratio . 300 mg/g), decreased
kidney function, and dialysis initiation.16 The American
Diabetes Association 2017 Standards of Medical Care con-
siders the current evidence compelling enough to recom-
mend empagliflozin for type 2 diabetics with CV disease
to reduce the risk of CV death. Empagliflozin is the first
diabetes medication to be approved by the Food and
Drug Administration for this indication.17,18

Do the other SGLT2 inhibitors offer the same benefits as
empagliflozin? All currently available SGLT2 inhibitors
are congeners of phlorizin, a glucoside found in the root
bark of fruit trees, which nonspecifically blocks a number
of sugar transporters.19 The more selective, orally
bioavailable SGLT2 inhibitors, thus share a biochemical
ancestor and provide similar glycemic control. Large clin-
ical trials with canagliflozin and dapagliflozin are
currently underway and will reveal whether the CV and
renal values of empagliflozin can be generalized to the
class of SGLT2 inhibitors.20

The next step in therapy, which will be a logical exten-
sion of this physiologic strategy, will be to combine
SGLT2 inhibitors with angiotensin-converting enzyme in-
hibitors or angiotensin receptor blockers. Dual blockade
within the renin-angiotensin system (RAS) seems fruit-
less, as shown by trials such as Aliskiren Trial in Type 2
Diabetes Using Cardiorenal Endpoints, Ongoing Telmi-
sartan Alone and in Combination with Ramipril Global
Endpoint Trial, and Veterans Affairs Nephropathy in Dia-
betes.21-23 Nonetheless, for more than 30 years, RAS
blockers have been thought to confer kidney protection
by decreasing efferent arteriolar vasoconstriction, thus
decreasing glomerular capillary hydrostatic pressure.24

On the other hand, SGLT inhibitors are thought to confer
similar protection by decreasing afferent arteriolar vasodi-
lation. Would dual blockade with a RAS inhibitor and an
SGLT2 inhibitor achieve even lower glomerular capillary
hydrostatic pressure and bestow synergistic benefits?
This possibility is borne out in salt-sensitive, diabetic
Dahl rats: combination therapy with luseogliflozin and li-
sinopril, compared to either agent alone, maximally
reduced urine protein excretion, glomerular injury, and
cortical and outer medullary fibrosis.25 Only time, and
careful clinical investigation, will tell whether these
theoretical advantages will translate to improved patient
care.

While this hemodynamic approach to DKD has made a
quantum leap, a parallel, cellular approach has been
percolating in relative obscurity with nearly as much
promise. In the nucleus, genetic and epigenetic (ie,
hyperglycemia-mediated) factors increase the risk of
DKD at the transcriptional and translational levels.26 In
the cytoplasm, hyperglycemia causes a shift in glucose
utilization from the glycolytic to the hexosamine and pol-
yol pathways.27 This alternative biochemistry, in turn,
stimulates protein kinase C and poly(ADP-ribose) poly-
merase-1 and gives rise to advanced glycation end prod-
ucts, reactive oxygen species, and most recently
appreciated, uric acid.28 In the kidney, endothelial and
mesangial cells are both affected by the diabetic milieu,
but podocyte loss may be the most ominous result.
Poly(ADP-ribose) polymerase-1 activation and reactive
oxygen species generation lead to podocyte dedifferentia-
tion, effacement, and apoptosis, and podocyte number is
one of the best predictors of GFR, albuminuria, and glo-
merulosclerosis in DKD.29

This metabolic muddle offers many opportunities to
intervene, some with currently approved medications.
The activated vitamin D analog, paricalcitol, moderately
decreased UAE (18-28%) in some trials of diabetics with
albuminuria, although more robust clinical outcomes
were not demonstrated.30-32 Pentoxifylline, a tumor
necrosis factor-a inhibitor, has been a second-line agent
in the CKD armamentarium, but a recent trial of 169
type 2 diabetics with CKD showed improved estimated
GFR and UAE at 2 years with this drug (differences of
4.3 mL/min/1.73 m2 and 20.6%, respectively, favoring pen-
toxifylline).33 Finally, the xanthine oxidase inhibitors, allo-
purinol and febuxostat, have attracted notice by
consistently decreasing kidney and CV events (57-68%)
in small trials of subjects with CKD, some of whom had
diabetes; the Preventing Early Renal Function Loss in Dia-
betes trial of allopurinol in 490 type 1 diabetics with CKD,
albuminuria, and hyperuricemia is currently under
way.34-36

Novel agents are in earlier stages of development. The
ill-fated bardoxolone methyl, a triterpenoid antioxidant
and potent activator of Nrf2 (nuclear factor [erythroid-
derived 2]-like 2), was abandoned due to a high rate of
CV events in a phase 3 trial, but a bardoxolone derivative
decreased atherosclerosis and glomerular and tubular
injury in diabetic mice and may reopen this field of in-
quiry for clinical studies.37,38 Nonselective endothelin
receptor A and B (ETA and ETB) antagonists have also
performed erratically, as ETA blockade is beneficial
(improved proteinuria and kidney function) but ETB
blockade is deleterious (sodium retention, peripheral
edema, and congestive heart failure); selective ETA
inhibitors such as avosentan and sitaxsentan were
similarly unsuccessful, but based on encouraging results
from early studies (23-30% decreased risk of doubling of
creatinine or ESRD at 3 years), the Study of Diabetic
Nephropathy with Atrasentan trial is currently
recruiting.39 Finally, countless “blue skies” approaches
in their therapeutic infancy include inhibiting inflamma-
tory and fibrosis molecules, such as Janus kinase, protein
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kinase C, tumor necrosis factor-a, transforming growth
factor-b, and matrix metalloproteinases.31

These and countless other therapeutic approaches are
only the beginning of a groundswell of basic and clinical
scientific inquiry for treating DKD. Although the preva-
lence of obesity and diabetes has been growing for de-
cades, and will almost assuredly continue to swell for
decades to come, the incidence of ESRD attributed to dia-
betes has begun to plateau.3 These divergent trend lines
suggest that our existing therapy for DKD, including
weight management with diet and exercise, glycemic
and blood pressure control, and proteinuria reduction
with RAS inhibitors and ancillary pharmaceuticals has
already begun to pay dividends. A spoonful of sugar
may help both the medicine and the kidney function go
down, but there is cause for optimism. With the SGLT2 in-
hibitors and other novel therapeutics beginning to enjoy
their day in the sun, we can hope that someday soon, all
diabetic kidneys will dream sweet dreams.

James E. Novak, MD, PhD
Associate Editor

Jerry Yee, MD
Editor-in-Chief

Henry Ford Hospital
Wayne State University

Detroit, MI
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