Henry Ford Health System

Henry Ford Health System Scholarly Commons

Case Reports

Medical Education Research Forum 2019

5-2019

Clear Cell Renal Cell Carcinoma With a Poorly-Differentiated Component: A Novel Variant Causing Potential Diagnostic Difficulty

Kanika Taneja Henry Ford Health System

Liang Cheng

Khaleel Al-Obaidy

Chia-Sui Kao

Justine Barletta

See next page for additional authors

Follow this and additional works at: https://scholarlycommons.henryford.com/merf2019caserpt

Recommended Citation

Taneja, Kanika; Cheng, Liang; Al-Obaidy, Khaleel; Kao, Chia-Sui; Barletta, Justine; Howitt, Brooke E.; Wasco, Matthew J.; Palanisamy, Nallasivam; Gupta, Nilesh S.; Rogers, Craig G.; Carskadon, Shannon; Chen, Ying-Bei; Antic, Tatjana; Tretiakova, Maria; and Williamson, Sean R., "Clear Cell Renal Cell Carcinoma With a Poorly-Differentiated Component: A Novel Variant Causing Potential Diagnostic Difficulty" (2019). *Case Reports.* 64.

https://scholarlycommons.henryford.com/merf2019caserpt/64

This Poster is brought to you for free and open access by the Medical Education Research Forum 2019 at Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Case Reports by an authorized administrator of Henry Ford Health System Scholarly Commons.

Authors

Kanika Taneja, Liang Cheng, Khaleel Al-Obaidy, Chia-Sui Kao, Justine Barletta, Brooke E. Howitt, Matthew J. Wasco, Nallasivam Palanisamy, Nilesh S. Gupta, Craig G. Rogers, Shannon Carskadon, Ying-Bei Chen, Tatjana Antic, Maria Tretiakova, and Sean R. Williamson

Kanika Taneja¹, Liang Cheng², Khaleel Al-Obaidy², Chia-Sui (Sunny) Kao³, Justine A. Barletta⁴, Brooke E Howitt³, Matthew J. Wasco⁵, Nallasivam Palanisamy¹, Nilesh S. Gupta¹, Craig G. Rogers¹, Shannon Carskadon¹, Ying-Bei Chen⁶, Tatjana Antic⁷, Maria Tretiakova⁸, Sean R. Williamson¹

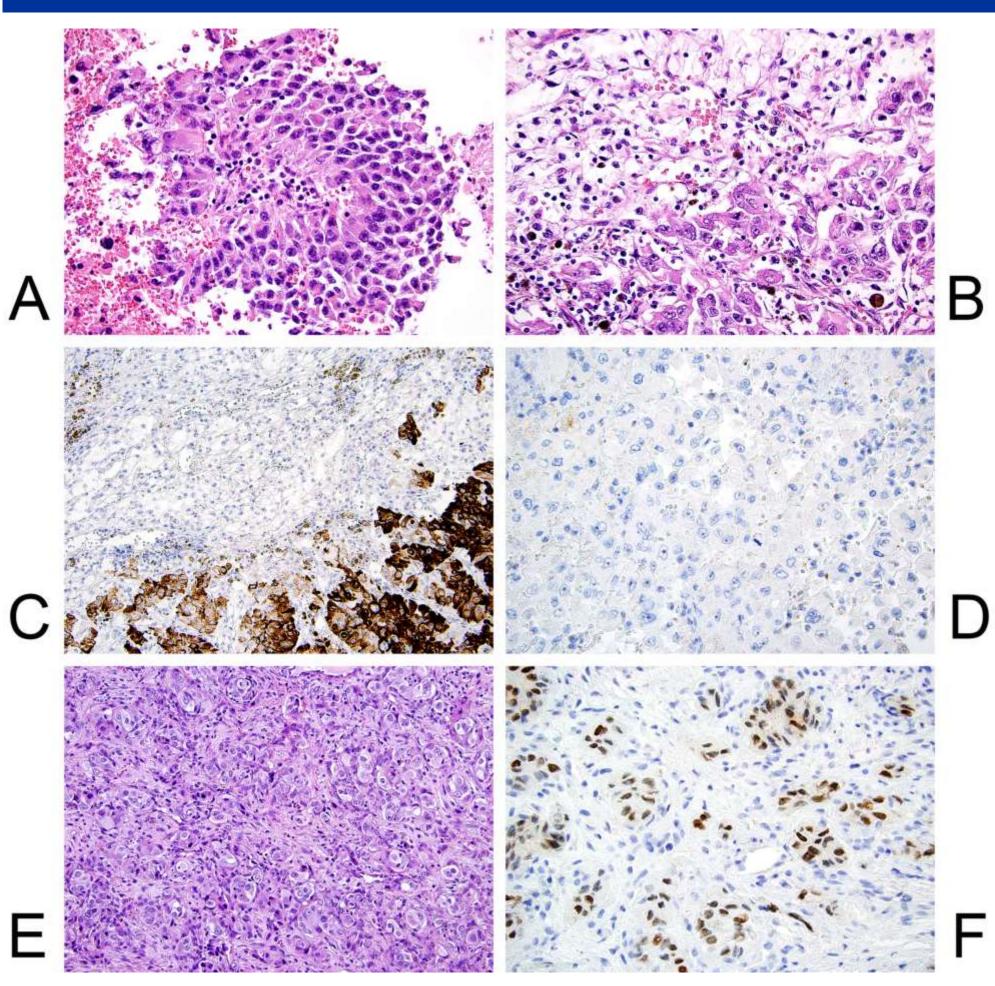
¹Henry Ford Health System,²Indiana University School of Medicine, ³Stanford University School of Medicine, ⁴Brigham and Women's Hospital, Harvard Medical School, ⁵St Joseph Mercy Hospital, ⁶Memorial Sloan Kettering Cancer Center, ⁷University of Chicago, ⁸University of Washington

Background

- Several variant histologic patterns of clear cell renal cell carcinoma (RCC) are well known, particularly sarcomatoid and rhabdoid features.
- However, we have encountered rare cases in which a high-grade adenocarcinoma not otherwise specified (NOS) pattern or urothelial carcinoma-like component would be difficult to appreciate as clear cell RCC.

Design

- We retrieved 26 tumors with histologically typical clear cell RCC juxtaposed to a high-grade non-clear cell component.
- A high-grade non-clear cell component was defined as non-sarcomatoid, non-rhabdoid areas that would be difficult to assign as renal cell in origin if viewed in isolation.
- Tumors were studied with immunohistochemistry and fluorescence in situ hybridization (FISH) or sequencing.


Results

- Median percentage of poorly differentiated component was 50% (IQR20-70).
- All tumors showed abrupt transition from clear cell carcinoma to poorlydifferentiated areas, with micropapillary (7/26; 27%), urothelial-like (10/26; 39%), and adenocarcinoma NOS features (9/26; 35%).
- Carbonic anhydrase IX (CA-IX) was uniformly positive in the welldifferentiated component (20/20), but the poorly differentiated component showed a median positivity of 82.5% (IQR 65-100).
- The poorly differentiated component was positive for CK7 (5/19; 26%), CK20 (3/12; 25%), AMACR (7/12; 58%), PAX8 (12/15; 80%), and showed intact FH (6/6; 100%). CDX2 was uniformly negative.
- Chromosome 3p loss or VHL mutation was present in 8/13 (62%), tested with either FISH (n = 9) or sequencing (n = 4).
- All tested cases were negative for *TFE3* (0/11) and *TFEB* (0/9)rearrangements using FISH.
- With follow-up, 5/21 (24%) patients were alive with metastatic disease and 5/21 (24%) had died of disease on follow up. One metastasis with biopsy material was composed only of the poorly-differentiated component and was near-negative for CA-IX.

Results												
Table 1: Clinicopathological features												
	Age	Sex	Size	Site	Grade	Stage	Nodes	Metastasis	% clear cell / poorly-diff	<i>TFE3</i> FISH	<i>TFEB</i> FISH	VHL FISH or molecular
1	52	М	6.8	L	4	pT3a	pN0	NA	40%/60%	Negative	Negative	Deletion
2	70	F	15	R	4	pT4	pN0	AWD	80%/20%	Negative	Negative	Deletion
3	76	М	6	R	4	pT3a	pNX	NA	70%/30%	NA	NA	NA
4	59	Μ	5.8	R	4	pT1b	pN0	AWD	70%/30%	Negative	Negative	No deletion
5	64	М	5.5	L	4	pT1b	pN0	NED	40%/60%	Negative	Negative	No deletion
6	69	М	3.9	R	3	pT1a	pNX	AWD	30%/70%	Negative	Negative	Deletion
7	65	F	15	R	4	ypT3a	pNX	NED	30%/70%	Negative	Negative	No deletion
}	52	М	13	L	4	pT3a	pNX	NED	60%/40%	Negative	NĂ	Deletion
•	51	М	4.7	R	3	рТЗа	pNX	NA	90%/10%	Negative	Negative	No deletion
10	61	М	6	L	3	pT3a	pNX	NA	20%/60%	Negative	Negative	NA
1	61	F	6.6	L	4	pT3a	pNX	NA	NA	NA	NA	VHL mutation
2	61	М	13.1	R	4	pT3a	pNX	DOD	70%/30%	Negative	Negative	No deletion
13	43	М	9.9	R	4	pT4	pN1	DOD	95%/5%	NA	NA	NA
4	60	F	6.5	L	4	pT3b	pN1	NED	20%/80%	NA	NA	NA
.5	65	М	6	R	4	pT3a	pNX	NED	30%/70%	NA	NA	NA
6	56	М	14	L	4	pT3b	pN0	NED	20%/80%	NA	NA	NA
7	38	М	7.6	R	4	pT3a	pNX	DOD	30%/70%	Negative	NA	NA
8	48	М	4.5	L	3	pT1b	pN0	NED	80%/20%	NA	NA	NA
.9	37	М	10.8	R	4	pT2b	pNX	NED	80%/20%	NA	NA	NA
20	41	М	16.2	L	3	рТЗа	pN1	DOD	60%/40%	NA	NA	<i>VHL</i> mutation
21	73	F	9	L	3	рТЗа	pN1	DOD	40%/60%	NA	NA	<i>VHL</i> mutation
22	62	F	14.6	L	4	pT3	pN1	DOOC	20%/80%	NA	NA	NA
23	68	F	5.5	R	4	pT1b	pN1	NA	20%/80%	NA	NA	NA
4	54	М	22	L	4	pT3	pN1	AWD	95%/5%	NA	NA	NA
25	47	М	11.3	L	4	pT3	pN1	NA	10%/90%	NA	NA	NA
26	58	М	8.7	L	4	pT3	pN1	AWD	90%/10%	NA	NA	VHL mutation
Table 2: Immunohistochemistry												

Clear Cell Renal Cell Carcinoma With a Poorly-Differentiated Component: A Novel Variant Causing Potential Diagnostic Difficulty

Table 2: Immunonistochemistry										
X - clear cell / poorly										
fferentiated RCC	PAX8	CK7	AMACR	CK20	Other					
100%/40%	0%	0%	0%	0%	intact FH					
80%/50%	0%	0%	NA	0%	intact FH					
NA	NA	NA	NA	NA						
80%/80%	90%/70%	0%/0%	0/0%	0%/0%						
100%/100%	10%/10%	0%/0%	100%/80%	0%/0%						
100%/100%	40%/70%	0%/10%	100%/100%	0%						
100%/80%	0%/20%	0%	0%	0%/60%						
100%/100%	20%/95%	0%/0%	80%/50%	0%/0%	CD10+, Vimentin+					
100%/100%	100%/100%	5%/0%	0/70% weak	<5%/0%	Vimentin+, CD10+, Melan negative					
100%/70%	NA	15%	100%	0%						
100%/100%	100%/100%	0%/0%	NA	0/90%	RCC 90%, INI retained, CD10+					
85%/85%	0%	0%	0	0	EMA+, AE1/3+, CD10+, vimentin+					
75%/70%	NA	0	NA	15%	Vimentin+, Cam5.2, CD10+					
100%/50%	NA	NA	NA	NA	Vimentin+					
NA	NA	NA	NA	NA						
100%/100%	NA	0	NA	NA						
100%/20%	100%	0	NA	NA						
100%/100%	100%	NA	NA	NA						
NA	100%	NA	NA	NA						
90%/70% weaker	100%	0%/15%	80%/100%	NA						
100%/100%	100%	0%/70%	NA	NA						
NA	NA	NA	NA	NA						
NA	NA	NA	NA	NA						
NA	NA	NA	NA	NA						
100%/0%	NA	0%/0%	NA	NA	Vimentin+					
100%/0%	NA	0%/0%	100%/100%	NA						

- unusual tumors.

Figures

Figure 1: The tumor from patient 7 demonstrated poorly-differentiated, urothelial carcinoma-like morphology (A) with abrupt transition to conventional clear cell features (B, top). Cytokeratin 20 was substantially positive in the poorly-differentiated component (bottom, C) and CA-IX was markedly decreased to negative in these areas (D). A metastatic lesion involving the jaw was composed only of the poorly-differentiated component (E) and was negative for CA-IX but positive for PAX8 (F).

Conclusion

• Clear cell RCC with a poorly differentiated component resembling adenocarcinoma or urothelial carcinoma is a novel source of morphologic heterogeneity that has not been previously well characterized. • Potential pitfalls include decreased or absent CA-IX staining the highgrade component and aberrant positivity for cytokeratin 7 or 20. • With the increasing use of renal mass biopsy and biopsies of metastatic sites for targeted therapy, pathologists should be aware of this entity and consider the possibility of clear cell RCC even for morphologically