Characterisation of Venom Induced Consumption Coagulopathy (VICC) in patients with Haemotoxic Snake Bite and the effects of Blood Products on Coagulation Parameters.

DISSERTATION SUBMITTED IN PART FULFILLMENT OF THE REQUIREMENTS FOR THE M.D. DEGREE BRANCH XXI (TRANSFUSION MEDICINE AND IMMUNOHAEMATOLOGY) EXAMINATION OF THE TAMIL NADU DR.M.G.R.MEDICAL UNIVERSITY CHENNAI TO BE HELD IN MAY 2019.

This is to certify that this dissertation titled "Characterisation of Venom Induced Consumption Coagulopathy (VICC) in patients with Haemotoxic Snake Bite and the effects of Blood Products on Coagulation Parameters" is a bonafide work done by Dr. Jess Elizabeth Rasalam, in part fulfillment of rules and regulations from the M.D. BRANCH XXI (Transfusion Medicine and Immunohaematology) Degree examination of the Tamil Nadu Dr. M.G.R Medical University, to be held in May 2019.

I have independently reviewed the literature, standardized the data collection methodology and carried out the evaluation towards completion of the thesis.

Dr. Jess Elizabeth Rasalam PG Registrar Department of Transfusion Medicine and Immunohaematology Christian Medical College, Vellore.

This is to certify that this dissertation titled "Characterisation of Venom Induced Consumption Coagulopathy (VICC) in patients with Haemotoxic Snake Bite and the effects of Blood Products on Coagulation Parameters" is a bonafide work done by Dr. Jess Elizabeth Rasalam, in part fulfillment of rules and regulations from the M.D. BRANCH XXI (Transfusion Medicine and Immunohaematology) Degree examination of the Tamil Nadu Dr. M.G.R Medical University, to be held in May 2019.

Dr. Joy John Mammen, MBBS, MD Professor and Head, Department of Transfusion Medicine and Immunohaematology, Christian Medical College, Vellore.

Dr. Anna B. Pulimood, MBBS, MD, PhD Principal, Christian Medical College, Vellore.

This is to certify that this dissertation titled "Characterisation of Venom Induced Consumption Coagulopathy (VICC) in patients with Haemotoxic Snake Bite and the effects of Blood Products on Coagulation Parameters" is a bonafide work done by Dr. Jess Elizabeth Rasalam, in part fulfillment of rules and regulations from the M.D. BRANCH XXI (Transfusion Medicine and Immunohaematology) Degree examination of the Tamil Nadu Dr. M.G.R Medical University, to be held in May 2019.

The candidate has independently reviewed the literature, the data collection methodology and carried out the evaluation towards completion of the thesis.

Dr. Joy John Mammen, MBBS, MD Professor and Head, Department of Transfusion Medicine and Immunohaematology, Christian Medical College, Vellore.

PLAGIARISM CERTIFICATE

Document	MAIN THESIS 201631052 DR JESS.docx (D42560476)
Submitted	2018-10-15 13:57 (+05:0-30)
Submitted by	Jess Elizabeth Rasalam (jerasalam@gmail.com)
Receiver	jerasalam.mgrmu@analysis.urkund.com
	8% of this approx. 35 pages long document consists of text present in 10 sources.

This is to certify that this dissertation work titled "Characterisation of Venom Induced Consumption Coagulopathy (VICC) in patients with Haemotoxic Snake Bite and the effects of Blood Products on Coagulation Parameters" is of the candidate Jess Elizabeth Rasalam with registration Number 201631052 for the award of M.D Degree in the branch of BRANCH XXI (Transfusion Medicine and Immunohaematology).

I personally verified the Urkund.com website for the purpose of plagiarism Check. I found that the uploaded thesis file contains from introduction to conclusion pages and result shows eight percentage (8%) of plagiarism in the dissertation.

Dr. Joy John Mammen, MBBS, MD Professor and Head, Department of Transfusion Medicine and Immunohaematology, Christian Medical College, Vellore.

ACKNOWLEDGEMENTS

I am greatly indebted to Dr. Joy John Mammen Professor and Head, Department of Transfusion Medicine and Immunohaematology, who through his meticulous guidance and scholarly supervision helped me throughout this study, without which this work would not have been possible.

I would like to place on record my extreme gratefulness to Dr. Sukesh Chandran Nair, Professor, Department of Transfusion Medicine and Immunohaematology who guided me all along the study with advice and necessary help.

I wish to express my sincere gratitude to Dr. Anand Zachariah, Professor, Department of Internal Medicine, who has been a source of constant help and encouragement.

Sincere thanks to Dr. Dolly Daniel, Dr. Nitty Skariah Mathews, Dr. J.V.Peter and Dr. K.P.P.Abhilash and who offered guidance whenever was required. Special thanks to Dr. Tunny Sebastian for the statistical analysis. Let me express my sincere thanks to Ms. Ramya V. Senior Demonstrator, Department of Transfusion Medicine and Immunohaematology.

Most of all I am indebted to God Almighty for His Grace which is encouraging me constantly.

LIST OF ABBREVIATIONS

3 FTX	3 Finger Toxin
ACE	Angiotensin Converting Enzyme
ACT	Activated Clotting Time
ADAMTS 13	A Disintegrin And Metalloproteinase with A ThromboSpondin type 1 motif member 13
ANP	A Type Natriuretic Peptide
APTT	Activated Partial Thromboplastin Time
ASV	Anti-Snake Venom
BPP	Bradykinin Potentiating Peptide
CNP	C Type Natriuretic Peptide
CRISP	Cysteine Rich Secretory Proteins
DIC	Disseminated Intravascular Coagulation
FFP	Fresh Frozen Plasma
HRP	Horse Radish Peroxidase
HUS	Hemolytic Uremic Syndrome
INR	International Normalized Ratio
LAAO	L Amino Acid Oxidase
NEGF	Nerve Endothelial Growth Factor
NTD	Neglected Tropical Diseases
PLA2	Phospholipase A2
РТ	Prothrombin Time
SVMP	Snake Venom Metalloprotease
SVTLE	Snake Venom Thrombin Like Enzyme
TMA	Thrombotic Microangiopathy
TTP	Thrombotic Thrombocytopenic Purpura
VEGF	Vascular Endothelial Growth Factor
VEMAC T	Vellore Manually Activated Clotting Time
VICC	Venom Induced Consumption Coagulopathy
vWF	von Willebrand Factor
WBCT20	Whole Blood Clotting Time20
WHO	World Health Organization

ABSTRACT

Introduction

Snake bite is one of the most important "Neglected Tropical Diseases" in terms of both incidence and severity, and its clinical characteristics. Venom-Induced Consumption Coagulopathy (VICC) is the core pathogenic mechanism in haemotoxic snake bites. The common derangements seen are prolonged Prothrombin time (PT), prolonged Activated Partial Thromboplastin Time (APTT), low/undetectable fibrinogen. VICC is characterized by reduction of coagulation factors and the absence of systemic microthrombi and end-organ damage. The time course in VICC is rapid- occurring within a few hours of envenomation and resolution within 24-48 hours, if treated appropriately.

Objectives

The primary objective of this study is to identify patients with haemotoxic snake bite and to characterize Venom Induced Consumption Coagulopathy (VICC) in these patients. The secondary objectives are to study the coagulation profile in patients with haemotoxic snake bite and their response to treatment with Anti Snake Venom (ASV) and/or blood products. Comparison of sensitivity and specificity of the new test Vellore **Manually Activated Clotting Time** (Vemac Time) against a composite diagnosis of VICC. A review of retrospective data spanning a five-year period of the clinical and lab parameters of patients with haemotoxic snake who received blood products transfusion has also been undertaken.

Methods and Materials

This is an observational study with a retrospective arm comprising patients who were admitted between year 2012-2017 and a prospective arm for patients admitted between 2017 - 2018 at Christian Medical College, Vellore.

Results

Data from 280 patients who had a haemotoxic snake bite were analysed. Among these 47(16.8%) patients were transfused blood and plasma products. There was a male preponderance among patients (70.2%). Isolated haemotoxic features and local reaction were seen in 8.5%. Coexisting neurological and/or renal manifestations were seen in more than 90% patients. The average dose of ASV received per patient was 18.9 \pm 7.75 vials. Baseline INR more than 1.5 was seen in 87.2% and an elevated APTT ratio was seen in 55.3%. All components were transfused: platelet concentrates (30%), FFP (66%), cryoprecipitate (32%) and cryosupernatant (11%). Mortality was 10.6% among this patient group with transfusions.

Among the prospective follow up group pure haemotoxicity was seen in 24.3% (n=9) patients. Combinations of haemotoxicity with renal and/or neurological manifestations were seen in 75.7% (n=28).

The new test Vellore Manually Activated Clotting Time (Vemac Time) was compared against Prothrombin Time and also a composite diagnosis of VICC. The sensitivity of the test was found to be 81.82% and specificity was 100% when compared with PT. Positive predictive value of the test was 100% when compared with PT. When compared to a composite diagnosis of VICC it was found to have positive predictive value of 100%.

Discussion and conclusion

Snake bite was and still remains a problem that can easily be tackled, if diagnosis and treatment is given in a timely manner. The role of a good haemostasis laboratory in detecting VICC and management of the patient is emphasized by this study. Antivenom is the major treatment for VICC. Treatment focuses on neutralization of venom effects with antivenom and waiting for the replenishment of coagulation factors. Antivenom is not risk free and adverse reactions can be quite common and potentially severe. Patients should be observed in hospital until clotting function has normalised.

LIST OF FIGURES

<u>Figure No.</u>	Title	Page No.
	RETROSPECTIVE DATA	
1	Gender wise distribution of the study population	43
2	Age distribution of the study population	43
3	Distribution of patients in each decade	44
4	Area wise distribution of the study population	44
5	Taluk wise distribution of study population in the Vellore district	45
6	Monthly distribution of patients with haemotoxic snake bite	45
7	Population distribution according to time of bite	46
8	Distribution according to site of bite	46
9	Distribution according to neurological manifestations	47
10	Distribution according to presence or absence of ptosis	48
11	Distribution according to renal involvement	48
12	Distribution of envenomation syndromes in study population	49
13	Whole blood clotting time at admission	50
14	Distribution according to platelet count at admission	50
15	International normalized ratio at admission	51
16	Change of INR over 24hours	52
17	Distribution according to transfusion requirements	53
18	Distribution of blood product requirements in patients	53
19	Distribution of patients according to the outcome	54

	PROSPECTIVE DATA	
20	Gender wise distribution of the study population	55
21	Age distribution of the study population	55
22	Area wise distribution of the study population	56
23	Taluk wise distribution of study population in the Vellore district	56
24	Monthly distribution of patients with haemotoxic snake bite	57
25	Population distribution according to time of bite	57
26	Distribution according to site of bite	58
27	Distribution according to neurological manifestations	60
28	Distribution according to presence or absence of ptosis	60
29	Distribution according to renal involvement	61
30	Distribution of envenomation syndromes in study population	61
31	Whole blood clotting time at admission	62
32	Distribution according to platelet count at admission	63
33	International normalized ratio at admission	63
34	Distribution according to fibrinogen at admission	64
35	Variation of platelet count over 24hrs	65
36	Variation of INR over 24hrs	65
37	Variation of fibrinogen over 24hrs	66
38	Time to normalization for platelet count	67
39	Time to normalization for INR	67
40	Time to normalization for fibrinogen	68

41	Distribution of patients requiring transfusion	68
42	Distribution according to product transfused	69
43	Distribution according to condition at discharged	70
44	Symptoms wise distribution of patients	78

LIST OF TABLES

Table No.	Title	<u>Page No.</u>
1	Comparison between pure haemotoxic group and	71-72
	haemotoxicity + neurotoxicity/renal involvement	
2	Vemac Time and PT comparison	72
3	Vemac Time and VICC comparison	73

CONTENTS

SL.No.	<u>Title</u>	Page No
1	Introduction	1
2	Aim of the study	3
3	Objectives	4
4	Methods and Materials	5
5	Review of Literature	8
6	Results	43
7	Discussion	74
8	Limitations	87
9	Conclusion	88
10	References	90
11	Annexures	96

INTRODUCTION

Snake bite is a one of the common medical emergencies and also an occupational hazard, which is frequently encountered in tropical India. More than 2,000 species of snakes are known worldwide. These includes almost 400 poisonous snakes. In India, Naja naja commonly known as spectacled cobra, Bungarus caeruleus or the common krait, Echis carinatus or the saw-scaled viper and Daboia russelii or the Russell's viper have long been recognised as the most important. Other species which may cause fatal envenomation are distributed in certain regions. These includes central Asian cobra (*Naja oxiana*) in the far north-west, monocellate cobra (*N. kaouthia*) and greater black krait (B. niger) in north-east, Wall's and Sind kraits (B. walli and B. sindanus) in the east and west and hump nosed pit-viper (*Hypnale hypnale*) in the south-west coast and Western Ghats. These snakes belong to the four families namely *Elapidae*, *Viperidae*, Hydrophiidae and Colubridae. The Russell's viper (Daboia russelii) commonly inhabits Southern Asian countries. Russell's bite is considered as an occupational hazard for the farming communities in India. Regardless of the fact that India is neither the home for venomous snakes nor there a shortage of anti-snake venom, every year there are 50,000 deaths from 2,50,000 incidents of snake bite. (1).

There is a paucity of data on the epidemiological profile of snake bite from the Indian subcontinent. Commonly rural people are victims of snake bite and use traditional healers. These cases go unidentified. Rural people are not well informed about the risks of harmful practice and how simple measures can prevent or treat snake bites. They adopt harmful practices such as tourniquets, cutting & suction, herbal remedies, quackery etc. These are not only inadequate but also hazardous(2). Only the cases with symptoms of severe envenomation reach proper health care services.

Snake venoms are rich collections of enzymes, proteins, peptides and other components that can cause a wide range of physiological, neurological and haemostatic effects on their prey. Among these effects, the venom components that affect mammalian haemostasis have been most well studied for more than 150 years. They have added to the explanation for the extensive mechanisms of the haemostasis process (e.g. platelet aggregation and inhibition, mechanism of defibrination, DIC, various coagulopathies, etc), elucidation of various clinical disorders (e.g. congenital haemorrhagic disorder, various blood factor deficiencies, etc), development of many diagnostics (e.g. Reptilase time) and therapeutics (e.g. batroxobin). Therefore, venoms have been regarded as 'gold mines' for researchers, pharmaceutical companies, clinical analysts and medical practitioners (3).

Qualitatively and quantitatively variation in venom is appreciable in different families of snakes (4)(5). In general, snake venoms varies mostly in composition of soluble polypeptides, but may also vary in amount of carbohydrates, lipids, metal ions, and other organic compounds, including amines and purines (6).

Almost up to 90% of the dry weight of most venom is comprised of polypeptides of three size classes: low molecular weight components (< 1.5 kDa), polypeptide toxins (5 to 10 kDa), and enzymes (10 to 150 kDa) (3).

AIM

The aim of the study was to characterize the effects of snake bite on the haemostatic system, transfusion requirements and effect of transfusion on haemostatic parameters.

OBJECTIVES

The primary objective of our study was:

1.To identify patients with haemotoxic snake bite and to characterize Venom Induced Consumption Coagulopathy (VICC) in these patients.

The secondary objectives were:

- 1. To study the coagulation profile in patients with haemotoxic snake bite and their response to treatment with Anti Snake Venom (ASV) and/or blood products.
- 2. Comparing sensitivity and specificity of the new in house designed test named Vellore

Manually Activated Clotting Time (Vemac Time) against a composite diagnosis of

VICC.

3.To retrospectively study for a period of five years the clinical and lab parameters of patients with haemotoxic snake who received blood products transfusion.

METHODS AND MATERIALS

SETTING

This study was carried out in the Departments of Transfusion Medicine and Immunohaematology along with the Departments of Internal Medicine, Accident and Emergency and the Medical Intensive Care Unit, at Christian Medical College Hospital, Vellore.

The study was approved by the Institutional Review Board of the Institute IRB no 10467 dated 05/01/2017. For the part of the study being conducted retrospectively, all patient identifying information was completely delinked from the study.

SAMPLE SIZE CALCULATION

This was an observational study which was conducted over a period of 15 months. The National Snake Bite study from Christian Medical College (CMC), Vellore completed in 2016 showed about 170 patients over a period of 2 years. 60-70 patients were expected to be recruited in this study. However, only 37 patients with snake bite fulfilled the inclusion criteria for this study.

PARTICIPANTS

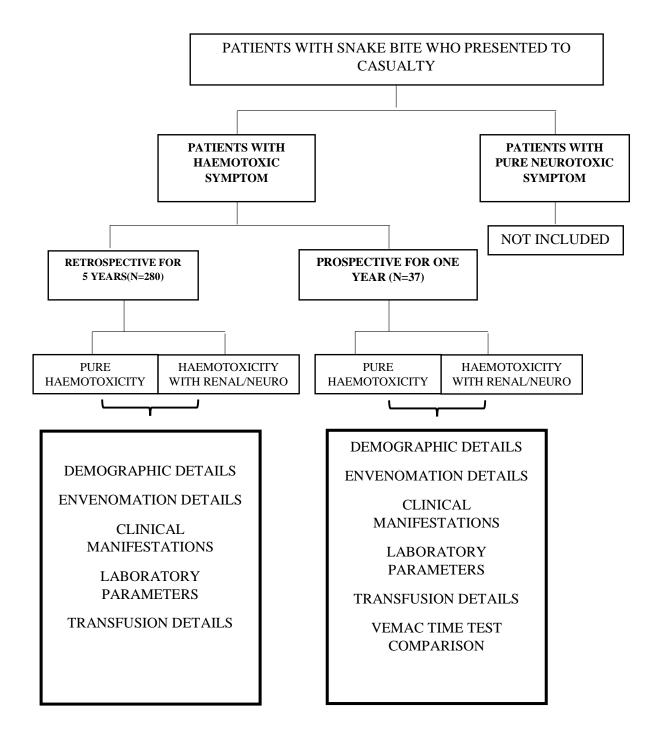
Inclusion Criteria for the prospective study

1.All consenting patients above 16 years of age presenting to CMC Hospital with haemotoxic snake bite within 24 hours.

2.Patients who have an abnormal Whole Blood clotting time and/or PT with INR ≥ 1.2 with or without bleeding manifestations.

Exclusion Criteria for the prospective study

1.Children (<16 years)


2. Cases of snake bite with no evidence of envenomation and blood tests remain normal.

3.Non-consenting patients.

The patients had the standard investigations and treatment for snake bite as it is currently practised in CMC. The results from the various blood tests and the clinical course including transfusion requirements of the patient were observed. These were analysed to see whether they fulfil the diagnostic criteria described in the literature for VICC.

All categorical clinical profile variables were expressed as frequencies and percentages. All continuous variables which were approximately symmetric were presented using mean with SD. If not symmetric, median with IQR were presented.

FLOWCHART FOR DATA COLLECTION:

REVIEW OF LITERATURE

GENERAL FACTS ABOUT SNAKES

WHAT ARE SNAKES?

Snakes are squamate animals and part of the lizard phylogeny. They are a very diverse and specialized group of limbless lizards. Snakes are members of the second most speciose group of living reptiles (Reptile Database: http://www.reptiledatabase.org/).

"Limblessness" has evolved quite commonly among lizards and, including snakes, this feature has evolved independently at least 25 times (7). However, no group of limbless lizards are as successful as snakes. There are approximately 3,150 species of snake and they occur in nearly every habitat and on every continent except Antarctica.

Snakes are cold blooded animals without ears or tympanic membranes. They react to vibrations received through the surface on which they rest and are very sensitive to vibrations from movement. Snakes do not have good visual acuity and they do not generally associate stationary objects with danger. They have a good sense of smell and snakes are well known for the vomeronasal system of odour detection. Most of the land snakes feed on small animals such as mice, rats and frogs. Kraits and Cobras are exceptional and mainly eat other snakes.

EPIDEMIOLOGICAL FEATURES OF SNAKE BITE

Snake bites are common emergencies encountered in clinical practice. The estimated number of persons affected by snake bite is not accurately known, but, it is assumed

that more than 2,00,000 persons are annually bitten by snakes in India and about 15,000 of these turn out to be fatal (8).

In India, the prevailing climatic conditions and the fact that a major portion of the population is rural and agrarian, results in snake bite being a major health problem. Snake bite morbidities can be a preventable health hazard in these most affected population.

The death rate from snake bite is estimated to be 5% of bites. However, this figure is based on hospital statistics. In practice however, most rural patients are treated by local traditional methods and do not reach proper health care facility (9).

India is a country with more than 60 species of venomous snakes. Spectacled cobra (*Naja naja*), common krait (*Bungarus caeruleus*), saw-scaled viper (*Echis carinatus*) and Russell's viper (*Daboia russelii*) are the well identified venomous snakes. However, there are other species in particular regions, for example, the hump nosed pit-viper (*Hypnale hypnale*) in the south-west coast and Western Ghats (9) which lead to fatal envenomation.

Almost 26 species belong to the family of true vipers (subfamily *Viperinae*) and pit vipers (*Crotalinae*). Among them, Russell's viper (*Daboia russelii*) envenomation leads to the highest morbidity and mortality. Saw scaled viper (*Echis carinatus*) is commonly seen in western and southern India. They are also found in the dry coastal parts of northern Sri Lanka. Pit vipers have generally been considered to be less of a problem in South Asia. However, these snakes occur in diverse habitat types from wet mangroves to high mountains. These are also common in domestic gardens and agricultural areas.

Recent literatures from South India have reported high morbidity among plantation workers due to bites by the much smaller species, the Malabar pit viper (*Trimeresurus malabaricus*). Hump-nosed pit vipers (*Hypnale* and *H. nepa*) are also being identified as medically dangerous species in these regions, and can potentially cause renal failure and haemostatic abnormalities. Severe fatalities have been documented in India and Sri lanka due to *H. hypnale* envenoming (10).

The "Big 4 Snakes of Medical Importance," namely the Russell's viper, the saw scaled viper, the Indian or spectacled cobra, and the common krait are believed to cause the vast majority, of fatalities due to snake bite (1). Venomous snake bite was listed as NTD- "Neglected Tropical Disease", by the WHO in 2009 and it was removed from the list in 2013. It was again recognised by the World Health Organization (WHO) in the category A of the Neglected Tropical Diseases on June 9th, 2017 (11). It indicates that snake bite is prevalent in tropical and subtropical conditions in 149 countries affecting more than a billion people, costing developing economies billions of dollars of loss every year. Worldwide, approximately 4,21,000 envenoming and 20,000 deaths occur annually from snake bites. Figures are reported to be as high as 1,841,000 bites with envenomation, leading to almost 94,000 deaths (12). Not all snake bites lead to envenomation. In general one third of snake bites causes envenomation(10).

SOCIO DEMOGRAPHIC FACTORS

The increase in population numbers and population spread leads to encroachment by people into reptile habitats which increases the likelihood of contact with reptiles. Inadequate infrastructure in villages, including poor lighting, open sewerage systems, roads, lack of in-house water supply may all co-contribute to bites especially occurring

at night. Improper sanitation contributes to increase in rodent population and therefore snake presence. Poor transport facilities in rural areas leads to significant and at times, fatal delays in transportation of patients to medical care facilities (13).

SOCIO-CULTURAL

Most people who live in villages lacks protective foot wear, and sleep on the ground. Livestock are also present in close proximity to houses which draw rats to these places and therefore their predators too. Lack of toilet facilities leading to open defecation, quite often after sunset are all important socio-cultural contributory factors (13).

MEDICAL

Medical awareness among victims and their families, of the immediate measures to be followed when bitten by a snake is lacking. Precious time is lost when alternate or traditional forms of treatment are sought. Inadequate first aid measures leads to systemic envenomation and added complications (13).

LEGISLATIVE / GOVERNMENTAL

The process of manufacture of Anti-Snake Venom (ASV) and also its standardization lacks centralised quality control. The venom used for the manufacture of ASV for the entire country is from one or two sources and is limited to a small geographical area. Research has shown regional variation in venom constituents and chemical properties, as well as intra-species variation. Regional/zonal venom centres with the facilities to manufacture ASV for a particular region or zone are therefore important to ensure appropriate ASV availability (13). Characterisation of Venom Induced Consumption Coagulopathy (VICC) in patients with Haemotoxic Snake Bite and the effects of Blood Products on Coagulation Parameters.

TAXONOMY, IDENTIFICATION AND DISTRIBUTION OF SNAKES

There are about 2500 to 3000 species of snakes of which about 500 belong to the five families of Venomous snakes, *Atractaspididae, Elapidae, Hydrophidae, Colubridae* [some species] and *Viperidae*. In India 236 different species of snakes are seen, of which 50 species are identified as being poisonous. Among the non-venomous snakes only the giant constrictors are potentially dangerous to man – these include the South African and Asian pythons, and the South American anaconda .

Poisonous snakes prevalent in India belong to four families.

They are

- 1. *Elapidae* includes cobras & krait
- 2. *Viperidae* (true vipers) includes Russell's viper & saw scaled viper.
- 3. *Colubridae* (pit vipers) includes green pit viper.
- 4. *Hydrophidae* (or) sea snakes.

Elapidae, *Viperidae* and *Colubridae* are three families of venomous snakes in South-East Asia:

Elapidae: This family of snakes have relatively short fixed front fangs. It includes cobras, king cobra, kraits, coral snakes, Australasian snakes and sea snakes. They are relatively long, thin and uniformly-coloured snakes. They possess large smooth symmetrical scales on the dorsum of the head. They lack loreal scale between their pre-ocular and nasal scales. Two species of cobras are found in India, common cobra (*Naja naja*) and king cobra (*Ophiophagus hannah*). The head of the cobra is indistinct from the neck and the ribs in this area are movable and can expand to form the hood. This

hood on its dorsal aspect has a marking which resembles a spectacle showing a connected pair of rings. King Cobras are found in dense forests and can be up to a length of 18 feet. They are usually black in colour.

Two species of Kraits are commonly found in India. The Common Krait and Banded krait - Common krait is steel blue or black with white bands on the back. Banded krait is larger and is jet black in colour with yellow bands.

Viperidae: In contrast to above family these snakes have relatively long fangs. These fangs are normally folded flat against their upper jaw. When they bite, it becomes erected. They are further divided into two subfamilies, true vipers (*Viperinae*) and pit-vipers (*Crotalinae*).

Russell's viper is a larger snake measuring 6 feet and makes a loud hissing sound by expelling air through its large nostrils. It can appear sluggish and stout. It is brown or yellowish with dark round spots on the dorsum with white and black edges (14). Saw scaled viper a small snake (30cm long) with brown or grayish dorsum showing a zig zag pattern. It has a distinct cross or lance shaped mark on the head. The ventral scales are rough. They can produce a grating sound by rubbing their coils together. The other sub family *Crotalinae* possess a well formed infra-red heat-sensing organ, the loreal pit organ, to detect their warm-blooded prey. This is situated between their nostril and the eye.

Colubridae: The third group among the venomous snakes include colubrids. They make up the largest group of snakes and almost include 75 percent of all the world's snake species. Most of the these possess wide scales on their bellies and, usually, nine large scales on the tops of their heads. They also have glands behind each eye. These glands release a mixture of chemicals. Their venom usually takes minutes to act unlike the cobras and vipers, whose fast-acting venom can kill their prey in moments.

Non-venomous snakes

Several species of non-venomous snakes are responsible for bites. These commonly are found in urban and rural gardens. Humans are liable to their bite when approached too closely. Notably *Lycodon* and *Dryocalamus* mimics krait, resulting in unnecessary medical treatment (15).

Identification of venomous snakes

There is no simple general rule for identifying a venomous snake. Some harmless snakes have evolved to look almost identical to venomous ones. Various species of *Lycodon, Dryocalamus* and *Cercaspis* mimic the appearance of the kraits *B. candidus, B. caeruleus* and *B. ceylonicus*. The tail raising display and colouring of *Cylindropis ruffus*, may mimic coral snakes (*Calliophis* species). Most of the venomous snakes can be recognized by their size, shape, colour, pattern of markings, characteristic behaviours and sounds made when they feel threatened. When a cobra is threatened they spread a hood, hiss and make continuous strikes. There can be vast differences in the colour pattern between the same species of snakes. However distinct identification can still be made, like the possession of longitudinal rows of large, dark-rimmed, pale-centred spots of the Russell's vipers, or the alternating black and yellow circumferential bands of the banded krait. Snakes can even be distinguished by other characteristics like blowing hiss of the Russell's viper or a grating rasp of the saw-scaled viper (16).

THE VENOM APPARATUS:

The evolution of altered teeth capable of injecting venom evolved over millions years ago (16). Among the venomous snakes *Elapidae* and *Viperidae*, venom glands are situated behind the eye, surrounded by compressor muscles. The duct from these glands opens at the base of the fang. The venom flows through a groove to the tip of the fang(16). In *Elapidae* fangs are seated in the front of the mouth. In *Viperidae* fangs are seated on a rotatable maxilla which can be folded flat against the roof of the mouth. In *Colubridae* venom secreted by Duvernoy's (supralabial) glands which are positioned at the posterior end of the maxilla (17). Fangs allow the snake to inject venom deep into the tissues of its prey. Venom is generally injected subcutaneously or intramuscularly. Spitting cobras ejects the venom from the tips of their fangs in a skilful spray aimed towards the eyes of an intruder (16).

SNAKE VENOM

90% of the dry weight of snake venom is composed of more than a hundred varieties of proteins comprising of enzymes, non-enzymatic polypeptide toxins, and several other non-toxic proteins. The enzymes include digestive hydrolases, hyaluronidase (spreading factor), yellow L-amino acid oxidases, phospholipases A2, and peptidases (16).

Snake venom metalloproteases (SVMPs) may cause damage to the basement membrane resulting in severe endothelial damage causing spontaneous systemic bleed. Procoagulant enzymes includes activators of factors V, X, prothrombin and other clotting factors, causing Disseminated Intravascular coagulation (DIC) or incoagulable blood.

Phospholipases A2 can damage intracellular organelles and may produce wide spread toxicity which may include presynaptic neurotoxicity, cardiotoxicity, myotoxicity; tissue damage resulting in necrosis, hypotension, haemolysis, anti-coagulation, haemorrhage, plasma leakage (oedema formation) and release of histamine and other autacoids. Polypeptide postsynaptic (α) neurotoxins bind to acetylcholine receptors at the motor endplate. Presynaptic (β) neurotoxins are phospholipases that permanently damage nerve endings.

The chemical content and antigenicity of snake venoms varies strikingly between and within species, as these snakes mature, depending on season, between sexes, and in their geographical distribution. Thus, it is very important to note that envenoming by a particular species of snake in certain part of its geographical range may not be showing repose to an antivenom prepared against venom from the same species in some else location.

PATHOPHYSIOLOGY OF HUMAN ENVENOMING

Snake bite causes swelling and bruising locally as a result of the venom. This causes increased vascular permeability. Tissue necrosis can be seen because of thrombosis, tight tourniquets applied as first-aid, fascial compartments with swollen muscles (16). Hypovolaemia due to leakage of plasma may lead to severe hypotension. Other released oligopeptides like ACE inhibitors and bradykinin-potentiating peptides (BPPs) which are vasodilating autacoids can cause early transient hypotension. Injection of procoagulant enzymes lead to defibrinogenation, or a consumptive coagulopathy. Platelet activation/inhibition and sequestration leads to profound thrombocytopenia. Certain metalloproteinase example zinc metalloproteases (haemorrhagins) are reasons for spontaneous systemic bleeding.

Complement activation can directly affect platelets, blood coagulation and another humoral activator. Venoms from *elapid* and some *colubroid* activate the alternative pathway, while the *viperid* venoms activates the classical complement pathway. Neurotoxic polypeptides and PLA2s injection manifests as paralysis by blocking transmission at neuromuscular junctions. Descending paralysis affects bulbar and respiratory muscles leading to upper respiratory airway obstruction, aspiration, or even respiratory paralysis. Anticholinesterase drugs (e.g. neostigmine) can be used for the treatment of these manifestations. Generalized rhabdomyolysis, myoglobinaemia, myoglobinuria leading to acute kidney injury can be seen in PLA2 myotoxins and metalloproteases in the venoms of sea snakes, terrestrial Australasian elapids and some kraits.

Russell's vipers quite commonly cause acute kidney injury. The histopathological features seen include acute tubular necrosis, proliferative glomerulonephritis, bilateral renal cortical necrosis, acute interstitial nephritis, toxic mesangiolysis with platelet agglutination, fibrin deposition and ischaemic changes. Kidney injury may be direct result of hypotension, hypovolaemia, direct nephrotoxicity or secondary to haemoglobinuria, myoglobinuria, and hyperkalaemia.

DIC may result in inappropriate deposition of fibrin that has been stimulated by metalloproteases on the vascular endothelium, producing microangiopathic haemolysis

17

and thrombotic microangiopathy (TMA). These manifestations resemble haemolytic uraemic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP), but interestingly A Disintegrin And Metalloproteinase with a ThromboSpondin Type 1 Motif, Member13 (ADAMTS13) levels are never low.

ENZYMATIC EFFECTS OF SNAKE VENOM

The most important and common enzymes in snake venoms are:

a) Phospholipase A2s (PLA2s),

b) Serine proteinases, metalloproteinases,

c) Acetylcholinesterases (AChEs),

d) L-amino acid oxidases,

e) Nucleotidases (5-nucleotidases, ATPases, phosphodiesterases and DNases)

f) Hyaluronidases.

There are several other non-enzymatic polypeptides which include cysteine-rich secretory proteins (CRiSPs), nerve growth factors, PLA2-based neurotoxins, non-PLA2 myotoxins, C-type lectins, disintegrins, bradykinin potentiators, and tripeptide inhibitors.

Acetylcholinesterase (AChE):

The exsistence of AChE in cobra venom was first demonstrated in 1938. Large amounts of AChE can be quantitated from the venom of snakes, specifically in species belonging to the family *Elapidae*, with *Dendroaspis* species as an exception. In contrast, AChE is not found in venoms of snakes belonging to the *Viperidae* and *Crotalidae* families. Incidentally, snake venom AChEs are also more active than Torpedo and mammalian AChEs in hydrolyzing AChVenom affects a wide range of physiological functions in the envenomated organism, and each individual venom component may have a distinctive function.

Phospholipases A2 (PLA2):

Almost all snake venoms contain phospholipases A2 (PLA2), which acts through celldestruction leading to oedema, lipolysis, or myolysis (18).

Nucleotidases:

These includes 5-nucleotidases. ATPases, phosphodiesterases DNases. and Phosphodiesterases are a group of enzymes, which causes hydrolysis of phosphodiester bonds. This catalysis is mostly seen as a breakdown of nucleic acids, including DNA and both types of ribonucleic acids (RNAs), the ribosomal RNA and the transfer RNA. These enzymes can also affect many other nucleotides and nucleic acids as well (19). Although the overall effect has not been fully evaluated, it would appear that the depletion of such nucleotides results in hypotension and/or shock. 5'- nucleotidases attack nucleic acid at the 5' carbon position, degrading the sugar moieties of both DNA and RNA. The overall effect of 5'- nucleotidases is to release nucleosides from nucleic acids. One group that affects nucleic acids is the alkaline phosphomonoesterases, which hydrolyze phosphomonoesterases at pH above neutral. The biological effect of the alkaline phosphomonoesterases is not entirely clear, but these three groups of enzymes attack nucleotides in different manners, and all three are present in viperid venoms.

Hyaluronidases:

Hyaluronidases are also commonly called "spreading factors" because of their capacity to degrade hyaluronic acid. Hyaluronic acid is a ubiquitous component of the extracellular matrix of tissues, and is in part responsible for cementing cells together (20). Hyaluronidases have been found in the venom of all *elapidae* and *viperidae* venom (21). After degradation of hyaluronic acid by hyaluronidase, the extracellular matrix breaks down allowing the remaining venom components to spread through the tissue, since their movement is not restricted. This can lead to both localized necrosis, as nearby cells are destroyed by other venom components. Systemic effects also occur as other venom components spread into the blood stream through blood vessels made permeable or leaky by the hyaluronidase.

L-amino acid oxidases:

L-Amino acid oxidases (LAAOs) catalyse the oxidation of L-amino acids via a twostep deamination process. As a result of the deamination process there is a general deterioration of amino acids that leads in cell death (22).

Proteases:

Proteolytic enzymes are those enzymes that lead to the degradation of structural proteins into component peptides or amino acids. They have great digestive capability and can hydrolyze proteins in their native (non-denatured) state through cleavage of peptide and ester bonds. Metalloproteinases (because of their reliance on metal ion co-factors) and serine proteases (because of their similarity to blood factors) are two of the major subgroups among these enzymes in venom. Metalloproteinases cause haemorrhage and necrosis, but may also have a function in the digestion of prey.

Serine proteases:

Serine proteases disrupt hemostasis and may do so through multiple mechanisms. Serine proteases are generally placed into three categories, depending on their mode of action (23). The **thrombin-like serine proteases** cleave fibrinogen at the same position as thrombin. This leads to a rapid depletion of fibrinogen. The resulting fibrin, is not coagulable due to a lack of fibrin stabilizing factor leading to an overall anti-coagulation effect (24) (25) (26). **Kallikrein-like serine proteases** release bradykinin from high molecular weight kininogen and causes degradation of angiotensin. This leads to a drop in blood pressure (27). Arginine esterases have enzymatic activities against peptide and ester substrates, but their biological effects are not fully understood (28).

CRiSPs have varied functions in different species It ranges from disruption of potassium or calcium currents in the neurons to the induction of hypothermia (29). The functions of many similar CRiSPs in other species have not been demonstrated yet. Nerve growth factors stimulate the growth of nerve cells and are found in venoms of both *viperidae* and *elapidae*. PLA2-based presynaptic neurotoxins act by blocking release of acetylcholine from axon terminals leading to a flaccid paralysis. They have strong neurotoxic functions and include the Mojave toxin found in certain rattlesnake species. The non-PLA2-based myotoxins, disrupt voltage-sensitive sodium channels, causing immobilization of the prey and myonecrosis. C-type lectins and disintegrins alter the coagulation cascade, but in different manners. C-type lectins bind to platelets. This can cause initial clotting or it can cause platelets to be removed from forming clots, depending on the specific form of the lectin (30).

Disintegrins disrupts platelet aggregation, and they are often found grouped with a metalloproteinase. Some disintegrins stop the initial aggregation, while others work by disrupting the already formed aggregates (31). Bradykinin potentiating peptides (BPPs) act by being an effective inhibitor of angiotensin converting enzyme (ACE). ACE converts angiotensin I into angiotensin II. Angiotensin II causes vasoconstriction. BPPs

block ACE activity and also may have a direct effect on angiotensin II. Both these actions lead to a reduction in vasoconstriction thereby allowing bradykinin to cause vasodilation and hypotension. Snake venoms also contain factors that help stabilize these other components. These include tripeptide inhibitors and citrate (32). The action of these seem to be to inhibit the enzyme interactions in the venom. This is to prevent the biological functions from occurring till the venom has been injected into potential prey and dispersed.

Many other venom components have been characterized including many other toxins, blood clot disruption factors, and some enzymes.

CLINICAL FEATURES OF SNAKE BITE

Dry bites: Only about 50% of venomous snakebites lead to envenomation.

Local features of Envenomation-

Fang marks: One must not exclude envenomation because of the lack of fang marks. Certain bites can be difficult to note, even just after the bite.

Pain: Pain develops immediately generally spread upwards. The lymph nodes draining the bitten areas may become painful.

Local swelling: Intense local reaction is seen with viper bites than any other snakes. Swelling can be visualized within 15 minutes and may remain up to 3 weeks. It spreads rapidly and often involve the whole limb. Lymph node swelling may also develop. Necrosis develops in the limb with tight fascial compartments.

Local necrosis: Local necrosis is seen commonly with viper bites.

Secondary infection: This may happen secondary to bacterial colonies in snakes.

General features: General symptoms include flushing, breathlessness, palpitations, and dizziness. Apart from these the other early symptoms in elapid bites include vomiting, heaviness of eyelids, blurring of vision, hypersalivation, congested conjunctivae. Abdominal discomfort is often followed by diarrhoea. Nausea and vomiting may be a common feature of all severe envenomation (33).

Systemic features-

Clotting defects and haemolysis: These are common features seen in envenoming by *Viperidae*. Continuous bleeding from the bite site, injection sites, and partially healed wounds hints that the blood is haemostatically unstable. Spontaneous systemic haemorrhage may occur and sometimes intravascular haemolysis can be observed.

Neurotoxicity: Elapid and sea snake venoms cause significant neurotoxicity. Ptosis and external ophthalmoplegia appear develops within minutes of the bite. Sometimes there can be a delayed onset of symptoms. Later on, laryngeal muscles may become paralysed. All these predisposes to respiratory failure. These symptoms are completely reversible on treatment to anti-venom or spontaneously reverts in a week time.

Myotoxicity: Sea snake venom causes myopathy and rhabdomyolysis. Trismus is also commonly seen. Rhabdomyolysis leading to myoglobinuria appears within hours of the bite.

Cardiotoxicity: Viper and elapid venom can cause severe myocardial damage.

Nephrotoxicity: Acute tubular necrosis, bilateral cortical necrosis and renal failure is secondary to ischaemia, nephrotoxic effect of venom, pigment nephropathy associated with rhabdomyolysis or intravascular haemolysis in Viper bites (especially Russell's viper).

23

Shock: Shock precipitates because of hypovolemia, myocardial compromise, and adrenal or pituitary haemorrhage (33).

FEATURES OF ENVENOMATION BY DIFFERENT FAMILIES OF SNAKES

Elapidae (krait / cobra) - Dominant manifestation is neurotoxicity. Local blisters and

necrosis can occur. Australian *Elapides* can also cause bleeding manifestations.

Viperidae (Russell's viper / Saw scaled viper) - Local swelling, cellulitis, regional

lymphadenitis and bleeding manifestations.

Hydrophiidae (sea snake) - Rhabdomyolysis

Colubridae - Bleeding manifestations and renal failure.

DIAGNOSTIC APPLICATIONS OF SNAKE VENOM

There are several diagnostic application of snake venoms in the haemostasis laboratory. It can be utilized in assay for every coagulation factor or factor involved in fibrinolysis.(34).

Snake venom as thrombin-like enzyme

Snake venom thrombin-like enzyme (SVTLE) includes several serine proteases. Several snake species have been known to possess more than 100 thrombin-like enzymes which resemble thrombin factor both functionally and structurally (35). The term thrombin-like enzyme refers their capacity to trigger the clotting of fibrinogen. The sources of thrombin-like enzymes are from the pit viper family, like the *Agkistrodon, Crotalus, Lachesis* and *Trimeresurus* from the true viper family. Snake venom thrombin-like enzymes can be obtained from *Bitis gabonica, Cerastes vipera, Dispholidus typus* and from the *Colubridae* family (36). Thrombin cleaves fibrinogen into fibrinopeptide alpha (FPA) and fibrinopeptide beta (FPB). Some of these enzymes cleave fibrinogen and are known as Snake venom thrombin-like enzyme.

Snake venom thrombin-like enzymes are used to determine the presence of fibrin degradation product, dysfibrinogenaemias and defects in fibrin polymerisation. This test is commonly known as the Reptilase time. This test sometimes can be used as an alternative to more commonly used thrombin time. Dysfibrinogenaemia will manifest a prolonged reptilase time. If the prolongation in reptilase time is lesser compared to that of the thrombin time, it indicates the presence of fibrin degradation products (34).

Snake venom as prothrombin activators

Many snake venoms are composed of prothrombin activators and are utilized in prothrombin assays, to demonstrate dysprothrombinaemias (37).

Meizothrombin an intermediate product in the clotting of whole blood is produced as a conversion of prothrombin to thrombin in systems which are composed of purified factor Xa and factor Va that are quantitatively assembled on an anionic phospholipid surface(38). Ecarin from saw-scaled viper (*Echis carinatus*) venom, textarin from the Australian brown snake (*Pseudonaja textilis*) and the enzyme from the taipan (Oscutarin) are commercially available prothrombin activators (39). Snake venom prothrombin activators are categorized into four groups based on the structural and functional properties in prothrombin activation (40).

Group I activators

These activators are not affected by the non-enzymatic cofactors of the prothrombinase complex (CaCl2, factor Va and phospholipid). They can competently transform prothrombin into meizothrombin.

Group II activators

They require only calcium.

Group III activators

They require calcium and phospholipids. They do not depend on factor V at all.

Group IV

They require all the cofactors including Ca2+, factor V and phospholipid.

The primary product from digesting prothrombin with ecarin is meizothrombin, which was very rapidly converted to thrombin. The in vivo activation of prothrombin to thrombin occurs when a complex involving a serine proteinase factor Xa and factor V which is a cofactor (prothrombinase complex) assemble on a negatively charged phospholipid membrane.

The factor Xa-like snake venom proteases are seen in **trocarin, oscutarin and ecarin.** These venom proteins convert prothrombin to thrombin (40).

Snake venom proteins as factor V activators:

Thrombin activates factor V (FV) into FVa and a thousand-fold increase in catalysing power of factor Xa. Under normal physiological state the cofactor activity of factor Va in prothrombin activation is dampened by activated protein C. The venoms of *Daboia russelli* and *Daboia lebetina* contain a serine protease that accurately activates Factor V. The enzyme can be used for routine assay of FV due to the ability of the venom protein to activate factor V.

Snake venom as factors VII and X activators

A protease that activates factor VII has been isolated from the venom of *Oxyuranus scutellatus* (taipan snake). It cleaves single-chain human factor VII to yield a two-chain molecule which is not distinguishable from the true factor VIIa.

Factor X activators have been obtained from the venom of many snake species belonging to the genus *Viperidae* and *Crotalidae*. It is also sourced from a few *Elapid* species. The best-known activator of factor X is the Russell's viper venom -X from Russell's viper. The Russell's viper venom -X is a metallo protease and share homology with C-type lectins which regulates Ca2+ -dependent activation of factor X. Russell's viper venom (RVV) that activates factor X is commercially available.

It is also engaged in a number of assays, like measurement of factor X, for differentiating between factor VII and factor X and in lupus anticoagulant (LA) assay. The clotting time of plasma using Russell's viper venom -X is known as the Stypven time and a normal Stypven time used together with a prothrombin time (PT) suggests factor VII deficiency. A prolonged Stypven time indicates factor X deficiency (40).

Snake venom proteins in the assay of Protein C

Protein C is an important component of the natural anticoagulant pathway. The inability of activated Protein C to cleave factors Va or VIIIa is known as activated protein C resistance. Protac, is derived from Southern copperhead (*Agkistrodon contortix*) snake venom (ACV). It is used in a Chromogenic assay to identify a defect affecting the protein C/protein S (PC/PS) anticoagulant system and is based on the activation of endogenous plasma protein C

Snake venom proteins used in the assay of Lupus anticoagulant (LA)

Russell Viper Venom directly activates FX, bypassing FVII of the extrinsic pathway and the contact and anti haemophilic factors of the intrinsic pathways. Therefore, DRVVT tests are more specific for LA than APTT as they are not affected by contact factor abnormalities nor by FVIII deficiency or antibodies to FVIII. Heparin levels up to 1u/ml have no effect due to the presence of a neutralizing agent in both the screen and confirm reagents (40).

Snake venom proteins used in the assay of defects in platelet plug formation

Many snake venom proteins have been identified which affect the platelet plug formation. These exert their action by either interacting with platelet integrins, membrane glycoprotein Ib (GPIb), or plasma von Willebrand factor.

a. Von Willebrand factor (vWF).

Platelet aggregating protein (Botrocetin)is found in the venoms of *Bothrops jararaca*. This protein relies on the presence of von Willebrand factor (vWF) for its effect on platelets. This property has been utilized in vWF assay.

Alboaggregin-B, a venom protein from white-lipped pit viper "*Trimeresurus* albolabris" venom is used to measure vWF receptors on the GPIb molecule (40).

b. Platelet Glycoprotein (GPIb)

GPIb-binding proteins from snake venoms origin can be divided into two groups: GPIbagonists and GPIb-antagonists.

Alboaggregins from the white lipped viper venom can be of various types A, B and C. Alboaggregin B was the first GPIb agonist to be purified. They hinder platelet agglutination by VWF. They bind to GPIb and cause platelet aggregation.

28

Another protein Alboaggregin A binds GPIb and GPVI and mediates platelet aggregation.

A few other venom proteins also affect GPIb. Agglucetin from *A. acutus* agglutinates platelets via GPIb receptors. They activate surface expression of GPIIb/IIIa of intact platelets.

COAGULOPATHY IN SNAKE ENVENOMATION

The coagulopathy produced in people by snake envenomation is related to the multiple venom components affecting haemostasis. The potential clinical problems are:

- Decreased blood coagulability and an increased bleeding tendency
- Frank haemorrhage due to blood vessel wall damage
- Secondary effects of increased haemorrhage like hypovolaemic shock and secondary organ damage, such as intracranial and anterior pituitary haemorrhage or kidney injury
- Direct pathologic thrombosis and its sequelae (e.g. pulmonary thromboembolism) (41)

Haemorrhage in snake envenomations occurs due to abnormal coagulation factors, capillary endothelium or platelet function (42). *Viperid* and *Crotalid* venoms are rich in metalloproteinases (haemorrhagins), which cause local haemorrhage following intradermal or subcutaneous venom injection. This is attributed to their ability to degrade extra-cellular matrix proteins, particularly type IV collagen, which is a major component of the basement membrane. Endothelial cell adhesion to the basement membrane is disrupted, which compromises the blood vessel wall integrity. Patients

envenomed by Viperid or Crotalid snakes sometimes suffer from systemic haemorrhage with absence of evidence of coagulation abnormalities. This finding suggests that systemic haemorrhage can be due to a venom-induced platelet disorder. Venom metalloproteinases impedes platelet interaction with collagen and vWF by various mechanisms by targeting platelet receptors or their ligands. Zinc-dependent metalloproteinases from viperid snake venoms were documented to be mainly responsible for the haemorrhagic syndrome in snake bite envenomations. Many snake venoms contain procoagulant toxins that activate the coagulation cascade (50). The venom of the Brown snakes (Pseudonaja spp.) and taipans (Oxvuranus spp.) were shown to contain group C prothrombin activators. They were similar to the mammalian prothrombinase (Xa:Va) complex and activated coagulation, which leads to development of a consumptive coagulopathy. This is now referred to as a venominduced consumptive coagulopathy (VICC) and is characterized by prolonged clotting times, low fibrinogen, FV and FVIII depletion and high FDP concentrations. The consequence of VICC has often been thought to be DIC, due to the elevated D-dimer, prolonged PT, and hypofibrinogenaemia. However, a recent publication stated that other important features of DIC like the evidence of systemic micro thrombi and endorgan damage are absent in VICC. A clinical syndrome consistent with thrombotic microangiopathy has been reported in a few patients with VICC. It was suggested that the presence of thrombotic microangiopathy and VICC in these patients is the likely reason for mistakenly diagnosing DIC in such cases (43).

VENOM INDUCED CONSUMPTION COAGULOPATHY: PATHOGENESIS

The basic pathogenic mechanism involved in haemotoxic snake bites is called Venom Induced Consumption Coagulopathy (VICC). Snake venom has toxins that induce factor activation and the coagulation cascade in vivo leading to coagulopathy. These toxins are capable of producing coagulation in vitro as well and are called procoagulant toxins. The severity of VICC is directly related to the number and quantity of these activators in each snake venom which determines its potency.

Following envenomation by a haemotoxic snake bite, the common derangements seen are prolonged Prothrombin time (PT), prolonged Activated Partial Thromboplastin Time (APTT), low or undetectable fibrinogen and low or undetectable factor V, VIII and X levels. The different haemotoxic venom toxins and their effects are described below.

Prothrombin activators:

Prothrombin activators are from the serine protease family have been classified based on structure, function and cofactors required. They are divided into groups A to D.

Prothrombin activator	Action
Group A (Echis spp)	Directly activate Thrombin to Meizothrombin
Group B (Echis, Russell's viper)	Directly activate Thrombin to Meizothrombin
Group C (Elapids)	Resemble Factor Xa-Va complex and activate Prothrombin
Group D (Elapids)	Resembles Factor Xa

Factor X and V activators:

The characteristic toxins in Russell's viper venom are individual factor activators. Activation of Factor X gives rise to Prothombinase complex and leads on to positive and negative feedback loops resulting in the utilisation and consumption of Factors V and VIII.

Thrombin-like enzymes (Fibrinogenases):

These factors are responsible for direct activation and consumption of fibrinogen. They belong to the family of Zinc metalloproteinases. These enzymes lyse either the alpha chain or beta chain of Fibrinogen resulting in its depletion. The fibrin produced is lysed by the body's own mechanisms.

Haemorrhagins:

They belong to the Group A and B prothrombin activators and possess additional functions. The *Echis spp* venom contain these are proteolytic enzymes and cause damage to the integrity of blood vessel walls. The basement membrane is disrupted and suffers shear stress injury which leads to increased risk of severe and spontaneous bleeding.

Fibrinogen is the most consistently consumed factor and is the final common pathway in VICC induced by haemotoxic snake envenomation.

The risk of bleeding in VICC is due to the following causes-

- 1) Coagulation Cascade Activation
- 2) Damage to basal membrane and blood vessel wall integrity

- 3) Effects on Platelet count and function
- 4) Local toxic and enzymatic effects

VICC is commonly associated with local bleeding manifestations from the bite site/ as well as the site of cannula insertion. However, distal and systemic bleeding such as gum bleeding, gastrointestinal or genitourinary bleeding and intracerebral haemorrhage are also seen. *Echis spp* have haemorrhagins in their toxins and therefore cause the more serious bleeding manifestations (44).

As VICC often coexists with thrombocytopenia, it led to the popular belief that VICC is a form of Disseminated Intravascular Coagulation (DIC). However, VICC is now considered to be a form of Consumptive Coagulopathy which occurs due to the consumption of coagulation factors due to activation by venom toxins and depletion of fibrinogen rather than a form of DIC which occurs as a result of the activation of fibrinolytic system.

Isbister *et al*, reported in 2010 that there are significant differences between VICC and DIC. VICC specifically does not have systemic microthrombi or end-organ damage due to these thrombi. DIC is specifically mediated via the tissue factor/ VIIa pathway while initiation of VICC can occur at any point in the coagulation cascade upstream from thrombin. The time course in VICC is also very rapid in comparison to DIC and occurs within a few hours of envenomation and it also resolves without major sequelae within 24-48 hours (42).

The action of thrombin-like enzymes alone, as in *Echis spp* envenomation results in a mild hypofibrinogenemia, also called partial VICC. When the toxins contain other

factor activators which lead to the interactions of several other factors such as Factor X and V activators, there is resultant complete VICC and severe bleeding. Severe VICC is characterized by undetectable Fibrinogen levels, unrecordable Prothombin time and elevated d-Dimer levels.

DIC, on the other hand is characterized by activation of the coagulation cascade via the Tissue factor and/or factor VIIa pathway. This leads to an imbalance between the procoagulant and anticoagulant pathways resulting in unchecked activation of downstream coagulation cascade. There is also a depressed fibrinolytic system leading to impaired fibrin removal.

DIC has a much higher level of morbidity and mortality as compared to VICC. Intracranial haemorrhage is often the cause of mortality due to VICC in hospitals. However, the prognosis overall is much more favourable with VICC as compared to DIC.

THROMBOCYTOPENIA AND THROMBOTIC MICROANGIOPATHY WITH HAEMOTOXIC BITES:

In about 40-60% of patients with haemotoxic envenomation, VICC coexists with thrombocytopenia. There are numerous mechanisms that cause low platelets in snake envenomation. The proposed mechanisms include Direct venom-induced platelet destruction, immune-mediated platelet toxicity, microangiopathy and suppressed platelet production. (46)

Isbister has shown in his descriptive clinical studies of Russell's viper in Sri Lanka, that a proportion of patients have thrombocytopenia with acute kidney injury. He has referred to this subset as having VICC with associated thrombotic microangiopathy (TMA) (47). As stated therefore, not every case of VICC results in TMA. These are two distinct entities, but which are closely interrelated.

The final consensus on whether VICC is purely a consumptive coagulopathy or DIC and the relationship between VICC and microangiopathy is at present unclear. However, it is strongly stated in literature that VICC is a distinct entity. At CMC Hospital, we have observed that a spectrum of pure VICC, VICC with thrombocytopenia and VICC with thrombocytopenia and laboratory evidence of thrombotic microangiopathy all exists. We hope that the present study will provide further evidence towards clarification of this spectrum in different clinical syndromes of viperine bites which may manifest as pure haemotoxicity and haemotoxicity with acute kidney injury with or without neurotoxicity.

Due to the ongoing debate between VICC being a consumptive coagulopathy distinct from DIC and also the differences in the VICC seen following envenomation by Saw scaled viper and Russell's viper, it is important to describe the clinical and laboratory characteristics of VICC according to clinical syndrome that is manifested as well as the biting species. This study may therefore provide further details into the pathophysiology of VICC in the Indian subset in the two main haemotoxic species.

SNAKE ANTIVENOM

Antivenom is considered to be the most important treatment for snake envenoming. They are a mixture of polyclonal antibodies to toxins present in snake venoms. They are either complete immunoglobulin (IgG) molecules or a fractionated immunoglobulin such as $F(ab')_2$ or Fab. These are developed in animals, such as horse, sheep, goats and rabbits, immunized with repeated small doses of snake venom. The polyclonal nature of antivenom is of utmost importance as they results in neutralization of multiple toxins present in venom (48).

There are three major types of snake antivenom used in the world -

1) Whole IgG

These antivenom contains intact Immunoglobulin G molecules of approximately 150 kDa and are purified by ammonium sulphate or caprylic acid precipitation.

2) F(ab')₂

F(ab')₂ antivenom is developed after pepsin digestion of whole IgG.

3) Fab.

The smallest sized of all anti-venom approximately 50 kDa are produced by papain digestion of whole immunoglobulins.

All these antivenoms have different pharmacodynamic and pharmacokinetic properties, and this influences their ability to reach target tissues and duration of action. The degree and types of adverse effects also varies among them.

The World Health Organization recommends that antivenom manufacturing includes an assessment of the neutralization of myotoxic, coagulopathic, haemorrhagic, necrotizing, oedema forming and the defibrillating effects of venom by the antivenom (48). The timing of the onset of toxin effects varies. Some toxins possess rapid onset of symptoms within minutes. Pro-coagulant and anticoagulant toxins react within minutes with the clotting factors. Therefore, the coagulopathic symptoms begin immediately and the reversal of coagulopathy is less observed after giving anti-venom.

The haemorrhagic toxins also initiate their toxic effect immediately, as the target site is in the close proximity of toxins. Immediate administration of antivenom may therefore revert central toxic effects.

Following envenomation which contains neurotoxins leading to a pre-synaptic neurotoxicity administration of antivenom should be done before the patient develops symptoms.

Lack of standard predictors and standardized biological markers for early detection of on is not practical, as no rapid venom detection facilities are available in the world.

A venomous snake bite requires urgent medical attention due to the nature of the acute insult to the body. Most haemotoxic envenomations have coagulopathy of varying severity and require ASV administration to mediate and neutralize the effects of the toxin. However, ASV is expensive, and has potential adverse effects. An important bedside test that guides the decision to administer ASV is the whole blood clotting time (WBCT20) which indicates the extent of coagulopathy (49).

WBCT20 was initially advocated as supportive evidence for coagulopathy; however, it is now commonly used as a bedside diagnostic test (50).

WBCT20 is performed by leaving 5mL of the patient's blood sample undisturbed in a glass tube and assessment of clot formation at the end of 20 minutes. Failure of clot formation results in a positive test. The methodology has remained unchanged since the time of its inception in 1913 by Lee and White.

There are limited number of studies on the standardization and validation of this test. There are inadequate clinical studies on the effects of physical factors such as length, material, temperature of the tube and biological factors such as the type of snake. WBCT20 is a useful bedside test especially in resource poor settings where lab-based coagulation studies are not easily available. Although it is undoubtedly an invaluable bedside test, the reliability of the test has often been questioned (51).

Due to the lack of standardization and validity of the WBCT20, there is a need for a standardized and universally agreed bedside test. WBCT does not necessarily correlate with the clinical severity for envenomation, thereby not delivering the essential purpose of an early diagnosis of severe VICC, which can lead on to the necessary interventions. (49)

A study done in 2013 on 140 individuals with Russell's viper envenomation showed poor sensitivity of WBCT20 in detecting VICC which led to a delay in administering ASV (52). The authors therefore favoured a more clinical approach to guide treatment than WBCT20. A recent publication assessed the performance of WBCT20 in comparison to PT/INR in detection of VICC. Out of 987 patients with snake bite, 79 patients fulfilled criteria for VICC with an INR>1.4 with or without clinical bleeding. The WBCT20 was positive in 65/79 patients with a sensitivity of 82% and specificity

of 98%. (51) WBCT20 therefore shows poor sensitivity of about 80% across various studies and this might delay ASV administration due to false negative WBCT20. Hence, studies on standardizing WBCT20 are necessary for clinicians to be able to rely on this test. In situations where reliable coagulation studies are not available, there is therefore a requirement to devise a reliable, easy-to-do and cost-effective bedside test.

The properties of clotting are determined by the nature of the surface and area of contact of the blood sample as well as the inherent qualities of the sample. These features have been utilized in designing activated clotting time tests (ACT). Several techniques have been used for the same. Kaolin, Celite and glass are some of the mediators that have been used for ACT. Activation means contact of blood with enhancing factors that result in more rapid coagulation of the sample. However, on a particular device with standardized external factors, these values are reproducible (53).

The predominant factor determining the duration of ACT is anti-Factor II activity. Kaolin provides an internal activating surface, hence making the test independent of the size, nature of the material and volumes of the reagents used. Studies on Kaolin based ACT have been done in cardiological and neuro-interventional settings (54,55). **PRINCIPLE:** The ACT is a test of whole blood coagulation that gives a single parameter for interpretation. Variables like temperature, platelets, aprotinin, GP IIb/IIIa antagonists, haemodilution and various coagulopathies can alter the result (56). ACTs are indicative of inhibition of contact and common pathway (X–Xa) activation (57). The ACT tube has an activator substance that will activate factor XII through contact activation. The main activator substances used are celite (diatomaceous earth),

Characterisation of Venom Induced Consumption Coagulopathy (VICC) in patients with Haemotoxic Snake Bite and the effects of Blood Products on Coagulation Parameters.

kaolin, or glass beads, which all have large surface areas for contact. The principle of the test is to completely activate the intrinsic coagulation cascade and measure the time it takes for generation of a fibrin clot. The sample is heated to 37°C by the machine. Depending on the type of machine used, movement is created either through rotation of the sample tube, a plunger or through pressure. As a clot forms it imparts resistance onto a plunger, a free rolling bar in the sample tube or impedes flow of the blood. The end result is the time taken for the sample to form a clot. This is detected photo-optically or electromagnetically. The standard tests of coagulation (prothrombin time, activated partial thromboplastin time, thrombin time (TT), and fibrinogen level) are plasma tests and they measure plasma haemostasis. The ACT measurement uses whole blood and incorporates the importance of platelets and phospholipids in coagulation.

Kaolin based ACT are used in theatres to assess coagulation status in patients on continuous anticoagulant infusion following cardiopulmonary bypass, endovascular interventions and neurosurgical procedures. Differences between venous and arterial blood samples are not known. These values are measured in pre-calibrated machines, which lack standard reference values and validation. ACT values vary significantly across different devices; hence values must be interpreted in a device-specific manner. A modified version of the ACT has been designed in our laboratory that can be easily performed on whole blood, at the bedside and takes less time and utilizes commonly available low-cost reagents. This test has been named **VEMAC TIME- VELLORE**

MANUALLY ACTIVATED CLOTTING TIME

Principle of Vemac Time

The time it takes for whole blood drawn from a vein and placed in a container invitro to clot after the addition of activator. This test measures all the stages of intrinsic coagulation.

Equipment

Syringe & Needle.

12 x 100mm glass tube.

20 ul Sahli's pipette.

Stopwatch.

10-100ul Automated pipette & Tips

Reagents

Kaolin (80 mg/ mL)

Whole blood.

Normal saline

Procedure:

- 1. Make a clean venipuncture.
- 2. Collect 1.5 to 2mL of blood in a syringe.
- 3. Start the stopwatch as soon as the blood enters the syringe.
- 4. Add 0.5mL of blood into each of two 12x100 glass tubes.

5. Add 60uL of kaolin (80mg/ml) to both the tubes, and place the tubes in the stand so that they remain upright and undisturbed for 2 minutes.

6. After 30sec. of incubation take the first tube and gently tip it and look for clot.

7. When the first tube is clotted record the time and start tipping the second tube every

30 seconds until it too is found to be clotted. Record the time.

Results/Interpretation

The time recorded for the clotting time of the second tube is taken as the clotting time (least disturbed).

Reference range: This was established based on Clinical and Laboratory Standards Institute (CLSI) guidelines by performing the test on 120 normal controls in CMC Hospital. The reference range was 150-240secs (197.28±28.66secs).

Advantages of Vemac Time over ACT

The advantages of the Vemac Time is that it does not require a specialised equipment to perform the test. It also does not require a specified temperature to be maintained. It can be done at the bedside in any healthcare facility.

Advantages of Vemac Time over WBCT 20

The duration of the test is reduced from 20 minutes to less than 5 minutes. The test can be performed without any specialised equipment in any healthcare facility which has a provision to collect a venous blood sample.

RETROSPECTIVE DATA

1. DEMOGRAPHIC DETAILS

1.1 GENDER

A total of 280 patients from the year 2012-2017 who met the inclusion criteria of the study were evaluated. 71.07% were males (n=199) and 28.93% (n=81) were females with a male: female ratio of 2.45:1.

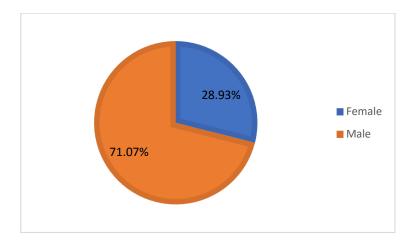


Figure 1: Gender wise distribution of the study population

1.2 AGE DISTRIBUTION

The mean age was 42.2±14.5 years. The mean age among males was 43.02±14.99 and

in females was 40.16±13.

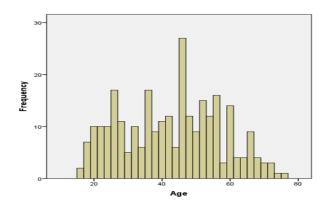


Figure 2: Age distribution of the study population

Characterisation of Venom Induced Consumption Coagulopathy (VICC) in patients with Haemotoxic Snake Bite and the effects of Blood Products on Coagulation Parameters.

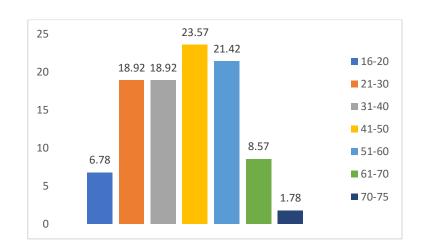


Figure 3: Distribution of patients in each decade (percentage)

1.3 AREAWISE DISTRIBUTION

The maximum number of patients who presented to our hospital were from Vellore 43.57% (n=122).

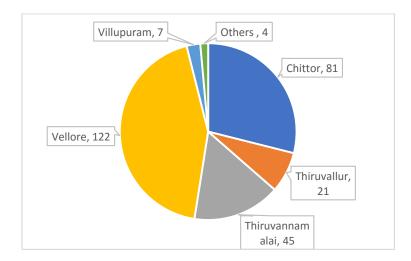


Figure 4: Area wise distribution of the study population

(Others include Cudappah, Kolar, Kanchipuram and Warangal)

Characterisation of Venom Induced Consumption Coagulopathy (VICC) in patients with Haemotoxic Snake Bite and the effects of Blood Products on Coagulation Parameters.

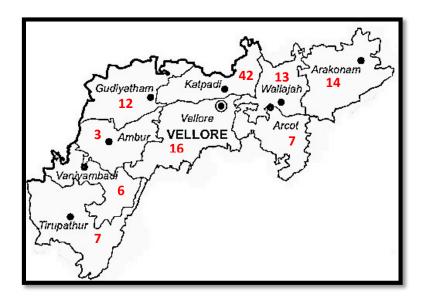


Figure 5: Taluk wise distribution of the study population in Vellore district

1.4 SEASONAL VARIATION

Two peaks were observed in the number of patients being admitted per month with a history of snake bite. The first one was in March and the second peak was seen during August.

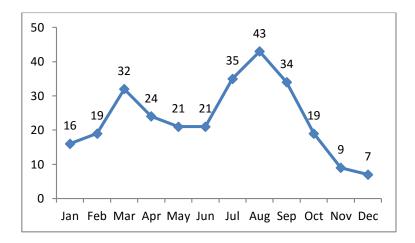


Figure 6: Monthly distribution of patients with haemotoxic snake bite

2. ENVENOMATION DETAILS

2.1 TIME OF BITE

The time of bite was registered for 238 cases. More than a third of the bites (n=88) were

between 6 pm and midnight.

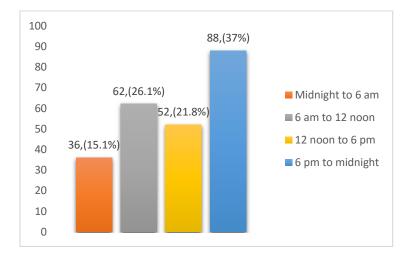


Figure 7: Population distribution according to time of bite

2.2 SITE OF BITE

Majority of bites were in the lower limbs 84.5% (n=223), followed by upper limbs with

13.3% (n=35).

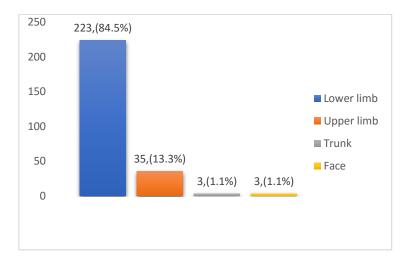


Figure 8: Distribution according to site of bite


3. PATTERN OF VARIOUS CLINICAL MANIFESTATIONS IN THE POPULATION

3.1 LOCAL MANIFESTATIONS

Local symptoms in the form of any of the following: local swelling in the absence of a tourniquet or cellulitis of the affected limb or enlarged tender lymph node draining the bitten limb or necrosis, blistering, gangrene or compartment syndrome –absent pulses were seen in 100% of the study population.

3.2 NEUROLOGICAL MANIFESTATIONS

Neurological manifestations included ptosis or ophthalmoplegia, bulbar weakness – dysphagia, difficulty in speaking, limb muscle weakness, neck holding time <5s, respiratory paralysis-reduced single breath count<10, paradoxical breathing, respiratory failure, need for mechanical ventilation. Neurotoxicity in any of these forms were seen in 60.7% (n=170)

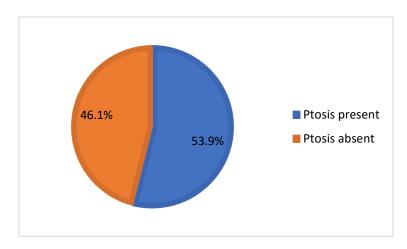


Figure 9: Distribution according to neurological manifestations

Patients with neurological manifestations who required ventilatory support formed about 20% of the study group.

3.3 PTOSIS

The initial involvement of levator palpebrae superioris in form of ptosis was seen in

53.9% (n=151) patients.

Figure 10: Distribution according to presence or absence of ptosis

3.4 RENAL INVOLVEMENT

Acute kidney injury defined by abrupt (within 48 hours), absolute increase in the serum creatinine concentration of $\geq 0.3 \text{ mg/dL}$ (26.4 micromol/L) from baseline; a percentage increase in the serum creatinine concentration of ≥ 50 percent; or oliguria of <0.5 mL/kg per hour for more than six hours was seen in 22.5% (n=63) patients.

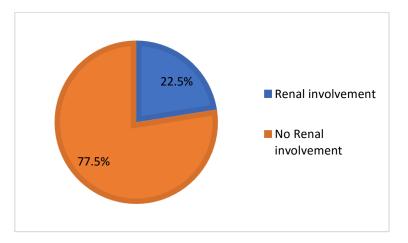


Figure 11: Distribution according to renal involvement

Out of the patients with AKI those who required haemodialysis were 49.2% (n=31).

4. ENVENOMATION SYNDROMES

The envenomation syndromes were grouped as **PURE HAEMOTOXICITY SYNDROME** and **HAEMOTOXICITY WITH RENAL/NEUROTOXIC FEATURES**. Pure haemotoxicity were seen in 32.9% (n=92) patients. Combinations of haemotoxicity with renal and/or neurological manifestations were seen in 67.1% (n=188).

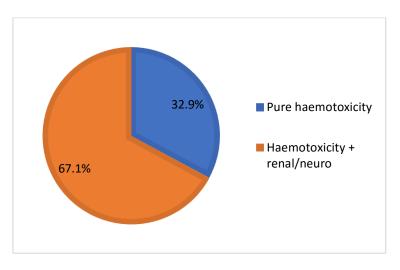


Figure 12: Distribution of envenomation syndromes in study population Haemotoxicity was considered when any of the following were present: WBCT20 was prolonged, INR above reference interval \geq 1.2 bleeding manifestations or thrombocytopenia (platelet count <1,00,000/ mm³).

5. LABORATORY PARAMETERS

AT BASELINE

5.1 WHOLE BLOOD CLOTTING TIME 20

Whole blood clotting time (WBCT 20) more than 20 minutes was considered abnormal. 96.4% (n= 270) of the study population showed an abnormal WBCT at presentation.

Characterisation of Venom Induced Consumption Coagulopathy (VICC) in patients with Haemotoxic Snake Bite and the effects of Blood Products on Coagulation Parameters.

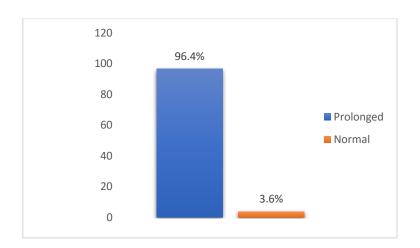


Figure 13: Whole blood clotting time (WBCT 20) at admission

5.2 HAEMOGLOBIN

Haemoglobin at baseline was done for 277 patients. The mean haemoglobin at

presentation was 13.9±2.42g%

5.3 PLATELET COUNT

Platelet count at presentation was done for 273 patients and the median platelet count was 1,78,000/cumm.

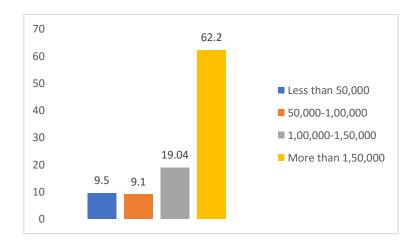


Figure 14: Distribution according to platelet count at admission

Characterisation of Venom Induced Consumption Coagulopathy (VICC) in patients with Haemotoxic Snake Bite and the effects of Blood Products on Coagulation Parameters.

5.4 INTERNATIONAL NORMALISED RATIO

International Normalised Ratio was divided into two groups. INR was considered to be abnormal if it was more than or equal to 1.2. At admission INR was done for 267 patients. An abnormal INR (\geq 1.2) was seen in 94.38% (n=252). Mean INR at presentation was 4.66±3.63

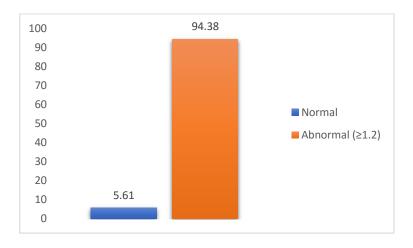


Figure 15: INR at admission

- 13 patients did not have a baseline INR as the samples were either lysed or clotted.
- Among the 267 patients with a documented baseline INR, the WBCT was prolonged in 257 (96.25%) patients and normal in 10 patients.
- Out of the 257 patients with abnormal WBCT at admission 94.55% (n=243) had a coexisting abnormal INR of more than 1.2.
- ♦ WBCT was normal in 10 patients among whom 9 had an abnormal INR.

5.5 PATTERN OF INR CHANGE OVER 24 HOURS

The PT with INR was monitored only on patients with evidence of prolonged bleeding parameters. Hence the numbers of results available for analysis shows a decreasing trend.

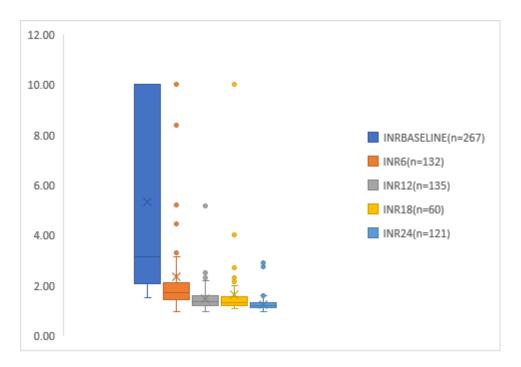


Figure 16: Change of INR over 24 hours

6. ANTI SNAKE VENOM

Anti-snake venom was administered to all the 280 patients. The mean dose of ASV received per patient was 17.43±8.4.

Reactions to ASV varied from angioedema, itching, urticaria, bronchospasm to anaphylactic shock and it was seen in 13.6% (n=38).

Characterisation of Venom Induced Consumption Coagulopathy (VICC) in patients with Haemotoxic Snake Bite and the effects of Blood Products on Coagulation Parameters.

7. TRANSFUSION REQUIREMENTS

Blood or plasma products transfusion in addition to ASV were required for 16.8%

```
(n=47) patients.
```

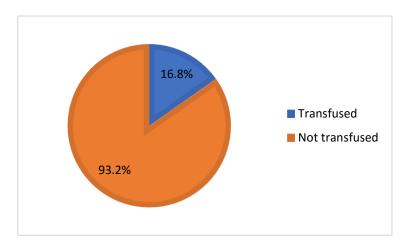
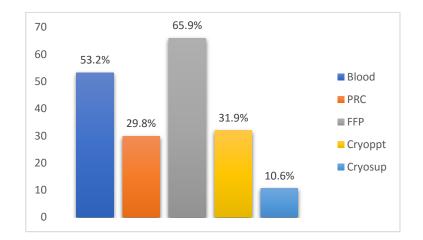
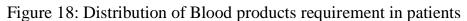




Figure 17: Distribution according to transfusion requirement

Fresh frozen plasma was required the maximum for 65.9% (n=31) patients.

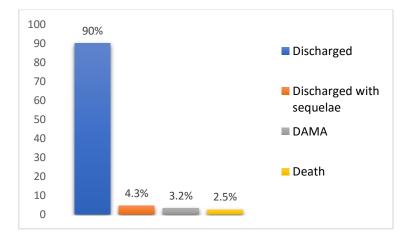
7.1 COMPONENT WISE TRANSFUSION

FRESH FROZEN PLASMA

Out of the 31 patients who had received FFP transfusion, 29 (%) had an INR more than 1.5 with bleeding manifestations before the transfusion. The remaining two with an INR

less than 1.5 received FFP for haemodialysis procedure and had bleeding manifestations.

194 patients with initial INR more than 1.5 did not receive FFP transfusion since they either normalised with ASV or did not have any bleeding manifestation.


CRYOPRECIPITATE

15 patients who received cryoprecipitate had a low fibrinogen with associated bleeding manifestations. Patients who had a low fibrinogen without any bleeding manifestations were not transfused.

PLATELET RICH CONCENTRATE

14 patients who received PRC transfusion had severe thrombocytopenia with associated bleeding manifestations.

Patients who had thrombocytopenia without bleeding manifestations were not transfused.

8. OUTCOME

Figure 19: Distribution of patients according to the outcome

Most of the patients were alive at discharge, with 2.5% mortality.

PROSPECTIVE GROUP

9. DEMOGRAPHIC DETAILS OF PATIENTS BETWEEN 2017 AND 2018

9.1 GENDER

Among the patients admitted with haemotoxic snake bite in 2017 -2018 there was a male preponderance of 83.8%. The male:female ratio was 5.17:1

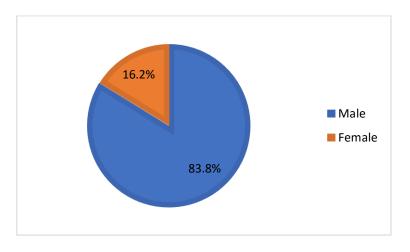


Figure 20: Gender wise distribution of the study population

9.2 AGE DISTRIBUTION

The mean age of this group was 38.11 ± 13.08 . The mean age among males was 37.54 ± 13.48 and among females was 41 ± 11.4

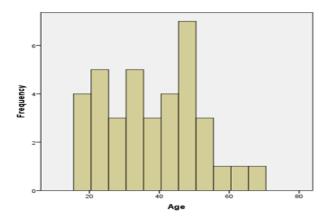
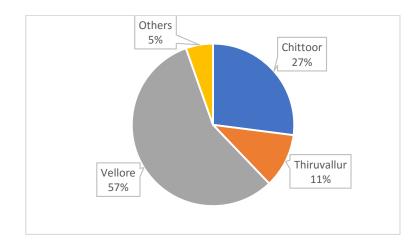
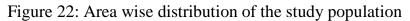




Figure 21: Age wise distribution of the study population

9.3 AREAWISE DISTRIBUTION

The maximum number of patients were from Vellore 57% (n=21).

(Others include Cudappah and Villupuram)

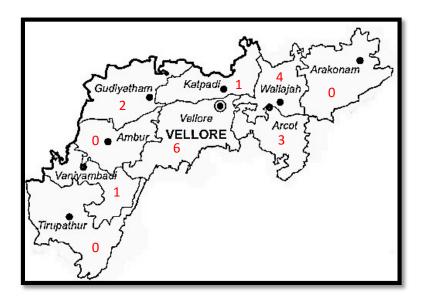
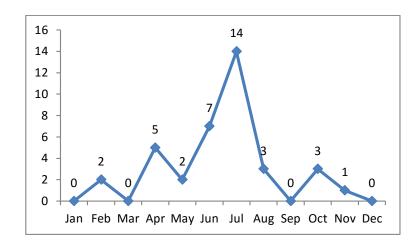
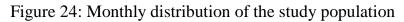




Figure 23: Taluk wise distribution of the study population in Vellore

9.4 SEASONAL VARIATION

The maximum number of patients were seen during the month of July.

10 ENVENOMATION DETAILS

10.1 TIME OF BITE

The time of snake bite was found to be maximum between 6pm to midnight and 37.8%

of the bites happened during this time.

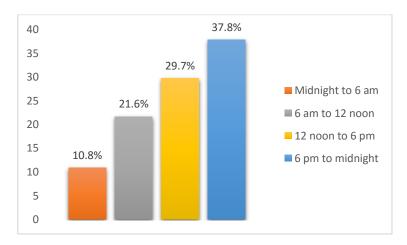


Figure 25: Distribution according to time of bite

10.2 SITE OF BITE

Lower limbs were the most common site of bite with 75.6% of patients being bitten in the lower limbs. This was followed by upper limbs with 21.6% bites. One patient also presented with a bite in the neck region.

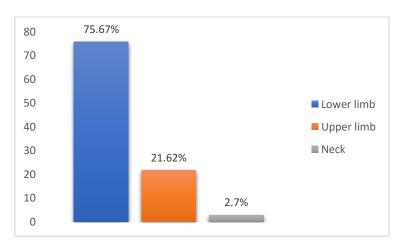


Figure 26: Distribution according to site of bite

TIME TO FIRST SYMPTOMS

The mean time taken for the first symptoms to start after snake bite was 55.19

minutes. It ranged from 5 minutes to 6 hours.

TIME TO RECEIVE FIRST AID

The median time to receive first aid was one hour. All patients received first aid

within 12 hours.

TIME TO RECEIVE FIRST ASV

The mean time taken to receive the first dose of ASV was 3.36 hours. It ranged from

30 minutes to 19 hours.

TIME TO FIRST BLEEDING SYMPTOMS

The median time to the first bleeding symptoms was 60 minutes. It ranged from 5 minutes to 12 hours.

TIME TO FIRST SYSTEMIC BLEEDING

Systemic bleeding in the form of oral cavity bleed, haematuria, hematemesis, haematochezia and malena was present in 54.1% of patients. The mean time to the first systemic bleed was 5.65 hours. It ranged from 1 hour to 24 hours.

11. PATTERN OF VARIOUS CLINICAL MANIFESTATIONS IN THE POPULATION

11.1 LOCAL MANIFESTATIONS

Local symptoms in the form of any of the following: local swelling in the absence of a tourniquet or cellulitis of the affected limb or enlarged tender lymph node draining the bitten limb or necrosis, blistering, gangrene or compartment syndrome –absent pulses were seen in 100% of the study population.

11.2 NEUROLOGICAL MANIFESTATIONS

Neurological manifestations included ptosis or ophthalmoplegia, bulbar weakness – dysphagia, difficulty in speaking, limb muscle weakness, neck holding time <5s, respiratory paralysis-Reduced single breath count<10, paradoxical breathing, respiratory failure, need for mechanical ventilation. Neurotoxicity in any of these forms were seen in 51.4% (n=19)

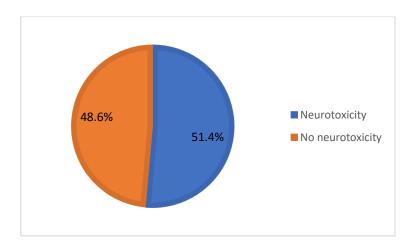


Figure 27: Distribution according to neurological manifestations

Patients with neurological manifestations who required ventilatory support were 8.1%

(n=3).

11.3 PTOSIS

The initial involvement of levator palpebrae superioris in form of ptosis was seen in 48.6% (n=18) patients.

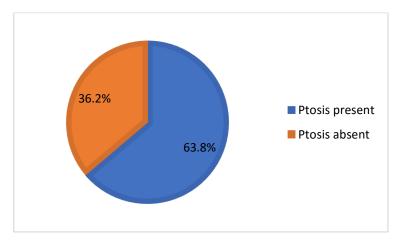
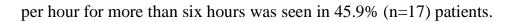



Figure 28: Distribution according to presence or absence of ptosis

11.4 RENAL INVOLVEMENT

Acute kidney injury defined by abrupt (within 48 hours), absolute increase in the serum creatinine concentration of ≥ 0.3 mg/dL (26.4 micromol/L) from baseline; a percentage

increase in the serum creatinine concentration of \geq 50 percent; or oliguria of <0.5 mL/kg

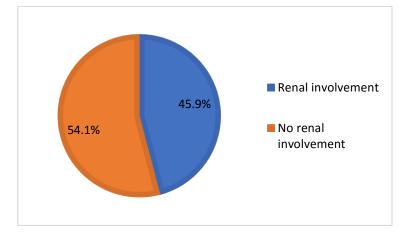


Figure 29: Distribution according to renal involvement

Patients with AKI who required haemodialysis were 16.2% (n=6).

12. ENVENOMATION SYNDROMES

The envenomation syndromes were grouped as **PURE HAEMOTOXICITY SYNDROME** and **HAEMOTOXICITY WITH RENAL/NEUROTOXIC FEATURES**. Pure haemotoxicity were seen in 24.3% (n=9) patients. Combinations of haemotoxicity with renal and/or neurological manifestations were seen in 75.7% (n=28).

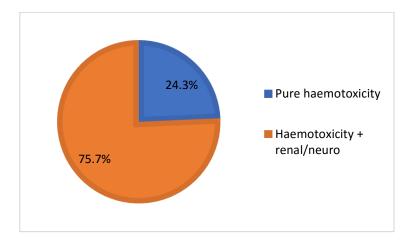


Figure 30: Distribution of envenomation syndromes in study population

Haemotoxicity was considered when any of the following were present: WBCT20 was prolonged, INR above reference interval ≥ 1.2), bleeding manifestations or thrombocytopenia (platelet count <1,00,000/ mm³).

13. LABORATORY PARAMETERS

AT BASELINE

13.1 WBCT

The Whole blood clotting time at presentation was more than 20 minutes in 81.1% (n=30).

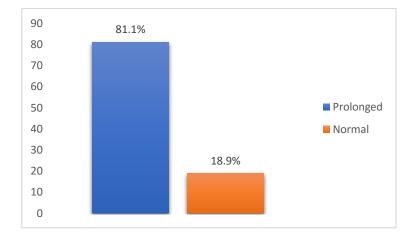


Figure 31: Distribution according to whole blood clotting time at presentation

13.2 HAEMOGLOBIN

Haemoglobin at baseline was done for 37 patients. The mean haemoglobin at

presentation was 13.78±2.46g%

13.3 PLATELET COUNT

The platelet count at admission was done for all 37 patients. 5.4% (n=2) had severe thrombocytopenia (platelet count less than 50,000/cumm). Moderate thrombocytopenia

(platelet count between 50,000/cumm and 1,00,000/cumm) was seen in 5.4% (n=2) patients. Mild thrombocytopenia (platelet count between 1,00,000/cumm and 1,50,000/cumm) was present in 21.62% (n=8). A normal platelet count of more than 1,50,000/cumm was seen in 67.56% (n=25) patients.

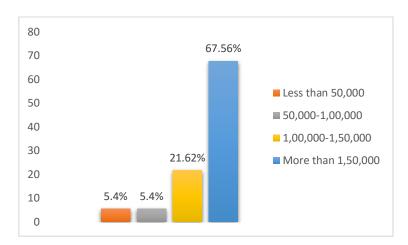


Figure 32: Distribution according to platelet count at admission

13.4 INTERNATIONAL NORMALISED RATIO

The international normalised ratio was abnormal (≥ 1.2) in 89.18% (n=33) patients.

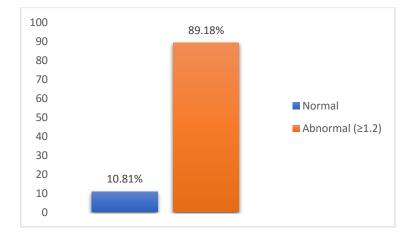
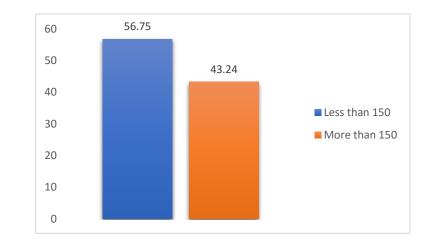



Figure 33: Distribution according to INR at admission

13.5 FIBRINOGEN

Fibrinogen at admission was abnormal (<150) for 56.75% (n=21) patients.

Figure 34: Distribution according to Fibrinogen at admission

14. ANTI SNAKE VENOM

Anti-snake venom was administered to all the 37 patients. The mean dose of ASV received from other hospital prior to reaching our centre was 8 ± 6.9 . The mean dose of ASV at our centre was 10.57 ± 5.11

18.91%(n=7) had a reaction to ASV. Reactions varied from angioedema, itching, urticaria, bronchospasm to anaphylactic shock.

15. VARIATION OF LABORATORY PARAMETERS OVER 24 HOURS

15.1 PLATELET VARIATION OVER 24 HOURS

The platelet count at admission varied from 35,000/cumm to 3,08,000/cumm.

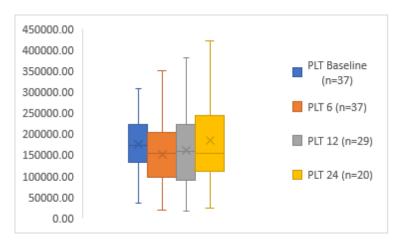


Figure 35: Variation of platelet count over 24 hours

15.2 INR VARIATION OVER 24 HOURS

The INR at presentation varied from 1.12 to 10. It ranged from 3.05 to 0.77 at 6 hours.

At 12 hours it ranged from 2.84 to 0.83. By 24 hours the range was 1.65 to 0.84

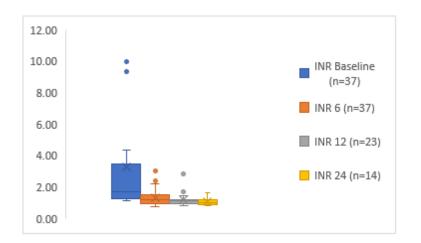


Figure 36: Variation of INR over 24 hours

15.3 FIBRINOGEN VARIATION OVER 24 HOURS

Fibrinogen at presentation ranged between a not detectable value to 455mg/dL. Those who had abnormal values were tested again at 6hours, 12hours or 24hours till they normalised.

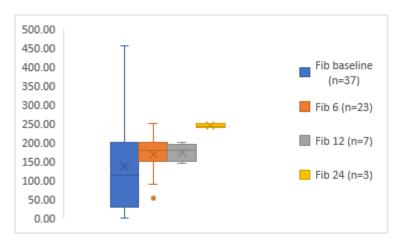


Figure 37: Variation of fibrinogen over 24 hours

16. TIME TO NORMALIZATION OF COAGULATION PARAMETERS

TIME TO NORMALISATION

The mean platelet counts for the pure haemotoxic group and the haemotoxicity +renal/neurotoxicity group have been plotted against time to show the pattern of normalisation. The pure haemotoxic group did not have thrombocytopenia at admission. Whereas the mean time to normalisation in the group with haemotoxicity +renal/neurotoxicity was 17.3±7.94 hours

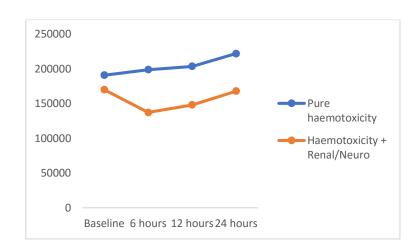
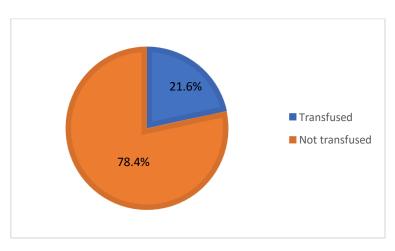


Figure 38: Time to normalization for Platelet count (Mean values)

The mean values of INR for the pure haemotoxic group and the haemotoxicity +renal/neurotoxicity group have been plotted against time to show their pattern of normalisation. The mean time to normalisation of INR in the pure haemotoxic group was 14 ± 6 hours. The mean time to normalisation among the haemotoxicity +renal/neurotoxicity group was 10.75 ± 6.61 hours.

Figure 39: Time to normalization for INR (Mean values)

The mean values of fibrinogen for the pure haemotoxic group and the haemotoxicity +renal/neurotoxicity group have been plotted against time to show the pattern of normalisation. The mean time to normalisation of fibrinogen among the pure


haemotoxic group was 11.25±5.9 hours. The mean time to normalisation among the

haemotoxicity +renal/neurotoxicity group was 6.5±1.7 hours.

Figure 40: Time to normalization for Fibrinogen (Mean values)

17. TRANSFUSIONS

In addition to ASV, transfusions were required for 21.6% (n=8) patients.

Figure 41: Distribution of patients requiring transfusion

Among the transfused patients, 50% (n=4) required blood and fresh frozen plasma transfusion. 50% (n=4) required fresh frozen plasma transfusion. Platelet rich

concentrate transfusion was required for 25% (n=2). Cryosupernatant was transfused for 25% (n=2) patients. Cryoprecipitate transfusion was needed for 12.5% (n=1) patient.

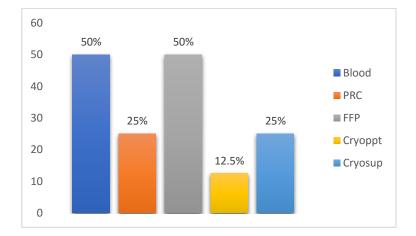


Figure 42: Distribution according to product transfused

FRESH FROZEN PLASMA

Out of the 4 patients who had received FFP transfusion, 2 had an INR more than 1.5 with bleeding manifestations before the transfusion. One patient had received FFPs from elsewhere and his INR was normal at presentation to our center. Another patient had a prolonged APTT with systemic bleed hence FFP was transfused.

22 patients with INR more than 1.5 did not receive FFP transfusion since they either normalised with ASV or did not have any bleeding manifestation.

CRYOPRECIPITATE

One patient who received cryoprecipitate had a low fibrinogen with associated bleeding manifestations. Patients who had a low fibrinogen without any bleeding manifestations were not transfused.

PLATELET RICH CONCENTRATE

Two patients who received PRC transfusion had thrombocytopenia with associated bleeding manifestations.

Patients who had thrombocytopenia without bleeding manifestations were not transfused.

18. OUTCOME

Out of the 37 patients 91.8% (n=34) were discharged in a stable condition. There was no mortality in the patients admitted.

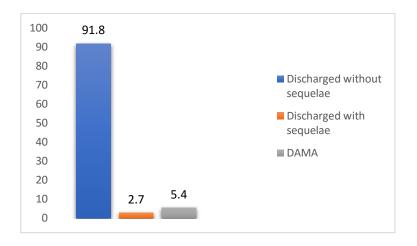


Figure 43: Distribution of patients 3according to condition at discharge

19. COMPARISON BETWEEN TWO GROUPS IS SHOWN BELOW:

Table 1: Comparison between pure haemotoxic group and haemotoxicity+

neurotoxicity/renal involvement

		PURE HAE	EMOTOXIC		HAEMOTOXICITY+			
				NEUROTOXICITY/RENAL INVOLVEMENT				
TOTAL NUMBER OF	9				28			
PATIENTS	-							
MALE: FEMALE	8:1				5:1			
AGE								
TIME TO SYMPTOMS	23.33 minutes				60.10minutes			
TIME FOR FIRST BLEEDING	36.67minutes				133 minutes			
SYSTEMIC BLEED	3 patients				17 patients			
TIME TO SYSTEMIC BLEED		2.671	hours		5.75 hours			
VENTILATOR	1 patient				4 patients			
DIALYSIS		No	one		6 patients			
MEAN ASV	15.89				20.29			
LABORATORY PARAMETERS	Baseline	6HRS	12HRS	24HRS	BL	6HRS	12HRS	24HRS
WBCT (prolonged)	8sec				22sec			
INR (mean)	5.21	1.85	1.36	1.06	2.67	1.16	1.1	1.08
APTT RATIO	2.04	1.06	0.93	0.44	1.41	1.05	0.6	0.2

81.67	139.88	169.25	242	155.64	185.6	181	245.5
190888	198888	203571	222000	170000	137250	148181	174250
20322				17610			
1			7				
0				4			
0			2				
1			3				
0			1				
0			2				
All discharged			25 discharged, 1 discharged with				
			sequalae, 2 DAMA				
	190888	190888 198888 20322 (((((((((((((((((((190888 198888 203571 20322 1 0 1 0 1 0 0 0 0 0 0	190888 198888 203571 222000 20322 I I I 0 I I I 0 I I I 0 I I I 0 I I I 0 I I I 0 I I I 0 I I I 0 I I I 0 I I I 0 I I I 0 I I I 0 I I I 0 I I I 0 I I I 0 I I I 0 I I I 0 I I I 0 I I I 0 I I I I 0 I I I I I I I	190888 198888 203571 222000 170000 20322 1 1 17610 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1	190888 198888 203571 222000 170000 137250 20322 1 1 17610 1 20322 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1	190888 198888 203571 222000 170000 137250 148181 20322 1 1 17610 1 1 20322 1 1 17610 1 1 1 1 1 7 1 1 1 0 4 1

20. VEMAC Time

Vemac Time standardised in our hospital was compared with PT values in prospective

group. A PT of more than 13s was considered abnormal.

	PT prolonged (>13 secs)	PT not prolonged (<13 secs)
Vemac Time prolonged	27	0
Vemac Time normal	6	4

The sensitivity of the test was found to be 81.82% and specificity was 100%.

Positive predictive value of the test was 100%.

When compared to a composite diagnosis of VICC it was found to have positive predictive value of 100%.

Table 3: Vemac Time and VICC comparison

	VICC	NO VICC
Vemac Time prolonged	27	0
Vemac Time normal	10	0

DISCUSSION:

In the present study we have attempted to characterize the effects of snake bite on the haemostatic system, transfusion requirements and effect of transfusion on haemostatic parameters.

RETROSPECTIVE DATA:

DEMOGRAPHIC DETAILS

In the retrospective study group a total of 280 cases of haemotoxic snake bite were identified. The victims of snake bite were predominantly male (72.5%, n = 200), and the male to female ratio was 3:1. Males are affected more often than females, as they constitute the working majority who are actively engaged in farming and other outdoor activities. Our findings concur with those of earlier study by Mondal et al where they revealed that majority of the patients were males (79.8%) from rural areas (85.1%). A study conducted in viper bites in a tertiary centre in South India showed a male female ratio of 1.4:1. A similar study from another southern state showed a male preponderance (58%) (58).

The mean age of retrospective group was 42.2 ± 14.5 years (range16-75 years). The mean age of the male patients was 43 (range 19-65) years, and that of female patients was 40.1 (range 25-65) years. Decade -wise distribution of male and female snake bite cases by Monteiro et.al showed that majority of snake bite victims were aged 25-55 years (n =25, 80.6%), with the peak incidence in the 3rd and 5th decades of life. In our study retrospective data showed almost similar distribution among second to fifth decade of life.

Seasonal variation in the incidence of snake bite was observed in our study with maximum number of bites occurring during August (15.3 %). Such variation was also observed in study conducted by Nagnath R et al among Maharashtra victims with maximum number of bites occurring in rainy season (83.3%) between June to October and highest number of cases during August (28.1%). Hansdak et al also reported that 51% of cases occurred during monsoon (August–October). Similar studies have shown most bites observed during the months of May to November which represents the monsoon. This poses increased risk to farmers as they harvest their crops during these seasons. Studies conducted at other centres also noticed a similar increase in the incidence of snake bites during the monsoon when compared to the drier summer. Study conducted by Monteiro et al showed the peak incidence in snake bite cases during October, followed by September (59).

ENVENOMATION DETAILS

Snake bites are more common on the lower extremities due to accidental stampede while walking or playing. In a study conducted by Kshirsagar VY et al among rural population they found that 120 (74.04%) patients had bite marks on the lower limbs similar to various studies which have shown that in 70-86% patients bite marks are present on the lower limbs (60). Most of the victims in our study were bitten mostly in the fields during 6pm to midnight (n = 88, 37%) and on their lower limbs (n = 223, 84.5%).

In a study on snake bite envenoming from Kerala, 200 cases were analysed which showed 93% were outdoor bites with 81% of bites in the lower limbs (58).

Characteristics of the 143 victims of snake bites from South-eastern Nepal showed agriculture was the dominant profession (44%) and 49% of the victims lived in a traditional hut with mud walls. Most of the snake bites occurred during the rainy season (68%), outside the house (82%), while farming (21%), doing other work (32%), or walking (32%) and mostly during the day (50%) or between 6:00 PM and midnight (40%) (61).

In a study from Maharashtra out of 38 cases of Russell's viper bites studied in one year, 28 (73%) were males. 29(76%) of these cases had bites to their lower extremities(62).

Russell's viper is very aggressive snake. Its fangs are long and sharp. It is diurnal in habit. It bites a person working in a farm, handling the debris or harvesting or walking bare foot in tall grass.

PATTERNS OF CLINICAL MANIFESTATIONS

The categorisation of syndromes was based on the WHO South East Asia Guidelines (2016). Russell's viper bite syndromes include haemotoxicity or haemotoxicity in combination with neurotoxicity and/or acute kidney injury. Pure haemotoxicity could either be due to Saw Scaled viper bites or Russell's viper. Krait bite syndrome causes neuroparalysis without local swelling and may have associated abdominal pain. Cobra bite syndrome causes neuroparalysis with local swelling. The main aim of our study was to look at the coagulation parameter abnormalities and the transfusion requirements

for patients with snake bites. Hence, we analysed only patients presenting with haemotoxic manifestations.

All the 280 patients brought to hospital had local swelling and pain at the site of bite, associated with bleeding from the site. Local signs of envenomation and systemic haemotoxic manifestations of envenomation were present in all cases. Haemotoxicity was considered when any of the following were present: WBCT20 was prolonged, INR above reference interval (>1.5), bleeding manifestations or thrombocytopenia (platelet count <1,00,000/ mm³). Study conducted from Southern India showed 40% of the victims had bleeding from the site of bite. This finding is similar to studies by Bhat RN and Reid et al. Other manifestations from the same study included generalized ecchymosis, purpura or hematomas, frank or microscopic haematuria, haemoptysis, gingival bleeding, hematemesis (63).

Study conducted from our centre which included 167 patients with systemic envenomation showed 102 patients with combinations of haemotoxicity with neurotoxicity and/or acute kidney injury (61%) (which were probably due to Russell's viper envenomation). The most common Russell's viper syndromes were haemotoxicity with neurotoxicity and haemotoxicity with neurotoxicity and acute kidney injury. There were 12 cases (7.2%) with neurotoxicity without local swelling (probable Krait bite) and 18 cases (10.8%) with neurotoxicity with local swelling (probable cobra bite). All the deaths occurred in the syndromes of Russell's viper with haemotoxicity with AKI.

Our present study showed associated neurotoxicity in 60.7% patients and 20.6% of them required ventilatory support. Ptosis was seen in 53.9% of patients. Associated renal

involvement was seen in 22.5% of patients. All symptoms including haemotoxicity, local manifestations, neurotoxicity, ptosis, renal involvement and rhabdomyolysis together was present in 8.2% of patients.

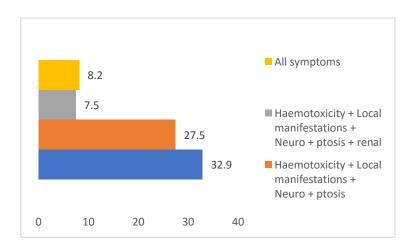


Figure 44: Symptoms wise distribution of patients

In another study conducted on 1,500 cases from a tertiary care centre in Malabar, North Kerala, India showed hemotoxic bites (61%) exceeded neurotoxic bites (34%) by a significant margin. Same study showed, haematuria as the most common (246 patients) symptom followed by bleeding gums in 218 patients. Haemoptysis was seen in 172 patients. Retinal haemorrhages were seen in 106 patients (64).

In a study of 138 patients from Western India looking into the complications of envenomation with snake bite showed haemorrhagic manifestations 123(89%). Other presenting manifestation were haematuria 38.4%, renal failure 29.7%, ptosis 7.3%, respiratory paralysis 7.3% and intracranial bleeding 2.2% in the same study. However, no cardiotoxicity was reported (65). Our study showed 3 cases with cardiac manifestations in the form of poor systolic function, suspected Kounis syndrome

characterised by acute coronary syndrome or ST-Segment elevation myocardial infarction resulting from an allergic reaction, myocarditis and one patient died of sudden cardiac death due to probable arrhythmia. Hayat and Khan also reported haemorrhagic manifestation in 95% and neurotoxicity in 5% of cases (66).

LABORATORY PARAMETERS

Snake venom contains various proteins (like prothrombin activators, thrombin like enzymes, phospholipases, factor X activating proteins etc.) which block different levels of coagulation or it may cause excessive clot formation leading to consumption coagulopathy. In most of the cases PT and APTT both are raised.

In a study conducted in a tertiary care centre by Dasaraju showed prolonged PT in 66% of the patients which was comparable with another study conducted by Monteiro et al, Ramamurthy et al, Harshavardhana et al and David et al who found deranged PT in 32.30%, 40.00%, 56.00% and 47.50% of patients respectively (59,63,67,68). In the study by Manisha et al, 75.89% of the patients showed deranged PT, which was similar to the Mahmood et al (70.00%) studies (62).

In our study PT was not considered as a parameter for analysis due to inherent variance relating to thromboplastin in the reagent and method of analysis. Instead, the INR is a more standardised parameter which offers practical advantages for monitoring was considered. We considered an INR more than or equal to 1.2 as abnormal. At presentation the majority of our patients, 94.38% of patients had an abnormal INR.

In a cohort study of patients with confirmed or suspected snake bite recruited to the Australian Snake bite Project (ASP) from January 2002 to April 2009 showed that in

178 of the 206 patients (86%), the INR was abnormal (> 1.2) on the first set of tests. In the same study by Graham et al suggests that the combination of tests for INR, APTT and CK level and serial neurological examinations is able to reliably detect envenomed patients within 12 hours (69). If there is no progression of symptoms or evidence of coagulopathy the patient can be discharged after rechecking laboratory parameters that INR is not elevated. Elevated INR indicates envenomation or impending coagulopathy.

In our study out of 273 patients for whom platelet count was done, 37.64% had thrombocytopenia at presentation. Baseline fibrinogen was available for 23 patients, among whom 6 had an undetectable fibrinogen. A study conducted by Moriarity et al looking into the role of coagulation markers in snake envenomation showed coagulation marker abnormalities in 35 (26.7%) of the 131 snake bite patients (70). Seventeen (13.8%) had an abnormal PT, 17 (13.9%) had an abnormal APTT 8 (6.2%) had thrombocytopenia, and 5 (13.2%) had abnormal fibrinogen concentrations (70).

In our study, deranged APTT ratio was seen in 39.8% of patients. Mahmood et al had similar results with 71.30% of patients having deranged APTT (59). Monteiro et al, Ramamurthy et al, Harshavardhana et al and David et al found deranged APTT in 29.00%, 40.00%, 62.00% and 32.50% of patients respectively (59,63,67).

ANTI SNAKE VENOM

In a study by Monteiro et al around 4-32 ASV vials were administered to each patient, at an average of 11.1 ASV vials per patient (59). In our study the mean dose of ASV per patient was 17.43 ± 8.4 .

In a previous study conducted in our institute the hypersensitivity reaction rate to ASV was about 8% (67). In our study it was found to be 13.6%.

TRANSFUSION

Blood products have been administered alone and in addition to antivenin in patients with snake bite-induced coagulopathies. Envenomed patients remain at risk of major haemorrhagic complications such as intracranial haemorrhage for a significant time period after antivenom treatment. This has prompted the use of blood products as replacement for clotting factors. However, there is a concern that the provision of clotting factors will worsen the coagulopathy, as more substrate will be available for the procoagulant toxins present in the venom to activate. Furthermore, there are also risks associated with the use of blood products like haemolytic reactions, nonhemolytic reactions, and infectious complications.

A recent randomized controlled trial in Australia of FFP in VICC showed that FFP (10-15 mL/kg up to maximum of 4 units, about 1000 mL) given within 4 hours of antivenom administration resulted in a more rapid recovery in the PT/INR (71). In our study 16.8% of patients required either blood and/or plasma products transfusion in addition to ASV. All the patients who received plasma products transfusion had bleeding manifestations. In a study from another tertiary care centre 20.3% of the snake bite victims were transfused with blood products (72).

The main component transfused was FFP (65.9%) followed by Red cells (53.2%), cryoprecipitate (31.9%), platelet concentrates (29.8%) and cryosupernatant (10.6%). The mean dosage of FFP was 5 ± 2.6 units and highest number of FFP required by any

patient was thirteen. The lab parameters which were usually ordered to substantiate the use of FFP were 20min WBCT, PT & INR, APTT & Fibrinogen.

Other indications for transfusion were surgical interventions like fasciotomy, debridement or haemodialysis, in the absence of overt bleeding.

Out of the 2.5% (n=7) who had expired, 2 patients had not received any transfusions. The remaining 1.78% (n= 5) patients had been transfused blood and/or plasma products. Four patients had received FFP and cryoprecipitate. Three of these patients had received platelets also.

PROSPECTIVE STUDY GROUP

In the prospective study group a total of 37 cases of haemotoxic snake bite were identified from 2017-2018. The victims of snake bite were predominantly male (83.8%, n = 31), and the male to female ratio was 5:1. In a study by Alirol et al. about snake bite in Southeast Asia, it was concluded that there was a significant 2:1 male predominance over female among victims and that lower extremities were the most prevalent sites of snake bites (10). In our study 75.67% of the patients had snake bites in the lower limbs. Maximum bites were seen in between 6pm and midnight (37.8%) which was similar to our findings in the retrospective study group.

In our prospective group study, the median time to receive first aid was one hour, with the maximum time being 12 hours. All patients received first aid within 12 hours. The previous study from our institute has shown about three fourth of the patients sought first aid in local clinics and peripheral hospitals prior to definitive treatment in the tertiary hospital (67). Most of the cases were admitted within 24 h of the bite. This reflects an increasing awareness about the need for hospital-based care for snake bites and a possible change in attitude of patients. In a study conducted by Eslamian et al mean time between snake bite occurrence and reaching first medical centre was about six hours (73).

In a study by Padhiyar et al 62.5% (40/64) patients had received ASV before they were referred to tertiary care centre, 51.6% (33/64) had received Injection Tetanus Toxoid, and 45.3% (29/64) had a tourniquet tied at or above the site of bite (72). In our study 83.78%(n=31) patients had received ASV prior to reaching our centre, reflecting the better availability of ASV in smaller healthcare facilities as a result of sustained advocacy.

The mean time taken for the first symptoms to start after snake bite was 55.19 minutes. It ranged from 5 minutes to 6 hours. Since envenomation is a function of several variables including dose of venom (in the snake bite), body mass of the patient and location of bite, our small sample size precludes us from making any significant conclusions on this parameter.

The median time to receive first aid was one hour. All patients received first aid within 12 hours. The mean time taken to receive the first dose of ASV was 3.36 hours. It ranged from 30 minutes to 19 hours. The median time to the first bleeding symptoms was 60 minutes. It ranged from 5 minutes to 12 hours. Systemic bleeding in the form of oral cavity bleed, haematuria, hematemesis, haematochezia and malena was present in 54.1% of patients. The mean time to the first systemic bleed was 5.65 hours. It ranged

from 1 hour to 24 hours. This is similar to a study by Kumar et al the mean time to reach to hospital was 12.1 ± 21.4 hours (range 1-120 hours (64).

Out of the 37 patients, 89.18% (n= 33) had an abnormal INR at presentation. Out of this 39.39%(n=13) patients normalised by 6 hours. Out of the remaining 20 patients, 14 normalised by 12 hours and five patients normalised by 24 hours. Two of the patients who did not normalise by 12 hours received FFP. One of these patients showed nephrotoxicity and underwent haemodialysis.

Out of the 9 patients who displayed features of isolated haemotoxicity syndrome, all had abnormal INR. These patients took a median time of 12 hours for normalisation with a maximum of 24hours. Fibrinogen was abnormal in 7 of these patients which normalised within a median time of 9 hours. Fresh frozen plasma transfusion was required for one patient who had a baseline INR of 3.29 and normalised only by 12 hours. The dose of FFP in our study was 10–15 mL kg⁻¹.

Out of the 28 patients with haemotoxicity and neurotoxicity/renal involvement, 25 had an abnormal INR at presentation. These patients normalised with a median time of 6 hours. However, 7 patients normalised only by 12 hours. Fibrinogen was abnormal for 32.43% (n=12) patients and the median time for normalisation was 6 hours. Plasma products were transfused for 16.2% (n=6) patients in this group. In a study done by Dempfle et al he concluded that intra venous administration of anti-snake venom resulted in normalized coagulation parameters within 48 hrs whereas in the study by Agarwal et al they saw that 51 out of 53 cases showed normalization of coagulation markers 12 hrs after administration of anti-snake venom (74). In our study it was difficult to ascertain time to normalization from time of administration since most of the patients received ASV prior to admission at our hospital.

A complete comparative analysis of two envenomation syndromes is shown in table.

Study by Isbister et al on a multicentre open-label randomized controlled trial in Australia to show utility of fresh frozen plasma for treating Venom-Induced Consumption Coagulopathy, showed that the administration of FFP within 4 hours of antivenom administration results in more rapid restoration of clotting function in the majority of patients with VICC (71). Almost three-quarters of patients receiving FFP had an INR of < 2 at 6 hours after antivenom administration, and this was also associated with more rapid complete recovery to a normal INR. In study by Harshavardhana, et al patients with coagulopathy had prolonged hospital stay and required more blood products transfusion. In his study he had 13 patients with haemoglobin less than 10 g/dl and approximately hospitalized for 22 days and they received 38 packed red cells. 24 patients had platelets less than 1 lakh and approximately hospitalized for 28 days and they received 102 platelet units. INR was more than 1.5 in 24 patients and hospitalized for 25 days and they received 136 fresh frozen plasma (63). Whole blood clotting time was prolonged more than 20 minutes in 30 patients and approximately hospitalized for 27 days and they received 488 ASV vials. In our study anti-snake venom was administered to all the 37 patients. The mean dose of ASV received from other hospital prior to reaching our centre was 8 ± 6.9 . The mean dose of ASV at our centre was 10.57±5.11.

The Vemac Time standardised at our centre was compared with WBCT 20 and Prothrombin Time to analyse its utility in detecting envenomation by haemotoxic snake bite. Using PT as the gold standard we found that Vemac Time had 100% specificity with positive predictive value of 100%.

LIMITATIONS:

- A major limitation of the present study is in the retrospective group where a retrospective chart review was done and some of the important data may be incomplete or insufficient, thus may affect statistical analysis.
- The selection bias due to a single centre data is justifiable. Referral bias explains why all of our patients were envenomated, and might have resulted in the transfer of more seriously ill patients to our facility.
- Many snake bite cases are treated at the primary healthcare centres and not referred to higher centres, leading to an underestimation of the morbidity status in studies done at tertiary healthcare centres. There may be a similar underestimation of snake bite mortality in the study.
- Vemac Time was performed at the bed side in Accident & Emergency by clinician. The precision of the test may be better when performed by laboratory staff under controlled conditions.

CONCLUSION:

RETROSPECTIVE DATA

- ***** There is a relatively higher prevalence of snake bite in males.
- ✤ There is a seasonal variability of the snake bite cases, we found bimodal distribution of the cases occur during the month of March and August
- The majority of bites were between 6 pm midnight with majority of bites in the lower limbs.
- ✤ Local symptoms in any form were seen in 100% of the study population.
- The envenomation syndromes were grouped as pure haemotoxicity syndrome and haemotoxicity with renal/neurotoxic features. Pure haemotoxicity were seen in 32.9% patients.
- * At admission INR was abnormal in 94.38% of population.
- ✤ All patients received ASV and 13.6% of patients had a reaction to ASV.
- * 16.8% patients required either blood or plasma products transfusion in addition to ASV.
- *** FFP** was the most commonly transfused blood product.
- **♦** All patients who required blood transfusion had bleeding manifestations.

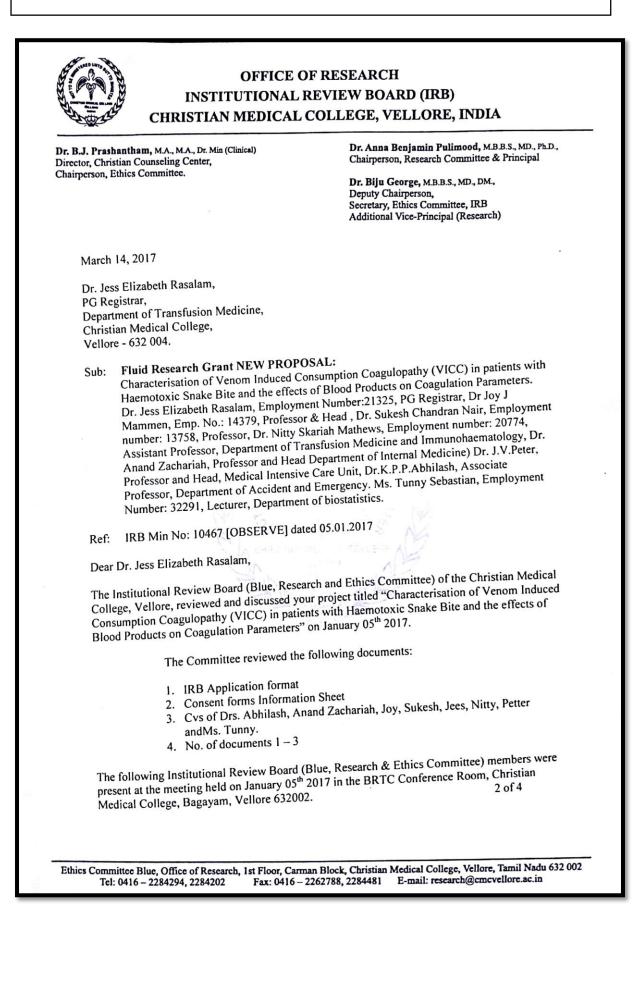
PROSPECTIVE STUDY:

- ✤ Pure haemotoxicity was seen in 24.3% patients.
- ☆ The International Normalised Ratio was abnormal (≥1.2) in 89.18% patients.
- ✤ 32.43% of patients had thrombocytopenia at presentation.
- ✤ Fibrinogen at admission was abnormal (<150) for 56.75% (n=21) patients.</p>
- Venom Induced Consumption Coagulopathy was seen in 100%(n=37) patients.
- ✤ In addition to ASV, transfusions were required for 21.6% patients.
- VICC is a distinct entity that appears to have better prognosis when treated aggressively with ASV and blood components.
- The Vemac Time appears to be a sensitive and highly specific test that can be rapidly and reproducibly performed at the bedside for rapid diagnosis of envenomation.

References:

- 1. Simpson ID, Norris RL. Snakes of Medical Importance in India: Is the Concept of the "Big 4" Still Relevant and Useful? Wilderness & Environmental Medicine. 2007 Mar 1;18(1):2–9.
- 2. JCDR Anti-snake venom, Envenomation, Epidemiology, Snake-bite, Southern India [Internet]. [cited 2018 Sep 25]. Available from: https://www.jcdr.net/article_fulltext.asp?id=2685
- 3. HOE YY. Effect of snake venoms on blood coagulation [Internet] [Thesis]. 2008 [cited 2018 Sep 25]. Available from: http://scholarbank.nus.edu.sg/handle/10635/27701
- Mackessy SP, Williams K, Ashton KG. Ontogenetic Variation in Venom Composition and Diet of Crotalus oreganus concolor: A Case of Venom Paedomorphosis? Lannoo MJ, editor. Copeia. 2003 Dec;2003(4):769–82.
- 5. Chippaux J-P, Williams V, White J. Snake venom variability: methods of study, results and interpretation. Toxicon. 1991 Jan;29(11):1279–303.
- 6. Ophidian envenomation strategies and the role of purines. PubMed NCBI [Internet]. [cited 2018 Sep 26]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/11738231
- Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. - PubMed - NCBI [Internet]. [cited 2018 Sep 26]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16568638
- 8. Bhalla G, Mhaskar D, Agarwal A. A Study of Clinical Profile of Snake Bite at a Tertiary Care Centre. Toxicol Int. 2014;21(2):203–8.
- 9. Mohapatra B, Warrell DA, Suraweera W, Bhatia P, Dhingra N, Jotkar RM, et al. Snakebite mortality in India: a nationally representative mortality survey. PLoS Negl Trop Dis. 2011 Apr 12;5(4):e1018.
- 10. Alirol E, Sharma SK, Bawaskar HS, Kuch U, Chappuis F. Snake bite in South Asia: a review. PLoS Negl Trop Dis. 2010 Jan 26;4(1):e603.
- 11. Chippaux J-P. Snakebite envenomation turns again into a neglected tropical disease! J Venom Anim Toxins Incl Trop Dis [Internet]. 2017 Aug 8 [cited 2018 Sep 27];23. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549382/
- 12. Kasturiratne A, Wickremasinghe AR, Silva N de, Gunawardena NK, Pathmeswaran A, Premaratna R, et al. The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of Envenoming and Deaths. PLOS Medicine. 2008 Nov 4;5(11):e218.
- 13. Menon JC, Joseph JK, Whitaker RE. Venomous Snake Bite in India Why do 50,000 Indians Die Every Year? :4.
- 14. Cook GC, Zumla A. Manson's Tropical Diseases. Elsevier Health Sciences; 2009. 1851 p.
- 15. Viravan C, Looareesuwan S, Kosakarn W, Wuthiekanun V, McCarthy CJ, Stimson AF, et al. A national hospital-based survey of snakes responsible for bites in Thailand. Trans R Soc Trop Med Hyg. 1992 Jan 1;86(1):100–6.

- 16. WORLD HEALTH ORGANIZATION: REGIONAL OFFICE FOR SOUTH-EAST ASIA. GUIDELINES FOR THE MANAGEMENT OF SNAKE-BITES. S.I.: WHO REGIONAL OFFICE FOR S; 2018.
- 17. Weinstein S, Warrell DA, White J, Keyler DE. Venomous Bites from Non-Venomous Snakes: A Critical Analysis of Risk and Management of 'Colubrid' Snake Bites. Elsevier Science. 2011 Jan 1;
- 18. Ohno M, Chijiwa T, Oda-Ueda N, Ogawa T, Hattori S. Molecular evolution of myotoxic phospholipases A(2) from snake venom. Vol. 42. 2004. 841 p.
- Bhadrapura Lakkappa D, Angaswamy N, Gowda R, K. Sharath B, D'Souza C. Vanillic acid as a novel specific inhibitor of snake venom 5'-nucleotidase: A pharmacological tool in evaluating the role of the enzyme in snake envenomation. Biochemistry (Moscow). 2009 Dec 1;74:1315– 9.
- 20. McCleary RJR. Evolution of Venom Variation in the Florida Cottonmouth, Agkistrodon Piscivorus Conanti. University of Florida; 2009. book.
- Girish KS, Jagadeesha DK, Rajeev KB, Kemparaju K. Snake venom hyaluronidase: an evidence for isoforms and extracellular matrix degradation. Mol Cell Biochem. 2002 Nov;240(1–2):105– 10.
- 22. Tan NH, Fung SY, Sim SM, Marinello E, Guerranti R, Aguiyi JC. The protective effect of Mucuna pruriens seeds against snake venom poisoning. J Ethnopharmacol. 2009 Jun 22;123(2):356–8.
- 23. RM K. Serine proteases affecting blood coagulation and fibrinolysis from snake venoms. -PubMed - NCBI [Internet]. [cited 2018 Sep 27]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16707928
- 24. Snake venoms affecting the haemostatic mechanism--a consideration of their mechanisms, practical applications and biological significance. PubMed NCBI [Internet]. [cited 2018 Sep 26]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/8075311
- 25. Markland FS. Snake venoms and the hemostatic system. Toxicon. 1998 Dec;36(12):1749–800.
- 26. Swenson S, Markland FS. Snake venom fibrin(ogen)olytic enzymes. Toxicon. 2005 Jun 15;45(8):1021–39.
- 27. Komori Y, Nikai T, Tohkai T, Sugihara H. Primary structure and biological activity of snake venom lectin (APL) from Agkistrodon p. piscivorus (Eastern cottonmouth). Toxicon. 1999 Jul 1;37(7):1053–64.
- Mackessy SP. Thrombin-Like Enzymes in Snake Venoms. In: Kini RM, Clemetson KJ, Markland FS, McLane MA, Morita T, editors. Toxins and Hemostasis [Internet]. Dordrecht: Springer Netherlands; 2010 [cited 2018 Sep 26]. p. 519–57. Available from: http://link.springer.com/10.1007/978-90-481-9295-3_30
- 29. Yamazaki Y, Morita T. Structure and function of snake venom cysteine-rich secretory proteins. Toxicon. 2004 Sep 1;44(3):227–31.
- 30. Du X-Y, Clemetson KJ. Snake venom L-amino acid oxidases. Toxicon. 2002 Jun;40(6):659–65.


- 31. Okuda D, Nozaki C, Sekiya F, Morita T. Comparative biochemistry of disintegrins isolated from snake venom: consideration of the taxonomy and geographical distribution of snakes in the genus Echis. J Biochem. 2001 Apr;129(4):615–20.
- 32. Freitas M, Geno PW, Sumner L, Cooke ME, Hudiburg SA, Ownby C, et al. Citrate is a major component of snake venoms. Toxicon : official journal of the International Society on Toxinology. 1992 May 1;30:461–4.
- 33. Mehta S, Sashindran V. Clinical Features And Management Of Snake Bite. Med J Armed Forces India. 2002 Jul;58(3):247–9.
- 34. Marsh NA. Diagnostic Uses of Snake Venom. Pathophysiology of Haemostasis and Thrombosis. 2001;31(3–6):211–7.
- 35. Rosing J, Tans G. Structural and functional properties of snake venom prothrombin activators. Toxicon. 1992 Dec;30(12):1515–27.
- 36. S Weinger R, Rudy C, L Moake J, D Olson J, L Cimo P. Prothrombin Houston: A dysprothrombin identifiable by crossed immunoelectrofocusing and abnormal Echis carinatus venom activation. Blood. 1980 Jun 1;55:811–6.
- 37. Marsh N, Williams V. Practical applications of snake venom toxins in haemostasis. Toxicon. 2005 Jun 15;45(8):1171–81.
- 38. Bradford HN, Krishnaswamy S. Meizothrombin Is an Unexpectedly Zymogen-like Variant of Thrombin. J Biol Chem. 2012 Aug 31;287(36):30414–25.
- 39. Lövgren A. Recombinant snake venom prothrombin activators. Bioengineered. 2013 May 1;4(3):153–7.
- 40. Ukwe L, M O. Diagnostic, Therapeutic and Pharmaceutical Value of Snake Venom. Calabar Journal of Health Sciences. 2017 Jun 1;1:1–13.
- 41. Rogalski A, Soerensen C, op den Brouw B, Lister C, Dashevsky D, Arbuckle K, et al. Differential procoagulant effects of saw-scaled viper (Serpentes: Viperidae: Echis) snake venoms on human plasma and the narrow taxonomic ranges of antivenom efficacies. Toxicology Letters. 2017 Oct;280:159–70.
- 42. Isbister GK. Snakebite doesn't cause disseminated intravascular coagulation: coagulopathy and thrombotic microangiopathy in snake envenoming. Semin Thromb Hemost. 2010 Jun;36(4):444–51.
- 43. White J. Snake venoms and coagulopathy. Toxicon. 2005 Jun;45(8):951–67.
- 44. Berling I, Isbister GK. Hematologic Effects and Complications of Snake Envenoming. Transfusion Medicine Reviews. 2015 Apr;29(2):82–9.
- 45. Valenta J, Stach Z, Michálek P. Snakebite Envenoming by Sochurek's Saw-scaled Viper Echis Carinatus Sochureki. Prague Medical Report. 2016;117(1):7.

- 46. Karunatilake H, Nayakarathna T, Atapattu S, Saparamadu T, Dharmasena S. Thrombotic microangiopathy and fibrinolysis after hump-nosed viper envenomation. Ceylon Medical Journal. 2012 Mar 25;57(1):45.
- 47. Isbister GK, Little M, Cull G, McCoubrie D, Lawton P, Szabo F, et al. Thrombotic microangiopathy from Australian brown snake (*Pseudonaja*) envenoming. Internal Medicine Journal. 2007 Aug;37(8):523–8.
- 48. Nikapitiya B, Maduwage K. Pharmacodynamics and pharmacokinetics of snake antivenom. Sri Lanka Journal of Medicine [Internet]. 2018 Jun 30 [cited 2018 Sep 29];27(1). Available from: http://sljm.sljol.info/articles/abstract/10.4038/sljm.v27i1.79/
- 49. Isbister GK, Maduwage K, Shahmy S, Mohamed F, Abeysinghe C, Karunathilake H, et al. Diagnostic 20-min whole blood clotting test in Russell's viper envenoming delays antivenom administration. QJM. 2013 Oct 1;106(10):925–32.
- 50. Punguyire D, Iserson KV, Stolz U, Apanga S. Bedside Whole-Blood Clotting Times: Validity after Snakebites. The Journal of Emergency Medicine. 2013 Mar;44(3):663–7.
- Ratnayake I, Shihana F, Dissanayake DM, Buckley NA, Maduwage K, Isbister GK. Performance of the 20-minute whole blood clotting test in detecting venom induced consumption coagulopathy from Russell's viper (Daboia russelii) bites. Thrombosis and Haemostasis. 2017;117(03):500–7.
- 52. Punguyire D, Baiden F, Nyuzaghl J, Hultgren A, Berko Y, Brenner S, et al. Presentation, management, and outcome of snake-bite in two district hospitals in Ghana. Pan African Medical Journal [Internet]. 2014 28 [cited 2018 Oct 6];19. Available from: http://www.panafrican-med-journal.com/content/article/19/219/full/
- 53. Margolis J. THE KAOLIN CLOTTING TIME: A RAPID ONE-STAGE METHOD FOR DIAGNOSIS OF COAGULATION DEFECTS. Journal of Clinical Pathology. 1958 Sep 1;11(5):406–9.
- 54. Prisco D, Paniccia R. Point-of-Care Testing of Hemostasis in Cardiac Surgery. Thrombosis Journal. 2003;10.
- 55. Hussein HM, Georgiadis AL, Qureshi Al. Point-of-Care Testing for Anticoagulation Monitoring in Neuroendovascular Procedures. American Journal of Neuroradiology. 2012 Aug;33(7):1211–20.
- 56. Ammar T, Scudder LE, Coller BS. In Vitro Effects of the Platelet Glycoprotein IIb/IIIa Receptor Antagonist c7E3 Fab on the Activated Clotting Time. Circulation [Internet]. 1997 Feb 4 [cited 2018 Oct 8]; Available from: https://www.ahajournals.org/doi/abs/10.1161/01.cir.95.3.614
- 57. Despotis GJ, Summerfield AL, Joist JH, Goodnough LT, Santoro SA, Spitznagel E, et al. Comparison of activated coagulation time and whole blood heparin measurements with laboratory plasma anti-Xa heparin concentration in patients having cardiac operations. J Thorac Cardiovasc Surg. 1994 Dec;108(6):1076–82.
- 58. Suchithra N, Pappachan JM, Sujathan P. Snakebite envenoming in Kerala, South India: clinical profile and factors involved in adverse outcomes. Emerg Med J. 2008 Apr;25(4):200–4.

- 59. Monteiro FN, Kanchan T, Bhagavath P, Kumar GP, Menezes RG, Yoganarasimha K. Clinicoepidemiological features of viper bite envenomation: a study from Manipal, South India. Singapore Med J. 2012 Mar;53(3):203–7.
- 60. Kshirsagar VY, Ahmed M, Colaco SM. Clinical Profile of Snake Bite in Children in Rural India. Iran J Pediatr. 2013;23(6):5.
- 61. Sharma SK, Jha N, Bovier PA, Loutan L, Koirala S. Impact of Snake Bites and Determinants of Fatal Outcomes in Southeastern Nepal.
- 62. Punde DP. Management of snake-bite in rural Maharashtra: a 10-year experience. Natl Med J India. 2005 Apr;18(2):71–5.
- 63. Harshavardhana HS, Pasha I, Prabhu NCS. Snake Bite Induced Coagulopathy: A Study of Clinical Profile and Predictors of Poor Outcome. 2014;2(1):4.
- 64. Kumar KS, Narayanan S, Udayabhaskaran V, Thulaseedharan N. Clinical and epidemiologic profile and predictors of outcome of poisonous snake bites an analysis of 1,500 cases from a tertiary care center in Malabar, North Kerala, India. Int J Gen Med. 2018 Jun 5;11:209–16.
- 65. Singh DVB, Gaur S, Kumar D, Meena B. Clinical Profile and Complications of Snake Bite Envenomation: Study from Tertiary Care Center Bikaner. 2013;4(6):4.
- 66. Hayat AS, Khan AH, Shaikh TZ, Ghouri RA, Shaikh N. Study of snake bite cases at Liaquat University Hospital Hyderabad/Jamshoro. J Ayub Med Coll Abbottabad. 2008 Sep;20(3):125–7.
- 67. David S, Matathia S, Christopher S. Mortality predictors of snake bite envenomation in southern India--a ten-year retrospective audit of 533 patients. J Med Toxicol. 2012 Jun;8(2):118–23.
- 68. Dasaraju DS. Hematological profile of snake bite patients in a Tertiary Care Hospital. 6(3):7.
- 69. Ireland G, Brown SGA, Buckley NA, Stormer J, Currie BJ, White J, et al. Changes in serial laboratory test results in snakebite patients: when can we safely exclude envenoming? Med J Aust. 2010 Sep 6;193(5):285–90.
- 70. Moriarity RS, Dryer S, Replogle W, Summers RL. The Role for Coagulation Markers in Mild Snakebite Envenomations. West J Emerg Med. 2012 Feb;13(1):68–74.
- 71. Isbister GK, Buckley NA, Page CB, Scorgie FE, Lincz LF, Seldon M, et al. A randomized controlled trial of fresh frozen plasma for treating venom-induced consumption coagulopathy in cases of Australian snakebite (ASP-18). J Thromb Haemost. 2013 Jul;11(7):1310–8.
- 72. Padhiyar R, Chavan S, Dhampalwar S, Trivedi T, Moulick N. Snake Bite Envenomation in a Tertiary Care Centre. :5.
- Eslamian L, Mobaiyen H, Bayat-Makoo Z, Piri R, Benisi R, Naghavi Behzad M. Snake bite in Northwest Iran: A retrospective study. Journal of Analytical Research in Clinical Medicine. 2016 Sep 10;4(3):133–8.

74. Agarwal S, Kumar H, Kumar US. Haematological and Coagulation Profile in Snake Envenomation. In 2015.

OFFICE OF RESEARCH INSTITUTIONAL REVIEW BOARD (IRB) CHRISTIAN MEDICAL COLLEGE, VELLORE, INDIA Dr. Anna Benjamin Pulimood, M.B.B.S., MD., Ph.D., Dr. B.J. Prashantham, M.A., M.A., Dr. Min (Clinical) Chairperson, Research Committee & Principal Director, Christian Counseling Center, Chairperson, Ethics Committee. Dr. Biju George, MBB.S., MD., DM., Deputy Chairperson, Secretary, Ethics Committee, IRB Additional Vice-Principal (Research) March 14, 2017 Dr. Jess Elizabeth Rasalam, PG Registrar, Department of Transfusion Medicine, Christian Medical College, Vellore - 632 004. Fluid Research Grant NEW PROPOSAL: Characterisation of Venom Induced Consumption Coagulopathy (VICC) in patients with Sub: Haemotoxic Snake Bite and the effects of Blood Products on Coagulation Parameters. Dr. Jess Elizabeth Rasalam, Employment Number:21325, PG Registrar, Dr Joy J Mammen, Emp. No.: 14379, Professor & Head , Dr. Sukesh Chandran Nair, Employment number: 13758, Professor, Dr. Nitty Skariah Mathews, Employment number: 20774, Assistant Professor, Department of Transfusion Medicine and Immunohaematology, Dr. Anand Zachariah, Professor and Head Department of Internal Medicine) Dr. J.V.Peter, Professor and Head, Medical Intensive Care Unit, Dr.K.P.P.Abhilash, Associate Professor, Department of Accident and Emergency, Ms. Tunny Sebastian, Employment Number: 32291, Lecturer, Department of biostatistics. IRB Min No: 10467 [OBSERVE] dated 05.01.2017 Ref: Dear Dr. Jess Elizabeth Rasalam, I enclose the following documents:-Institutional Review Board approval 2. Agreement 1. Could you please sign the agreement and send it to Dr. Biju George, Addl. Vice Principal (Research), so that the grant money can be released. With best wishes, Dr. BIJU GEORGE Dr. Biju George MBBS...MD..DM. SECRETARY - (ETHICS COMMITTEE) Institutional Review Board. Secretary (Ethics Committee) Institutional Review Board Christian Medical College, Vellore - 632 002. l of 4 Cc: Dr. Joy Mammen, Dept. of Transfusion Medicine, CMC, Vellore Ethics Committee Blue, Office of Research, 1st Floor, Carman Block, Christian Medical College, Vellore, Tamil Nada 632 002 Tel: 0416 - 2284294, 2284202 Fax: 0416 - 2262788, 2284481 E-mail: research@cmcvellore.ac.in

		RESEARCH VIEW BOARD (IRB) DLLEGE, VELLORE,	INDIA
J. Prashantham, M.A., M.A. tor, Christian Counseling Ce person, Ethics Committee.	, Dr. Min (Clinical) nter,	Dr. Anna Benjamin Pulle Chairperson, Research Cor Dr. Biju George, M.B.B.S., Deputy Chairperson, Secretary, Ethics Committe Additional Vice-Principal	mmittee & Principal MD., DM., ee, IRB
	Qualification	Designation	Affiliation
Name Dr. Biju George	MBBS, MD, DM	Professor, Haematology, Research), Additional Vice Principal, Deputy Chairperson (Research Committee), Member Secretary (Ethics Committee), IRB, CMC, Vellore	Internal, Clinician
Dr. B. J. Prashantham	MA(Counseling Psychology), MA (Theology), Dr. Min (Clinical Counselling)	Chairperson, Ethics Committee, IRB. Director, Christian Counseling Centre, Vellore	External, Social Scientist
Dr. Ratna Prabha	MBBS, MD (Pharma)	Associate Professor, Clinical Pharmacology, CMC, Vellore	Internal, Pharmacologist
Dr. Rekha Pai	BSc, MSc, PhD	Associate Professor, Pathology, CMC, Vellore	Internal, Basic Medical Scientist
Rev. Joseph Devaraj	BSc, BD	Chaplaincy Department, CMC, Vellore	Internal, Social Scientist
Mr. C. Sampath	BSc, BL	Advocate, Vellore	External, Legal Expert
Dr. Simon Pavamani	MBBS, MD	Professor, Radiotherapy, CMC, Vellore	Internal, Clinician
Dr. Jayaprakash Muliyil	BSc, MBBS, MD, MPH, Dr PH (Epid), DMHC	Retired Professor, Vellore	External, Scientist &Epidemiologist
Ms. Grace Rebekha	M.Sc., (Biostatistics)	Lecturer, Biostatistics, CMC, Vellore	Internal, Statistician
Mrs. Pattabiraman	BSc, DSSA	Social Worker, Vellore	External, Lay Person
Mrs. Sheela Durai	MSc Nursing	Professor, Medical Surgical Nursing, CMC, Vellore	Internal, Nurse
Dr. Balamugesh	MBBS, MD(Int Med), DM, FCCP (USA)		Internal, Clinician

 Ethics Committee Blue, Office of Research, 1st Floor, Carman Block, Christian Medical College, Vellore, Tamil Nadu 632 002

 Tel: 0416 - 2284294, 2284202

 Fax: 0416 - 2262788, 2284481

 E-mail: research@cmcvellore.ac.in

OFFICE OF RESEARCH INSTITUTIONAL REVIEW BOARD (IRB) CHRISTIAN MEDICAL COLLEGE, VELLORE, INDIA

Dr. B.J. Prashantham, M.A., M.A., Dr. Min (Clinical) Director, Christian Counseling Center, Chairperson, Ethics Committee.

Dr. Anna Benjamin Pulimood, M.B.B.S., MD., Ph.D., Chairperson, Research Committee & Principal

Dr. Biju George, M.B.B.S., MD., DM., Deputy Chairperson, Secretary, Ethics Committee, IRB Additional Vice-Principal (Research)

Dr. Santhanam Sridhar	MBBS, DCH, DNB	Professor, Neonatology, CMC, Vellore	Internal, Clinician
Mrs. Emily Daniel	MSc Nursing	Professor, Medical Surgical Nursing, CMC, Vellore	Internal, Nurse
Dr. Mathew Joseph	MBBS, MCH	Professor, Neurosurgery, CMC, Vellore	Internal, Clinician
Dr. Thomas V Paul	MBBS, MD, DNB, PhD	Professor,Endocrinology, CMC, Vellore	Internal, Clinician
Dr. Vivek Mathew	MD (Gen. Med.) DM (Neuro) Dip. NB (Neuro)	Professor, Neurology, CMC, Vellore	Internal, Clinician
Dr Sneha Varkki	MBBS, DCH, DNB	Professor, Paediatrics, CMC, Vellore	Internal, Clinician
Dr. Sathish Kumar	MBBS, MD, DCH	Professor, Child Health, CMC, Vellore	Internal, Clinician

We approve the project to be conducted as presented.

Kindly provide the total number of patients enrolled in your study and the total number of withdrawals for the study entitled: "Characterisation of Venom Induced Consumption Coagulopathy (VICC) in patients with Haemotoxic Snake Bite and the effects of Blood Products on Coagulation Parameters" on a monthly basis. Please send copies of this to the Research Office (research@cmcvellore.ac.in).

Fluid Grant Allocation:

A sum of 1,00,000/- INR (Rupees One Lakh Only) will be granted for 2 years. 50,000/- INR (Rupees Fifty Thousand only) will be granted for 12 months as an 1st Installment. The rest of the 50,000/- INR (Rupees Fifty Thousand only) each will be released at the end of the first year as 2 nd Installment.

Yours sincerely,

Dr. Biju George Secretary (Ethics Committee) Institutional Review Board

Dr. BIJU GEORGE Institutional Review Board MBBS. MD.. DM. SECRETARY - (ETHICS COMMITTEE) Institutional Review Board, IRB Min No: 10473 [DIAGN@] dated 05.0 t 2017 Vettore - 632 002.

4 of 4

Ethics Committee Blue, Office of Research, 1st Floor, Carman Block, Christian Medical College, Vellore, Tamil Nadu 632 002 Fax: 0416 - 2262788, 2284481 Tel: 0416 - 2284294, 2284202 E-mail: research@cmcvellore.ac.in

Figure 45: Indian Cobra (Naja naja)

Figure 46: Common krait (Bungarus caeruleus)

Figure 47: Russell's viper (Daboia russelii)

Figure 48: Saw-scaled viper (Echis carinatus)

	meets of naemotoxic sr	Consent Form	ctive observational stu	αγ
Nes	stigator: stigator: stigator:			
			Please initial each box & sig	gn at botto
1.	I confirm that I have read at the above study. I have had questions and have had the	the opportunity to con	sider the information, ask	
2.	I understand that my partic at any time, without giving rights being affected.			
3.	I understand that relevant s collected during the study r CMC Hospital. I give permis records.	may be looked at by res	ponsible individuals from	
4.	I consent to my data being	retained if I withdraw fi	rom the study	
5.	I agree to take part in the a	bove study.		
	Name of patient	Date	Signature	
	Researcher	Date	Signature	

	I. Patient Identification		
1.	Name:		
2.	Hospital No:		
3. 4.	Address: Place:		
5.	District		
6.	Age in years:		
7.	Sex: M F		
8.	Occupation:		
9.	Time of bite:		
10	. Date of Bite:		
11	. Date of admission:		
12	. Time of admission:		
	II. First aid and outside treatment		
13	Where / name of the Haspital;		
14	. Type of Hospital: PHC _ CHC _ District Govt. Hosp Priv	ate	
15	. Incision over the bite site: Yes No		
16	.Tourniquet: Yes No		
17	. If yes then the site of application :		
18	. Time duration of application of tourniquet:		
19	Number of tourniques:		
20	. Immobilization of limbs Y N		
21	Whether any other traditional treatment has been availed	Yes No	
			1
			-

22. If yes then details:	
23. Compression bandage, Y N	
24. Tetanus toxoid: Y N	
25. ASV administered outside AY N	
26. If yes, number of vials:	
III. Identification of the snake	
27.Was the dead snake brought along	
28. If yes, which snake species is it?	
29.Local reaction at site of bite: Y N	
30.Site of bite:	
31.Were fang marks visible: Y N	
32. Was there local swelling: Y N	
33. Local bleeding present: Y N	
34.Necrosis at bite site: Y N	
35. Surgical debridement: Y N	
	2

Cryoprecipitate	
Blood Product	Number of units transfused
44. Blood Transfusion Required: Y	N
43. Time to normalization of clottin administration of ASV }	ng time:hours (from, the time of
42. Other sites of bleeding:	
41. lcterus: Y N	
40. Hematuria: Y N	
39. Pallor: Y N	
38. Bruising: Y N	
37. Mouth/GIT: Y N	
If yes fill item below, sites of ble	eeding:-

Platelet Rich Concentrate		
WB/RC/LDRC		
45. Neurotoxicity: Y N		
If yes fill item below		
Drooping of eyelids: Y	N	
Loss of consciousness /altered sen	esorium: Y N	
Respiratory paralysis: Y	_ N	
Ophthalmoplegia: Y N		
Diplopia: Y N		
Needing ventilation: Y	N	
Duration of Mechanical ventilation	i:days	
Muscle weakness of limbs: Y	N	
Neostigmine administered: Y	N	
46. Anti.ucnom administration: Y	N	
Treatment before administration: Indigenous	First aid Tourniquet Immobilizat	tion
	POONAD.	mber of
vials:		
Second dose of ASV administered:	Y N Number of vials	
Maintenance dose of ASV administ	tered: Y N Number of via	ils:
47. Any evidence of organ failure -	liver/ kidney function deterioration Y	N
Dialysis required: Y N		

Recovered			-					
Discharged against i	medical adv	ine: Y	N.					
49. Cause of death: _								
49. cause of death: _								
Parameter	Baseline	6hrs	12hrs	18hrs	Day2	Day3	Day4	Day5
WBCT					-	-	-	-
MACTV								
Hb								
Platelet Count								
PT with INR								
APTT								
Fibrinogen								
Schistocytes								
Urea								
Creatinine								
CPK								
Urine analysis								
RBC/Blood								
ADAMTS 13								
D dimer								
ASV – No. of vials								
FFP- No. of units								
Cryoprecipitate -								
No. of units								
PRC - No. of units								
WB/RC/LDRC - No								
of units								

						000										500								W	000									uu			300 600							009								88600		
						10										200 200									92						40						1000 4300 800 2							10 900								07		
20	50	200	500 200	50 7	20	10	2	87	8	m7	20	50	20	20	50	8 9	87 6	50	20	20	82	2	87 5	m, m	1 1	50	20	22	87 5	50	10	200	8 9	m7 U21			9	87 6	07	20		50	0.0		87 8			20	1210	07 E	18.90	1610		50
																																		13 160	129 15 100 3.0	15 260				1250 115 3310		97	51	2	11.9 1.0 37.8	1	139 12 116 20		1	11		10	87	12
																																			12.00 160000					1190 X0000			10.10 20000	110	mmut		3	1290		00097 0711	66.20 11.20 2600.00		12.10 940000	
																																																			9 ID90 X50			1150 2.20
																																																			1130 100000 9400 129			B40 124
\$10						3748	8, 1	2910 2012	3	8	300	8	8	3160	-	220		8	310 1680	9		3070		010 ULU	10 283			052	100	8	2640		-	10 MI			00 4610 16020	00	3		310		40.0			am and	*	2.80	40	00			320	
200 124 120 200 110 2	95					11.0 1.04 3	51	ISI at	NOT STI	179 11.00		117 1050	117 1050	119 1080	B30 123 1130	11	1150 115 1160 1170 110 2000	122 1100		550		120 104 3	5	1 001 124 120 9	1 11	123 1120		1050 057 2	W# 77		Ξ			3 2	110	127 110	120 1120	110 000	5		D.70 153 1190 3					2010 155 1060 2	000	D10 156 1120 3	143 11.70	12 100 4	4		192 1140	5m 14 0m
940 B10			220				1350 90000								10,0				8	2					1 2			630						mmm nsn mm	8	11.80 120000		80	1857		170000			ş	12.00	88			1150 1260 320000		00	9		
24.9	1180 26.30				1180			119 253	151		120 380		33.0	1160 2500	28.20		1130 2940	022 011			2640	110 270	10 210	CU 204		22.50	47.90 41.30	220	1160 3730 10 mm	110 330	1150 2560	(3) 3330		1140 2040	8	1200 31.10		2980 135.00	1150			1180 30.00		1110 328 1550			12.10 33.80		1240 3500 11		1800	0.72	7387 MII	
200000 2310 205 1	1810 16	001 100		010050	13	1370 1.77	5	001 51 51 51 51		Ľ,	1800 168 1	1000	16	13	2020 186	8	5 5		16	<u>18</u>	1200	6		1 01 120 12 1	1 20	3	13	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2	5		8	1 m7 m72 uuuus		2050 189	1190	3	1310	070005		1860 17 1		1880 13	\$	100	150 18 1		3130 280 1		001	100010 1240 115	2	
200					110			181						120 131		110 630			00 1150 113					010							240 151			100		1350	22			05 057				051	81				B50			000 14.60 1100	1751	
58 18 MJ 50 18 MJ		180 0.81	20 03	50 05	00 00	5	5	26.0 3.8 699 scm nm		20.0 T40	21 D2	50 67 280	0.01 45 0.0	50 14		87 3	2670 341 3940 1670 046	5 5		26.10 2.66 49.10	150 0.0	8	10 10 m	mc7	655			20 61 330	26.0 10 xx xx		00 00	50 16	88 9	00.0 1.0 189 NT 192 189	18	5	61 5430	80 12 x1 12	50 0.9	50 12		11 00	2670 133	a :	26.0 6.1 45.9 36.0 13				13 23 5180 22 23 5180	18 18	012 473 310 363 423 310		017 019 557	8
12.00 12.40 2 13.50 44.50 2	1 21			1 1	~	12.80 180.00	12.70 180.00	500	ura uru	010 2010	1 1	1		2250	8	BS0 550	12.20 91.00 11.00 X 550	200 1800	1230 18000	12.40 1050	1050	;		8	98	12.40 60.00	230	81	170 260	040 2620	~	00	8	0.02	1120 66.30	570 410	16.80	250 300 x 10	2.0	2.40 2	B30	070 070 071	200 350	3000	15.00 180.00 71.60 X M	000 1800		1130 3400 2	130	1.40 2.40 2.	210 1500	260 ame	1240 1800	110 210
20 200 100 10 200 100	10162	1080	_	20 1380 127	10				w st	074 0494 001		200 2000 200	10 200 200	10 8000 700	10 2210 208	10 7450 678	100 3040 279 100 1460 136		200 2000 200	10 4850 442	10 1820 18		200 1750 155	313 U395 W1	10 7010 637	200 2000 200	10 2050 152	-	100 1580 1.44 100 700 000		10		10 4140 378	NUS NOSE ULT ULT DATE ULT	10 1860 1.7		10 1240 115	100 2410 221 70m 700	uuu uuua 87.1 05.91 01	10 3440 315	200 3660 335	100 7180 652	10 1480 137	10 1920 17	10 200 100 m	200 2000 000	10 200 100	10 3150 285	20 2830 254	717 717 117		10 4200 37	100 4820 424	12
150 15000 1450 25000	000037 097		D10 235000	560 1140000	820 250000	240 6000	880 230000	840 8000	mum2 M2	D10 17000	10000	134000	B50 190000	5.70 184000	H30 194000	510 18000	B.70 23400.00	010 15000	B40 12000		R10 26000	13000	120000	1750 1750000		000000 076	12000	N-30 220000	D40 15000	E.50 27000	10000	9.00 160000	2000	1000 1000 M	5.00 12000	2000 20000	0000/ 0/3	530 35000	1940 2000	MS0 130000	5.30 25000	R30 23000	100000 00000	1100 320000	1330 250000 Muni	00000 17.0	¥20 12000	1340 260000	2000 3000	1240 350000	140 15000	DE 1	BAU 124000	1000
100 200 260 340	1000 2000	1600 1600	1000 1000 1000	1000 2000	1000 2000 1	1000 2000	800 1800	2000 1001 1001	mot mot	10m 30m	08 08	2000 2000	1600 1600	1000 2000	1000 1000	20 450 20 450	130	08 08	2000 3000	2000 2000	1000 2200	1600	100 250	mur mur	220 220	1000 1700	1000 24.00	1000 2500	00 I40	800 1800	1000 1800	1200 1200	1400 1400		01 01	2000 2000	1900 2900	1000 1000 1000	00 180	1500 1500	8	100 1100 mm	200 4900	1000 2000	100 300 mot	1000 1000	1000 1800	12.00 20.00	200 200 200 200	100 200	1000 2000	14.00 16.00 10.00	1500 Liuu	mut mut
10 100 10 100 10 10	1 8		8 9	1		ŝ	8	<u>8</u> 8	8 9	m m m		-		8		8		+	8		8	-	8		3	8	100	10 1500 10	8	00 100 10	8	10 10	\$	8	-		8	5	100 1500 100		8		8	8		3	8	8	10 10		1 2	100 200 100		+
00.03	3000	1000				2200	DILIO	00900	with	0000	16.00	-		200	-	-	0310	+	678.00			162.00	15.00	MILL N	50				+	80.00		3600	-	1000	-	48.00 0.30	233.00 5.00	-	24110 533.00 030	830.00	0000	+	293.00 16/0/0	18(200	4800	2UU			10.00	WW	3000		3000	
81 81 82 82		10 20	10 10 10 20	8	10 20	<u>11</u>				4m 7m							10 50							mca m7	107				01 01			8		m7 m1		20		10 50		200		10 70	20 2930	82	10 20 154.0		3			m7 m1		3 5		1
	2	82	2 2	3 2	500	8	2		3 9	9 E	3 8	87	200	82	2	8 3		3 2	200	200	50	3	8	3 5	1 2	87	8	8		3 2	200	8	8	3 E	12	8	<u></u>		3 5	200	8	3 2	80	2	8 8		2	8	8	8 8	. 02	200 200	3 8	1
97 97 97 97						100		8 8			3	2	002	92		s :	8 9		8	8	2	3		3 5	9	8	8		s :		8		s :	3 2	13	8	3	<u>s</u> s	3 3	2		3 3	ä	3		90	9	8	93	3 2	3	100 100	3 3	1
07 01 01 01			07 U		200 110										00 10									m U		20		50								200 110			n 91													01 M		
10 10 10	1 01		01 U		10 20															10 20																																01 0 01 0		
2001280	2	110180	1001300	100180	1001	05002	10050	001007	11040	m usiu	07	101	TIONOPHINE	0007007	8	00730	0500 10100	001	10130	200250	200160	200120	1080	m m	70180	200180	200160	100180	200100 100100	10120	100250	110160	2001400	N911017	10,01	10030	10043	1013 1010	100100	11040	100 NDNGH	10201	10180	110180	100150	200190	10180	110100	200100	001007	1001800	1001510	0701 100400	ş
01/13/2015 00:00			01/10/2005/00/00 m/m/mmmmm		01/10/2016 00:00					utuduuteuuu							010620060000						0107205000						01062016 0000					utuskupman				0104205000		01/03/2016 00:00		000090020010			0101205000					utitytop man			utvigitors and	
릴클	문																6	- 8	10	5			ē	- 16																							신문	2	골르	금니 수	문문			1 =

11.00 1.00	3310	120 118		017 011 01277 (5.27) 56.0 (5.01 (0.000)001 0127		007 	107 JUL 101 101 101	077			101 0.8	056 35.00			1190 11		99	50	120 13		120 120	012 XI U71	Not	0100 200.U	100 100 100 100 100 100 100 100 100 100		100			+	1000	5.40 35.10	120 1160 5700 4340 200	2	10 110 25.0	135 1130			2000 200 000 110 14 119 5.0 5.0 200		10	50	11 ⁹ 980 3080	3000 ISIN 15 1200 3710 3160	700 X10 710	1040 055 3130 62000	00700 0010 0010	100	811			9	mci wat	100 100 100	0.05 1621 201	000 000 000 000 000 000 000 000	0114 0117 0117 0117 0117 0267 0344 0269 011 0267 0347	140 1150 1100 2820		120 15 109 140 200	97	810 40000 1230 111 2730	13 110 2980 200		100	700	159 16 110 130 200			3191 233 1280 5110 3330		3200 3030 1040 1040 1040 1040 1040 1040
	150 13					11.9 11	2					1180 110				1680 152 1130		13.20 1.22 10.70			100 10		11 15 100	9			100 100	9			110 12								2000 1000 1340										100 11 100	3										+	1620 145 1120		9	1860 166 1220	9						12.10 110	3360
				my.		4.10	164									1030									cum	3																														3						24.00	12.30 150000									83.10 10.60 6400.00
1500 146 11130 3120			1340 13 110 340			1630 1.22 1140 526		1330 1.55 1099 29.00		1240 115 51.0	14	16 1090					1420 13 4230				1200 118 1100 72.00				5	1100 110	n,	401 411 411 VIII	17										1000 1180		13 119	12 117	10 120	7560 2.59 12.40 10.00 43.40		550000 1660 1.8% 11.8% 10.00 39.00	MN07 (011 021 0001			w **	MC7 (C71 Q1 0751			w., C)	MC7 KTT AT MCT	13 113		1670 1.48 11.40 25.60	12 120		480000 1630 146 1100 3120	2120 1.9 1140				7900.00 1680 1.5 12.10 34.80			10000 1560 140 14630 5350			940000 2660 244 13.20 49.20 33.40 83
			8										7150		42.80									4.0	arvo						3		410 1940 1440							1430			1500			0.6		010	85	875						110	97.40				811								3480 2070 1270		_	33.10 11.60
				100	077 27	115 121 310	INU III						16 119 348		18 116 503		25	15 1160 3020			18 110 210					877 01							19	5	15 110									3.5 12.40 10.00			10 112	12 110 720	m11 w0	mnr			111	1 5	5		101										13 110	13 119 2540	10 119			33 145 3340
				wu,	KEI WOY	1631 more	MD7						211		1790		150	210			12.00		12000		4.01	AU12							1540	110	021									1000			10.00	1071	1431 1400	MN7			67	19	RTT		101										189	1460	150		_	3600
3.05 3.00 27.0 26.5 111	100 H/0 1800 255 610	100 110 1800 253 610	100 1300 1800 255	100 110 1800 1902 100	222 DIU 232	211 252 113 110 110	100 TCH 120 120	100 202 999 011 000	201 200 #40 255 150 &00	11.0 \$780 B55	158 130 243	251 2240 6440 2653 218	10.00 12.10 180.00 2953	1000 18000 255 610	169 1160 3160 2653 107	10.00 11.70 180.00 2453		1000 1340 6420 2953	513 B00 3060 253 104	140 1140 3/60 2053	110 27 200	141 114 KII 244	111 140	11 000 000 011	000 000 000 000	0110 022 0000 074 071	W1 000 000 000 00	010 077 010 CTC		202 102 110	24 150	138 1140 759 253 094	126 110 230 253 174	1.79 2.70 4930 2953	10.00 180.00 2053	157 2.40 3.40 2.53					2653 000		275 350 440	211 220 3420 317	17 150 200 200 008	THE THE R. 141	ALL THE ALL THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	11	3 3	100 200 200 200	100 100 200	0.00 1000 1000 1000 0000	07C 0.0E 0000 0C7 001	000 000	30.0 UW	110 150 100 100 100 100 100 100	075 CT 101 102 107 157	10.00 11.80 18.000 30.70	100 1120 340 3070 119	1000	171 1140 1540 3070 055	1000 13.10 130.00	257 1240 1550 3070 088	0.00 2.40 180.00 30.00	236 210 2920 3070		156 1140 2.40 30.70	225 3210 X600 X070 055	172 1230 559 3070	DUDE DUDY EXS	210 0UE 0TE 650	4.71 13.40
220000 20 3420	8	8	8	3 9	3			-		15/5 m7 mnm927				14000 10 2000		12000 10 2000	300000	12000 10 2000	50	3	5	3	Ê	3 E	1 5			3 5	3	1712 MT MNN87	3	9		40000 100 2070	82		230000 20 540		220000 20 200		15000 20				-	ë			. 6			not mn mnmz		mt monti	3 3	3	1	8		9	8		8	8			200	8	8	8	287000 200 1090	
	400 100 M00 200	200 100 100 300		MI DIN DIN	110 B40 B40			100 B.0		tu 110 110 110	011 011 011	100 1400 1400	100 2000 2000	600 110 2000 2600	100 100 300	100 5.00 5.00	100 100 100 200	100 100 100	100 100 100 200	300 100 300	10 10 10	100 100 100 100 100 100 100 100 100 100	cm 100 mm sm		007 007 001	000 000 001				M7 117 M7	TTN INN	100 100	3010 110 610 210	110 13.00 13.00	110 200 200	100 800 800	100 100 100	DOG DOG DOG DOG	110 2000 2000	14.00 22.00	DO0 100 1400 1400	100 1400 1400	D10 110 510 510	100 1500	000 000 000	RM 100 DIM	000 007 001	SM 100 MM MM	0177 0176 017	00 200 200				000 000 000 000 000 000			MT 110 110	100 100	100 1400 1400	500 100 900 1400	100 200	300 100 2000 200	100 800 100 100 200	200 100	100 1000 1000	100 8.00 8.00	100 100 200 200	100 1500 1500	B00 110 2.00 300	700 100 14.00 24.00	110 100 100	800 100 1500 1400
	20 20 10 20	20 20 10	8, 9	m1 m7 m7 m1	n m7 m1 m7 m7	m1 m7 m7	m7 m7 m7		DT 07	mt mt m7 m7	200 700 700 700 700 700 700 700 700 700	20 20 10 10	200 200 100 200	20 20 10 10 260	20 20 10	200 200 100	20 20 10 10	200 200 100	20 20 10 20	20 20 20	mr mr	3m 2m	100 100 100 100 100 100 100 100 100 100	mmes m7 m1 m1 m7	m7 m7 m7 m1	m7 m7 m2 m2	m1 m2 m1	m1 m1 m2 m1	mrari m7 m1 m7 m7	m1 m1 m7 m1	1777 m7 m1 m1 m1	10 10 20 20 164.0	10 20 10 20 1010	10 10 20 20 24600 1	20 20 10 20	20 20 10 20	200 200 100 200	20 20 10 20	20 20 10	10 10 10	200 200 100	20 20 10 20	20 20 10	to to 200 Store	20 10 10 20 1620	10 JU 10 JU	100 101 101 101 101 101 101 101 101 101		m1 w1 w1	m7 m1 m7 m7	m1 m2 m2	m7 m1 m7 m7	m1 m7 m7	07 W347 W4 W4 W4 W4	m7 m5 m7 m7	m1 m1 m7 m7	m;	20 20 10 20	20 20 10	20 20 10 20	200 200 100 200	10 20 10 10 790	20 20 10 20	20 10 40	200 200 100	20 20 10 10	20 20 10 20	10 20 20 10 20 600.0	10 10 30 20	10 20 20	20 20 10 20	200 200 100
100130 110 200 200 100 200	01 02 03 03 03 03 03 03 03 03 03 03 03 03 03	100 200 100 55 20 50 50	07			ni si ni si	mi si mi si mi si mi si			m1 == m7 == m7 == m7 ==	01 07 007 001	100 200 200 10	00 110 110 20 10	100 100 100	100 200 200 100	200 200 100	200 200	200 200 100	100 100 100 100	10 10 10 10			100 100 100 100 100 100 100 100 100 100					m m m m	01 07 07 07			100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	100 100 200 100	100 200 200 100	100 100 100 100	100 100 100	100 100 100 100	200 200 100	100 100 100	200 200 100	100 100 100 100	100 100 200 100	01 01 01		m to the test		100 TR	017 007 007 007	mi și	mT m7 m7 m7	m1 m7 m2 m1	m1 m2 m2	m7 m7 m7		01 07 07 07		100 100 100 100 100 100 100 100 100 100	100 100 200 100	100 200 200	10 10 10 10 10 10 10 10 10 10 10 10 10 1	100 100 200 100	100 200 100	100 200 200 10	0 100 200 200	100 200 200 100	110 200 200 100	01 01	100 100 100 100	100 100 100 100	E0 110 210 210 110	100 100 100
0000 502,60,10	0000 502 6040	0000302/60/00	0106/302/0000	utug mpanga	nungry byto	utug mpana		ntref and more	ntury and units	ngan gar baha	optice and the	01/06/2015 00:00	0106/302 0000			\$5009933F 01012050000 20	8109684F 0107105000 11		00012050000	0106/205 0000	mindmismm	UNE THE WAY	mind min	nmar bito		minut and units	which was a with	utun ava javivu	nmar bito	non gir kolin	non gry John	otod/302 0000	0000 502 40 40		0103/205 0000	0103/305 0000		107.009633F 01/01/205.0000 2.0			11 0000 202 holy 202 0000 11	0101/205 0000	0000 #000,001,00	DATE OF COMPANY	0111/204.0000	M/11/204 mm	onm are trito		onman/the	nom sra hr.hn	non sn hr.hn	onter print	TT NON-STP hith IOOSONTTT	onm are ht ho	nom sro koho	nom stra jours	nom sra bohn	0000 #02,90100	0000 1007,80,100	0000 1007,93100	0000 1107 (30/10	0000 1102 (30,100	0000 1707 (30/10	0000 1102 (30,100	0000 1502 (10,100		0100,000,000	0000 1000 /0010	0000 1102 (Jaho	0000 1007, 2010	0000 1000 1000	0000 #02 90/10

													200														009																																				
	8						1	8			07		92	ę9													07													5	Ŗ				100 L00 L00	2	2					8	mr.										
007	4.2 110	200	07	S :	100 100 100 100	1	87	8 5	3 2	3 3	8	97	1870 110	81	8	8	8	5	8 9	3	3 2	1 2	8	1 22	8	1	18	97	07	200	200	200	007	50	8	3190	82 9	8 9	8 5		3 5	3 2			8	1 2	1 3	22	97	200	+	017 017		# #	1 3	1910 200		07	S :	5 5	3	97	007
260 16 250 230	15	BS0 1.B 100 530			89 13 18	29 10		20 IS						00 2.70 115 11.70 20.0		B40 120 520		200 109 200		175 NCTI 51 NCT	71		M.S. 13 110 X10	1									11.60 106 & 2010	13 1180		00 1180 108 2530	-	BAD 13 1150 2840	2	100 000 000 000 000 000	2				10 1 10 11 11 11 11 11 11 11 11 11 11 11	3		10	320 120 200 200		180 108 2500	140	e ș	9	108	230 12 200		5.0 13 1140 330	1	10 10 120			250 11 250
					UUUUSS 032								11.00 1100000														31100									850 110000										050																	
0 216 320 37.0 3080				=	913		0 142 2.10						107		0 156 240 308		0 158 1150 2820 5400										0 116 1140 230			0 122 1150 250		0 155 2280 25.00		0 1000 1230 18000 2800				-	0 TZ 170 0		11 PER 2011	з																			0 146		
1060 6400.00 23.00				12.0	2		15 80					151	220		110		£100.00 179										7800.00 12.0			148		1130		100					mei	100	1.0 A.0	5																			16.0		
0.23 0420 0124 0.61		12.70 31.70		1200 3440 22000		12.40 3550	1190 2500		911	11.80 4360 22.20 62.20			1570						1190 3120		0102 051			1680		1190 3510		1200	12.30 2550		12.10 2040				1240 2440 659							1140 3000	3			12.50		1050		1160 2630				1810		3870 2650			110	000 1010	8	12.50	1180 2400
1160 940000 2660 244		220 220		520 13			3.20 1.20			100 IS			B20 12						EI 0.4		NU 100			11 020		13.70 5.40 1.20			\$50 1.6		0.20 1.9				\$10 1£								011 050 011 010		og Rmm	830	520 14			B.00 1.B				R41 17		260 13			510 13	9) 90			320 120
33.10 33.10 A120 2050 35.00	200		1120 5150 3520 45000	:	360	0102 0035 0					0 2560		0 2930		0 2650					067 071					13.00 7590 10900	168	095 072 050							1340 2000 5.10					0.21			1111 1111		un un	097			11			1130 2200				0 2550		0 1810			0757 0			
\$600 3.31 14.50 n.10 1.00			#000 250 1.8 11		1	DA0 13 1240					21.50 2.00 13.40		3050 2.55 13.10		200 1.8 129	2		5	-	71 %T NF/T M/M/TI				8	840 18 13		310 26 127							12000 2020 13					2010 1180 117			2	TT - 57T - 10/07	2CU 12 170	3	350000					520 13 11				230 12 120		340 230 1270		1	720 135 1240	34.00 2.5		
15.00 25.00	. 8	0	37.0	8	3640				10 M	3	2500		50 200	8	0522	9						0%U	080	8			0 000 2.0		1900				38.80	2500	012			63.0		e	mna	wuw.	3		WW.	3		17.00				11.11	0007	878			2300	8					
380 307 15 2	200 307 309 7	8000 307 586 8	30.70 146	3070 368	2000 30.70 536 30 4090 30.71 132 7	300 008		300 300 10	11 MM	3070 102	30.0 2.2	200 2012 002	2000 30.70 535 5	30.70 5.86	30.70 585	3070 586	200		300 318 15	91 915 NG	UI 2112 UV22	112	112	318	20 218 09	20 218 08			2000 318 57 2	80 318 085	3320 3.18 1.08	200 315 022	4820 318 15 3	2000 318 5.7 2	318 ST	1		818 91	340 318 110 100 316 000	3110 U3U	8 11 11 11 11 11 11 11 11 11 11 11 11 11	20 3LIS U2 10 215 CT 20	07 IIC 0TTE 0000	1 1	100 0TTE	318 000	2500 315 080	318	80 816 052	160 STE 0532	817 1	9 P	an ore ont		20 318 055	318 5.T	31.18 S.T	31.8 3.4	318	2370 3.18 0.16 **** ***	000 0TT 000	318	3370 3050 110
4.1 13.0	140	100 140	17 118	18 118	100 1430	25 13.0	13 119	97	12 110	115 119	43 140	151 1190	10.00 18.60	1000 1310 1	88 1330	1000 1400	2.0 12.9	27 130	110 121	0271 027	e.	0.01 0.01	1340	1	13.60		0 7.6 140 2	148 1290	1000 1300	10.0 13.0	3.6 13.5	608 13.20	1.0 12.0	100 1350	1000 1260	12 128	130		6 1251 92 92	7 MCT 07 N	00 f4 153 10 0 10 10 10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3/6	3	120 1140	13 130	2.5 13.0	13	255 1270	811 81	000 201	971 971	1.8 11.8	100 1380	1330	236 1330	13 123	13 13.0	32 151	45 130	1.6 12.6
30000 100 3100 3100 100 3100	1 1	8		9			<u>s</u> :	M000 10 301	3 5	3		8		8	8	2	8	8	Teau Lu Lu Lu	3 5		8	18	1		70000 F	100000	120000 10 280	8	500			8	ä	-			25.000 10 5.	20000 10 20			3 5	01'4' W1 W0000	3	Untu WUUU	ä				D4000 10 X60		2/WUW 2/WUW		3 E	1	8	10000 10 1200	7000 %	1	Z4000 10 20%			8
34.00 B.D nm 021	1 22	000		8	202	30	8	NI DUI		9	800	999	300	B8	20	g	g	8	3 3	3	177 MW	18	000	1 8	99		109	8	800	8	99	38.00	00	906	×	3			BUU 12.0		Ng S		374	800 007	1 2	9	1 3	200	3.00 0.00		9	ALL WA	na au	0.07 M.C	1 8	90	800	300	300	200 580 mm	1 3	8	200
10 800 10 160	1 1	800 100	500 100	800 100		100 10	200	N.	101 mm		8	8	81		8	8	8	8			+	1 5	19	19	9	1 5	-	200 100	8	8	200 100	8	10	8	3	3	3		500 100	8	m m	mi mi	010 Tm	1 E	1 E	1	8	800 100	100 100	200 100	<u>s</u> :	1	m1	30		8	800 100	81		B1 8	8	81	200 10
805.00 1 Arstm 1						10400	0080	8	17 m	19	180						2300	~1		mms	1 t					100		18:00		25.00 2			23.0		106.00	<u> </u>	07 0050	-	Ultra I		2011			m crim		3	10.00	748.00 100	07576	50	1800	m zaz	ş	m7 mrgs	1		-1	1800	53100 68100 1	+	ma		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
200 100 200 200 100 200	: 3	81	8	8		300 200	01 01		m 1		10	8	100 200	8	8	8	8		01	n7		1 5	1	1	1	101	007	100 200	8	8	ä	8	100 200	10 20	10	9 9 9 9	01	07 5		m 10	m 1	3 5	3 E	10 m	001 UL		1 01	100 200	100 200	10 200	9	n1 10		m 1	1 1	8	8	100	81 82			8	8
20 20 200 2	100	10 200	200 200	10	07 07	100 1100	200 200	017 017	m1 m1	10 200	200 200	10 200	200 200	200 110	10 200	200 200	200	87	017 017	MT 44	M7 M7	00	200 200	200	100 200	01	100	200 200	200 200	200 200	100 200	200 200	200 200	10 200	200 200	01 01 01 01	017 01	07 F	017 m7	017 m7	017 MT	M7 M7	m1 10	007 mT	017 m1	200 210	1 01	10 200	100 200	200 200	200 200	M77 m7	100 T	100 T	07	200 200	200 200	200 200	700	077 07	200 210	200 200	10 200
10 100 100 20	101	100 110	001 001	100		100	01		uu 10	101 101	200 110	100 100	100 110	200 110	100	200	10		011 007	MT 007	uu 100	10	101	9	10	10	101	011	200 110	200 110	100 110	100 1100	200 110	200 100	200	01 5	011 001		m m	017 017	m s	10	011 011	MT 001	007 001	ai 01	1 21	100	100 110	100 110	200	m s	MT 001	m 01	1 01	200 110	100 110	100 110	91 91		MT 01	200 110	100
10 10 10 10 10 10	1 3	8	8	8		8	8		1 5	3		8	Ħ	8	8	ä		3	8 3	3 5		1 2	13	19	8	1	19	3	8	01	Ħ	8	8	8	8	33		8 3	3 3	1 2	1 2		1 2	1	1 2		1 3	8	ä		33	1 2		1 5	1 3	ä	81	10	8		1 9	Ħ	ä
01/06/201400.00 1.00					010620140000 100			mt manufating											ut museum 10		mt mnsmzhr/m										01/06/201300.00 1.00	010620130000 100	0107201300.00 1.00						m7 mmsmshnh											01/03/201300.00 100		material muteriality									01010000000000000000000000000000000000		
140.009.094/F	10.009086	18.0010025	14.0020015	16.00 90954F	16.00 994005	146.00 907634F	1010 016 25	15100 500 251	12 MORTH	19.00 90081	131.00 55555	15.00 59136	15.00 5900F	15/10/56/16	1200 540 JF	19.00 5335	1000/53456	161.00 50834	1810 HUST	100ULISED	10,110,000,010	16.00 GGAS	1810.65185	1800 8806	1800674465	1200674875	37008976	17.00 65 505	13.00 694.07	131.00 60995	15.00 G000F	16.00 80735	177.00 825.80F	18008340F	13:00 88.885	180.00 61.188F	1210 4425	12.00 44.25	120.00 60151	10000 MILET	1000 HIGH	1000110001	10000 m 01001	1004 M001	SULU TRUUE	101 00 40 M 202	10200021	19,00 40,000	194.00.64089(0	15.00 @406F	155.00 64135	10073-01161	10040 MICT	10000 TOUR	30100 02.05	20200540700	208.00 412/2 F	204.00 406615	10.00 QGGGF	205.00 24634	10000 20102	10610 37990F	35002422

12650																									82									3														4 acm	THEN											800 662300			1200
99																+							09			707				5								un mr		10 400								un un												8			50
9 9 9 9	500	100 110	200	200	200	97	B) 1		9	200	200	200	200	200	82	s :	87 9	3) 2			100 I		1	92	01 01		1		i 2	97 E			8	H 1	A1	an 1	an 1	8 E		01		200	200	200	200	82	8 :	2	MT 44	m7		92	193	012	077	200	500	200	50	<u>8</u> ;	m7	93	01 01
260					3.30 29.40											88			χw			Σm	1					300								2010	NC2	20				300				200				X40	~~~~	7160				Z 30				200	¥.10	360	W.R
120 129 120 260 146 109	51	2			5.60 1.6 1190		100 13 100							550 146 1210	ş	550 146 1210		871 N1%		11.00		11.00 110				R.00 1.19 11.9		B10 1.9 1140		411 11 MI	9				21 E		000 170				5	350 13 1140		2.70 1.5 1050		14.70 1.65 1050				120 100		R50 13 1090	!			2.0 1.6				260 13		12 100	10
																																		mnm mra																						930				80008			1010
					030 3050	8					8							-	210	2			0 2050 2040																			300			\$ 10			+		2			072 0EE					8					
		15 110	13		18 12.0 40	3		10	1	8	12 110 X00				<u>ا</u>	11		n 51 27	1 5	3			228 2020																			11			13 1050 Å	+	1.5 109 3.60	+	+	-			1060	1.000				13 110 550					
		360	240		B40	350		830	A14	350	13.20				1210 1210	1970 1970		0.04 0.04	2015	3			2010																			220			350		8	87	520				2110000					1100					
					2160													101	1007													80	83			w.	mor			3130													050										
16 1310 250				150 1210 260	25		1.00 1150								51	8	310	100 1110 200	7770		10 210	1		9 XII	+		1		1110		8		101	120 110 210 AC	851	01110 0110	1	10 77		\$10					1 1160	1160	210							9	108 2.40		13 1050						1.6 1200 2500
B50				1270000 1530 11	1200		1 103								D30 18			, with			100				040 18		1100				1 000				20	1 UT 0 UUUU		100		40000 H.T 13					D.60 17	B00 11	100 12								11.90		B60 1						1020
				10																									123	2				965 1	9 9	1210				8								WO++															1010
				99X		1290	677					12.80 34.00					1230 2540		210	1150 Z.UD		200		92	2		3000		1.2		077 U.1		3		μX	007			10	4	119					12.0		11.40 AUV	275N									140 34.00	1090	19 200			
			2	2	8	210 230 1	5					2020 1.81 1				Ę	1 22 07			R10 13 1	2		12	2				1 5	2	1 2	1 10 100	1 2	2		acu (13)	820			4.00	2	¥.00 1.28 1					200 230	5	1 N1 N2	3									2	520 139 1	ង :			
			8000																		800	i	24000						2.0	ALC A									1mmm	0.000						140000			mma 127											0000	117		
550 2500 550 2500	118 27.00	30 28.90	980	00.02 06		5.25 38.0		00			058E 055		980		515 736	-	080		231 1030	200 278		25.0			010 5660	0.02		062 063			100			10 10 10 10 10 10 10 10 10 10 10 10 10 1		100	TTK JCW	mr7 001		159 329		131 2160		590 2580	50 3140		119 30.0		001 011 NT	U899 P80	26.0			50 25.00	124 32.0		990	200 34.60		590 310	0.15 21.0	10 3630	550 44.00
2000 3020 2000 3020	3050	3050	3050	3050	3050	3050	2010 2020	3500 2050	300	3050	OSOE	3050	3050	3050	3050	SSE		\$10N	augu a	50	3020	305	1 22	1502	0502 0070	12.00	150	50	100	200	autor and	and a	100	C NUX MUS	200	auto a			200	100	3050	3050	3050	2000 3050 5	3050	3050	3640 3050 1	100	100		0508	0518	302	050E	3050	3050	3050	3050	3050	3050	65 TD 20 CO 10 CO 20 CO	200	2000 3050 5
0 100 100 0 100 100	657	268	31		Ξ	8	9 9	0 137 1180	1 23	00	90	00	57	119	5	51	83	1151 157 15			30	187	152	12	1 5	18	18	18	5	2 2	100 TO 100		2.4	1000 TO 1020	1		67 S	111		13	148	181	3		00	808		5		3 2	1 23	18	2	g		791	3	0 24 20	13	a :	NT NT NT		0 100 H.D
110 200 20000 110 200		0567 070002		8	12.30	1	100 TIL 100	ē	1 3		9	3			20000 88.0		ę		3 5	1 1		1	1 1		1	5		1	Ê	1		ţ	3 5	nut mit num	3		1	1		100000 100 22.0	9	51	1500 1500	07 070057	3	3000		01000	ę		3	t		110000 2000		8				1800.00 1.00 20	-	-	000000 1.00 2000 Namin 171
1200 1450 19	001	5	1380	1390	1350	151	24.00 1610 10 77 1620 10	1080	1 2	031		10 1240 14	1450	951	1360	3	-	2 0051 MQ1	001	A1 19	8		1 99	1190	1 6	1090	5	1 5	1¢10		121	2	8	191	ten 1		100		1 5	1 19	1350		1570	2300 1420 22		130	<u>3</u>	3	411	77 0071 0090	1091	051	1 5	1530	1340	1280		1050	140	991	7 0151 0026	121	12.00 1420 D
01 01 01 01 01	300	99	ä	8		2	0 000 001	1 8	a	a	8) M	90	8	200	8	83			1 1	8	3	98	2	1	9	13	80	2	1	and and	200	3	1 000 001	1		100 200			3	80	90%	g	00	00	200	33				1 2	8	95	3	200 400	00	99	97	8	3		â	100 200 mi
8	8	200 1200		81			100 800					81	8		100 800			3 5			u(1	9	2	9 5			1 1				3 ¢	3 5	m m m	3 5		m1 m1		11 III	101	100 800			100 1300		01 01	81 81 81 81 81 81 81 81 81 81 81 81 81 8	mi me		ug m		1	12	9	9	0 <u>1</u>	8	81	8		100 Inu		61 E
1620			0007				266UU			-	1010	015			810	-	+	myn						T	11.8 G 10	000 910 mm	1080	180		801		+	m17	mys7 m72		+	MIDE TROW	160 M				005# 00129						21(U	mana mmx	100.00		00752 U&0					210			0087	8		2000 464.00 2000
10 10 200 20 10 200	8	8	200 100 100	ä	8	<u> </u>	077 m1 m2	19	1 1	8	8	8	8	8		8		3 ÷	3 Ş			1 1		19		1 5	1	1 3	Ē	2 E	002 UL UL	a e	3 3	M77 M5 M1	3 5	3 Ş	3 5	1 E	3 E	10 20 200	8	8	ä	8	8	8	9 9	017 mt m7	3 9	017 UL UL	1 3	9	19			8	8	8	8	9	017 UI UC	1 11	10 10 200
	22	2	200	8	200	3	17 DIT 001	19	19	8	93	ä	97	200	33	33	8 8		3 5		90	18	13	12	1 2		12	1	E	1				3 2		3 2	3 2	1	3 2	100 1001	8	2	93	97	97	9	8 3	17 MT MT	3	17 TIL 17	1 2	12	13	97	97	200	8	200	2	83	17 012 012	13	100 200 mm
8 8	200	500	500	200	500	8	8 ¢		2	8	20	82	82	8	2 :	8 9	8,8	3 5	9 E		m.	12	12	12	1 5	1 5	12	1	Ē	3 5	a, e		3, 5	3 8	3 8	a .	9 E	3 8	3 6	1 1	82	ä	82	82	50	8	2	3 5	3 9	m7 00		2	1	8	8	ä	82	82	8	9 9	3 2	12	<u>8</u> 5
89 99 91 91	8	8	8	8		8			8	8	8	8	<u>8</u>	ŝ	<u>s</u> :	9 9	8 9	3 9			8	19	1 13	12	1 2	1 2	19	1 2	1 8	4 E	1		8 9	3 5	3 5	3 ÷	4 \$	1 5	1	101 101	8	8	8	8	9	8	s :	3 5	3 8		1 2	19	19	8	g	8	8	ä	100	s :	3 9	8	01 01 01
01 10 10 10 10 10 10 10 10 10 10 10 10 1			110 200																		00												m	n 10						101				110 200										100 200				100					100 100
<u>8</u> 8	10530	20030	200500	10120	SECOL	10150	untm7	20160	02	10180	20180	10120	1010	10150	101365	10150	10230	001m1	UW1W1	200700	1075	202700	10105	10130				m(m)	10160	1mcm	1000	10000	0157M	m2m1	Mura.	m+m7	1 mtm	1 m1dn	1mtm	200	10100	10	10140	10130	1001030	1000	1050	101400	0.001.007	10140	10	100160	10130	10200	20	8	10120	83	10150	1060	01/01	0500	102110
01/11/202000 10 01/11/202000 10							01 00 00 00 00 00 00 00 00 00 00 00 00 0				01/01/202/000 20							nt mmmmmkn/m																														ny uganama 10		ערעקענענענען UI עעעעעעען UI											ערע מענע איז		01/01/202/0000 10 nt/n1/nnmm 10
2010030996	213.00 309.81F	760200162	215.0030640F	7600294	20,00,02288	10,000,000,000	100000000000000000000000000000000000000	201002020	22.002677	23.00 X 706F	204.002607F	12.00.2003GF	226.00 204 5F	27/10/26126	128.00/2555	229.00.26156	1992200023	401507 01757	3000X.UU 01	74.00.61165	3KINX965	7%f0X%ff	127.00.5.054	78006800	1010000	MINIMENT	24100340836	7010142775	100 MILLING	TWIN TAKE	TK IN 2020	TRUE DIA	240102415F	100/77/07/67	1017707042	101014000	JUDULUU 131	10 W MIG	TQ M MKKG	254.00 20005	25.00 20016F	25.00 25546F	25/00/2000F	23.00 JD0.47F	110010182	280.00 JUDGE	261.00163055	10101-0121	100 M 200	160 101 50165	162001261	38200 1020	18:00 503	1810139125	200039405	271.00 1361 156	27.00 1383.5F	23.00 332 0	204.00 13 77 6F	25.00 10886	12100 1021	28002263	2/9/010126

						=																					0 30	_		30				8	
_							03										03										88	80 40		120					
				16.0																							95							9 <u>9</u>	
8	8	82	07	8	83	=	8	00	82	82	00	8	80	83	82	00	8	00	83	82	83	82	82	007	82	83	=	=	82	8	83	82	83	8	8
3	330 03	8	8	8	3	300 11	8	3200 1.10	20 03	8	8	3110 110	8	20 032	3	8	8	8	8	8	8	8	3210 1.20	3520 114	89	8	8	8	8	8	8	89	8	400 13	8
	000			_					_			3,200		_																					
_	13.00 130			13.60 124		113 11B		30 03	13.0 130		11.0 10	123 113		9.0 0.9			10.3 055						90 06	110 110	11.0 115					10.00				18.00 165	
					Num K				0000031				120000					0000Q																	000 <u>0</u>
R	1993 1	3	8	000	93	1040	000	077	8			8	1997	53	3			990					61		1	3	20	3		53				ģ	
29 192	X40 08	K0 06/2	30.0 10	A.00 081	8	330 128	8	3600 123	20 0.2	3300 113	00 10	3290 110	200 062	MII UM	306 18	8	32.00	2960 095	8	200	8	8	4130 134	30.0 17	40 15	8	8	11	8	8	8	8	8	4600 149	3100
	160	1960	1860	0081						1000				1600 1																					
_	1600 145	100	1260 115	1300 119		990 BEE		107 098	120	011	139 12	12.70 116	001	130 12	160 166		1310 120	900		100			1460 133	3130 234	230 112			1150 115						100	99 99
			OUDDED			00008		000057	170000	1370000	0000081							190000					0008			00001	00000				170000				
3	<u>3</u>	200	22	1080	5	103	951 S	83	3	1 126	953 S	1000 N	1	53	23			88	~	9	_		2 200	000	100	8	06 1	<u> 89</u>	2	83		~	8	22	3
89 27	200	200	208 105	208 09	208 099	208 110	208 115	202 13	208 087	2088 091	208 115	208 104	2000 101	208 12	208 13	300 128	300 111	309 102	300 055	300 111	300 101	300 108	300 102	300 15	300 14	300 108	300 094	300 10	300 102	300 117	300 076	300 055	300	309 121	300 055
8	019 0	002 0	0 31.00	652 0) S	800 0	00%	0.320	0 200	82	00%	8	0000	999	001	968	8	3160	200	9330	0 3120	300	3160	007	95	3340	89	388	819	909	0 2340	60	65	89	052
5	15 200	00211 002	200 1000	13 1800	Ħ	13 2000	0007 200	130 15000	161 18600	130 13200	12 200	155 1900	12 2000	50	3	8	240 15000	108 16000	88	136 1600	000 1000	60	146 1700	36 2000	13	65	60	11 200	83	ы	000 2000	Ħ	=	13 2000	11 2000
3	0 150	0 23	0 X0	1930	23	19	<u>8</u>	DEM 0	83	091 0	1680	2	0 1390		1	071	0 163	0 1180	SS:	92 0	0 80	3	053	033	22	3	0 0 0 0	023	<u> </u>	0 103	97 97	3	33	98	53
	640 160000	60 3000	8.9 2000	£9 20000	8.0 21000	14 9000	26 3000	22 27000	23 2000	23 K000	8.0 8000	23 9000	00000 65	54 2000	8 54000	A40 D6000	1.0 24000	113 11000	B.7 26000	B.N 17000	8.0 24000	20 18000	3.0 9000	3.0 2000	£1 2000	13 13000	810 19000	13 2000	¥2 20000	7.0 52000	B.7 15000	1.0 15000	2.0 18000	B.0 7000	2.0 5000
	9	300	8	13	9	XGO D	1000	1100	600	20	10000	000	5	3	2300 5.8	3500	100	800	1500 8.	8	8	000	8	8	3	1095		1000	3000 10	10000	300 B.	000	0021	8	10
65 195	13	88	0 10	40 12	N 13	33	80 100	89	N 13	91 0	9 13	89	8 11	83	90 92	30 08	01	N 03	80 08	11	81	90 09	91 138	0 39	8 11	1) 11	83	9 13	80 05	91 16	9 15	30 0.9	3	950 02	90 128
2	140 4000	42 252	26 3240	36 300	15 367	28 948	12 3150	110 1800	03 XU	43 4360	15 40	18 209	28 349	110 1800	11 209	10 230	3.0 43.0	18 200	12 259	29 349	18 550	1.0 200	11.0 489	100 121.00	116 5260	1.0 3110	12 330	29 020	13 200	118 4690	33 359	15 230	18 310	216 200	100 4940
2	00 10	000	052	003 00	00 1330	00 200	00 1340	000000	00110	000 00	0022 00	051 0	00 200	0000	0000	00 1310	00000	00 1840	00 1330	0 22	00 179	00 1200	000000	000000	00 1360	0921 00	077	052 00	00 1430	00 129	0692 00	00 169	00	00 200	0000
nnns/7	0 13400.0	0.0000	0 1700.0	0 2000.0	0 40000	0 110000	0 120000	0 100000	0 16000.0	0 15000.0	0 15400.0	000061 0	0 14600.0	0 XBBDD 0	0 250000	0 15000.0	00057 0	0 270010	0 17000.0	0 15000.0	0 22300.0	0 70000 0	0 10000	0 2400.0	0 270000	0 2000.0	0 2000	00001	0 1600.0	0 100000	0 130010	0 170000	0 1120000	0 17000.0	0 13900.0
nunda 12.	17.40 200000	15.0 15000	14.8 35000	17.8 19000	13.6 20000	11.0 20000	12.0 57000	14.5 28000	13.0 JE000	15.00 140000	13.00 190000	13.7 6000	12.10 13000	15.0 26000	16.8 20000	169 W000	14.9 Z4000	12.0 B7000	14.0 D1000	13.9 D1000	12.51 20000	12.0 26000	15.7 40000	14.2 E2000	16.2 Z1000	11.9 37000	00002 0.9	11.0 27000	14.0 9000	60 25000	16.7 2000	10.40 Z1000	14.0 140000	13.4 15000	15.9 29000
	20 20	20 20	20 20	10 20	10	10 20	10	01 01	01 01	10 20	01	10 20	01 01	10 20	01	10 20	01	01 01	10	01	100	<u> </u>	01 01	10 20	10	10	01 01	10	10 20	10 20	20 20	20 20	91 91	10	10 10
~	~	7	~		1		1	1	1		1 1		1 000		1		,1 99	1 1	1	1	, 1	1	700 T		200 T	1	1	1001			7	7	-1 99	;-1 ()	
3	2	07	07	100 20	1000 1.00	600 20	8	100	8	600 20	600 1.0	600 20	01 01	1000 2.00	8	600 20	1000 1.00	8	600 10	600 10	600 10	100	600 10	1500 2.00	1000	100	100	8	200 200	07	07	07	8	8	07 001
3	2	07	82	10	<u> </u>	10	10 12000	<u>1</u>	1000	00	10	99 81	10 4000	3	100 12000	10	<u> </u>	1000	10	10	00	<u> </u>	10 8	10	10	10	<u>1</u>	10 7000	1	10 3000	82	07	10 3000	10 3000	9 9
	8	8	00	0, 0,	.0 1900	20 20	20 20		07	0021 0.	0,	8	20 20	20 20	500	8	69	0,	015 210	8	8	8		60		8	00	20 20	015 210	600	30 30	63 63	0021	07	8
3	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	8	3	3	3	3	3	3	8	3	0000	3	3	3600 120	3600 10.0	3
400 Austellsv	500 Austellsv	600 Aussells v	1200 Swi-scale	400 Sur-sale	900 Auxiells v	2100 Aussellsv	1700 Aussellsv	500 Austells v	1400 Austells v	1200 Swiszde	1400 Austells v	200 Aussellsv	800 Austells v	500 Aussellsv	700 Aussellsv	200 Austells v	200 Austells v	1100 Austellsv	800 Austells v	2100 Aussellsv	1300 Ausselfsv	1900 Austells v	800 Austells v	300 Swi scale	1400 Aussellsv	400 Austellsv	200 Surge	1400 Swiszde	1600 Aussellsv	200 Ausellsv	200 Austellsv	500 Aussells v	1200 Aussellsv	1300 Austells v	400 Austellsv
3	3	3	3	=	3	3	20	3	3	20	3	3	3	3	3	07	3	=	=	3	9	20	=	=	20	=	20	3	3	3	3	3	3	3	3
	100 200	100 1800	100 1800	100 100	100 100	A0 50	100	100 1200	1500 1700	000 000	100 1400	1000	8.0 18.0	007 000	100 1800	160 A00	100 120	000 000	XID 300	60 160	000 000	100 200	100 1200	1200 1400	100 300	10.0 1800	10.0 200	000 000	00	000 000	120 140	00 00	100	007 D00	000
	3	3	3	8	3	3	2	3	3	3	3	3	3	8	3		3	3	<u></u>	3	3	3	3	3	3	3	1	3	3	8	3	9	3	2	3
8	Ħ	3	Ħ	10 40	Ħ	00	3	8	<u> </u>	3	10 10	3	Ħ	8	3	3	3	Ħ	Ħ	93 93	Ħ	a	Ħ	Ħ	3	10 40	Ħ	3	Ħ	Ħ	Ħ	3	3	3	a
Min i	100N	MUOT	100 reaction A	100 NN	100 NN	100 M	100 M	100 M	100 Araphyla	100 M	100NA	100M	100N	100 reaction A	100 M	100 M	100 M	300 NA	100 Araphyla	100 Stat	100 NN	10 M	100 Araphyla	100 Araphyla	NU07	300 NH	100N	MUOT	10 NN	200 NN	100 Araphyla	10 NI	100 M	100 M	100 M
	200 110	130	1500 1100	340 110	200	00	20 10	100	200	N0 110	20 II	200 100	00 10	X0 10	1200	007	00	17.00	140 110	30 10	700	200 110	20 10	200 100	300	100 300	300	200	20 10	200	80 100	110	A0 110	601	83
3	s	8	8	Ħ	8	8	8	8	8	8	8	8	8	8	8	8	8	87	Ħ	2	Ħ	8	8	8	3	8	8	8	8	8	8	8	8	8	s
N7	07 07	50	07 00	07 00	JU 20	10 10	200 100	200 200	100 20	200 200	200 100	10	200 100	10	07 07	200	200 200	200 100	20 20	01	07 D0	20 20	200 10	20 20	20 20	01	10	200 100	200	01 01	20 20	200 100	200 100	01	01 01
3	2	82	17	82	=	=	=	07	27	87	=	27	07	27	3	3	23	=	3	=	=	=	07	07	=	=	82	82	82	82	=	=	82	82	3
	10 20	10 20	10 20	01	01	11	10	10 20	10 20	10 20	10	10 20	10 20	10 20	01 01	01	10 20	11	01	10	10 10	01 01	10 20	10 20	10	01 01	10 20	10 20	10 20	10 20	10 10	10	10 20	10 20	11 11 11
3	8	=	=	8	8	3	3	=	3	3	=	=	=	8	=	=	3	=	8	=	8	3	9	9	=	8	3	=	8	8	8	=	3	3	3
TIII (CRF)	100 4240.0	100 42900	10 492.0	10 4930	100 4297.0	10 4960	100 4292.00	10220 001	200 4294.0	10 4958.0	110 4296.0	10 40090	200 4982.0	100 4081.0	10 498.0	110 45510	100 4937.0	10 4394.0	10 4397.0	10 4391.0	100 4892 00	100 4506.0	100 4250.0	10 4357.0	10 4559.0	100 42000	200 4525.0	200 4535.0	10 4201.0	200 4520 0	100 4597.0	200 4537.0	100 4336.0	10 4355.0	10 431.0
	200 SEET	3003000	400 5680 Q	500 566013	g11782003	\$1006 002	30103008	301005005	1000 3000g	10000	2009002	1300 99589	1400 5866	1500 56514	1900 S0640	1200 SAND	\$1085 0031	1900 180CAH	HEHAET DODZ	1003210072	HU00000000	2300 18250H	AUD 15C791	2500 18699H	X601569H	2700 19(5)N	20012223H	200152200	300 1893	31.01280691	3200 184001	30018H0H	3400 (166 (1	190032009	HELIDE OUS

THE END