DISSERTATION ON

#### "A STUDY ON ETIOLOGY, CLINICAL FEATURES, DIAGNOSIS AND PROGNOSIS IN ACUTE FEBRILE ENCEPHALOPATHY"

Submitted in partial fulfillment for the Degree of

M.D GENERAL MEDICINE

**BRANCH - I** 



#### **INSTITUE OF INTERNAL MEDICINE**

MADRAS MEDICAL COLLEGE

THE TAMIL NADU DR.MGR MEDICAL UNIVERSITY

CHENNAI - 600003

**APRIL 2016** 

#### CERTIFICATE

This is to certify that the dissertation titled "A STUDY ON ETIOLOGY, CLINICAL FEATURES, DIAGNOSIS AND PROGNOSIS IN ACUTE FEBRILE ENCEPHALOPATHY" is the bonafide original work of Dr.JOTHILAKSHMI .V in partial fulfillment of the requirements for M.D. Branch – I (General Medicine) Examination of the Tamilnadu DR. M.G.R Medical University to be held in APRIL 2016. The Period of study was from March 2015 to August 2015.

#### Prof.Dr.S.G.SIVACHIDAMBARAM, M.D., Prof. DR.K.SRINIVASAGALU, M.D.,

Guide and Supervisor Professor of Medicine Institute of Internal Medicine Madras Medical College & RGGGH Chennai–600003 Director Professor of Medicine Institute of Internal Medicine Madras Medical College & RGGGH Chennai–600003

#### Prof. Dr. R. VIMALA M.D., DEAN

Madras Medical College & Rajiv Gandhi Government General Hospital Chennai - 600 003.

#### DECLARATION

I, **Dr.JOTHILAKSHMI.V** solemnly declare that dissertation titled "A STUDY ON ETIOLOGY, CLINICAL FEATURES, DIAGNOSIS AND PROGNOSIS IN ACUTE FEBRILE ENCEPHALOPATHY" is a bonafide work done by me at Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai-3 during 2015 under the guidance and supervision of my unit chief **Prof.Dr.S.G.SIVA CHIDAMBARAM M.D**, Professor of Medicine, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai.

This dissertation is submitted to Tamilnadu Dr. M.G.R Medical University, towards partial fulfillment of requirement for the award of **M.D. DEGREE IN GENERAL MEDICINE BRANCH-I**.

Place: Chennai -03 Date:

#### Dr. JOTHILAKSHMI.V

MD General Medicine, Post Graduate, Institute of Internal Medicine, Madras Medical College, Chennai - 03

#### ACKNOWLEDGEMENT

I owe my thanks to Dean, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai-3. **Prof.Dr.R.VIMALA**, **M.D.**, for allowing me to avail the facilities needed for my dissertation work.

I am grateful to beloved **Prof.Dr.K.SRINIVASAGALU M.D.**, Director and Professor, Institute of Internal Medicine, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai-03 for permitting me to do the study and for his encouragement.

With extreme gratitude, I express my indebtedness to my beloved Chief and teacher **Prof.Dr.S.G.SIVA CHIDAMBARAM M.D**, for his motivation, advice and valuable criticism, which enabled me to complete this work.

I am very much thankful to **Prof.Dr.K.BANU.DNB (GEN.MED) D.M (NEURO).,** Head of the department, Department of Neurology, Madras Medical College & RGGGH, Chennai for his support and guidance.

I am extremely thankful to my Assistant Professor **Dr.K.VIDHYA, M.D.,** and **Dr. J. JACINTH PREETHI. M.D.,** for their guidance and encouragement.

I am also thankful to all my unit colleagues and other post graduates in our institute for helping me in this study and my sincere thanks to all the patients and their families who were co-operative during the course of this study.

#### CONTENT

| S.NO | TITLE                          | PAGE NO |
|------|--------------------------------|---------|
| 1.   | INTRODUCTION                   | 1       |
| 2.   | AIMS AND OBJECTIVES            | 2       |
| 3.   | <b>REVIEW OF LITERATURE</b>    | 3       |
| 4.   | MATERIALS AND METHODS          | 44      |
| 5.   | OBSERVATION AND RESULTS        | 49      |
| 6.   | DISCUSSION                     | 74      |
| 7.   | CONCLUSION                     | 76      |
| 8.   | SUMMARY                        | 77      |
| 9    | LIMITATIONS                    | 78      |
|      | BIBLIOGRAPHY                   |         |
|      | ANNEXURE                       |         |
|      | PROFORMA                       |         |
|      | ABBREVATION                    |         |
|      | INSTITUTIONAL ETHICS COMMITTEE |         |
|      | APPROVAL                       |         |
|      | MASTER CHART                   |         |
|      | PLAGIARISM DIGITAL RECEIPT     |         |
|      | PLAGIARISM REPORT              |         |

#### **ABBREVATIONS**

| AFB      | - | Acid fast bacilli                  |
|----------|---|------------------------------------|
| AIDS     | - | Acquired Immunodeficiency syndrome |
| AMS      | - | Altered Mental Sensorium           |
| ART      | - | Antiretroviral therapy             |
| СМ       | - | Crytococcocal Meningitis           |
| CrAg     | - | Crytococcocal Antigen              |
| CSF      | - | Cerebrospinal Fluid                |
| CBC      | - | Complete Blood Count               |
| CMV      | - | Cytomegalovirus                    |
| DE       | - | Dengue Encephalitis                |
| ESR      | - | Erythocyte Sedimation Rate         |
| EBV      | - | Epstein Barr Virus                 |
| EV       | - | Enterovirus                        |
| JE       | - | Japanese encephalitis              |
| HIV      | - | Human Immunodeficiency Virus       |
| HSV      | - | Herpes Simplex Virus               |
| NA       | - | Not Applicable                     |
| PCR      | - | polymerase chain reaction          |
| PMNL     | - | polymorphonuclear leukocyte        |
| LP       | - | Lumbar Puncture                    |
| SE       | - | Septic Encephalopathy              |
| TBM      | - | Tuberculosis Meningitis            |
| VSV      | - | Varicella zoster virus             |
| ZN Stain | - | Ziehl -Nielsen Stain               |
| WBC      | - | White Blood count                  |

## **INTRODUCTION**

#### INTRODUCTION

Acute febrile encephalopathy is clinical terminology used for altered mental status that follows short febrile illness characterised by diffuse nonspecific brain insult with clinical manifestations of coma, seizures and decerebration. This can be caused due to meningitis or encephalitis. Despite several epidemiological reports and investigations, the clinical presentation with acute fever and altered sensorium has often remained a mystery in south Indian state of Tamilnadu. Encephalitis is acute inflammation of brain parenchyma and presents as a diffuse or focal neuropsychological dysfunction and is almost always manifested with inflammation of meningitis. Acute febrile encephalopathy is commonly caused by viral infection. The diseases is also caused by bacterial and protozoal infection.

## AIMS AND OBJECTIVES

#### **AIM & OBJECTIVES**

To identify the etiology, clinical features, diagnosis and prognosis in patients with acute febrile encephalopathy above 13 years of age in a tertiary government general hospital in southern east India. Acute febrile encephalopathy is a important cause of morbidity and mortality in hospitalised patients with high mortality in undiagnosed or untreated patients. Various etiological causes such as viral encephalitis, cerebral malaria, bacterial meninigitis, fungal meningitis implicated in the etiology according to geographical location. A study was conducted in a tertiary centre at Rajiv Gandhi general Government hospital, Chennai Tamilnadu on etiology, clinical features and prognosis in patients presenting with acute febrile illness with encephalopathy.

Following investigation were done during the study period for the patients. Haemoglobin, total leucocyte count, differential leucocyte count, platelet count, peripheral blood smear, renal function test, serum electrolytes, dengue, widal test rapid diagnostic test for malarial parasite. Blood culture and urine culture were collected and any obvious site if sepsis was identified. Lumbar puncture was done in all of the patients and cerebrospinal fluid analysis for cytology, cell count, glucose, blood glucose ratio, gram stain and culture sensitivity for microbes, serology for herpes simplex virus, varicella zoster virus, cytomegalovirus, Epstein bar virus, Japanese encephalitis virus.

#### **STUDY DESIGN:**

A detailed history and clinical examination including neurological examination were done in all patients. Clinical examination included identification of maculopapular rashes, petechiae, purpura, vesicles, eschar, herpes labialis, lymphadenopathy, diarrhoea, vomiting, parotitis, myalgia, arthralgia.

Organomegaly, hypotension, shock. The investigation done in all patients included haemoglobin, blood counts, peripheral smear for malarial parasite Quatitative buffy coat for malarial (QBC) for plasmodium malaria, histidine rich protein based immuno chromatographic card test was done for patients in whom peripheral smear was negative for plasmodium falciparum malaria who were suspectable for complicated malaria. Serological test for dengue, hepatitis A,B,E and human immunodeficiency virus (HIV) leptospirosis antibody, blood culture and urine culture in sepsis cases and site of sepsis investigated. Cerebrospinal fluid examination for cytology, cell count, protein level, glucose level, gram stain, AFB stain, adenosine deaminase levels, India ink staining and culture and sensitivity. Chest x-ray, electrocardiography, ultrasonography of abdomen, electroencephalogram and constrast enhanced computerized tomography (CT scan) were done as and when required .Magnetic resonance imaging (MRI) of brain was done when required. Pyogenic meningitis was diagnosed on the basis of polymorphonuclear leucocytosis in CSF or positive gram stain or positive culture an sensitivity of CSF. Cerebral malaria was diagnosed in patients with febrile encephalopathy with positive peripheral smear or QBC for plasmodium falciparum. Outcome was assessed after 1month of follow up after discharge from hospital using modified Rankin scale (MRS).

Computed tomography (CT) brain non contrast and contrast enhanced of was done for all patients as a baseline imaging modality with AFE to rule out contraindications for lumbar puncture to study morphological changes. Magnetic resonance imaging (MRI) scan was done in particular cases where tubercular meningitis and fungal meningitis suspected. Appropriate treatment given to patient and follow up and outcome was studied in the patient. Magnetic resonance spectroscopy (MRS) was also done in when required.

# REVIEW OF LITERATURE

#### **REVIEW OF LITERATURE**

#### **Definition and classification:**

Acute febrile encephalopathy is fever less than 2 weeks duration with altered sensorium >12 hours with clinical manifestation of central nervous system infection.

Febrile encephalopathy is with <1week with alteration of consciousness.

Encephalopathy is diffuse disturbance of brain function with or without inflammation

Meningitis refers to inflammation of the leptomeninges and CSF within the subarachnoid space of the brain , spinal cord and the ventricular system.

Meningoencephalitis refers to inflammation of meninges and brain parenchyma

Encephalitis is dysfunction of brain associated with inflammation

Acute encephalitis syndrome is defined as a person of any age at any time

of year with acute onset of fever and atleast one of one of

1.A change in mental status(confusion disorientation coma

2.New onset of seizures(excluding simple febrile seziures)

Bacterial / Pyogenic meningitis: Pyogenic bacteria detected on Gram stain or culture.

Tuberculous meningitis:AFB detected on smears and/or mycobacteria grown on culture of CSF

Aseptic mononuclear meningitis:no bacteria or fungi on microscopy or culture of CSF,with increased CSF WBC

Meningitis:Meningeal inflammation

Myelitis:Spinal cord inflammation

Radiculitis:Nerve root inflammation

#### SEPTIC ACUTE ENCEPHALOPATHY

Clinical course of brain abscess ranges from indolent to fulminant clinical manifestations with most of the clinical features depending on the size and location of a space–occupying lesion within the brain and the virulence of the infected microorganism.

| SEPTIC ACUTE ENCEPHALOPATHY |                                           |
|-----------------------------|-------------------------------------------|
| Sepsis                      | Acute Brain Dysfuction .                  |
|                             | Undiagnosed Complicated Infection Of      |
|                             | CNS                                       |
| Clinical Manifestation      | Classic Triad Of Fever, Headache And      |
|                             | Neurological Deficit Weakness, Fatigue To |
|                             | Confusion and Delirium                    |
| Sepsis Patients Associated  | Increased Mortality                       |
| CT SCAN in brain abscess    | hypodense center with peripheral uniform  |
|                             | ring enhancement, surrounded by variable  |
|                             | hypodense area of edema                   |

#### SEPTIC ACUTE ENCEPHALOPATHY

#### **INFECTIOUS CAUSES VIRAL/ BACTERIAL ENCEPHALITIS**

| INFECTIOUS CAUSES VIRAL<br>ENCEPHALITIS | INFECTIOUS CAUSES OF<br>BACTERIAL ENCEPHALITIS |
|-----------------------------------------|------------------------------------------------|
| Herpes simplex type, type 2             | Meningitis                                     |
| Varicella zoster                        | Brain abscess                                  |
| HSV                                     | Sepsis associated encephalopathy               |
| Cytomegalovirus, CMV                    | Leptospirosis                                  |
| Epstein barr virus                      | (Infected dirty water)                         |
| Arbovirus –japanese                     | Typhoid                                        |
| encephalitis,Dengue,chikungunya         | M.tuberculosis (TB)                            |
| (mosquito borne)                        | Rickettsial (scrub typhus)                     |
| Rhabdoviruses-rabies (animal bites )    | Cerebral malaria                               |
| HIV                                     |                                                |
| HSV                                     |                                                |

#### HISTORY OF ACUTE FEBRILE ENCEHALOPATHY

| HISTORY              | CLINICAL FEATURES                 |
|----------------------|-----------------------------------|
|                      | Maculopapular                     |
|                      | Petechiae/purpura                 |
| Fever with rashes    | Vesicles                          |
|                      | Eschar                            |
|                      | Herpes labialis                   |
| Respiratory symptoms | H1N1                              |
| Diarrhoea, vomiting  | Enteroviruses                     |
| parotitis            | HIV                               |
|                      | EBV                               |
| Myalgia,Arthralgia   | Dengue,leptospirosis,chikun gunya |
| Cough, sputum        | tuberculosis                      |
| Gum bleeding,melena  | Dengue                            |

#### VIRAL MENINGOENCEPHALOPATHY:

Chronic symptoms lasting more than 1 week suggest meningitis caused by viruses.

| Dengue(Break Borne Fever) | Single Stranded RNA Virus Of<br>Flavivirus |
|---------------------------|--------------------------------------------|
|                           | Den-1 To Den 4                             |
| Dengue Serotypes          | Are Heterogenous                           |
|                           | Endemic In Many Countries                  |
|                           | Bite Of Aedes Mosquito                     |
|                           | Fever,Malaise,Headache                     |
| Dangua Classical          | Retroortibal Pain,Severe Myalgia,          |
| Dengue Classical          | Arthralgia Face, Neck, Chest Erythema      |
|                           | Maculopapular Rash                         |
|                           | Cerebral Anoxia                            |
| Dengue Haemorrhagic Fever | Cerebral Edema                             |
| Encephalopathy            | Cerebral Haemorrhage, Hyponatremia,        |
|                           | Hepatic Failure Toxicity                   |
|                           | NS 1 Antigen                               |
|                           | Dengue Igm antibody-5 <sup>th</sup> day    |

#### **DENGUE ENCEPALOPATHY**

#### WHO CLASSIFICATION OF DENGUE VIRUS

| DF/DHF | Grade | Symptoms                                                                                          | Laboratory                                                                       |
|--------|-------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| DF     |       | Fever with two or more of following:<br>Headache<br>Retro orbital pain<br>Myalgias<br>Arthralgias | Leucopenia, occasionally thrombocytopenia<br>may be present. No e/o plasma loss. |
| DHF    | I     | Above signs plus positive tourniquet sign                                                         | Thrombocytopenia < 100 000; Hct rise ≥ 20%                                       |
| DHF    | II    | Above signs plus spontaneous bleeding                                                             | Thrombocytopenia < 100 000; Hct rise ≥ 20%                                       |
| DHF*   | III   | Above signs plus circulatory failure<br>(weak pulse, hypotension, restlessness)                   | Thrombocytopenia < 100 000; Hct rise ≥ 20%                                       |
| DHF*   | IV    | Profound shock with undetectable BP and pulse                                                     | Thrombocytopenia < 100 000; Hct rise ≥ 20%                                       |

#### Who classification of Dengue fever

Asymptomatic or subclinical Dengue fever Dengue hemorrhagic fever Dengue shock syndrome Other (encephalopathy, hepatitis, myocarditis)

| Highly suggestive                        | Confirmed                                                                                               |
|------------------------------------------|---------------------------------------------------------------------------------------------------------|
| One of the following:                    | One of the following:                                                                                   |
| 1. IgM + in a single serum sample        | 1. PCR +                                                                                                |
| 2. IgG + in a single serum sample with a | 2. Virus culture +                                                                                      |
| HI titre of 1280 or greater              | 3. IgM seroconversion in paired sera                                                                    |
|                                          | <ol> <li>IgG seroconversion in paired sera or fourfold<br/>IgG titer increase in paired sera</li> </ol> |



- Fever and 2 of the following criteria:
- Nausea, vomiting
- Rash
- Aches and pains
- Tourniquet test positive
- Leukopenia
- Any warning sign

Laboratory-confirmed dengue (important when no sign of plasma leakage)

- Clinical fluid accumulation
- Mucosal bleed
- Lethargy, restlessness
- Liver enlargment >2 cm
- Laboratory: increase in HCT concurrent with rapid decrease in platelet count

\* (requiring strict observation and medical intervention)

- Fluid accumulation with respiratory distress

#### Severe bleeding

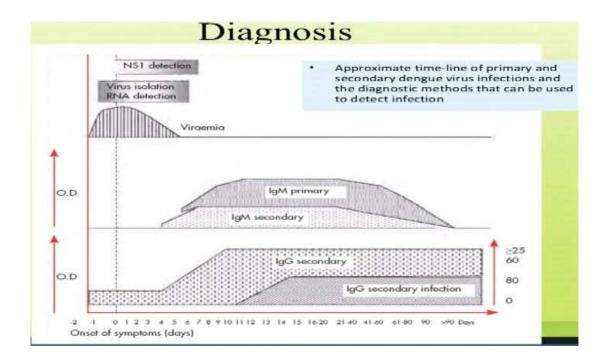
#### as evaluated by clinician

#### Severe organ involvement

- Liver: AST or ALT >= 1000
- CNS: Impaired consciousness
- Heart and other organs

#### **CRITERIA FOR DENGUE & WARNING SIGNS**

#### **DENGUE SHOCK SYNDROME**


| DENGUE CLINICAL MANIFESTATION             |                                                                                                                                                                                          |  |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Uncomplicated Dengue Fever                | Fever, Dehydration, Headache                                                                                                                                                             |  |
| Dengue Haemorrhagic Fever                 | Results Due To Secondary Infection .Vascular<br>Leak , Coagulopathy Lead To Easy Brusing<br>Bleeding Generalised Petechiae.<br>Haemoconcentration,Serous Effusion<br>And Hypoproteinemia |  |
| Dengue Shock Syndrome And<br>Encephalitis | Multisystem Dysfunction In Severe Dengue<br>Infection,<br>Thrombocytopenia                                                                                                               |  |

Dyselectrolytemia Shock Dehydration LiverDysfunction (Thrombocytopenia Or Coagulopathy Cerebral Hypoperfusion Neurogenic C Shock CerebralEdema Due To Vascular Leakage Dengue Encephalopathy

#### PATHOPHYSIOLOGY IN DENGUE ENCEPHALITIS

In recent times dengue encephalopathy is well recognised and common entity as a cause for acute febrile encephalopathy in patients presenting with thrombocytopenia. Increased intracranial bleeding (thrombocytopenia or coagulopathy). There is a increasing evidence in dengueviral neurotropism.Dengue neurotropism is a mechanism as patients with dengue IgM antibodies.

| Dengue Haemorrhagic Fever | Acute Febrile Illness                                                   |
|---------------------------|-------------------------------------------------------------------------|
| Clinical Features         | Dehydration, Thrombocytopenia With<br>Altered Sensorium, Bleeding Gums, |
|                           | Melena, Hypotension, Shock,<br>Headache, Altered Sensorium              |
| Diagnosis                 | IGM Serology Was Positive                                               |
| Dengue Encephalopathy     | Lethargy To Overt Delirium                                              |



#### SEROLOGICAL VARIATION OF DENGUE

#### VARICELLA ZOSTER ENCEPHALITIS

VZV belongs to the herpesviridae family with 3 subfamilies  $\alpha,\beta,\gamma$  herpesviridae with  $\alpha$ -herpesvirruses neutrotropic and  $\beta$ ,  $\alpha$  are lymphotropic.  $\alpha$ - $\beta$ virus herpesvirus VZV and is related closely to herpes simplex virus.

#### VARICELLA ZOSTER VIRUS INFECTION CLINICAL MANIFESTATIONS

| TWO CLINICAL FORMS OF VARICELLA ZOSTER MANIFESTATIONS |                                                                                                                                                                                                |  |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Primary infection varicella<br>(chicken pox )         | Characteristic vesicular lesion in different stages of development on the face trunk and extremities                                                                                           |  |
| Herpes zoster (shingles )                             | Reactivation of the endogenous latent VZV<br>infection in the trigeminal sensory ganglion. painful<br>unilateral vesicular lesion in the particular<br>dermatomal distribution herpes labialis |  |

In addition to subclinical reactivation of the viruses, subclinical reinfection that boosts the immune response also occurs. Neurological complications caused by VZV occurs in both primary and reactivated VZV both central and peripheral nervous system are affected CNS complications in chicken pox are most commonly cerebellitis, encephalitis.

#### THE NEUROPATHOGENEIS OF VZV INFECTION

| Primary infection with VZV    | Hamatogenous spread by T-cell mediated transport         |
|-------------------------------|----------------------------------------------------------|
| Lateny                        | ★<br>Transaxonal transport                               |
| Reactivated diseases          | *                                                        |
| Spread of virus               | Afferent fibres innervating the afferent fibres infected |
| Afferent fibres of trigeminal | <b>★</b>                                                 |
| ganglion                      | Middle cerebral artery innervated by trigeminal          |
| Transaxonal transport         | ganglion is affected                                     |
| Vasculopathy                  |                                                          |
| Myelopathy                    |                                                          |
| Postherpetic neuralgia        |                                                          |
| Retinal necrosis              |                                                          |
| Cerebellitis                  |                                                          |

| Most Cranial Nerve Palsies<br>Occur                                              | Most Have Complete Recovery                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trigeminal Nerve Is The Cranial<br>Most Commonly Affected In VZV<br>Reactivation | The Optic Nerve, The Maxillary Nerve And The<br>Mandibular Nerve Optic Nerve Ocular<br>Disorders, Retinal Necrosis.                                                                                                                                                                                      |
| Ramsay Hunt Syndrome                                                             | Peripheral Facial Palsy Accompanied By Rash<br>On The Ear (Zoster Oticus),The<br>Vestibulocochlear Nerve If Involved Commonly                                                                                                                                                                            |
| Reyes<br>Syndrome                                                                | Disease With Encephalopathy And Liver<br>Damage Associated<br>With VZV Infection And Aspirin Intake                                                                                                                                                                                                      |
| Cerebellitis                                                                     | Completely Recovers Although Persistent<br>Cerebellar Deficits Such As Cognitive Defects                                                                                                                                                                                                                 |
| Herpes Zoster Induced Encephalitis<br>(Adults)                                   | Residual Neurological Sequelae Common<br>Increased Mortality Rate About 35% Without<br>Treatment Neuropsychological Deficits -<br>Subcortical Slowing Of Cognitive<br>Process,Memory Impairment,<br>Emotional,Behavioural Changes May Occur<br>After A Latent Period Of 10 Yrs After Acute<br>Infection. |

In adults developing herpes zoster induced encephalitis residual neurological sequlae is common with increased mortality rate. Without treatment neuropsychological deficits such as subcortical slowing of cognitive process, memory impairment and emotional and behavioural changes may occur after a latent period of 10 yrs after acute infection. The Brain imaging modalities CT scan shows multifocal lesions at grey white matter junction, both ischemic and haemorrhagic lesions. Anterior, middle cerebral arteries and internal, external carotid artery are most commonly involved. Meningitis, vasculopathy and radiculitis are common.

| HSE encephalitis       | Cause-HSV-1 in adults and HSV-2 in                  |  |
|------------------------|-----------------------------------------------------|--|
|                        | neonates.                                           |  |
| Commonly affects       | Male:Female ratio:2:1.                              |  |
| AGE                    | Younger age group though older affected             |  |
| More common            | summer and rainy season                             |  |
| 0 1                    | focal and severediseases causing acute necrotising  |  |
| Spread                 | encephalopathy                                      |  |
| Onset                  | Insidious or violent                                |  |
|                        | Altered sensorium, seizures abnormal behaviour      |  |
| Common                 | focal neurological deficit, ataxia, aphasia, visual |  |
| neurological           | field defects, papilloedema.                        |  |
| manifestations         | abnormal behaviour, marked cognitive                |  |
|                        | impairment.                                         |  |
| CSF analysis           | Mononuclear pleocytosis, Raised proteins            |  |
| Diagnosis              | Serology test for HSV antibody in blood and CSF     |  |
| CT scan                | Bilateral asymmetrical frontotemporal lesion        |  |
| MRIscan                | bilateral asymmetric frontotemporal lesion and      |  |
| WIKISCall              | isolated temporal lesions                           |  |
| EEG                    | periodic lateralised epileptiform discharge (PLEDs) |  |
|                        | in the form of spike/sharp waves or slow waves      |  |
|                        | from temporal lobe localization                     |  |
|                        | Herpes Simplex Encephalitis (HSE)                   |  |
| Differential diagnosis | Cerebral Vein Thrombosis ,Cerebral Malaria,         |  |
|                        | Tubercular Meningitis,                              |  |
|                        | 1                                                   |  |

#### HERPES SIMPLEX ENCEPHALOPATHY

#### PATHOGENESIS OF HERPES SIMPLEX VIRUS

# HERPES SIMPLEX VIRUS HSVHERPES VIRIDAE FAMILY, ENVELOPED.,<br/>DOUBLE-STRANDED DNA VIRUSViral infection begins at<br/>point of entryVirus replicates locallyOral mucosa<br/>Genital mucosaTissue damage<br/>Inflammatory response presents asvesicles ulcer

#### HERPES SIMPLEX ENCEPHALITIS DIAGNOSIS

#### HERPES SIMPLEX ENCEPHALITIS DIAGNOSIS

CSF analysis

WBC: 20-300cells /mm<sup>3</sup>

Protein: 30-2500mg/dl

Glucose : Normal

EEG: spike an slow wave activity from temporal lobe.sensitivity 85%specificity 33%

#### TREATMENT OF VIRAL ENCEPHALITIS

#### **TREATMENT OF VIRAL ENCEPHALITIS**

Acyclovir IV 10mg/kg TDS

14 to 21 days course for confirmed HSE

Monitor renal functions

Antiobiotics if CSF analysis and imaging modalities delayed

Management of complications

#### ACUTE HEPATIC ENCEPALOPATHY

Acute hepatic encephalopathy in acute liver failure due to acute hepatitis failure (ALF) which clinically manifests as jaundice, coagulopathy and encephalopathy.

Hepatitis A virus is one of the common causes of Acute liver failure (ALF) in children and young adults besides Hepatitis B, D, E, Though Hepatitis A in common in children the possibilities of fulminant complications arises with age, peaking above age of 40yrs. Hepatitis A is a self limiting in most case though some present with fulminate hepatic failure. In ALF massive hepatocellular necrosis leads to Jaundice, coagulopathy and encephalopathy. ALF patients most of the patients recovered with only supportive therapy and adequate hydration. Acute hepatitis A virus infection was also cause of acute febrile encephalopathy in our study in 4% cases.

#### **HIV-HUMANIMMUNODEFICIENCY VIRUS**

HIV is the most common infection affecting the central nervous system. Upto 50% of HIV patients have clinically apparent neurological

diseases. 20% present first time with neurological manifestations.10 % to 15 present with only neurological symptoms. India has the second largest burden of HIV related pathology. Tamilnadu has the second largest burden of HIV related diseases .Neurological complications associated to HIV-1 infections are very common. The neuropathogenesis of HIV infection is direct HIV virus and its products or indirect opportunistic infections, HIV associated Neoplasms. Cells affected by HIV are perivascular macrophages, monocytes from blood, microglial cells and astrocytes

#### NEUROLOGICAL MANIFESTATIONS OF HIV INVOLVING THE BRAIN

| Dementia   | HIV Encephalopathy                              |
|------------|-------------------------------------------------|
|            | Progressive multiple Leucoencehalopathy (viral) |
|            | Tuberculosis                                    |
| Infective  | Toxoplasmosis,                                  |
| granulomas | Crytococcus                                     |
|            | Tuberculosis                                    |

#### **CLINICAL STAGING OF HIV ENCEPHALOPATHY**

| STAGE     | Mental Function                                                                                   | Motor Function                                                 |
|-----------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| STAGE 0   | Normal                                                                                            | Normal                                                         |
| STAGE 0.5 | Absent, Minimal or Equivocal symtoms                                                              | Slowed ocular and extremity movements                          |
| STAGE 1   | Able to perform all but the<br>demanding aspects.Unequivocal<br>func. and intellectual impairment | Unequivocal motor<br>impairment<br>Can walk without assistance |
| STAGE 2   | Performs basic self care<br>Cannot work or maintain<br>demanding aspects of daily life            | Ambulatory<br>May require a single prop                        |
| STAGE 3   | Major Intellectual incapacity                                                                     | Major motor disability<br>Cannot walk unassisted               |
| STAGE 4   | Intellect, social comprehension and<br>output at rudimentray level                                | Paraparetic or paraplegic with bowel, bladder incontinence     |

#### **CYTOMEGALOVIRUS ENCEPHALITIS**

Cytomegalovirus is a double stranded linear DNA virus. Immuno competent host with CD4 counts < 50/cmm less than 2% of HIV infected patients develop CMV neurological symptoms. Crytococcal meningitis: Encapsulated yeast cells of C.neoformans detected in CSF by India Ink stain, positive CSF or serum cryptococcus Ag test

#### HIV ASSOCIATED CYTOMEGALOVIRUS ENCEPHALITIS

| HIV ASSOCIATED CYTOMEGALOVIRUS ENCEPHALITIS |                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GIT                                         | Colitis, Esophagitis -, Diarrhoea, Fever And Abdominal Pain                                                                                                                                                                                                                                                                               |
| Cardiovascular                              | Pericarditis, Myocarditis                                                                                                                                                                                                                                                                                                                 |
| Renal                                       | Collapsing Focal Glomerulosclerosis                                                                                                                                                                                                                                                                                                       |
| Eyes                                        | Anterior uveitis –Iritis,Blurring Vision, Redness Of Eyes                                                                                                                                                                                                                                                                                 |
| CNS                                         | Meningoencephalitis, Encephalitis Venticuloencephalitis,<br>Radiculomyelopathy ,Peripheral Neuropathy In Less Than 1%<br>Motor Deficit Localised Weakness Paraplegia Sensory<br>Abnormalities Numbness, Hypoaesthesia, Paraesthesia, Dysaethesia,<br>Disorientation, Confusion Apathy,Cranial Neuropathy,Nystagmus<br>Transverse Myelitis |

#### DRUG OF CHOICE, PROPHYLAXIS AND PROGNOSIS IN HIV

#### ASSOCIATED CYTOMEGALOVIRUS ENCEPHALITIS

| HIV ASSOCIATED CYTOMEGALOVIRUS ENCEPHALITIS  |                                                                                  |
|----------------------------------------------|----------------------------------------------------------------------------------|
| Drug of choice is                            | Intravenous ganciclovir                                                          |
|                                              | Second line- foscarnet                                                           |
| Oral valganciclovir                          | Long term prophylaxis                                                            |
| Highly active antiretroviral therapy therapy | Prevent CMV reactivation by reconstituting immune system                         |
| Prognosis                                    | Without antviral therapy mortality<br>100% With antiviral therapy 50%<br>recover |

#### NONVIRAL CAUSES OF INFECTIOUS ENCEPALOPATHY

#### **TUBERCULOSIS MENINGITIS**

| TUBERO                                             | TUBERCULOSIS MENINGITIS (TBM)                                                                                                                                                                                                                                                                                                                                                               |  |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| BACTERIA                                           | Mycobacterium tuberculosis                                                                                                                                                                                                                                                                                                                                                                  |  |
| PATHOGENICITY                                      | Due to chronic reactivation bacillemia in older adults,<br>Immune deficiency caused by aging, alchoholism, malnutrition,<br>Human Immunodeficiency virus.                                                                                                                                                                                                                                   |  |
| CNS COMPLICATION OF PR                             | IMARY INFECTION.                                                                                                                                                                                                                                                                                                                                                                            |  |
| Tuberculosis Meningitis<br>(TBM)                   | Spillage Of Tubercular Protein Into Subarachnoid<br>Space Produces Intense Hypersensitivity Reaction, Vasculitis Leading<br>To Thrombosis And Infarction                                                                                                                                                                                                                                    |  |
| Common                                             | HIV-Related TB Cases.                                                                                                                                                                                                                                                                                                                                                                       |  |
| Meningitis                                         | Stroke Syndromes Involving Basal Ganglia, Cerebral Cortex, Pons And Cerebellum                                                                                                                                                                                                                                                                                                              |  |
| Communicating<br>Hydrocephalus                     | Extension Of Inflammatory Process To Basilar Cisterns Impedance Of CSF Circulation                                                                                                                                                                                                                                                                                                          |  |
| Clinical Manifestations                            | Headache, Fever, Altered Sensorium, Vomiting, Focal Neurological<br>Deficit, Anorexia, Weight Loss, Positive Signs Of Meningeal<br>Irritation, Other Cranial Nerve Palsy Facial Nerve, Hearing Loss<br>"Speech, Memory Behaviour Disturbances "Focal Signs –<br>Hemiparesis, Sensory Impairment                                                                                             |  |
| Ophthalmoscopy                                     | Choroid Tubercles                                                                                                                                                                                                                                                                                                                                                                           |  |
| Gold Standard Diagnosis                            | Acid Fast Staining Of CSF Bacterial Culture                                                                                                                                                                                                                                                                                                                                                 |  |
| CSF Analysis                                       | Increased Protein >500 mg/dl<br>Low Glucose < 30mg/dl<br>Lymphocytic Pleocytosis > 500cells<br>Increased WBC Count >500 mm3.<br>CSF Will Be AFB Smear Positive In 5%<br>Culture Sensitivity In 50%<br>PCR for TB positive                                                                                                                                                                   |  |
| CT Scan<br>Reliable Method For Diagnosis<br>Of TBM | Multiple Ring Enhanced Lesions<br>Basiliar Arachoiditis .Cerebral Edema ,Infarction, Vascular<br>Enhancement,Ventricular Dilatation.                                                                                                                                                                                                                                                        |  |
| MRI Scan                                           |                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Antituberculosis Drugs (ATT<br>Empirical Therapy   | First line drugs Isoniazid (5mg/kg/day)<br>Rifampicin(10mg/kg/day)<br>Pyrazinamide (25mg/kg/day)<br>Ethambutol 20mg/kg/day)<br>supportive measures (Corticosteroids,<br>Anticonvulsants ,Mannitol) started within 24-48 hours of admission                                                                                                                                                  |  |
| Treatment Of Complications                         | Corticosteriods In The Form Of IV Dexamethasone (0.6-<br>1.2mg/Kg/Day In Three Divided Doses) X 7days Then Oral<br>Prednisolone (2mg/Kg/Day In Three Divided Doses) Was Started In<br>Patients With Hydrocephalus To Prevent The Progression Of<br>Diseases, Ventriculoperitoneal Shunt For Hydrocephalus Liver<br>Function Test Was Done Week- Detection Of ATT Induced<br>Hepatotoxicity. |  |
| prognosis                                          | Delayed treatment- high mortality and neurological complications.                                                                                                                                                                                                                                                                                                                           |  |

#### CLINICAL CASE DEFINITION OF TUBERCULOSSIS MENINGITIS

Abnormal neurological signs and/or symptoms, and  $\geq 2$  of the following:

- 1. Discovery of adult source case with contagious tuberculosis who had significant contact with child
- 2. Presence of Mantoux (5 TU) skin test reaction  $\ge$  10 mm of induration, or  $\ge$  5 mm of induration if child had close contact with infected adult
- 3. CSF abnormalities without evidence of other infectious cause
- 4. Abnormalities on cranial CT consistent with CNS tuberculosis

CNS = central nervous system; CSF = cerebrospinal fluid; CT = computed tomography; TU = tuberculin units.

| Drug               | Dose                                                                          | Side-effects                                                     |
|--------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------|
| INH (Isoniazid)    | 5-10 mg/kg per day                                                            | Hepatitis,<br>hypersensitivity                                   |
| Rifampin (RIF)     | 10 mg/kg per day (600<br>mg in adults)                                        | Hepatic toxicity, red-<br>orange staining, Drug<br>interactions. |
| Pyrazinamide (PZA) | 15 to 30 mg/kg per<br>day(max 2g)                                             | Peripheral neuropathy,<br>abdominal pain                         |
| Streptomycin       | 15 mg/kg per day IM-1g<br>in adults<br>20 to 40 mg/kg per day<br>in children) | Deafness, dizziness                                              |
| Ethambutol         | 25 mg/kg/day single<br>dose                                                   | optic neuritis                                                   |
| Pyridoxine (VitB6) | 50mg daily                                                                    |                                                                  |

#### ANTITUBERCULOSIS DRUGS

#### **ACUTE BACTERIAL MENINGITIS**

### ACUTE BACTERIAL MENINGITIS (INFLAMMATION MENINGES & BRAIN )

Subarachnoid space surrounding meninges (Bacterialinvasion) enclosing the brain and the spine.

Infection and inflammatory response

Severe life threating diseases

The CSF which acts as a "shock absorber" for the brain and central nervous systemflows within it.

The three layers of the meninges:

The outer Dura mater

The Arachnoid membrane

The innermost Piamater.

Acute meningtitis (<1 day) duration is almost always a bacterial meningitis. Bacterial meningitis is caused by the presence of bacteria in the cerebrospinal fluid. Bacterial meningitis if not treated in time will cause damage to the meninges and central nervous system resulting in as partial or complete deafness (due to a sub-infection of the cochlea) and, particularly in younger victims, epilepsy or retardation. Bacterial meningitis remains untreated, leads to excessive damage to the brain or central nervous system. Symptoms of Bacterial Meningitis include fever, headaches, seizures, vomiting, impairment of consciousness and stiff neck and back. The most important symptom of bacterial meningitis for early recognition is that of stiffness of the neck on bending forward.

#### **OVERVIEW OF BACTERIAL MENINGITIS**

#### TYPICAL PATHOGENS INVOLVED IN BACTERIAL MENINGITIS

| Neisseriameningitides,Streptococcus<br>pneumonia Hemophilus influenzae                                                                             | Most common pathogens                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Staphlyococcus aureus, Staphlyococcus<br>epidermis, (Various other Streptococci)<br>Escherichia coliKlebsiella<br>enterobacter, ProteusPseudomonas | Pathogens associated with<br>complications due to Medical<br>procedures on the nervous system such<br>as neurosurgery, lumbar punctures,<br>spinal anaesthesia and cranial trauma |
| Salmonella,Shigella,Clostridium<br>perfringensNeisseria gonorrheae                                                                                 | Rare meningeal pathogens                                                                                                                                                          |
| Listeria monocytogenes                                                                                                                             | Mainly occurs in elderly>65 yrs age                                                                                                                                               |

#### BACTERIAL MENINGITIS

Pathogenesis: Three Major Pathways Exist By Which An Infectious Agent Bacteria, Virus Or Fungus Gain Access To The CNS From The Site The OrganismInvades The Submucosa By Circumventing Host Defense Mechanisms.

#### COMMON ORGANISMS OF BACTERIAL MENINGITIS ROUTE ENTRY

| Organism                   | <b>Mode of Entry</b>                                  |
|----------------------------|-------------------------------------------------------|
| Neisseria meningitidis     | Nasopharynx                                           |
| Streptococcus pneumoniae   | Nasopharynx or direct extension across skull fracture |
| Listeria monocytogenes     | Gl tract, placenta                                    |
| Haemophilus influenzae     | Nasopharynx                                           |
| Staphylococcus aureus      | Bacteremia, skin, or foreign body                     |
| Staphylococcus epidermidis | Skin or foreign body                                  |

These bacteria have a common mode of invasion into human body. Many are present on or in healthy humans as commensals, either on the skin or in the respiratory tract and as a result of trauma or weakness in the immune system invade the human body via the bloodstream. The bloodstream is their main route of infection to the meninges and cerebrospinal fluid. Once the bacteria enter the subarachnoid space intense host inflammatory response is triggered by lipoteichoic acid and other bacterial cell wall products. Bacterial meningitis can result from infections of the respiratory system, medical procedures, trauma to the nervous system or injury to the cranial region.

They result from infections of the upper respiratory tract or lungs (pneumonia leads to pneumococcal infections of the meninges). The type of bacteria responsible forparticular cases of meningitis is also dependent on age as detailed in the table below,

#### ETIOLOGY OF BACTERIAL MENINIGITIS WITH AGE VARIATION

| <b>BACTERIAL MENINIGITIS WITH AGE VARIATION</b> |                                                          |
|-------------------------------------------------|----------------------------------------------------------|
| BACTERIA                                        | NO. OF CASES IN ADULTS AND CHILDREN                      |
| Neisseria meningitidis                          | 10-30% in adults, 30-40% in children up to the age of 15 |
| Streptococcus<br>pneumonaie                     | 30-50% in adults, 10-20% in children                     |
| Hemophilus influenzae                           | 1-3% in adults, 35-45% in children                       |
| Listeria monocytogenes                          | Infants and elderly age group 10%                        |

#### PNEUMOCOCCUS

| Pneumococcus   | Separate, paired or short chains of oval-shaped cocci,     |
|----------------|------------------------------------------------------------|
|                | Cells enclosed by a polysaccharide envelope                |
| Blood cultures | Pneumococci stain gram positive                            |
| Pathogenicity  | Lobar pneumonia, Pleural, Empyhsema, Pericarditis,         |
|                | Endocarditis, Arthritis, Peritonitis. Middle ear infection |
|                | (Cochlea) Bacterial meningitis (Hematogenous spread)       |
|                | Penicillin therapy reduces high mortality due to           |
|                | pneumococcal infections.                                   |

#### **MENINGOCOCCUS (NEISSERIA MENINGITIDIS)**

| Meningococcus | Diplococcus Aerobic Bacteria Gram Negative Stain. Two Main                                                                                                                                                                           |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Serogroups A And C Of Meningococcus Cause Epidemics.                                                                                                                                                                                 |
|               | Humans Are Only Natural Host Of The Meningococcus .                                                                                                                                                                                  |
|               | Mortality Is High In Cases Of Meningitis Caused By                                                                                                                                                                                   |
|               | N.Meningitidis, Due To Rapid Release Of Large Amounts Of                                                                                                                                                                             |
|               | Bacterial Endotoxin Into Bloodstream Which Results In Toxic                                                                                                                                                                          |
|               | Shock And Hemorrhage In The Affected Areas.                                                                                                                                                                                          |
|               | Humans Are Only Natural Host Of The Meningococcus .<br>Mortality Is High In Cases Of Meningitis Caused By<br>N.Meningitidis, Due To Rapid Release Of Large Amounts Of<br>Bacterial Endotoxin Into Bloodstream Which Results In Toxic |

#### HAEMOPHILUS (HEMOPHILUS INFLUENZAE)

| (Hemophilus influenzae) | <i>Obligate parasite, commonly live in the upper respiratory tract, lower genital tract, mouth and pharynx of humans.</i>                                                      |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clinical manifestations | Bacterial meningitis, in young infants. conjunctivitis,<br>Infection of the middle ear and secondary infections of<br>the respiratory tract.                                   |
| Haemophilus infections  | Ampicillin most prevalent form of treatment.<br>But as a result of developing resistance to this drug,<br>Chloramphenicol and Tetracycline are more suitable and<br>effective. |

#### MICROBACTERIAL THERAPY FOR ACUTE BACTERIAL MENINGITIS

| Haemophilus inflenzae type B | 3 <sup>rd</sup> Generation cephalosporin                 |
|------------------------------|----------------------------------------------------------|
| Neisseriameningitidis        | Penicillin or Ampicillin                                 |
| Streptoccus pneumonia        | Vancomycin plus 3 <sup>rd</sup> generation cephalosporin |
| Listeria monocytogenes       | Ampicillin or Penicillin                                 |
| Streptococcus agalactiae     | Ampicillin or Penicillin                                 |

#### LEPTOSPIROSIS

| Leptospirosis (Hemorrhagic Jaundice) |                                                 |  |  |  |
|--------------------------------------|-------------------------------------------------|--|--|--|
| Acute AnthropicZoonosis Infection    |                                                 |  |  |  |
| Cause                                | Spirochaete Leptospira Interrogens              |  |  |  |
| Common Victims                       | Agricultural Occupational Workers               |  |  |  |
| Principle Source Of Infection.       | Rats, Dog, Swine, Cattle                        |  |  |  |
| Infection Source                     | Leptospira Present In Water                     |  |  |  |
| Entry Into Body                      | Mouth-Nose, Conjunctiva ,Breaks In Skin         |  |  |  |
| Incubation Period                    | 7-13 Days                                       |  |  |  |
| Leptospirosis Acute Severe Form      | Weils Disease- Jaundice. Meningitis, Hepatitis, |  |  |  |
|                                      | Nephritis, Rash And Produces Haemorrhage        |  |  |  |
|                                      | And Necrosis, Headache Neck Stiffness           |  |  |  |
|                                      | Continous Fever, Stupor, Coagulopathy Anemia    |  |  |  |
|                                      | In 3-6 Days Liver / Kidney - Infection          |  |  |  |
|                                      | Progressive, Fatal Septicemic Failure           |  |  |  |
| Confirmatory                         | Microscopic AggutiationTest (MAT)               |  |  |  |
| Serological Test For Diagnosis       |                                                 |  |  |  |
| Other Test For Diagnosis             | Serology Ellisa-Raised Igm Titers Positive      |  |  |  |
|                                      | Earlier Than MAT. PCR-Based DNA                 |  |  |  |
|                                      | Fingerprinting Methods Available For            |  |  |  |
|                                      | Diagnosis                                       |  |  |  |
| CSF Analysis                         | Pleocytosis                                     |  |  |  |

#### WEILS DISEASES CLINICAL MANIFESTATIONS AND COMPLICATIONS

| Clinical features                                         | Complications              |
|-----------------------------------------------------------|----------------------------|
| Altered sensorium                                         | Meningitis                 |
| Acute kidney failure-nephritis                            | Azotemia,oliguria, dysuria |
| Myocarditis and hypotension                               | Coagulopathy               |
| Pulmonary haemorrhage-haemoptysis-<br>respiratory failure | Hepatorenal failure        |
| Acute hepatic failure-hepatitis                           | Gastroinstestinal bleed    |
| Lymphadenopathy Hepatosplenomegaly<br>Pancreatitis        | Jaundice                   |
| Purpura                                                   | Thrombocytopenia, Anemia   |
| Conjunctival effusion,heamorrhage                         | Chorioretinitis            |

#### TREATMENT OF LEPTOSPIROSIS

| TREATMENT OF LEPTOSPIROSIS   |                                                                                                |  |
|------------------------------|------------------------------------------------------------------------------------------------|--|
| Drug of choice               | Benzyl penicillin 5 mega units in a day for 5 days                                             |  |
| Hypersensitive to penicillin | Erythromycin 250mg QID for 5 days<br>Doxycycline 100mg BD for 7 days<br>Tetracycline 500mg QID |  |
|                              | Ciprofloxacin 500mg BD<br>Ampicillin and Amoxicillin are effective<br>in the treatment.        |  |
| Chemoprophylaxis             | Doxycycline 200mg orally once weekly effective                                                 |  |
| vaccine                      | For 3 serotypes very effective                                                                 |  |

#### PATHOGENESIS OF BRAIN ABSCESS

| MODE OF<br>SPREAD       | PRIMARY SITE OF<br>INFECTION                                                                                                                                | SITE OF BRAIN<br>ABSCESS             |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Haematogenous<br>Spread | Lung Abscess, Empyema, Skin<br>Infection Pelvic Infection<br>Intra abdominal Infection,<br>Bacterial Endocarditis,<br>Cyanotic Congential Heart<br>Diseases | Any Site Affected                    |
| Direct<br>Transmission  | Frontal Ethmoidal Sinusitis                                                                                                                                 | Frontal Lobes                        |
|                         | Subacute Chronic Otitis<br>Media,Mastoiditis                                                                                                                | Inferior Temporal Lobe<br>Cerebellum |
|                         | Dental Infections                                                                                                                                           | Frontal Lobes                        |

# **CRYPTOCOCCUS MENINGITIS**

#### **CRYPTOCOCCUS MENINGITIS**

| Cryptococcus<br>meningitis | Major fungal meningitis in HIV related opportunistic infection.,10% of AIDS population.                |
|----------------------------|--------------------------------------------------------------------------------------------------------|
| Most common                | Life threating infection of meninges mostly<br>occurring in HIV patients with CD4 counts below 100     |
| Most patients<br>exposed   | organism which is found in the soil contaminated by bird droppings, does not cause diseases in healthy |

| CRYTOCOCCAL MENINGITIS      |                                                                                                                                                                |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Clinical features           | Fever, fatigue, nausea, vomiting, headache,<br>confusion, personality changes visual, hearing<br>impairment, progressive dementia                              |  |
| Untreated cases             | Coma and death                                                                                                                                                 |  |
| Diagnosis                   | Cryptococcal antigen in CSF 1%<br>CSF culture for cryptococcus 95 % India ink positive                                                                         |  |
| Treatment                   | Antifungal drug amphotericin B 0.7mg/kg/day for 2weeks . Fluconazole is given daily prevents relapses.                                                         |  |
| Alternative drug            | Flucytosine for 2 weeks. Fluconazole oral or IV<br>400mg qd for 6 weeks causes fewer severe side<br>effects<br>including rashes and liver enzyme abnormalities |  |
| Fluconazole<br>Prophylaxis  | CD4 count below 50mm3 can help prevent<br>crytococcal meningitis. long time can cause drug<br>resistent                                                        |  |
| Drug complications          | Starting while treating cryptococcal meningitis<br>increased the risk of (IRIS) immune reconstitution<br>syndrome                                              |  |
| HAART – Highly<br>Reconstit | Active Antiretroviral Therapy, Iris-Immune tution Syndrome                                                                                                     |  |

Confirmed etiotlogical agent among adult HIV infected patients.

#### **NEUROCYSTERCOSIS**

#### NEUROCYSTERCOSIS

| <b>NEUROCYSTICERCOSIS</b> (NCC)<br>MOST COMMON PARASITIC<br>DISEASE OF THE CNS AFFECTING<br>PEOPLE ALL OVER THE WORLD | COMMONEST CAUSE OF SMALL<br>SINGLE ENHANCING CT LESION<br>(SSECT)                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAUSE                                                                                                                 | TAENIA SOLIUM TAPEWORM                                                                                                                                                                                                  |
| INTERMEDIATE HOST                                                                                                     | PIGS                                                                                                                                                                                                                    |
| COMPUTED TOMOGRAPHY OF<br>BRAIN<br>OTHER INFECTIONS CAUSING<br>RING ENHANCED LESIONS ARE                              | RING ENHANCED LESIONS:<br>CHARACTERISTIC<br>NEUROCYSTICERCOSIS                                                                                                                                                          |
| OTHER INFECTIONS CAUSING<br>RING ENHANCED LESIONS ARE                                                                 | TUBERCULOMA<br>TOXOPLASMOSIS<br>CRYPTOCOCCOSIS<br>HISTOPLASMOSIS<br>CANDIDA ALBICANS                                                                                                                                    |
| VERY SIMILAR TO<br>TUBERCULOMA                                                                                        | USUALLY SEIZURES, BUT FEVER<br>ALSO CAN BE A PRESENTATION IN<br>RARE CASES CLINICAL<br>PRESENTATION                                                                                                                     |
| CLINICAL MANIFESTATION                                                                                                | SEIZURES, HEADACHE ALTERED<br>SENSORIUM, MULTIPLE<br>NONTENDER NODULAR                                                                                                                                                  |
| MRI                                                                                                                   | PUNCTATE ECCENTRIC HIGH<br>DENSITY STRUCTURE IS<br>PATHOGNOMONIC FOR DIAGNOSIS<br>EXTENSIVE PARENCHYMAL NCC<br>( <b>STARRY SKY APPEARANCE</b> )<br>MOST COMMON SITE IN BRAIN<br>PARENCHYMA<br>CORTICOMEDULLARY JUNCTION |
| NCC- NEUROCYSTERCOSIS, ,SSECT SM                                                                                      | CORTICOMEDULLARY JUNCTION                                                                                                                                                                                               |

#### TREATMENT OF NEUROCYSTICERCOSIS

| Mainstay treatment              | > symptomatic                                                         |
|---------------------------------|-----------------------------------------------------------------------|
| Specific Antihelminthic         | Aldendazole 15mg/kg for 4 weeks                                       |
|                                 | Praziquental-50mg/kg for 15 days                                      |
| Anticonvulsants                 | Seizures                                                              |
| Cerebral odema or<br>vasculitis | > Corticosteriods                                                     |
| Surgical treatment              | Hydrocephalus Gaint cyst (>10cm) with<br>intracranial hypertension    |
|                                 | Cyst in fourth ventricle                                              |
|                                 | <ul> <li>Cyst attached to middle cerebral artery<br/>(MCA)</li> </ul> |
|                                 | > CSF diversion in obstructive hydrocephalus                          |

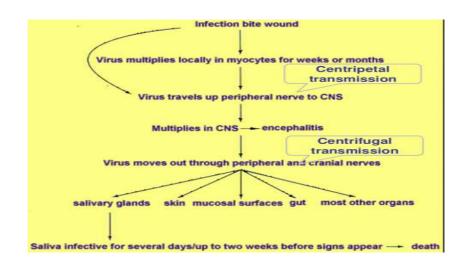
#### TUBERCULOMA VERSUS GRANULOMA

|                       | TUBERCULOMA                                                   |                        | NEUROCYTICERCOSIS                                                                                                                                  |
|-----------------------|---------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Usually Large<br>>20mm,Multiple                               | $\checkmark$           | Smaller< 20mm May Be Single Or Multiple                                                                                                            |
| $\checkmark$          | Severe Perifocal Oedema<br>With Focal Neurological<br>Deficit | A                      | Cerebral Oedema No Midline Shift Or Focal<br>Neurological Deficit                                                                                  |
| $\checkmark$          | MRI:Ring Enhanced Lesions                                     | A A                    | MRI - A Punctate Eccentric High Density<br>Structure Suggestive Of Scolex -<br>Pathognomonic For Diagnosis.(44%)<br>Multiple Ring Enhanced Lesions |
|                       | More Common In Posterior<br>Fossa                             |                        | More Common At Grey- White Junction                                                                                                                |
| A                     | MR Spectroscopy Shows<br>Lipid Peaks With<br>Tuberculoma      |                        | Ocular Manifestation ,Muscle Involvement Or<br>Subcutanous Nodules                                                                                 |
| $\blacktriangleright$ | Clinical Features Of TB Else<br>Where –Lungs,Lymph Nodes      | $\boldsymbol{\lambda}$ | Spontaneous Resolution Eventual Calcification<br>More Common In NCC                                                                                |

# DIAGNOSTIC CRITERIA USED FOR DIFFERENT ETIOLOGIES OF ACUTE FEBRILE ENCEPHALOPATHY

# predesigned diagnostic criteria

| Pyogenic meningitis                 | Fever with altered sensorium (without<br>focal symptoms/signs) ± neck signs + CSF<br>cytology (predominantly polymorphs) +<br>meningeal enhancement on either CT or<br>MRI scan          |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Viral encephalitis                  | Fever with altered sensorium (with focal<br>symptoms/signs) ± neck signs + CSF<br>cytology (predominantly lymphocytes)<br>+ EEG/MRI/CT evidence of parenchymal<br>disease + CSF serology |
| Tuberculous meningitis              | Fever with altered sensorium (with or<br>without focal symptoms/signs) + CSF<br>compatible with chronic meningitis + CSF<br>ADA > 9/TB PCR positive                                      |
| Cerebral malaria                    | Fever with altered sensorium (without focal<br>symptoms/signs) with peripheral smear/HRP<br>antigen test positive for malaria                                                            |
| Sepsis associated<br>encephalopathy | Underlying sepsis syndrome with normal CSF analysis, CT and MRI scan                                                                                                                     |


#### **RABIES ENCEHALOPATHY**

| RABIES - HIGHLY FATAL DISEASE OF CNS CAUSE- LYSSAVIRUS TYPE 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Rabies Virus                                                  | Lyssavirus – Type 1, Bullet Shaped Virus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Transmission Route                                            | Bites Of Rabid Animals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Most Common Affected                                          | Young Adults                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Affinity                                                      | Binding To Acetylcholine Receptors In Neural Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Pathogenesis                                                  | Street Virus Found In Saliva Of Infected Animal Especially Dogs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Reservoir Of Infection                                        | Dogs And Cats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                               | All Warm Blooded Animals Including Man Are Infected Rabies Is<br>A Dead End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| People At Risk                                                | Lab Workers, Veterinarians, Dog Handlers, Hunters, Etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Mode Of Transmission                                          | Animal Bites,Licks,Aerosol,Person To Person.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Incubation Period                                             | Depends On Severity Of Bite<br>Number Of Wounds<br>Amount Of Virus Infected<br>Species Of Biting Animal<br>Protection Provided By Clothing<br>Treatment Taken.                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Incubation Period                                             | 5 Days -6 Months                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Common Affected                                               | III,IV And Ixth Cranial<br>Nerve Palsies Most Common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Clinical Manifestations In<br>Man                             | Bizarre Behaviour, Agitation, Seizures, Difficulty In Drinking<br>Headache, Fever, Sorethorat, Nervousness, Confusion, Pain Or<br>Tingling At The Site Of The Bite, Hallucinations,<br>Hydrophobia,Spasms Of Pharynx Produces Choking, Respiratory<br>Paralysis, Coma And <i>Death In 1-6 Days</i> .                                                                                                                                                                                                                                                                                               |  |
| Neurologic Phase<br>Encephalitic Rabies -80%                  | <ul> <li>Fever, Confusion, Hallucinations, Combativeness Muscle Spasms,</li> <li>Hyperactivity, Seizures. Autonomic Dysfunction Like</li> <li>Hypersalivation, Excessive, Perspiration, Gooseflesh, Pupillary</li> <li>Dilatation, Priapism, Hyperexcitability</li> <li>Followed By Periods Of Complete Lucidity ,Hydrophobia,</li> <li>Aerophobia, Foaming At The Mouth, Dysfunction Infected</li> <li>Brainstem- Severe Brainstem Damage,Coma, Death, Paralytic</li> <li>Rabies-20% Complicated Encephalitis , I Water Balance</li> <li>Disturbance, Cardiac Arrhythmia, Myocarditis.</li> </ul> |  |

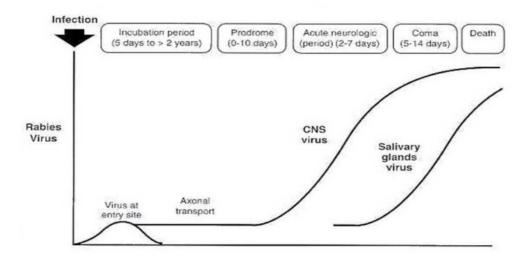
#### **TYPES OF CONTACT CATEGORY IN RABIES**

Types of contact are:

- category I touching or feeding animals, licks on the skin
- category II nibbling of uncovered skin, minor scratches or abrasions without bleeding, licks on broken skin
- category III single or multiple transdermal bites or scratches, contamination of mucous membrane with saliva from licks; exposure to bat bites or scratches



#### PATHOGENESIS OF RABIES ENCEPALOPATHY


#### **RABIES POST EXPOSURE PROPHYLAXIS**

#### **RABIES POST EXPOSURE PROPHYLAXIS**

Rabies Immunoglobulin (RIG) single dose 20IU per kg of body weight indifferent parts of body and at site of bite and antirabies vaccination (RAPUR)intramuscular dosed of 1ml or 0.5ML given as 0,3,7,14,30 dose

Abbreviated multisite schedule 2-1-1 regimen, one dose right arm, one dose in the left arm on day 0 one dose on the deltoid muscle on days 7 and 21, the 2-1-1 schedule.if post exposure rabies immunoglobin is not given

Local treatment of wound , Tetanus toxoid vaccination



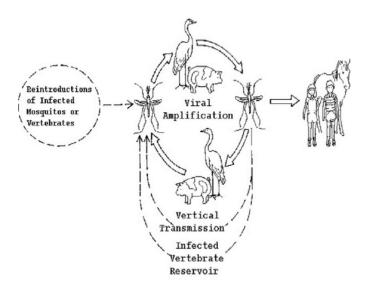
**PROGNOSIS IN RABIES VIRUS WITH 100% MORTALITY** 

#### SCRUB TYPHUS ENCEPHALOPATHY

Due to rapid urbanization of rural and forested areas scrub typhus has become an emerging public health problem in India. Scrub typhus is a etiological factor for AFE, resulting in significant morbidity and mortality. Most common in patients from Tamil Nadu and Andhra Pradesh.

#### SCRUB TYPHUS ENCEHALOPATHY

| Scrub Typhus (Bush Typhus)                                                                                  |                                                                                                                                                                                                                     |  |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Cause                                                                                                       | Orientia Tsutsugamushi Is A Zoonotic Disease                                                                                                                                                                        |  |
| Pathogen                                                                                                    | ObligateIntracellular Gram Negative Bacterium                                                                                                                                                                       |  |
| Age Group                                                                                                   | 35-62 Years                                                                                                                                                                                                         |  |
| Clinically Presents                                                                                         | Fever, Headache, Inoculation Eschar, And<br>Lymphadenopathy.                                                                                                                                                        |  |
| Characteristic                                                                                              | Eschar Presence                                                                                                                                                                                                     |  |
| Severe Form<br>Manifestation                                                                                | Pneumonia, Myocarditis, Azotemia, Shock, Gastrointestinal<br>Bleed, And Meningoencephalitis                                                                                                                         |  |
| Central Nervous System<br>Manifestation                                                                     | Acute Encephalitis Syndrome (AES)                                                                                                                                                                                   |  |
| Complications                                                                                               | After 1 Week Of Illness -Jaundice, Renal Failure,<br>Pneumonitis, ARDS, Septic Shock, Myocarditis,<br>Meningoencephalitis, Respiratory Failure , Septic Shock<br>Results In Multiorgan Failure, DIC,Mortality 7-30% |  |
| Diagnosis                                                                                                   | Weil-Felix Agglutination Test Using Proteus OXK Strain<br>Positive 50% During Second Week Of Illness<br>Immunoglobulin M Enzyme Linked Immuno-sorbant<br>Assay Positivity                                           |  |
| CSF Analysis                                                                                                |                                                                                                                                                                                                                     |  |
| EEG StudyBilateral Diffuse Cerebral Dysfunction With Epilept<br>Discharges With No Specific Lateralization. |                                                                                                                                                                                                                     |  |
| MRI                                                                                                         | Diffuse Cerebral Edema, Hyperintense Lesions In Putamen<br>& Thalamus In T2-Weighted &<br>Fluid-Attenuated Inversion Recovery (Flair) Images.                                                                       |  |


#### TREATMENT SCRUB TYPHUS ENCEPHALOPATHY

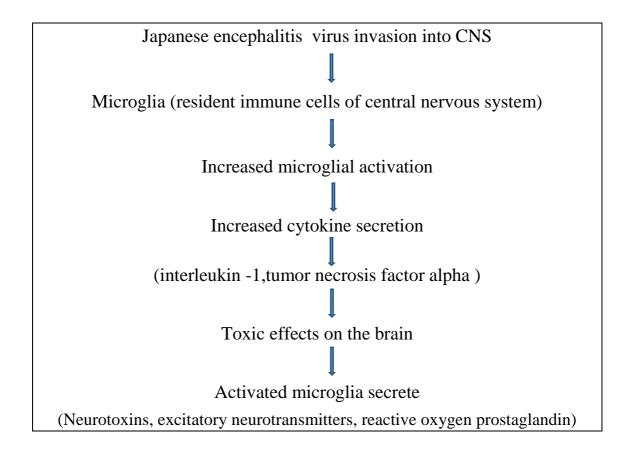
| DRUG of choice                                                       | Doxycycline 100 mg twice daily for a                                        |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------|
|                                                                      | period of 7-10 days.                                                        |
| Inadequate response to<br>doxycycline                                | Azithromycin given                                                          |
| Multi-organ dysfunction<br>syndrome (MODS) (>2 organ<br>involvement) | Multidisciplinary intensive care including ventilatory support and dialysis |

# JAPANESE ENCEPHALITIS

#### JAPANESE ENCEPHALITIS

| Japanese Encephalitis                                  |                                                                                                    |  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| Zoonotic Disease Infecting Mainly Animals              |                                                                                                    |  |
| Incidentally Infects Man.                              |                                                                                                    |  |
| Japanese Encephalitis Virus (JEV)                      | Mosquito Borne Flavivirus                                                                          |  |
|                                                        | Virions - Spherical,Lipoprotein-Enveloped.Genome - Single<br>Stranded Positive Sense RNA           |  |
| Transmitted                                            | Arboviruses (Abv) Endemic InTemperate And Tropical<br>Asia.Epidemic In India                       |  |
| Domestic Animal Of JE                                  | Horses Dead End Host                                                                               |  |
| Amplifers                                              | Domestic Pigs Virus Producing High Viremia Which Infect<br>Mosquito Vectors                        |  |
| Reservoir                                              | WildBirds Like Heron And Egret                                                                     |  |
| Trasmission Of Je Virus<br>Mosquitoes Principle Vector | Culex Tritaeniorhynchus (Oviposits In Flooded Fields (Fish<br>Ponds, Rice<br>Paddies And Ditches)  |  |
| India Vector.                                          | Culex Vishnui                                                                                      |  |
| Incubation Period                                      | 5 -15 Days                                                                                         |  |
| Pathogencity                                           | Virus Multiplies At The Site Of Bite And In Regional Lymphnodes Viremia Spreads.                   |  |
| Neurological Disease                                   | Life Threating Encephalitis,<br>< 1% Cases Neuroinvasive Disease<br>Severe High Case Fatality Rate |  |
| Diagnose                                               | CSF Analysis Je Igm Antibodies                                                                     |  |
| Prevention                                             | Preventive Measures Adapted By Travellers Going To JVE Epidemic Areas.                             |  |




#### TRANSMISSION CYCLE OF JAPANESE ENCEPHALITIS VIRUS

Diagnosis of acute febrile encephalopathy JE should be considered in patients who have returned from recent travel to JE epidemic areas. Disease is usually by serology examination.

# TREATMENT, CHEMOPROPHYLAXIS & PREVENTION IN JAPANESE ENCEPHOPATHY

| Drug Of Choice                          | No Specific Drug Available             |
|-----------------------------------------|----------------------------------------|
| Children Vaccination $\leq 15$ Years In | SA 14 -14-2 Japanese Encephalitis      |
| Endemic Areas                           | Vaccine Vaccination Children           |
| Prevention                              | Avoid Mosquito Exposure By Using       |
|                                         | Bed Nets While Sleeping, Mosquito      |
|                                         | Repellants With Diethyltoluamide       |
|                                         | (DEET).Insecticides And Mosquito       |
|                                         | Killing Agents Should Be Used To       |
|                                         | Control Viral Spread, Larvivorous Fish |
|                                         | Grown In Draining Rice Paddies         |

#### PATHOGENESIS OF JAPENESE ENCEPALITIS



#### STAGES IN COURSE OF JAPANESES ENCEHALITIS IN HUMAN AND CLINICAL MANIFESTATION

| Three Stages In Course Of    | Clinical Manifestations                       |  |
|------------------------------|-----------------------------------------------|--|
| Diseases                     |                                               |  |
| 1.Prodromal Stage (1-6 Days) | Fever Headache Malaise                        |  |
| 2.Acute Encephalitic Stage   | Fever, Nuchal Rigidity, Focal Neurological    |  |
|                              | Signs, Convulsions. Altered Sensorium         |  |
|                              | Progressing To Coma.                          |  |
| 3.Late Stage Of Sequelae     | Fever Subsides, Serious Residual Neurological |  |
|                              | Deficit-Paralysis,                            |  |
|                              | Brain Damage –Deafness,                       |  |
|                              | Emotional Liability,                          |  |
|                              | Hemiparesis                                   |  |
| Prognosis:                   | Average Period Between Onset Of Illness 5days |  |
|                              | Death In About 9 Days                         |  |
| Case Fatality Rate (CFR)     | 20-40%                                        |  |
|                              | Humans - Mortality Rate 5-35%.                |  |
| Serious Neurologic Sequelae  | 33-50%                                        |  |

CT scan shows oedema and congestion of brain and meninges, thalamus is severely affected. The differential diagnosis is meningitis, rabies, cerebral malaria, toxic encephalopathy

#### **INVESTIGATION**

#### LACTATE DEHYDROGENASE

Normally it is used in evaluation of many diseases conditions. LDH enzyme is found in all body cell and released into the serum when cells are damaged. LDH is thus a indicator of tissue and cellular damage. LDH also raises in other types of body fluids, the cerebrospinal and pleural fluid. In the presence of meningeal infections and diseases, like CSF to distinguish between viral, bacterial and fungal meningitis. LDH is evaluated in, If LDH is elevated more specific test like ALT, AST or ALP are further done to diagnosis a particular diseases.

| Lactate Dehydrogenase (LDH)                  | Nonspecific                                                          |
|----------------------------------------------|----------------------------------------------------------------------|
| High Levels Of LDH In<br>Cerebrospinal Fluid | Meningitis Is Bacterial In Origin                                    |
| Low Or Normal Level                          | Viral                                                                |
| LDH Is Increased                             | Sepsis, Acute Liver Diseases,<br>Meningitis, Encephalitis HIV.       |
| LDH test is performed on body fluids         | Peritoneal, pleural, pericardial fluid,<br>Cerebrospinal fluid (CSF) |

#### LACTATE DEHYDROGENASE

# CSF LACTATE DEHYDROGENASE IN MENINGITIS CSF ANALYSIS

| CSF LACTATE DEHYDROGENASE IN MENINGITIS  |                  |  |
|------------------------------------------|------------------|--|
| >35µ/dl Bacterial Meningitis             |                  |  |
| 25-35 μ/dl Tubercular, Fungal Meningitis |                  |  |
| >35 µ/dl                                 | Viral Meningitis |  |

#### **CSF FINDING IN DIFFERENT TYPES OF MENINIGITS**

| Test                             | Appearance                                | Pressure                                    | WBC/µL                        | Protein mg/<br>dL                | Glucose mg/<br>dL | Chloride         |
|----------------------------------|-------------------------------------------|---------------------------------------------|-------------------------------|----------------------------------|-------------------|------------------|
| Normal<br>CSF                    | Clear                                     | 90 – 180<br>mm                              | 0-8 lymph.                    | 15-45                            | 50-80             | 115-130<br>mEq/L |
| Acute<br>bacterial<br>meningitis | Turbid                                    | Increased                                   | 1000<br>-10000                | 100 - 500                        | < 40              | Decreased        |
| Viral<br>meningitis              | Clear                                     | Normal to<br>moderate<br>increase           | 5-300,<br>rarely<br>>1000     | Normal to<br>mild<br>increased   | Normal            | Normal           |
| Tubercular<br>meningitis         | Slightly<br>opaque<br>cobweb<br>formation | Increased/<br>decreased,<br>spinal<br>block | 100-600<br>mixed or<br>lymph. | 50-300 due<br>to spinal<br>block | Decreased         | Decreased        |
| Fungal meningitis                | Clear                                     | Increased                                   | 40-400<br>mixed               | 50-300                           | Decreased         | Decreased        |
| Acute<br>syphilitic              | Clear                                     | Increased                                   | About 500<br>lymph            | Increased<br>but <100            | Normal            | normal           |

#### **NEUROIMAGING MODALITIES**

| The Most Important Need For<br>CT Scan | Rule Out Contraindication For Lumbar<br>Puncture.                                                                                                                                                                    |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Rule Out Infection                     | Otorhinologic Structures Infection- Sinusitis,<br>Mastoids To Locate Infection Causing<br>Complications - Meningitis, Hydrocephalus,<br>Subdural Effusion, Empyema, Cerebritis,<br>Developing Abscess And Infarction |  |
|                                        | Exclude Parenchymal Abscess ,Ventriculitis                                                                                                                                                                           |  |
| Specific Findings In CT Scan           |                                                                                                                                                                                                                      |  |
| Pyogenic Brain Abscess                 | Ring Enhanced Lesion                                                                                                                                                                                                 |  |
| In Tuberculosis                        | Tuberculoma Multiple -Ring Enhanced<br>Lesion Are Seen In CT scan                                                                                                                                                    |  |

#### COMPUTERISED TOMOGRAPHY (CT SCAN)

The diagnosis of acute bacterial meningitis should not be made on the basis of imaging studies alone. The diagnosis should rather be established by the affected patients history, physical examination findings and laboratory results of which lumbar puncture and CSF analysis is a the single most important diagnostic study. CT scan may reveal the cause infection. of meningeal Obstructive hydrocephalus occur in inflammatory changes in the subarachnoid space or ventricular obstruction. In acute meningitis CT scan may be normal in early stages of encephalopathy. So the results of an imaging scan do not exclude or prove the presence of acute meningitis. Computed tomography (CT) brain non contrast and contrast enhanced of the brain was done for all patient who presented with acute febrile encephalopathy.

## MAGNETIC RESONANCE IMAGING (MRI)

| Nonspecific Changes             | Meningeal Enhancement Nonspecific        |
|---------------------------------|------------------------------------------|
|                                 | Infections, Carcinomatous                |
|                                 | Meningitis. Reactive Meningitis,         |
|                                 | Inflammatory Conditions Sarcoidosis      |
|                                 | Collagen Vascular Diseases.              |
| Magnetic Resonance Imaging      | Detection Of Meningitis Complications    |
| (MRI) Scan                      | Like Hydrocephalus, Cerebritis, Abscess, |
|                                 | Cranial Nerve Lesions, Thrombosis,       |
|                                 | Infarction, Ventriculitis, Vasculopathy. |
| DENGUE Encephalitis             | Bilateral Hyperintensities On Flair      |
|                                 | Sequences In Thalami (FLAIR Sequences)   |
| Magnetic Resonance Spectroscopy | Useful To Distinguish An Abscess         |
|                                 | From Other Ring Enhancing Lesion-        |
|                                 | Tuberculoma, Neurocytisercosis, Glioma,  |
|                                 | Fungal                                   |

# MATERIALS AND METHODS

#### MATERIAL AND METHODOLOGY

All patients above the age group of 13 years to 65 yrs who presented to the hospital with acute febrile encephalopathy with neurological manifestations and admitted in the department of medicine at Rajiv Gandhi hospital with fever of less than two weeks duration along with altered sensorium with or without seizures were enrolled in the study from March 2014 to July 2015. A prospective study was done from August 2014 to August 2015.a total of 100 case with acute febrile encephalopathy.

#### **INCLUSION CRITERIA:**

All children above the age of 13 years and all adults upto 65 years. Patients who presented to the medicine department with acute febrile illness with less than 2 weeks duration with any of the following clinical neurological manifestations of alteration of consiousness level, headache, disorientation, vomiting, focal neurological deficit, blurring of vision and with diarrhoea, vomiting chills rigors were enrolled in the study group. A total of 100 patients were taken for study.

#### **EXCLUSION CRITERA :**

Patients with non-infectious causes of unconsciousness who presented with Traumatic brain injury, chronic encephalopathy, Vascular (vasculitis, SLE, SAH, SDH, stroke, behcets) with past history of neurological disorders like seizures and in whom persistent altered mental status could be attributed to dearrgened Metabolic (hepatic renal failure ,diabetes) encephalopathy with metabolic parameters as hypoglycemia <50mg/dl , hypoxia (pao2 <60mmHg), hypercapnia (pco2 >50mmHg)

Dyselectrolytemia with hyponatremia (<120mg/dl) hypernatremia (>150mg/dl) space occupying lesion (SOL) or endrocinopathies like addison's, hypothyroidism hashimotos encephalopathy, Toxic (alcohol, drugs) encephalopathy patients were excluded from the study. Patient with previous psychiatric illness or previous drug treatment for any other neurological disorders were excluded from the study.

#### DEMOGRAPHY AND HOSPITAL STAY.

A total of 100 patients of the age group above 13 years were included in the study in which 50% were below 35 yrs of age .Males were common commonly affected. Male:female Ratio 2:1.

Patients admitted earlier with less clinical manifestation had good recovery and recovered after intensive treatment. For a duration of 7days or 14 days. patients who presented to the hospital after severe manifestations of Acute febrile encephalopathy and fever for more than a week duration had a longer course of treatment in the hospital in the intensive care unit and complications like acute liver failure was controlled in most patients. Patients with complications like acute respiratory distress. aspiration pneumonitis and disseminated intravascular coagulation would not be treated and mortality was high in these patients.

# IDENTIFICATION OF COMPLICATING SIGNS IN ACUTE FEBRILE ENCEPHALOPATHY

| Identification of deteriorating signs in Acute Febrile |                           |  |
|--------------------------------------------------------|---------------------------|--|
| Encephalopathy                                         |                           |  |
| Seizures                                               | eizures Raised ICT        |  |
| Shock                                                  | Papilledema               |  |
| Sepsis                                                 | Asymmetric pupils         |  |
|                                                        | Posturing                 |  |
|                                                        | Absent Dolls eye movement |  |

# MANAGEMENT OF PATIENT WITH ACUTE FEBRILE ENCEHALOPATHY GCS<15

| Assessment  | Oxygen therapy                              | Monitoring                |
|-------------|---------------------------------------------|---------------------------|
|             | If respiratory rate increased and           | Heart rate                |
| Airway      | inadequate for ventilation                  | Respiratory rate          |
| Breathing   | Ventilation                                 | O <sub>2</sub> saturation |
| Circulation | O <sub>2</sub> saturation <92% despite high | Blood pressure            |
| Disability  | flow O <sub>2</sub> through venturi mask    | Temperature               |
|             | If $GCS < 8$                                | ECG (hourly recorded or   |
|             | Signs of raised intracranial                | continuously monitored)   |
|             | pressure Signs of shock despite             |                           |
|             | fluid management                            |                           |

# MANAGEMENT OF PATIENTS WITH RAISED INTRACRANIAL PRESSURE

Management of patients with raised intracranial pressure Early intubation if GCS<8 Head end elevation of 15 -30° Avoid hypotonic solutions Hypertonic saline -3% saline in Hypotension Hypovolemia, serum osmolality >320mOsm//kg. Renal failure dose 0.1-1mg/kg/hrMannitol 20 % solution initial bolus 0.25-1g/Kg then 0.25-0.5g/kg,Q2-6h as requirement upto 48hours Hyperventilation –PaCO<sub>2</sub> 30-35mmHg

# EMPIRICAL TREATMENT OF ACUTE FEBRILE ENCEPHALOPATHY

EMPIRICAL TREATMENT OF ACUTE FEBRILE ENCEPHALOPATHY

IV cefotaxime 2 gm BD dose daily x 7 days

IV Acyclovir 500mg TDS daily x 7days

IV Artesunate 120 mg OD daily x7 days

Doxycycline 100mg oral BD daily x 7 days

Then after Investigations Drug of choice continued or added

Most of the patients with acute febrile encephalopathy completely recovered without any neurological deficit. once the underlying etiology is diagnosed and the patient in treated with appropriate antivirals, antibiotics or even with empirical treatment. is. IV acyclovir is the treatment of choice for viral encephalititis. Respiratory complications like aspiration pneumonitis treated with higher antibiotic erythromycin, azithromycin, clarithromycin, symptoms resolved over several days to 2-3 weeks, Antibiotics are the most common form of treatment although some vaccines are available

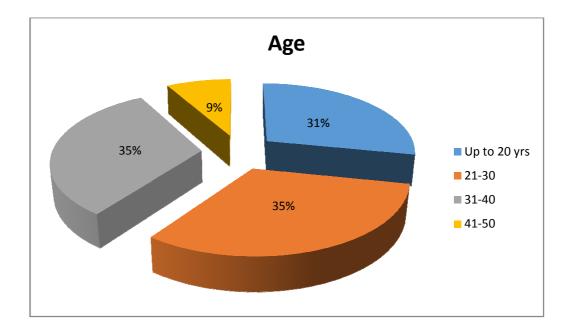
#### PROGNOSIS

Prognosis was graded according to Modified rankin score. neurological sequelae like cognitive impairment, weakness, ataxia, seizure seen in 5%. The recent advent of newer antibiotics has reduced the mortality rate. Most cases of Bacterial meningitis have good prognosis provided the disease is diagnosed rapidly and treated appropriately. Condition such as alcoholism and high-dose steroid use reduce the chancesof a full recovery.

#### PROGNOSIS OF ACUTE FEBRILE ENCEPHALOPATHY ACCORDING TO MODIFIED RANKIN SCALE

# **Modified Rankin Scale**

| Score | Description                                                                                                                     |
|-------|---------------------------------------------------------------------------------------------------------------------------------|
| 0     | No symptoms at all                                                                                                              |
| 1     | No significant disability despite having symptoms; able to carry out all usual duties and activities                            |
| 2     | Slight disability; unable to carry out all previous activities,<br>but able to look after own affairs without assistance        |
| 3     | Moderate disability; requiring some help, but able to walk without assistance                                                   |
| 4     | Moderately severe disability; unable to walk without<br>assistance, and unable to attend own bodily needs without<br>assistance |
| 5     | Severe disability; bedridden, incontinent, and requiring constant nursing care and attention                                    |
| 6     | Dead                                                                                                                            |

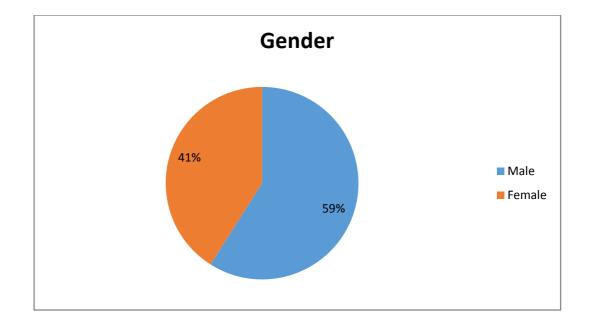

# OBSERVATION AND RESULTS

#### **OBSERVATIONS AND RESULTS**

# Table 1: Age Distribution

| AGE          | FREQUENCY | PERCENT |
|--------------|-----------|---------|
| Up to 20 yrs | 31        | 31.0    |
| 21-30        | 35        | 35.0    |
| 31-40        | 25        | 25.0    |
| 41-50        | 9         | 9.0     |
| Total        | 100       | 100.0   |

**Chart 1 : Age Distribution** 



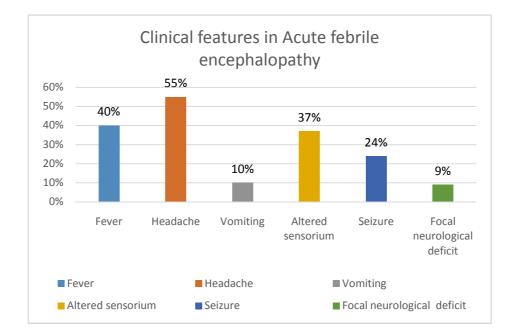

In our study 35% cases of acute febrile encephalopathy were most common in age group between 21-30 yrs

| <b>TABLE 2 :</b> | <b>SEX FREQUENCY</b> |
|------------------|----------------------|
|------------------|----------------------|

| SEX    | FREQUENCY | PERCENT |
|--------|-----------|---------|
| Male   | 59        | 59.0    |
| Female | 41        | 41.0    |
| Total  | 100       | 100.0   |

**Chart 2 : Sex Frequency** 



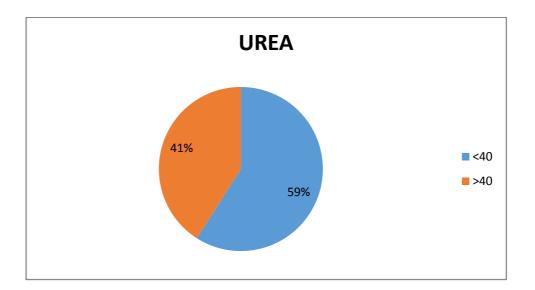

Male patients were more common in our study group about 59% cases.

# Table 3 : CLINICAL FEATURES IN ACUTE FEBRILEENCEPHALOPATHY

| CLINICAL FEATURES IN ACUTE<br>FEBRILE ENCEPHALOPATHY | FREQUENCY | PERCENTILE |
|------------------------------------------------------|-----------|------------|
| Fever                                                | 40        | 40%        |
| Headache                                             | 55        | 55%        |
| Vomiting                                             | 10        | 10%        |
| Neck Rigidity                                        | 34        | 34%        |
| Altered Sensorium                                    | 37        | 37%        |
| Seizure                                              | 24        | 24%        |
| Focal Neurological Deficit                           | 9         | 9%         |

Headache 55% and fever 40% were the most common clinical manifestations. neck rigidity 34%, altered sensorium, 37%, seizures 24%, focal neurological deficit 9 % was least common

**Chart 3 CLINICAL FEATURES IN ACUTE FEBRILE ENCEPHALOPATHY** 

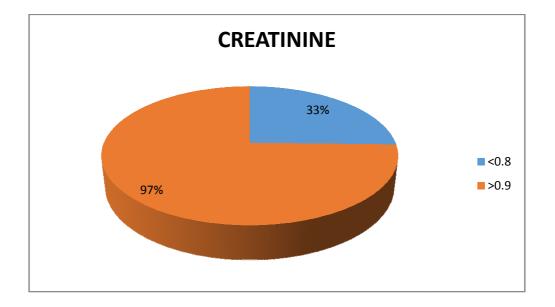



## **RENAL FUNCTION TEST**

#### **Table 4 BLOOD UREA LEVELS**

| UREA      | FREQUENCY | PERCENT |
|-----------|-----------|---------|
| <40 mg/dl | 54        | 54.0    |
| >40 mg/dl | 46        | 46.0    |
| Total     | 100       | 100.0   |

#### **Chart 4 : BLOOD UREA LEVELS**

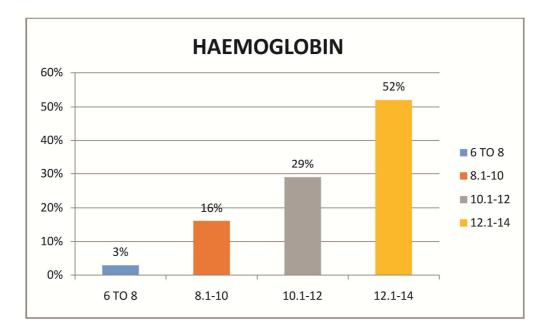



46% had raised blood urea values in our study in patients acute febrile encephalopathy

| CREATININE mg/dl | FREQUENCY | PERCENT |
|------------------|-----------|---------|
| < 0.8 NORMAL     | 33        | 33.0    |
| >0.9 INCREASED   | 67        | 67.0    |
| Total            | 100       | 100.0   |

#### **TABLE 5 : BLOOD CREATININE LEVELS**

#### **Chart - 5 : BLOOD CREATININE LEVELS**



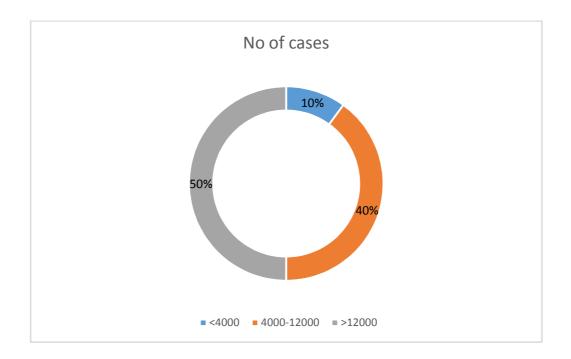

Creatinine was raised in 67% of cases in our study in acute febrile encephalopathy patient

| HAEMOGLOBIN mg/dl | FREQUENCY | PERCENT |
|-------------------|-----------|---------|
| 6-8               | 3         | 3.0     |
| 8.1-10            | 16        | 16.0    |
| 10.1-12           | 29        | 29.0    |
| 12.1-14           | 52        | 52.0    |
| Total             | 100       | 100.0   |

**TABLE 6 : BLOOD HEMOGLOBIN VALUE** 

**Chart 6 : BLOOD HEMOGLOBIN FREQUENCY LEVEL** 



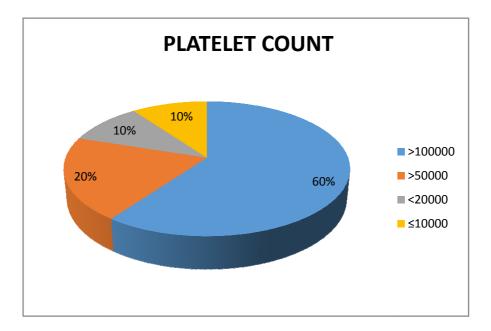

Hemoglobin was very low about 6-8 mg/dl in 3% of case with in our study and 52% had normal levels

|                 | v         |       |
|-----------------|-----------|-------|
| leucocyte count | FREQUENCY | NO OF |

| TABLE 7 : Tota | l leucocyte count |
|----------------|-------------------|
|----------------|-------------------|

| Total leucocyte count | FREQUENCY | NO OF CASES |
|-----------------------|-----------|-------------|
| (cell/mm)             |           |             |
| <4000                 | 10%       | 10%         |
| 4000-12000            | 40%       | 40%         |
| >12000                | 50%       | 50%         |

# **Chart 7: Total leucocyte count**




Total leucocyte count was raised in more90% cases in our study in acute febrile encephalopathy patient

| PLATELET COUNT /ML | FREQUENCY | NO OF CASES |
|--------------------|-----------|-------------|
| > 100000           | 60%       | 60%         |
| > 50000            | 20%       | 20%         |
| < 20000            | 10%       | 10%         |
| $\leq 10000$       | 10%       | 10%         |

**TABLE 8: BLOOD PLATELET COUNT** 

**Chart 8 : BLOOD PLATELET COUNT** 



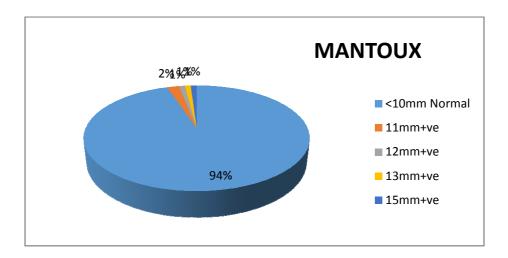
Platelet count was reduced in 50% of cases and 10% had very low levels and needed blood transfusion platelet transfusion in our study in patients with acute febrile encephalopathy.

| DIRECT BILIRUBIN mg./dl | FREQUENCY | PERCENT |
|-------------------------|-----------|---------|
| >0.2                    | 14        | 14.0    |
| <0.2                    | 86        | 86.0    |
| Total                   | 100       | 100.0   |

#### **TABLE 9 : LIVER FUNCTION TEST**

| INDIRECT BILIRUBIN mg./dl | FREQUENCY | PERCENT |
|---------------------------|-----------|---------|
| >0.8                      | 20        | 20.0    |
| <0.8                      | 80        | 80.0    |
| Total                     | 100       | 100.0   |

## **Chart 9. Liver Function Test**



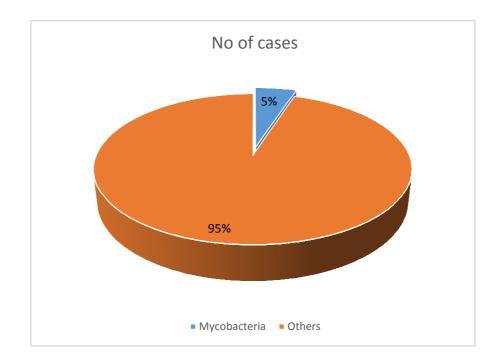

Liver function test was raised in 20 % of cases of patients with acute febrile encephalopathy due to hepatic complications.

#### **TABLE 10 : MANTOUX TEST**

| MANTOUX | FREQUENCY | PERCENT |
|---------|-----------|---------|
| <10mm   | 94        | 94.0    |
| 11mm+ve | 2         | 2.0     |
| 12mm+ve | 1         | 1.0     |
| 13mm+ve | 1         | 1.0     |
| 15mm+ve | 2         | 1.0     |
| Total   | 100       | 100.0   |

#### **Chart 10 : MANTOUX TEST**



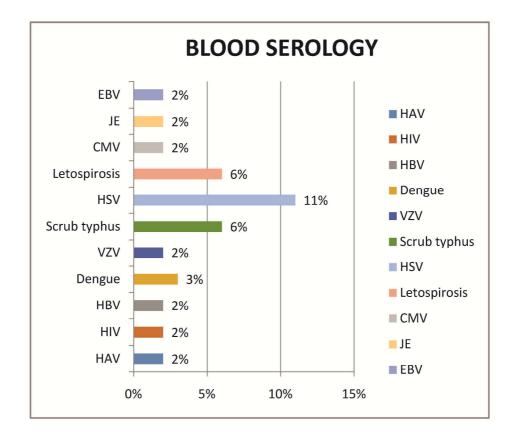

Mantoux was positive in our study in 5% cases with tuberculosis in of patients with tuberculosis encephalitis

#### TABLE 11 : SPUTUM CULTURE/SENSITIVITY& AFB

| Sputum Culture/  | FREQUENCY | No of cases positive |
|------------------|-----------|----------------------|
| Sensitivity& AFB |           |                      |
| Mycobacteria     | 5         | 5%                   |

Sputum culture sensitivity seen in 5% cases in the study

#### CHART11: SPUTUM CULTURE/SENSITIVITY& AFB

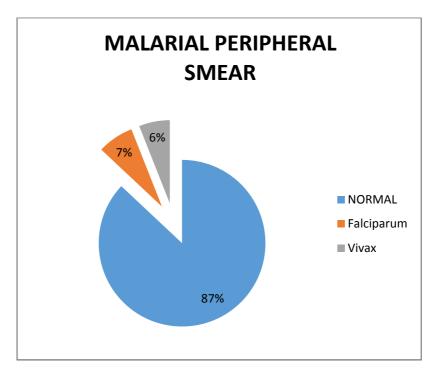



| BLOOD SEROLOGY | FREQUENCY | PERCENTILE |
|----------------|-----------|------------|
| VIRAL          |           |            |
| HIV            | 2         | 2%         |
| HBV            | 2         | 2%         |
| DENGUE         | 3         | 3%         |
| VZV            | 2         | 2%         |
| SCRUB TYPHUS   | 6         | 6%         |
| HSV            | 11        | 11%        |
| LEPTOSPIROSIS  | 6         | 6%         |
| HAV            | 2         | 2%         |
| CMV            | 2         | 2%         |
| JE             | 2         | 2%         |
| EBV            | 2         | 2%         |

#### TABLE 12 : BLOOD SEROLOGY

Herpes simplex virus was positive in 11% with maximum incidenceamong patients with positive IgM antibodies in serum cases in our study in acute febrile encephalopathy patient

#### **CHART 12 : BLOOD SEROLOGY**



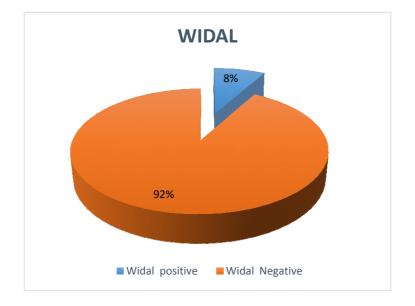

23% Viral encephalopathy was most common in 28% our case study

| MALARIAL PERIPHERAL SMEAR | FREQUENCY | PERCENT |
|---------------------------|-----------|---------|
| Falciparum                | 7         | 7.0     |
| Vivax                     | 6         | 6.0     |
| Total                     | 100       | 100.0   |

### TABLE 13 : MALARIAL PERIPHERAL SMEAR

## FIGURE 13 : MALARIAL PERIPHERAL SMEAR




Malaria was positive in 13% cases in our study in acute febrile encephalopathy patient

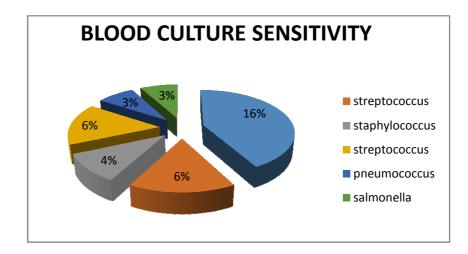
## WIDAL TEST

# TABLE 14: WIDAL TEST

| WIDAL TEST | FREQUENCY | PERCENTILE |
|------------|-----------|------------|
| positive   | 8         | 8%         |

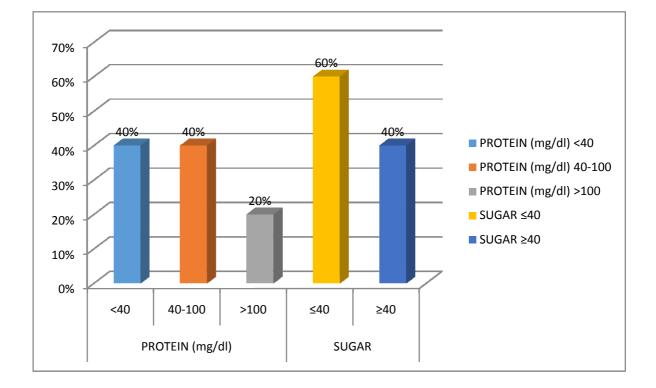
## **CHART 14 : WIDAL TEST**




Widal positive in was 8% cases in our case study

## **TABLE 15 : BLOOD CULTURE SENSITIVITY**

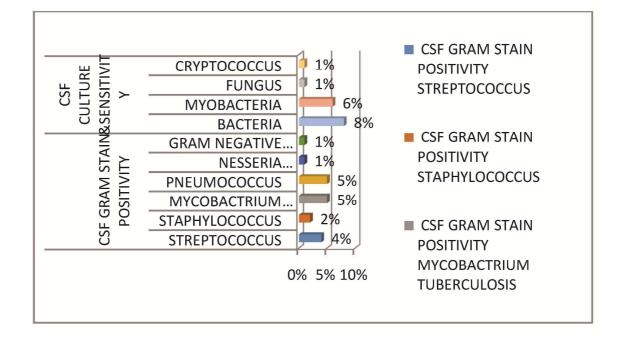
| BLOOD CULTURE<br>SENSITIVITY | FREQUENCY        | NO OF CASES |  |
|------------------------------|------------------|-------------|--|
| Bacteria                     | 16               | 16%         |  |
| Fungus                       | 6                | 6%          |  |
|                              | Sputum C/S & AFB |             |  |
| Mycobacteria                 | 5                | 5%          |  |
|                              |                  |             |  |
| Salmonella typhi             | 8                | 8%          |  |


| <b>BLOOD CULTURE &amp; SENSITIVITY</b> | Frequency | No Of Cases |
|----------------------------------------|-----------|-------------|
| Streptococcus                          | 6         | 6%          |
| Staphylococcus                         | 4         | 4%          |
| Streptococcus                          | 6         | 6%          |
| Pneumococcus                           | 3         | 3%          |
| Salmonella                             | 3         | 3%          |

# **Chart 15 : BLOOD CULTURE SENSITIVITY**



| PROTEIN(mg/dl) | FREQUENCY | CASES |
|----------------|-----------|-------|
| <40            | 40        | 40%   |
| 40-100         | 40        | 40%   |
| >100           | 20        | 20%   |
| Sugar (mg/dl)  |           |       |
| <u>≤</u> 40    | 60        | 60%   |
| ≥40            | 40        | 40%   |


### TABLE 16 : CSF PROTEIN AND SUGAR VALVES



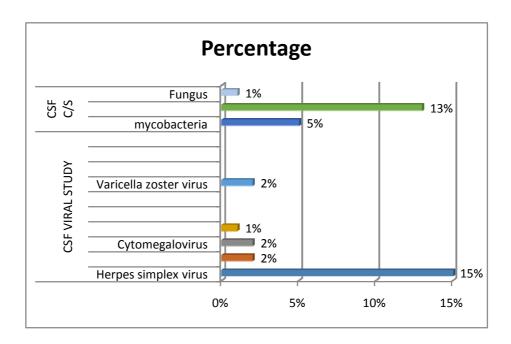
### FIGURE 16 : CSF PROTEIN AND SUGAR VALVES

| CSF BACTERIAL GRAM STAIN POSITIVITY | FREQUEN | NO OF |
|-------------------------------------|---------|-------|
|                                     | CY      | CASES |
|                                     |         |       |
| Streptocooci                        | 4       | 4%    |
| Staphylococci                       | 2       | 2%    |
| Mycobacteria Tuberculosis           | 5       | 5%    |
| Pneumococcus                        | 5       | 5%    |
| Nesseriameningococcoi               | 1       | 1%    |
| Gram negative Bacilli               | 1       | 1%    |
| CSF Culture Sensitivity             |         |       |
| Bacteria                            | 8       | 8%    |
| Mycobacteria                        | 6       | 6%    |
| Fungus                              | 1       | 1%    |
| Cryptococcus                        | 1       | 1%    |

### TABLE 17 : CSF BACTERIAL GRAM STAIN POSITIVITY



### CHART 17 : CSF BACTERIAL GRAM STAIN POSITIVITY

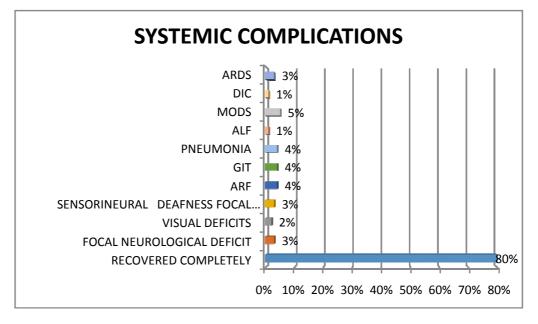

Bacterial meningitis was seen in 16% of cases in our study

### TABLE 18 : CSF VIRAL STUDY AND CULTURE&SENSITIVITY

| CSF VIRAL STUDY               | No Of Case |
|-------------------------------|------------|
| Herpes simplex virus          | 15%        |
| Epstein barr virus            | 2%         |
| Cytomegalovirus               | 2%         |
| Japanesese encephalitis virus | 1%         |
| Varicella zoster virus        | 2%         |
| Herpes zoster virus           | 2%         |

Herpes simplex virus was positive in 15% cases in our study

## Chart 18 : CSF VIRAL STUDY AND CULTURE&SENSITIVITY

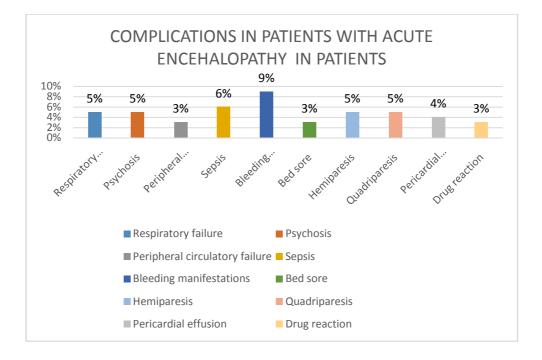



# TABLE 19 : COMPLICATIONS IN PATIENTS WITH ACUTE FEBRILE ENCEPHALOPATHY

1

|                                                                                       | NS IN PATIENTS WITH ACUTE<br>LE COMPLICATIONS              | FREQUENCY | Total No Of<br>Patients/ 100 |
|---------------------------------------------------------------------------------------|------------------------------------------------------------|-----------|------------------------------|
| IMPROVED<br>COMPLETEY<br>WITHOUT ANY<br>COMPLICATION<br>OR<br>NEUROLOGICAL<br>DEFICIT |                                                            | 80        | 80                           |
| IMPROVED<br>WITH                                                                      | FOCAL NEUROLOGICAL<br>DEFICIT                              | 3         | 3                            |
| NEUROLOGY<br>DEFICIT                                                                  | VISUAL DEFICITS                                            | 2         | 2                            |
|                                                                                       | SENSORINEURAL DEAFNESS<br>FOCAL NEUROLOGICAL<br>DEFICIT    | 3         | 3                            |
|                                                                                       | ARF-acute renal failure                                    | 4         |                              |
| INVOLVEMENT                                                                           | GIT-gastrointestinal                                       | 4         |                              |
|                                                                                       | PNEUMONIA                                                  | 4         |                              |
|                                                                                       | ALF-acute liver failure                                    | 1         |                              |
| DEAD                                                                                  | MODS-Multiorgan failure                                    | 5         |                              |
|                                                                                       | DIC-Disseminated intravascular                             | 1         |                              |
|                                                                                       | coagulation<br>ARDS-Acute respiratory distress<br>syndrome | 3         |                              |

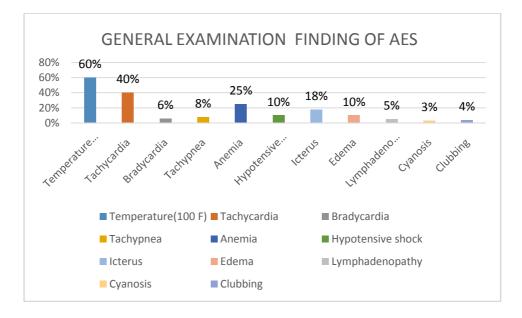
### **CHART 19 : PROGNOSIS AND COMPLICATIONS IN PATIENTS**




#### WITH ACUTE FEBRILE

# TABLE 20 : COMPLICATIONS IN PATIENTS WITH ACUTEENCEPHALOPATHY IN PATIENTS

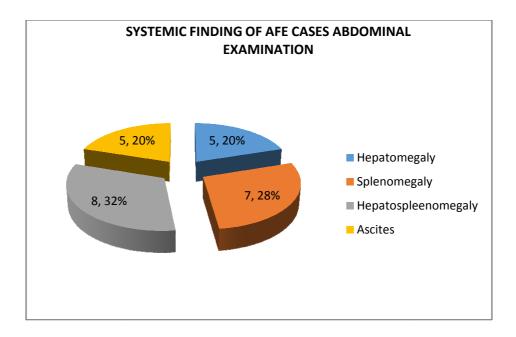
| COMPLICATIONS IN PATIENTS WITH ACUTE<br>ENCEPHALOPATHY IN PATIENTS | FREQUENCY | NO OF CASES |
|--------------------------------------------------------------------|-----------|-------------|
| Respiratory failure                                                | 5%        | 5           |
| Psychosis                                                          | 2%        | 2           |
| Peripheral circulatory failure                                     | 5%        | 5           |
| Sepsis                                                             | 6%        | 6           |
| Hemiparesis                                                        | 5%        | 5           |
| Quadriparesis                                                      | 5%        | 5           |
| Pericardial effusion                                               | 4%        | 4           |
| Drug reaction                                                      | 3%        | 3           |


# CHART 20: COMPLICATIONS IN PATIENTS WITH ACUTE ENCEPHALOPATHY IN PATIENTS



| General Examination finding of AES | FREQUENCY | NO OF CASES |
|------------------------------------|-----------|-------------|
| Temperature(100 F)                 | 60%       | 60          |
| Tachycardia                        | 40%       | 40          |
| Bradycardia                        | 6%        | 6           |
| Tachypnea                          | 8%        | 8           |
| Anemia                             | 25%       | 25          |
| Hypotensive shock                  | 10%       | 10          |
| Icterus                            | 18%       | 18          |
| Edema                              | 10%       | 10          |
| Lymphadenopathy                    | 5%        | 5           |
| Cyanosis                           | 3%        | 3           |
| Clubbing                           | 4%        | 4           |

# TABLE 21 : GENERAL AND SYSTEMIC EXAMINATION OFFINDINGS IN ACUTE FEBILE ENCEPHALOPATHY

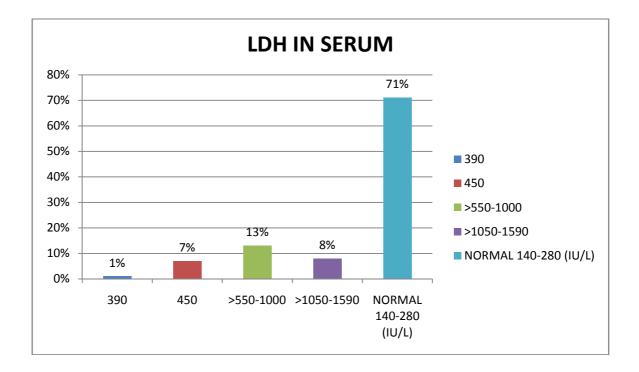

# CHART 21 : GENERAL AND SYSTEMIC EXAMINATION OF FINDING IN ACUTE FEBRILE ENCEPHALOPATHY



# TABLE 22: SYSTEMIC FINDING OF AFE CASES /<br/>ABDOMINAL EXAMINATION

| SYSTEMIC FINDING OF AFE | PERCENTILE | NO OF<br>CASES |
|-------------------------|------------|----------------|
| Abdominal examination   |            |                |
| Hepatomegaly            | 5%         | 5              |
| Splenomegaly            | 7%         | 7              |
| Hepatosplenomegaly      | 8%         | 8              |
| Ascites                 | 5%         | 5              |

# FIGURE 22 : SYSTEMIC FINDING OF ABDOMINAL EXAMINATION




Abdominal examination showed 8% cases with hepatosplenomegaly and ascites 5% in of cases in our study in patients with acute febrile encephalopathy

# TABLE 23 : LDH IN SERUM

| LDH IN SERUM                     | FREQUENCY | PERCENT |
|----------------------------------|-----------|---------|
| NORMAL 140-280 (IU/L)            |           |         |
| 390                              | 1         | 1.0     |
| 450                              | 7         | 7.0     |
| >550-1000                        | 13        | 13.0    |
| >1050-1590                       | 8         | 8.0     |
| NO OF CASES TOTALLY INCREASED IN | 29        | 29.0    |
| NORMAL                           | 71        | 71.0    |
| Total                            | 100       | 100.0   |

### **CHART 23 : LDH IN SERUM**



Lactate dehydrogenase (LDH) levels raised in 28% cases in our study

# DISCUSSION

### **DISCUSSION**

- AGE In our study 35% cases of acute febrile encephalopathy most common in age group between 21-30 years
- SEX Male patients were more common in our study group about 59%
- ETIOLOGY-Viral aetiology of encephalopathy was more common in 28%, bacterial meningitis was seen in 16% cases of our study.
- CLINICAL FEATURES Headache 55% and fever 40% were the most common clinical manifestations. Neck rigidity 34 %, altered sensorium 37%, seizures 24% & focal neurologicial deficit 9 % was least common
- SYSTEMIC EXAMINATION Abdominal examination showed 8% cases with hepatosplenomegaly and 5% with ascites in of cases in our study in patients with acute febrile encephalopathy
- RENAL PARAMETERS 46% had raised blood urea values in our study in patients with acute febrile encephalopathy, Creatinine was raised in 67% of cases in our study.
- COMPLETE BLOOD COUNT Hemoglobin was very low about 6-8 mg/dl in 3% of case with in our study and 52% had normal levels,Total leucocyte count was raised in morethan90% cases in our study in acute febrile encephalopathy patients

- PERIPHERAL SMEAR STUDY-Malaria was positive in 13% cases in our study
- ➤ WIDAL TEST Widal positive was 8% cases in our case study
- CSF ANALYSIS 23% Viral encephalopathy was most common in our case study
- PROGNOSIS Most of the patients recovered with good prognosis focal neurological deficit was seen in 3% of patients. 80% of the patients recovered with good prognosis. Focal neurological deficit was seen in 3% of patients LDH levels raised in serum in 28 % of cases in our study suggestive of infectious etiology
- COMPLICATIONS Respiratory system 5% ,peripheral shock 3%,sepsis, 6%,bleeding 9%

# CONCLUSION

## CONCLUSION

- Acute febrile encephalopathy is most common in age group between 21-30 yrs
- ➤ Male patients were more common
- Viral aetiology was more common cause of acute febrile encephalopathy and other aetiology like protozoal, fungal were rarely identified causes
- ➢ Headache and fever were the most common clinical manifestations.
- Raised blood urea, Creatinine values seen in few patients
- CSF analysis showed 23% Viral encephalopathy was most common cases
- > Overall the Patients recovered with good prognosis

# SUMMARY

### **SUMMARY**

Viral aetiology was more common cause of acute febrile encephalopathy and other aetiology like protozoal, fungal were rarely identified causes. Males were more commonly affected. Headache and fever were the most common clinical manifestations, neck rigidity, altered sensorium, seizures, focal neurologicial deficit was least common

- ➤ Viral encephalopathy was most common in our case study
- Septic encephalopathy was second most common
- Most of the patients recovered with good prognosis and few complication
- > Most common cause was viral meningitis-
- Herpes encephalitis, bacterial meningitis, cerebal malaria, tubercular meningitis, sepsis associated encephalopathy, typhoid encephalopathy, protozoal meninigitis were also seen

# LIMITATIONS

# THE LIMITATION OF THE STUDY

The limitation of the study were lack of estimation and CSF - DNA PCR estimation due to non availability.

# BIBLIOGRAPHY

### **BIBLIOGRAPHY**

- Bhalla A, Suri V, Varma S, Sharma N, Mahi S, Singh P, *et al.* Acute febrile encephalopathy in adults from Northwest India. J Emerg Trauma Shock2010;3:220-4.
- Yeolekar ME, Trivedi TH. Febrile Encephalopathy: Challenges in Management. J Assoc Physicians India 2006;54:845-7.
- Kothari VM, Karnad DR, Bichile LS. Tropical infections in the ICU. J Assoc Physicians India 2006;54:291-8.
- Bansal A, Singhi S, Singhi P, Khandelwal N, Ramesh S. Non Traumatic coma in children. Indian J Pediatr 2005;72:467-73. Karmarkar SA, Aneja S, Khare S, Saini A, Seth A, Chauhan BK. A study of acute febrile encephalopathy with special reference to viral etiology. Indian J Pediatr 2008;75:801-5.
- Durand M, Calderwood S, Weber D, Miller S, Southwick FS, Caviness VS, *et al.* Bacterial meningitis in adults: A review of 493 cases. N Engl J Med 1993;328:21-8.
- Kumar R, Tripathi S, Tambe JJ, Arora V, Srivastava A, Nag VL. Dengue encephalopathy in children in Northern India: Clinical features and comparison with non dengue. J Neurol Sci 2008;269:41-8.
- 7. Ely EW, Shintani A, Truman B, Speroff T, Gordon SM, Harrell FE, *et al.* Delirium as a predictor of mortality in mechanically ventilated patients in intensive care unit. JAMA 2004;292:753-62.
- 8. Siu JC, Chan YC, Wong CY, Yuen KM. Magnetic resonance imaging findings of Japanese encephalitis. J HK Coll Radiol 2004;7:76-80.
- Demaerel P, Wilms G, Robberecht W, Johannik K, Van Hecke P, Carton H, *et al.* MRI of herpes simplex encephalitis. Neuroradiology 1992;34:490-3.

- Chaudhari A, Kennedy PG. Diagnosis and treatment of Viral encephalitis. Postgrad Med J 2002; 78:575-83.
- Bansal A, Singhi SC, Singhi PD, Khandelwal N, Ramesh S. Non Traumatic coma. Indian J Pediatr 2005; 72:467-73.
- Kothari VM, Karnad DR, Bichile LS. Tropical infections in the ICU. J Assoc Physicians India 2006; 54:291-8.
- 13. Chaudhuri A, Kennedy PG. Diagnosis and treatment of viral encephalitis. Postgrad Med J 2002; 78:575-83.
- Bhalla A, Suri V, Varma S, Sharma N, Mahi S, Singh P, *et al.* Acute febrile encephalopathy in adults from Northwest India. J Emerg Trauma Shock 2010; 3:220-4.
- 15. Karmarkar SA, Aneja S, Khare S, Saini A, Seth A, Chauhan BK. A study of acute febrile encephalopathy with special reference to viral etiology. Indian J Pediatr 2008; 75:801-5.
- 16. Panagariya A, Jain RS, Gupta S, Garg A, Sureka RK, Mathur V. Herpes simplex encephalitis in North West India. Neurol India 2001;49:360-
- Durand ML, Calderwood SB, Weber DJ, Miller SI, Southwick FS, Caviness VS Jr, *et al.* Acute bacterial meningitis in adults: A review of 493 episodes. N Engl J Med 1993;328:21-8.
- Kennedy PG, Chaudhuri A. Herpes simplex encephalitis. J Neurol Neurosurg Psychiatry 2002;73:237-8.
- 19. Nathanson N, Cole GA. Immunosuppression and experimental virus infection of the nervous system. Adv Virus Res 1970;16:397-448.
- 20. Misra UK, Kalita J, Syam UK, Dhole TN. Neurological manifestations of dengue virus infection. J Neurol Sci 2006;244:117-22.
- Varatharaj A. Encephalitis in the clinical spectrum of dengue infection. Neurol India 2010; 58:585-91.

- 22. Cam BV, Fonsmark L, Hue NB, Phuong NT, Poulsen A, Heegaard ED. Prospective case-control study of encephalopathy in children with dengue hemorrhagic fever. Am J Trop Med Hyg 2001;65:848-51.
- 23. Kankirawatana P, Chokephaibulkit K, Puthavathana P, Yoksan S, Apintanapong S, Pongthapisit V. Dengue infection presenting with central nervous system manifestation. J Child Neurol 2000;15:544-7.
- 24. Cam BV, Fonsmark L, Hue NB, Phuong NT, Poulsen A, Heegaard ED. Prospective case-control study of encephalopathy in children with dengue hemorrhagic fever. Am J Trop Med Hyg 2001;65:848-51.
- Trey C, Davidson CS. Management of fulminant hepatic failure. In: Popper H, Schaffner F, editors. Progress in Liver Disease. Vol. 3. New York: Grune & Stratton; 1970. p. 282-98.
- 26. Whitington PF, Soriano HE, Alonso EM. Fulminant hepatic failure in children. In: Suchy FJ, Sokol RJ, Balistreri WF, editors. Liver Disease in Children. Lippincott Williams & Wilkins; 2001. p. 63-88.
- 27. Fujiwara K, Yokosuka O, Fukai K, Imazeki F, Saisho H, Omata M, *et al.* Analysis of full-length hepatitis A virus genome in sera from patients with fulminant and self-limited acute type A hepatitis. J Hepatol 2001;35:112-9.
- 28. Ely EW, Shintani A, Truman B, Speroff T, Gordon SM, Harrell FE Jr, *et al.* Delirium as a predictor of mortality in mechanically ventilated patients in intensive care unit. JAMA 2004;291:1753-62.
- Chen TL, Tasi CA, Fung CP, Lin MY, Yu KW, Liu CY. Clinical significance of Candida species isolated from cerebrospinal fluid. J Microbiol Immunol Infect 2002;35:249-54.
- Sánchez-Portocarrero J, Pérez-Cecilia E, Corral O, Romero-Vivas J, Picazo JJ. The central nervous system and infection by Candida species. Diagn Microbiol Infect Dis 200;37:169-79.

- Voice RA, Bradley SF, Sangeorzan JA, Kauffman CA. Chronic candidal meningitis: An uncommon manifestation of candidiasis. Clin Infect Dis 1994;19:60-6.
- Demaerel P, Wilms G, Robberecht W, Johannik K, Van Hecke P, Carton H, *et al.* MRI of herpes simplex encephalitis. Neuroradiology 1992;34:490-3.
- Klein SK, Hom DL, Anderson MR, Latrizza AT, Toltzis P. Predictive factors of short-term neurologic outcome in children with encephalitis. Pediatr Neurol 1994;11:308-12.
- Bansal A, Singhi SC, Singhi PD, Khandelwal N, Ramesh S. Non Traumatic coma. Indian J Pediatr 2005;72:467-73.
- Kothari VM, Karnad DR, Bichile LS. Tropical infections in the ICU. J Assoc Physicians India 2006;54:291-8.
- 36. Chaudhuri A, Kennedy PG. Diagnosis and treatment of viral encephalitis. Postgrad Med J 2002;78:575-83.
- 37. Bhalla A, Suri V, Varma S, Sharma N, Mahi S, Singh P, *et al.* Acute febrile encephalopathy in adults from Northwest India. J Emerg Trauma Shock 2010;3:220-4.
- 38. Karmarkar SA, Aneja S, Khare S, Saini A, Seth A, Chauhan BK. A study of acute febrile encephalopathy with special reference to viral etiology. Indian J Pediatr 2008;75:801-5.
- 39. Panagariya A, Jain RS, Gupta S, Garg A, Sureka RK, Mathur V. Herpes simplex encephalitis in North West India. Neurol India 2001;49:360-5.
- Durand ML, Calderwood SB, Weber DJ, Miller SI, Southwick FS, Caviness VS Jr, *et al.* Acute bacterial meningitis in adults: A review of 493 episodes. N Engl J Med 1993;328:21-8.

- 41. Kennedy PG, Chaudhuri A. Herpes simplex encephalitis. J Neurol Neurosurg Psychiatry 2002;73:237-8.
- Nathanson N, Cole GA. Immunosuppression and experimental virus infection of the nervous system. Adv Virus Res 1970;16:397-448.
   Misra UK, Kalita J, Syam UK, Dhole TN. Neurological manifestations of dengue virus infection. J Neurol Sci 2006;244:117-22.
- 43. Varatharaj A. Encephalitis in the clinical spectrum of dengue infection. Neurol India 2010;58:585-91.
- 44. Cam BV, Fonsmark L, Hue NB, Phuong NT, Poulsen A, Heegaard ED. Prospective case-control study of encephalopathy in children with dengue hemorrhagic fever. Am J Trop Med Hyg 2001;65:848-51.
- 45. Kankirawatana P, Chokephaibulkit K, Puthavathana P, Yoksan S, Apintanapong S, Pongthapisit V. Dengue infection presenting with central nervous system manifestation. J Child Neurol 2000;15:544-7.
- 46. Cam BV, Fonsmark L, Hue NB, Phuong NT, Poulsen A, Heegaard ED. Prospective case-control study of encephalopathy in children with dengue hemorrhagic fever. Am J Trop Med Hyg 2001;65:848-51.
- 47. Trey C, Davidson CS. Management of fulminant hepatic failure. In: Popper H, Schaffner F, editors. Progress in Liver Disease. Vol. 3. New York: Grune & Stratton; 1970. p. 282-98.
- 48. Whitington PF, Soriano HE, Alonso EM. Fulminant hepatic failure in children. In: Suchy FJ, Sokol RJ, Balistreri WF, editors. Liver Disease in Children. Lippincott Williams & Wilkins; 2001. p. 63-88.
- 49. Fujiwara K, Yokosuka O, Fukai K, Imazeki F, Saisho H, Omata M, *et al.* Analysis of full-length hepatitis A virus genome in sera from patients with fulminant and self-limited acute type A hepatitis. J Hepatol 2001;35:112-9.

- 50. Ely EW, Shintani A, Truman B, Speroff T, Gordon SM, Harrell FE Jr, *et al.* Delirium as a predictor of mortality in mechanically ventilated patients in intensive care unit. JAMA 2004;291:1753-62.
- Chen TL, Tasi CA, Fung CP, Lin MY, Yu KW, Liu CY. Clinical significance of Candida species isolated from cerebrospinal fluid. J Microbiol Immunol Infect 2002;35:249-54.
- Sánchez-Portocarrero J, Pérez-Cecilia E, Corral O, Romero-Vivas J, Picazo JJ. The central nervous system and infection by Candida species. Diagn Microbiol Infect Dis 200;37:169-79.
- Demaerel P, Wilms G, Robberecht W, Johannik K, Van Hecke P, Carton H, et al. MRI of herpes simplex encephalitis. Neuroradiology 1992;34:490-3.
- Bhimraj, A. Acute community-acquired bacterial meningitis in adults: an evidence-based review. *Cleveland Clinic journal of medicine* 79, 393–400 (2012).
- 55. Mai, N. T. et al. Streptococcus suis meningitis in adults in Vietnam. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 46, 659–667 (2008).
- Nair, N., Wares, F. & Sahu, S. Tuberculosis in the WHO South-East Asia Region. Bulletin of the World Health Organization 88, 164 (2010).
- Khetsuriani, N., Holman, R. C. & Anderson, L. J. Burden of encephalitis-associated hospitalizations in the United States, 1988– 1997. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 35, 175–182 (2002).
- Huppatz, C. et al. Etiology of encephalitis in Australia, 1990–2007. Emerging infectious diseases 15, 1359–1365 (2009).

- 59. WHO. Fourth Biregional Meeting on the Control of Japanese Encephalitis (JE). Vol. 2012 (World Health Organization, Regional Office for South-East Asia, 2009).
- 60. Potharaju, N. R. Incidence Rate of Acute Encephalitis Syndrome without Specific Treatment in India and Nepal. *Indian Journal of Community Medicine* **37**, 240–251 (2012).
- 61. Lo, M. K. & Rota, P. A. The emergence of Nipah virus, a highly pathogenic paramyxovirus. *Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology* **43**, 396–400 (2008).
- 62. WHO. Vaccine Preventable Diseases Surveillance. Vol. 2012. (WHO Nepal: WHO Regional Office for South East Asia 2011).
- 63. Rayamajhi, A. *et al.* Clinical and prognostic features among children with acute encephalitis syndrome in Nepal; a retrospective study. *BMC infectious diseases* **11**, 294 (2011).
- 64. Ansari, I. & Pokhrel, Y. Culture proven bacterial meningitis in children: agents, clinical profile and outcome. *Kathmandu University medical journal (KUMJ)* **9**, 36–40 (2011).
- Shrestha, S. R., Awale, P., Neupane, S., Adhikari, N. & Yadav, B.
   K.Japanese Encephalitis in Children admitted at Patan Hospital. J. Nepal Paediatr. Soc. 29, 17–21 (2009).
- 66. Singh, R. R., Chaudhary, S. K., Bhatta, N. K., Khanal, B. & Shah, D.Clinical and etiological profile of acute febrile encephalopathy in eastern Nepal. *Indian journal of pediatrics* 76, 1109–1111 (2009).
- 67. Joshi, R., Kalantri, S. P., Reingold, A. & Colford, J. M., Jr Changing landscape of acute encephalitis syndrome in India: a systematic review.*The National medical journal of India* **25**, 212–220 (2012).

- 68. Sapkal, G. N. *et al.* Enteroviruses in patients with acute encephalitis, uttar pradesh, India. *Emerging infectious diseases* **15**, 295–298 (2009).
- 69. Kumar, A. *et al.* Molecular epidemiological study of enteroviruses associated with encephalitis in children from India. *Journal of clinical microbiology* **50**, 3509–3512 (2012).
- 70. Yang, F. *et al.* Enterovirus 71 outbreak in the People's Republic of China in 2008. *Journal of clinical microbiology* **47**, 2351–2352 (2009).
- 71. Chen, K.-T., Lee, T.-C., Chang, H.-L., Yu, M.-C. & Tang, L.-H. Human Enterovirus 71 Disease: Clinical Features, Epidemiology, Virology, and Management. *The Open Epidemiology Journal* 1, 10–16 (2008).
- 72. Yan, X. F. *et al.* Epidemic characteristics of hand, foot, and mouth disease in Shanghai from 2009 to 2010: Enterovirus 71 subgenotype C4 as the primary causative agent and a high incidence of mixed infections with coxsackievirus A16. *Scandinavian journal of infectious diseases* 44, 297–305 (2012).
- 73. Floren-Zabala, L. *et al.* [Aseptic meningitis in an adult population. Etiology and utility of molecular techniques in the clinical management of patients]. *Enfermedades infecciosas y microbiologia clinica* 30, 361–366 (2012).
- 74. Frantzidou, F. *et al.* Aseptic meningitis and encephalitis because of herpesviruses and enteroviruses in an immunocompetent adult population. *European journal of neurology : the official journal of the European Federation of Neurological Societies* **15**, 995–997 (2008).
- 75. Ho Dang Trung, N. *et al.* Aetiologies of central nervous system infection in Viet Nam: a prospective provincial hospital-based descriptive surveillance study. *PLoS One* **7**, e37825 (2012).

- 76. Joshi, R. *et al.* Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. *Clinical neurology and neurosurgery* (2013).
- 77. Mani, R., Pradhan, S., Nagarathna, S., Wasiulla, R. & Chandramuki, A.Bacteriological profile of community acquired acute bacterial meningitis: a ten-year retrospective study in a tertiary neurocare centre in South India. *Indian journal of medical microbiology* 25, 108–114 (2007).
- Joshi, A. B., Banjara, M. R., Bhatta, L. R. & Wierzba, T. Status and Trend of Japanese Encephalitis in Nepal: A five-year retrospective Review. JNHRC 2, 59–64 (2004).
- Wierzba, T. F. *et al.* Laboratory-based Japanese encephalitis surveillance in Nepal and the implications for a national immunization strategy. *The American journal of tropical medicine and hygiene* 78, 1002–1006 (2008).
- Partridge, J., Ghimire, P., Sedai, T., Bista, M. B. & Banerjee, M. Endemic Japanese encephalitis in the Kathmandu valley, Nepal. *The American journal of tropical medicine and hygiene* 77, 1146–1149 (2007).
- Solomon, T. Flavivirus encephalitis. *The New England journal of medicine* 351, 370–378 (2004).
- 82. Borah, J., Dutta, P., Khan, S. A. & Mahanta, J. A comparison of clinical features of Japanese encephalitis virus infection in the adult and pediatric age group with Acute Encephalitis Syndrome. *Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology*52, 45–49 (2011).
- 83. Ravi, V. et al. Evaluation of IgM antibody capture enzyme-linked immunosorbent assay kits for detection of IgM against Japanese

encephalitis virus in cerebrospinal fluid samples. *The American journal of tropical medicine and hygiene* **81**, 1144–1150 (2009).

- Bista, M. B. *et al.* Efficacy of single-dose SA 14-14-2 vaccine against Japanese encephalitis: a case control study. *Lancet* 358, 791–795 (2001).
- Tandan, J. B. *et al.* Single dose of SA 14-14-2 vaccine provides longterm protection against Japanese encephalitis: a case-control study in Nepalese children 5 years after immunization. *Vaccine* 25, 5041–5045 (2007).
- 86. Upreti, S. R. *et al.* Estimation of the impact of a Japanese encephalitis immunization program with live, attenuated SA 14-14-2 vaccine in Nepal.*Am J Trop Med Hyg* 88, 464-468 (2013).
- 87. Guillaume, V. et al. Specific detection of Nipah virus using real-time RT-PCR (TaqMan). Journal of virological methods 120, 229–237 (2004).
- Le, V. T. *et al.* Viral etiology of encephalitis in children in southern Vietnam: results of a one-year prospective descriptive study. *PLoS* neglected tropical diseases 4, e854 (2010).
- Bansal A, Singhi S, Singhi P, Khandelwal N, Ramesh S. Non Traumatic coma in children. Indian J Pediatr. 2005;72:467–73.
- Kothari VM, Karnad DR, Bichile LS. Tropical infections in the ICU. J Assoc Physicians India.2006;54:291–8.
- 91. Chaudhari A, Kennedy PG. Diagnosis and treatment of Viral encephalitis. Postgrad Med J. 2002;78:575–83.
- 92. Clinque P, Cleator GM, Weber T, Monteyne P, Sindic CJ, Van Loon AM. The role of laboratory investigations in the diagnosis and management of patients with suspected herpes simplex encephalitis: a consensus report. J Neurol Neurosurg Psychiatry. 1996;61:339–45.

- Kennedy PG, Chaudhary A. Herpes simplex encephalitis. J Neurol Neurosurg Psychiatry. 2002;73:237–8.
- 94. Karmarkar SA, Aneja S, Khare S, Saini A, Seth A, Chauhan BK. A study of acute febrile encephalopathy with special reference to viral etiology. Indian J Pediatr. 2008;75:801–5.
- 95. Panagariya A, Jain RS, Gupta S, Garg A, Surekha RK, Mathur V. Herpes simplex encephalitis in North West India. Neurol India. 2001;49:360–5.
- 96. Durand M, Calderwood S, Weber D, Miller S, Southwick FS, Caviness VS, et al. Bacterial meningitis in adults: A review of 493 cases. N Engl J Med. 1993;328:21–8.
- 97. Kumar R, Tripathi S, Tambe JJ, Arora V, Srivastava A, Nag VL. Dengue encephalopathy in children in Northern India: clinical features and comparison with non dengue. J Neurol Sci. 2008;269:41–8.
- 98. Ely EW, Shintani A, Truman B, Speroff T, Gordon SM, Harrell FE, Jr, et al. Delirium as a predictor of mortality in mechanically ventilated patients in intensive care unit. JAMA. 2004;292:753–62.
- 99. Oomi T, Nakagawa E, Fujikawa Y, Komaki H, Sugai K, Sasaki M. Recurrent fever related to dantrolene sodium in a girl with sequelae of acute encephalopathy. No To Hattatsu. 2007;39:440–3.

# ANNEXURES

### **INFORMATION SHEET**

We are conducting a study on

### "A STUDY ON ETIOLOGY, CLINICAL FEATURES, DIAGNOSIS AND PROGNOSIS IN ACUTE FEBRILE ENCEPHALOPATHY"

among patients attending Rajiv Gandhi Government General Hospital, Chennai and for that your specimen may be valuable to us.

The purpose of this study is

- 1. Etiology clinical features, diagnosis and prognosis of patients with acute febrile encehalopathy.
- 2. Procedure all patient with febrile acute encephalopathy will be examined and evaluated for routine fever blood investigations ,if needed lumbar puncture will be done and CSF analysis will be done for viral serology ,CT scan if needed MRI scan will be done

We are selecting certain cases and if you are found eligible, we may be using your information which in any way do not affect your final report or management.

The privacy of the patients in the research will be maintained throughout the study. In the EVENT of any publication or presentation resulting from the research, no personally identifiable information will be shared.

Taking part in this study is voluntary. You are free to decide whether to participate in this otherwise entitled.

The results of the special study may be intimated to you at the end of the study period or during study or to withdraw at any time; your decision will not result in any loss of benefits to which you are doing the study if anything is found abnormal which may aid in the management or treatment.

Signature Of Investigator

Signature of Participant

Date: Place

#### ஆராய்ச்சி தகவல் தாள்

இராஜீவ் காந்தி அரசு பொது மருத்துவமனைக்கு வரும் நோயாளிகளிடம் நோய்க்காரணிகள், நோய்கண்டறிதல், முன்கணிப்பு, கடுமையான காய்ச்சலால் ஏற்படும் மூளையழற்சி பற்றி ஆராய்வதே இந்த ஆய்வின் நோக்கமாகும்.

நாங்கள் உங்களிடமிருந்து பெறும் மாதிரிகள் முக்கியமானவை என்பதை தெரிவிக்கின்றோம்.

நீங்கள் இந்த ஆய்விற்கு தகுதியானவர்களாக இருக்கும் பட்சத்தில் தங்களிடமிருந்து 8 மி.லி. இரத்தம் எடுக்கப்பட்டு இரத்தப் பரிசோதனை செய்யப்படும். இடுப்பின் நடுப்பகுதி தண்டுவடத்திலிருந்து ஊசி மூலம் மூளை தண்டுவட திரவம் எடுத்து பரிசோதனை செய்யப்படும்.

சி.டி. ஸ்கேன் பரிசோதனை, தேவைப்பட்டால் எம்.ஆர்.ஐ. ஸ்கேன் எடுக்கப்படும்.

தங்களுடைய தனிப்பட்ட தகவல்களோ அல்லது தங்களின் உடல்நிலை பற்றிய குறிப்புகளோ எவ்வித வெளியீடாகவோ அல்லது அறிக்கையாகவோ வெளியிடப்படமாட்டாது என்பதை தெரிவித்துக் கொள்கிறோம்.

இந்த ஆராய்ச்சியில் பங்கேற்பது தங்களுடைய விருப்பத்தின் பேரில் தான் இருக்கிறது. மேலும் நீங்கள் எந்நேரமும் இந்த ஆராய்ச்சியிலிருந்து பின்வாங்கலாம் என்பதையும் தெரிவித்துக்கொள்ளலாம்.

இந்த சிறப்புப் பரிசோதனைகளின் முடிவுகளை ஆராய்ச்சியின் போது அல்லது ஆராய்ச்சியின் முடிவின் போது தங்களுக்கு அறிவிப்போம் என்பதையும் தெரிவித்துக்கொள்கிறோம்.

ஆராய்ச்சியாளா் கையொப்பம்

பங்கேற்பாளா் கையொப்பம்

தேதி:

#### PATIENT CONSENT FORM

| Study Detail                                    | :           | "A STUDY ON ETIOLOGY, CLINICAL FEATURES,<br>DIAGNOSIS AND PROGNOSIS IN ACUTE FEBRILE<br>ENCEPHALOPATHY" |
|-------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------|
| Study Centre<br>Patient's Name<br>Patient's Age | :<br>:<br>: | Rajiv Gandhi Government General Hospital, Chennai.                                                      |

Patient may check  $(\square)$  these boxes

:

In Patient Number

I confirm that I have understood the purpose of procedure for the above study. I have the opportunity to ask question and all my questions and doubts have been answered to my complete satisfaction.

I understand that my participation in the study is voluntary and that I am free to withdraw at any time without giving reason, without my legal rights being affected.

I understand that lumbar puncture will be done and CSF analysis will be done.8 ml venous blood will be drawn and given for investigation CT scan & MRI scan if needed will be done

- I understand that sponsor of the clinical study, others working on the sponsor's behalf, the ethics committee and the regulatory authorities will not need my permission to look at my health records, both in respect of current study and any further research that may be conducted in relation to it, even if I withdraw from the study I agree to this access. However, I understand that my identity will not be revealed in any information released to third parties or published, unless as required under the law. I agree not to restrict the use of any data or results that arise from this study.
- I agree to take part in the above study and to comply with the instructions given during the study and faithfully cooperate with the study team and to immediately inform the study staff if I suffer from any deterioration in my health or well being or any unexpected or unusual symptoms

I hereby consent to participate in this study I hereby give permission to undergo complete clinical examination and diagnostic

tests including hematological, biochemical, radiological tests.

| Signature / thumb impression / parents | Signature of Investigator / Study / |
|----------------------------------------|-------------------------------------|
| Patient's / parents Name and Address   | Investigator's Name:                |
|                                        |                                     |

Dr.JOTHILAKSHMI.V.

#### சுய ஒப்புதல் படிவம் ஆய்வின் தலைப்பு : நோய்க்காரணிகள், நோய்கண்டறிதல், முன்கணிப்பு, கடுமையான காய்ச்சலால் ஏற்படும் மூளையழற்சி பற்றிய ஆய்வு.

ஆராய்ச்சி செய்பவரின் பெயர்:

மரு. ஜோதிலட்சுமி.வி

ஆராய்ச்சி நிலையம்

பொது நல மருத்துவத்துறை, இராஜீவ் காந்தி அரசு பொது மருத்துவமனை மற்றும் சென்னை மருத்துவக் கல்லூரி, சென்னை – 600 003.

பங்கு பெறுபவரின் பெயர் : பங்கு பெறுபவரின் எண். :

பங்கு பெறுபவா் இதனை ( 🗸 ) குறிக்கவும்

மேலே குறிப்பிட்டுள்ள மருத்துவ ஆய்வின் விவரங்கள் எனக்கு விளக்கப்பட்டது. என்னுடைய சந்தேகங்களை கேட்கவும், அதற்கான தகுந்த விளக்கங்களை பெறவும் வாய்ப்பளிக்கப்பட்டது.

நான் இவ்ஆய்வில் தன்னிச்சையாகத்தான் பங்கேற்கிறேன். எந்தக் காரணத்தினாலோ எந்தக் கட்டத்திலும் எந்த சட்ட சிக்கலுக்கும் உட்படாமல் நான் இவ்ஆய்வில் இருந்து விலகிக் கொள்ளலாம் என்றும் அறிந்து கொண்டேன்.

இந்த ஆய்வு சம்மந்தமாகவோ, இதை சார்ந்த மேலும் ஆய்வு மேற்கொள்ளும்போதும் இந்த ஆய்வில் பங்குபெறும் மருத்துவர் என்னுடைய மருத்துவ அறிக்கைகளைப் பார்ப்பதற்கு என் அனுமதி தேவையில்லை என அறிந்து கொள்கிறேன். நான் ஆய்வில் இருந்து விலகிக் கொண்டாலும் இது பொருந்தும் என அறிகிறேன்.

இந்த ஆய்வின் மூலம் கிடைக்கும் தகவல்களையும், பரிசோதனை முடிவுகளையும் மற்றும் சிகிச்சை தொடர்பான தகவல்களையும் மருத்துவர் மேற்கொள்ளும் ஆய்வில் பயன்படுத்திக் கொள்ளவும் அதைப் பிரசுரிக்கவும் என் முழு மனதுடன் சம்மதிக்கிறேன்.

கொள்ள ஒப்புக்கொள்கிறேன். இந்த ஆய்வில் பங்கு எனக்கு கொடுக்கப்பட்ட அறிவுரைகளின்படி நடந்து கொள்வதுடன் இந்த ஆய்வை மேற்கொள்ளும் மருத்துவ அணிக்கு உண்மையுடன் இருப்பேன் என்று உறுதியளிக்கிறேன்.

| பங்கேற்பவரின் கையொப்பம்       | இடம்  | தேதி |
|-------------------------------|-------|------|
| கட்டைவிரல் ரேகை               |       |      |
|                               |       |      |
| பங்கேற்பவரின் பெயா மற்றும் வி | லாசம் |      |
| ஆய்வாளரின் கையொப்பம்          | இடம்  | தேதி |
| ஆய்வாளரின் பெயர்              |       |      |

| - | <br> |
|---|------|
|   |      |

|     | _ | <br> |
|-----|---|------|
|     |   |      |
|     |   |      |
| 1 1 |   |      |
|     |   | - 1  |

| <b></b> |  |
|---------|--|
|         |  |
|         |  |
|         |  |

#### INSTITUTIONAL ETHICS COMMITTEE MADRAS MEDICAL COLLEGE, CHENNAI-3

EC Reg No.ECR/270/Inst./TN/2013 Telephone No. 044 25305301 Fax : 044 25363970

#### **CERTIFICATE OF APPROVAL**

То

Dr.V.Jothilakshmi Postgradaute M.D.(General Medicine) Madras Medical College Chennai 600 003

Dear Dr.V.Jothilakshmi,

The Institutional Ethics Committee has considered your request and approved your study titled **"A study on Etiology, Clinical diagnosis and Prognosis in patients with Acute Febrile Encephalopathy" No.04052015.** 

The following members of Ethics Committee were present in the meeting held on 12.05.2015 conducted at Madras Medical College, Chennai-3.

| <ol> <li>Prof.B.Vasanthi, M.D., Prof. of Pharmacology, MMC</li> <li>Prof.P.Ragumani, M.S., Professor of Surgery, MMC</li> <li>Prof.Saraswathy, M.D., Director, Pathology, MMC, Ch-3</li> <li>Prof.K.Srinivasagalu, M.D., Director, I.I.M. MMC, Ch-3</li> <li>Thiru S.Rameshkumar, B.Com., MBA</li> <li>Thiru S.Govindasamy, B.A., B.L.,</li> </ol> | : Deputy Chairperson<br>: Member Secretary<br>: Member<br>: Member<br>: Member<br>: Lay Person<br>: Lawyer<br>: Social Scientist |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|

We approve the proposal to be conducted in its presented form.

The Institutional Ethics Committee expects to be informed about the progress of the study and SAE occurring in the course of the study, any changes in the protocol and patients information/informed consent and asks to be provided a copy of the final report.

Member Secretary, Chics Committee INSTITUTIONAL ETHICS COMMITTEE MADRAS MEDICAL COLLEGE CHENNAI-600 003

## **MASTER CHART**

|          | AGE      | SEX | CLINICAL FEATURES |          |                |               |                            |             |          |          |                  |             |         |                 |             |        |             | investigation |                 |                       |                 |           | RFT      |             |      | LFT              |                    |            | serology | MICROBIOLOGY |          |        |
|----------|----------|-----|-------------------|----------|----------------|---------------|----------------------------|-------------|----------|----------|------------------|-------------|---------|-----------------|-------------|--------|-------------|---------------|-----------------|-----------------------|-----------------|-----------|----------|-------------|------|------------------|--------------------|------------|----------|--------------|----------|--------|
|          |          |     | HEADACHE          | SEIZURES | ALTERSENSORIUM | NECK RIGIDITY | FOCAL NEUOROLOGICAL DEFICI | PHOTOPHOBIA | ICTERUS  | DIAHERRA | NOMITIG          | DEHYDRATION | RASHES  | LYMPHADENOPATHY | TEMPERATURE | SPUTUM | HYDROPHOBIA | HAEMOGLOBULIN | WBC COUNT       | TOTAL LEUCOCYTE COUNT | PLATELETS       | CD4 COUNT | UREA     | CREATININE  | TODS | DIRECT BILIRUBIN | INDIRECTBIL IRUBIN | MANTOUX    | VIRAL    | SRCB TYPHUS  | DENGUE   | MSAT   |
|          |          |     |                   |          |                |               |                            |             |          |          |                  |             |         |                 | F           |        |             | mg/dl         | cell/mm         |                       |                 |           |          | meq/dl      | SGOT | direct           | indirect           | mm         |          |              |          |        |
| 1        | 14       | М   | +                 | +        | +              | +             |                            | +           |          |          |                  |             |         |                 | 100         |        |             | 13            | 8000            |                       | 50000           |           | 30       | 0.9         |      | mg/dl            | mg/dl              |            |          |              |          |        |
| 2        | 45       |     |                   |          |                | +             |                            |             | +        |          | +                | +           | petech  | nia             | 103         |        |             | 14            | 1000            |                       | 100000          |           | 26       | 0.8         |      | 0.02             | 0.2                |            |          |              | IgM+     |        |
| 3        | 34       |     |                   |          | +              |               |                            |             |          |          |                  |             |         |                 | 99          |        |             | 12            | 3000            |                       | 250000          |           | 30       | 1.1         |      | 0.03             | 0.8                |            |          |              |          |        |
| 4        | 35       |     | +                 | +        |                | +             |                            |             | +        |          |                  |             |         |                 | 99.9        |        |             | 14            | 34000           |                       | 20000           |           | 34       | 0.8         |      | 0.13             | 0.6                |            |          |              | IgM+     |        |
| 5        | 15       |     |                   |          |                |               |                            |             | +        |          |                  | +           |         |                 | 100         |        |             | 10            | 23000           |                       | 45000           |           | 13       | 0.9         | 250  | 1                | 0.8                |            | HAV      |              |          |        |
| 6        | 26       |     | +                 |          |                |               |                            |             |          |          |                  | +           |         |                 | 104         |        |             | 13            |                 |                       | 300000          |           | 40       | 1.2         |      | 0.02             | 0.9                |            |          |              |          |        |
| 7        | 36       |     | +                 | +        |                | +             |                            | +           |          |          |                  |             | Escha   | r               | 101         |        |             | 14            | 4000            |                       | 430000          |           | 30       | 0.89        |      | 0.03             | 0.8                |            |          | IgM+         |          |        |
| 8        | 32       |     |                   |          |                |               |                            | +           |          | +        |                  |             |         |                 |             | ++     |             | 8.6           | 4500            | L                     | 340000          |           | 26       | 0.86        |      | 0.9              | 4.5                |            |          |              |          |        |
| 9        | 38       |     | +                 | +        | +              | +             |                            | +           |          |          | +                |             |         |                 | 102         |        |             | 9.9           | 5000            |                       | 230000          |           | 30       | 0.9         |      | 2                | 1                  |            |          |              |          | IgM+   |
| 10       | 27       |     |                   |          |                |               |                            |             |          |          | $\left  \right $ |             |         |                 |             |        |             | 12.5          | 6500            |                       | 210000          |           | 39       | 1           |      | 0.05             | 0.6                |            |          |              |          |        |
| 11       | 18       |     | +                 |          |                | +             |                            |             |          | -        | $\left  \right $ |             |         |                 | 100         |        |             | 11.7          | 2000            |                       | 150000          | 500       | 23       | 1.1         |      | 0.03             | 0.4                |            |          |              |          |        |
| 12       | 34       |     | +                 |          |                | +             |                            |             |          | +        | $\vdash$         | +           |         | +               | 102         |        |             | 9             | 3000            |                       | 14000           | 500       |          | 0.9         | 30   | 0.043            | 0.3                |            | HIV      |              | IgM+     |        |
| 13       | 24       |     | +                 |          |                |               |                            |             |          |          |                  | +           |         |                 | 103         |        |             | 6.7           | 12000           | p                     | 23000           |           | 39       | 1.2<br>0.98 |      | 0.014            | 0.2                |            |          |              | IgM+     |        |
| 14<br>15 | 34       |     |                   |          |                |               | +                          | +           | +        | +        | +                |             |         |                 |             |        |             | 8.9<br>10.1   | 13000<br>240000 | Р                     | 43000<br>346000 |           | 36<br>29 | 0.98        |      | 0.04             | 0.6                |            |          |              | <u> </u> |        |
| 15       | 45<br>34 |     | +                 |          |                |               |                            |             |          | -        | $\vdash$         |             |         |                 |             |        |             | 10.1          | 240000<br>5000  |                       | 245000          |           | 29       |             |      | 0.053            |                    |            |          |              |          |        |
| 10       | 23       |     | т                 |          | Ŧ              | т             |                            |             | <u> </u> | -        | $\left  \right $ |             |         |                 |             |        | Ŧ           | 11.8          | 4000            |                       | 245000          |           | 36       | 0.9         |      | 0.04             | 1.3                |            |          | <u> </u>     |          | IgM+   |
| 17       | 34       |     | +                 |          | +              |               |                            |             |          |          | $\left  \right $ |             | Vesic   | <b>e</b> c      |             |        |             | 13.2          | 7000            | T                     | 340000          |           | 40       | 1.1         |      | 0.02             | 0.2                | 11mm+VI    | I        |              |          | 1givi+ |
| 19       | 23       |     | 1                 |          |                |               |                            |             |          |          |                  |             | v carel | +               | 101         |        |             | 13.8          | 12000           | L                     | 21500           |           | 50       | 2           |      | 0.02             | 0.2                | 111111+ VI | VZV      |              | <u> </u> |        |
| 20       | 45       |     | +                 |          |                | +             |                            |             |          |          |                  |             |         |                 | 101         |        |             | 11.3          | 5000            |                       | 34000           |           | 68       | 1.5         |      | 0.01             | 0.0                | 1          | .2,      | <u> </u>     |          |        |
| 20       | 35       |     |                   |          |                |               |                            |             |          |          |                  |             |         |                 | 101         |        |             | 12.2          | 12000           |                       | 45000           |           | 50       | 1.3         |      | 0.02             | 0.2                |            |          | <u> </u>     |          |        |
| 22       | 48       |     |                   |          | +              |               | +                          |             |          |          |                  |             |         |                 | - 0 1       |        |             | 12.2          | 4000            | p                     | 234500          |           | 40       | 1.1         |      | 0.035            | 0.4                |            |          |              |          |        |
| 23       | 26       |     | +                 |          |                |               |                            |             |          |          | +                |             |         |                 |             |        |             | 13.5          | 3000            | r                     | 23100           |           | 28       | 0.9         |      | 0.04             | 0.2                |            |          |              |          |        |

| 24 | 17 F | + | + | 1 | + |          |   |   | Γ        |   | + |        |     | 99.9 |    | 8.9  | 2000  |   | 16000  |    | 30  | 1.9  |     | 0.9   | 1.2  |         |     |          | IgM+     | Т        |
|----|------|---|---|---|---|----------|---|---|----------|---|---|--------|-----|------|----|------|-------|---|--------|----|-----|------|-----|-------|------|---------|-----|----------|----------|----------|
| 25 | 24 M |   |   | 1 |   |          |   |   |          |   | + | petech | +   | 100  |    | 11.9 | 4000  |   | 32000  | 90 | 35  | 1.2  |     | 0.34  | 0.7  |         | HIV |          | U        | -        |
| 26 | 34 M |   |   | + |   |          |   |   |          |   |   |        |     |      |    | 12.5 | 4500  |   | 45000  |    | 40  | 1.2  |     | 0.45  | 0.23 |         |     |          |          | -        |
| 27 | 25 M | + | + |   | + |          |   |   |          |   |   |        |     | 101  |    | 13.1 | 2500  |   | 320000 |    | 28  | 1.1  |     | 0.9   | 2    |         |     |          |          | IgM+     |
| 28 | 19 M | + |   | + | + |          | + |   | +        |   |   |        |     | 100  |    | 13   | 15000 |   | 54000  |    | 40  | 1.1  |     | 0.01  | 0.2  |         |     |          |          |          |
| 29 | 23 F |   |   |   |   | +        |   |   |          | + |   |        |     |      |    | 10.5 | 20000 | Р | 60000  |    | 58  | 1.3  |     | 0.03  | 0.5  |         |     |          |          |          |
| 30 | 45 M | + | + | 1 | + |          |   |   |          |   |   |        |     |      |    | 12.6 | 24000 |   | 320000 |    | 30  | 1.1  |     | 0.03  | 0.1  |         |     |          |          |          |
| 31 | 16 M |   |   |   |   |          |   | + |          | + |   |        |     |      |    | 13.3 | 4000  |   | 203000 |    | 45  | 0.8  | 450 | 0.08  | 0.3  |         | HBV |          |          |          |
| 32 | 35 M | + |   | + | + | +        |   |   |          |   | + |        | +   | 102  |    | 12.9 | 25000 |   | 45000  |    | 50  | 3    |     | 0.7   | 0.4  |         |     |          |          |          |
| 33 | 31 F |   |   |   |   |          |   |   |          |   |   | Escha  | r   |      |    | 10.5 | 2000  |   | 23560  |    | 100 | 12   |     | 0.06  | 0.5  |         |     | IgM+     |          |          |
| 34 | 35 F | + | + | + |   |          |   |   |          |   |   |        |     |      |    | 10.9 | 3400  |   | 365000 |    | 30  | 0.9  |     | 0.09  | 0.4  |         |     |          |          |          |
| 35 | 45 M | + |   |   |   |          |   | + |          |   | + |        |     | 101  |    | 12.5 | 3000  |   | 40000  |    | 34  | 1    |     | 1     | 0.9  |         |     |          | IgM+     |          |
| 36 | 25 M |   |   |   |   |          |   |   |          | + |   |        |     |      |    | 13   | 12000 |   | 23340  |    | 67  | 2    |     | 0.04  | 0.2  |         |     |          |          |          |
| 37 | 45 M | + | + | + | + |          |   |   |          |   |   |        |     |      |    | 12.5 | 23000 |   | 210000 |    | 35  | 1.1  |     | 0.05  | 0.1  |         |     |          |          |          |
| 38 | 36 F |   | + |   |   |          | + |   |          |   |   |        |     |      | ++ | 10.3 | 5500  |   | 125000 |    | 30  | 1    |     | 0.08  | 1    | 12mm+ve |     |          |          |          |
| 39 | 28 F | + |   |   |   |          |   |   |          |   |   |        |     |      |    | 9.9  | 2300  |   | 348900 |    | 45  | 1.2  |     | 0.08  | 0.8  |         |     |          |          |          |
| 40 | 40 M |   |   |   |   |          | + |   |          |   | - | -      |     | 102  |    | 12.6 | 10000 | Р | 245300 |    | 45  | 1.5  |     | 1     | 0.3  |         |     |          |          |          |
| 41 | 19 M |   |   | + |   |          |   |   |          |   |   |        | +   | 101  |    | 9.7  | 2400  |   | 342500 |    | 45  | 1    |     | 0.09  | 3    |         |     |          |          |          |
| 42 | 43 F | + | + | + | + |          | + |   |          |   |   |        |     |      |    | 10.5 | 3000  |   | 56000  |    | 30  | 0.89 |     | 0.04  | 0.5  |         |     |          |          |          |
| 43 | 31 F | + |   |   | + |          |   |   |          |   | - | -      |     |      |    | 11.5 | 4000  |   | 54000  |    | 34  | 0.9  |     | 0.07  | 0.7  |         |     |          |          |          |
| 44 | 35 M |   |   |   |   |          |   |   |          |   |   |        |     |      |    | 13.4 | 5000  |   | 145000 |    | 45  | 1    |     | 0.05  | 0.3  |         |     |          |          |          |
| 45 | 18 M | + | + | + | + |          |   |   | +        | + |   |        |     |      |    | 13.7 | 35000 | Р | 245800 |    | 40  | 1    |     | 0.02  | 0.8  |         |     |          |          |          |
| 46 | 17 M |   |   |   |   |          | + |   |          |   |   |        |     |      |    | 14   | 23000 |   | 234500 |    | 30  | 0.8  |     | 0.08  | 0.7  |         |     |          |          | _        |
| 47 | 36 F | + |   | + | + |          | + |   |          |   |   |        |     |      | +  | 8.6  | 14000 | L | 345060 |    | 123 | 14   |     | 0.03  | 0.6  | 15mm+VI | E   |          |          | _        |
| 48 | 16 F | + |   |   |   |          | + |   |          |   | + | petecl | +   | 104  |    | 10.3 | 3800  |   | 23410  |    | 34  | 1    |     | 1     | 0.9  |         |     |          | IgM+     | _        |
| 49 | 15 M |   |   |   |   |          |   | + |          |   | + |        |     |      |    | 13.7 | 14000 | L | 45000  |    | 25  | 0.9  |     | 0.07  | 2    |         | HAV |          |          | _        |
| 50 | 31 M |   |   |   |   |          |   | + |          |   |   |        |     | 101  |    | 12   | 4500  |   | 345000 |    | 27  | 0.9  |     | 0.02  | 4    | 13mm+ve |     |          |          |          |
| 51 | 24 M | + |   | + | + |          | + |   |          |   |   |        |     | 100  |    | 10.4 | 3800  |   | 243500 |    | 34  | 1.1  |     | 0.05  | 0.1  |         |     |          |          |          |
| 52 | 34 F |   |   |   |   |          |   |   |          |   |   |        |     |      |    | 13   | 3450  |   | 34500  |    | 26  | 0.9  |     | 0.03  | 0.2  |         |     |          |          |          |
| 53 | 25 F |   | _ |   |   | <u> </u> |   |   |          | + |   | Escha  | r   |      |    | 11   | 70000 |   | 234100 |    | 74  | 3    |     | 0.05  | 0.2  |         | ļ   | IgM+     | <u> </u> | <u> </u> |
| 54 | 34 M | + | _ |   | + | <u> </u> |   |   |          |   |   |        |     |      |    | 12.6 | 2345  | Р | 234500 |    | 80  | 4    |     | 0.05  | 0.1  |         | ļ   |          | <u> </u> | <u> </u> |
| 55 | 17 M | + | - | + |   |          | L |   | <b> </b> |   |   |        |     | 100  |    | 12.1 | 5600  | L | 45630  |    | 24  | 0.9  |     | 0.03  | 0.6  |         |     | <u> </u> | └──      | <u> </u> |
| 56 | 26 F |   | _ |   |   | <u> </u> |   | + | <u> </u> |   |   |        |     | 101  |    | 10.9 | 14500 |   | 34500  |    | 54  | 2.5  |     | 0.02  | 2.3  |         | ļ   |          | <u> </u> | +        |
| 57 | 19 F | + | _ | + | + | <u> </u> | + | + | <u> </u> |   |   |        |     | 100  |    | 9.9  | 13000 |   | 25000  |    | 32  | 1.2  |     | 0.07  | 4.3  |         | ļ   |          | <u> </u> | IgM+     |
| 58 | 21 M | + |   | + | + |          |   |   |          |   |   |        |     |      |    | 11.6 | 4530  |   | 45000  |    | 54  | 1.5  |     | 0.04  | 0.7  |         |     |          | $\vdash$ | <b>_</b> |
| 59 | 24 M |   | _ |   |   | <u> </u> |   |   | <u> </u> |   |   |        |     |      |    | 13   | 5400  | Р | 234500 |    | 32  | 0.9  |     | 0.03  | 0.9  |         | ļ   |          | <u> </u> | <u> </u> |
| 60 | 32 F |   | _ |   |   | +        |   |   | <u> </u> |   |   |        |     |      |    | 10.8 | 2300  |   | 124500 |    | 134 | 10   |     | 0.06  | 0.5  |         | ļ   |          | <u> </u> | <u> </u> |
| 61 | 29 F | + | + | + | + |          |   |   |          | + | + | Vesic  | les |      |    | 9.6  | 3450  |   | 23450  |    | 54  | 1.5  |     | 0.45  | 0.3  |         | VZV |          | $\vdash$ | <b>_</b> |
| 62 | 16 M |   | _ |   |   | <u> </u> |   |   | <u> </u> |   | + |        |     | 102  |    | 10.4 | 12350 |   | 12500  |    | 23  | 0.9  |     | 0.08  | 4    |         | ļ   |          | IgM+     | ่่่่     |
| 63 | 15 M | + | _ | + | + | <u> </u> | + | + | <u> </u> |   |   |        |     |      |    | 12.7 | 5400  |   | 234100 |    | 45  | 1.6  |     | 0.067 | 0.8  |         | ļ   |          | <u> </u> | ┿        |
| 64 | 26 F |   |   |   |   |          |   |   |          |   |   |        |     | 102  |    | 10.5 | 12000 | L | 456300 | L  | 65  | 2.5  |     | 0.04  | 0.8  |         |     |          |          |          |

| 65  | 34 | 4 M | +  | +        | +        | +  |          |   |   |   |   |   |       |   |        |   |   | 3.5 | 5400  |   | 234500 | 29  | 0.9  | 0.09 | 0.2 |         |     |      |           | <u> </u> |
|-----|----|-----|----|----------|----------|----|----------|---|---|---|---|---|-------|---|--------|---|---|-----|-------|---|--------|-----|------|------|-----|---------|-----|------|-----------|----------|
| 66  |    | 2 M |    |          |          |    |          |   | + |   |   | + |       |   | 102    |   |   | _   | 13500 |   | 123450 | 69  |      | 0.05 | 4   |         |     | IgM+ |           | IgM+     |
| 67  |    | 7 M | +  |          | +        | +  | +        | + |   |   |   |   |       |   | 99     |   |   | 3.6 | 2340  |   | 32450  | 25  |      | 0.08 | 0.8 |         |     | Ū    |           | -        |
| 68  | 28 | 8 F | +  | +        | +        | +  |          |   |   |   | + |   |       |   |        |   |   | 0.6 | 4500  |   | 245000 | 45  | 2    | 0.07 | 0.3 |         |     |      |           |          |
| 69  | 4  | 5 M |    |          |          |    |          |   |   |   |   | + |       |   | 101    |   |   | 13  | 12350 |   | 234105 | 25  | 0.89 | 0.02 | 3   |         |     |      |           |          |
| 70  | 29 | 9 M |    |          |          |    |          |   | + |   |   |   |       |   |        |   |   | 0.7 | 3450  |   | 25000  | 19  | 0.7  | 0.04 | 5   |         |     |      | IgM+      |          |
| 71  | 18 | 8 F | +  | +        | +        | +  |          | + |   |   |   |   |       |   | 100    |   |   | 3.5 | 12000 | L | 150050 | 26  | 0.76 | 0.03 | 0.2 | 11mm+ve |     |      | <u> </u>  |          |
| 72  | 32 | 2 F | +  |          |          |    |          |   |   |   |   |   |       |   |        |   |   | 3.6 | 3450  |   | 354250 | 54  | 3    | 0.05 | 0.4 |         |     |      | 1         |          |
| 73  | 39 | 9 M |    |          | +        |    | +        |   |   |   |   |   |       |   | 103    |   |   | 1.8 | 5430  | L | 345200 | 43  | 2    | 0.04 | 0.3 |         |     |      |           |          |
| 74  | 35 | 5 M | ++ |          |          |    |          |   |   |   |   |   |       |   |        |   |   | 2.6 | 13500 |   | 354290 | 54  | 3.5  | 0.01 | 0.8 |         |     |      |           |          |
| 75  | 17 | 7 M |    |          |          |    |          |   |   |   |   | + | Escha | r |        |   |   | 9.8 | 5430  |   | 234500 | 32  | 1.2  | 0.05 | 0.2 |         |     | IgM+ |           |          |
| 76  | 23 | 3 F |    |          | +        |    |          |   | + | + | + |   |       |   |        |   |   | 12  | 4530  |   | 23450  | 43  | 1.5  | 0.03 | 0.4 |         |     |      |           |          |
| 77  | 3  | 1 M | +  |          |          | +  |          | + |   |   |   |   |       |   |        |   |   | 2.6 | 3240  |   | 23450  | 73  | 4    | 0.08 | 0.3 |         |     |      |           |          |
| 78  | 38 | 8 M | +  | +        | +        |    |          | + | + | + |   |   |       |   | 101    |   |   | 2.6 | 12450 | Р | 34500  | 35  | 0.9  | 0.05 | 3   |         |     |      |           |          |
| 79  | 17 | 7 F |    |          |          |    |          |   |   |   |   |   |       |   |        |   |   | 1.6 | 5640  |   | 14500  | 63  | 2.6  | 0.07 | 0.5 |         |     |      |           |          |
| 80  | 19 | 9 M | +  | +        | +        | +  |          | + |   |   |   |   |       |   | 100    |   |   | 14  | 4500  |   | 345000 | 34  | 1.1  | 0.04 | 0.9 |         |     |      |           |          |
| 81  | 20 | 0 M |    |          |          |    |          |   | + |   |   |   |       |   | 102    |   |   | 3.7 | 13000 |   | 324500 | 28  | 0.87 | 0.06 | 2.3 |         |     |      |           | IgM+     |
| 82  | 35 | 5 F | +  | +        | +        | +  |          |   |   |   |   |   |       |   |        |   |   | 1.1 | 6000  |   | 32100  | 24  | 0.76 | 0.03 | 0.3 |         |     |      |           |          |
| 83  | 24 | 4 F |    |          |          |    |          |   |   |   |   |   |       |   |        |   |   | 6.6 | 5600  |   | 23150  | 65  | 3.6  | 0.03 | 0.7 |         |     |      |           |          |
| 84  | 18 | 8 M | +  |          | +        | +  |          | + |   |   | + |   |       |   |        |   |   | 0.9 | 4530  |   | 345200 | 190 | 14   | 0.03 | 0.3 |         |     |      |           |          |
| 85  | 14 | 4 F |    |          |          |    | +        | + | + |   |   | + |       |   | 101    |   |   | 8.9 | 13500 | Р | 24000  | 40  | 13   | 0.05 | 0.5 | 15mm+ve |     |      | IgM+      |          |
| 86  | 25 | 5 F | +  | +        |          |    |          |   |   |   |   |   |       |   | +      |   |   | 9.7 | 5765  | L | 25640  | 36  | 0.9  | 0.9  | 2   |         |     |      |           |          |
| 87  | 34 | 4 M |    |          |          |    |          |   |   |   |   |   |       |   | 104    |   |   | 1.9 | 25000 |   | 254600 | 45  | 3    | 0.06 | 0.1 |         |     |      |           |          |
| 88  | 32 | 2 F | +  |          | +        |    |          |   |   |   |   |   |       |   | 102    |   |   | 8.7 | 35000 |   | 354200 | 69  | 4.5  | 0.07 | 0.3 |         |     |      |           |          |
| 89  | 24 | 4 M |    |          |          |    |          |   |   |   |   |   |       |   | 101    |   |   | 3.1 | 23000 |   | 235100 | 45  | 3    | 0.01 | 0.4 |         |     |      |           |          |
| 90  | 18 | 8 M | +  |          | +        |    |          | + |   |   |   |   |       |   | 102    |   |   | 2.8 | 2345  |   | 34500  | 123 | 15   | 0.05 | 3   |         |     |      |           |          |
| 91  | 34 | 4 F | +  | +        | +        | +  |          |   |   |   |   | + |       | + |        |   |   | 6   | 1000  | Р | 43500  | 89  | 8    | 1    | 0.9 |         | HIV |      |           |          |
| 92  | 35 | 5 F |    |          |          |    |          | + |   |   |   |   |       |   |        |   |   | 2.5 | 7860  |   | 89000  | 34  | 0.9  | 0.04 | 0.3 |         |     |      |           |          |
| 93  | 23 | 3 M | +  |          |          |    |          |   |   |   | + |   |       |   | 99.9 k |   |   | 4.1 | 6540  |   | 356400 | 23  | 0.8  | 0.06 | 0.2 |         |     |      | $\square$ |          |
| 94  | 17 | 7 M | +  |          | ++       |    |          |   |   |   |   |   |       |   |        | + | ÷ | 3.9 | 5630  |   | 254300 | 34  | 1.4  | 0.03 | 0.1 |         |     |      | $\square$ |          |
| 95  | 14 | 4 M | +  | +        |          |    | +        | + | + |   |   | + |       |   | 104    |   |   | 4.1 | 5640  | Р | 34500  | 65  | 4    | 0.08 | 3   |         |     |      | IgM+      | <u> </u> |
| 96  |    | 5 F | +  | +        | +        |    | <u> </u> |   |   |   |   |   |       |   |        |   |   | 3.6 | 6700  |   | 453200 | 40  |      | 0.06 | 0.4 |         |     |      | <u> </u>  | <u> </u> |
| 97  | 18 | 8 M |    |          |          |    |          |   |   |   |   |   |       |   |        |   |   | 2.7 | 14000 |   | 45300  | 60  | 3    | 0.08 | 0.5 |         |     | IgM+ | └──       | <u> </u> |
| 98  |    | 8 M | +  | +        | ++       | ++ | <u> </u> | + | + |   |   |   | Escha | 1 | 103    |   |   | 3.5 | 2340  |   | 345000 | 34  |      | 0.07 | 3   |         |     | ļ    | L         | <u> </u> |
| 99  |    | 0 F |    |          | <u> </u> |    | <u> </u> |   |   |   |   |   |       |   | 101    |   |   | 3.3 | 5600  | Р | 345600 | 39  | 2.5  | 0.04 | 0.4 |         |     | ļ    | L         | <u> </u> |
| 100 | 14 | 4 F | +  |          |          |    |          |   | + |   | + | + |       |   |        |   |   | 10  | 3000  |   | 100000 | 30  | 0.8  | 4    | 0.2 |         | HBV |      | <u> </u>  | <b> </b> |
|     |    |     |    | <u> </u> |          |    | <u> </u> |   |   |   |   |   |       |   |        |   |   |     |       |   |        |     |      |      |     |         |     |      | <u> </u>  | <u> </u> |
|     |    |     |    |          | <u> </u> |    | <u> </u> |   |   |   |   |   |       |   |        |   |   |     |       |   |        |     | ļ    |      |     |         |     | ļ    | L         | <u> </u> |
|     |    |     |    |          |          |    |          |   |   |   |   |   |       |   |        |   |   |     |       |   |        |     |      |      |     |         |     |      | <u> </u>  | <b> </b> |
|     |    |     |    | <u> </u> |          |    | <u> </u> |   |   |   |   |   |       |   |        |   |   |     |       |   |        |     |      |      |     |         |     |      | <u> </u>  |          |
|     |    |     |    |          |          |    |          |   |   | j |   |   |       |   |        |   |   |     |       |   |        |     |      |      |     |         |     | 1    |           |          |

|       |                 | sputum                |     | BLOOD               |     |      | CSF BIOCHEMII |       |     |    | CELL COUNT |          | CSF ANALYSIS        |             |            |     | CSF SEROLOGY |      |      |             |        |              |
|-------|-----------------|-----------------------|-----|---------------------|-----|------|---------------|-------|-----|----|------------|----------|---------------------|-------------|------------|-----|--------------|------|------|-------------|--------|--------------|
| WIDAL | PERIPERAL SMEAR | CULTYRE & SENSITIVITY | AFB | CULTUR SENSITI VITY | AFB | HQT  |               |       |     |    |            | cytology | culture sensitivity |             | Gram stain | AFB | Rabies       | Ĩ    | CMV  | undentified | Z/IASH | PCR          |
|       |                 |                       |     |                     |     |      |               |       | LDH |    |            | P/L      |                     |             |            |     |              |      |      |             |        |              |
|       |                 |                       |     |                     |     |      | mg/di         | mg/dl |     |    | cell/xL    |          |                     |             |            |     |              |      |      |             |        |              |
| +     |                 |                       |     |                     |     |      |               |       |     |    |            |          |                     |             |            |     |              |      |      |             |        | TRAT         |
|       |                 |                       |     |                     |     |      |               |       |     |    |            |          |                     |             |            |     |              |      |      | +           | +      | HSV+         |
|       |                 |                       |     |                     |     | 450  |               |       |     |    |            |          |                     |             |            |     |              |      |      | +           |        | <b>├</b> ──┤ |
|       | falciparum      |                       |     |                     |     | 450  | 34            | 70    |     |    |            |          | Streptoc            | coccus      | GM+ve      |     |              |      |      |             |        |              |
|       |                 |                       |     |                     |     |      |               |       |     |    |            |          | ~ <u>F</u>          |             |            |     |              |      |      |             |        |              |
|       |                 | mycobacteria          | +   |                     | +   | 1250 | 20            | 100   | 110 | 16 | 100        | L-550    |                     |             |            |     |              |      |      |             |        | TB           |
|       |                 |                       |     |                     |     |      |               |       |     |    | 600        |          |                     |             |            |     |              | IgM+ |      |             |        |              |
| +     |                 |                       |     |                     |     |      |               |       |     |    | 135        |          |                     |             |            |     |              |      |      | +           | +      | HSV+         |
|       |                 |                       |     |                     |     |      | 30            | 60    |     |    | 1020       |          |                     |             |            |     |              |      |      |             |        |              |
| +     |                 |                       |     |                     |     |      |               |       |     |    | 1200       |          |                     |             | <i>a</i> . |     |              |      | IgM+ |             |        | CMV+         |
|       |                 |                       |     |                     |     |      | 30            | 200   | 96  |    |            | P-550    | pneumo              | coccus      | GM-ve      |     |              |      |      |             |        |              |
|       |                 |                       |     | streptococcus       |     | 1057 | 25            | 65    |     |    | 1250       |          |                     |             |            |     |              |      |      |             |        | <u> </u>     |
|       |                 |                       |     | staphylococcus      |     | 1257 | 25            | 65    |     |    | 1050       |          |                     |             |            |     | IgM+ve       |      |      |             |        | <b>├</b> ──┤ |
|       |                 |                       |     |                     |     |      |               |       |     |    |            |          |                     |             |            |     | 1givi⊤ve     |      |      |             | +      | HSV+         |
|       |                 |                       |     |                     |     | 890  |               |       | 120 |    |            |          | mycoba              | L<br>ctrium |            | +   |              |      |      |             |        |              |
|       |                 |                       |     | L                   |     | 650  |               | 186   | 100 |    | 1050       | P-500    | Streptoc            |             | GM+ve      |     |              |      |      |             |        |              |
|       |                 |                       |     |                     |     |      |               |       |     |    |            |          |                     |             |            |     |              |      |      |             | +      | HSV+         |
|       | falciparum      |                       |     |                     |     |      | 45            | 74    | 50  |    | 150        |          |                     |             |            |     |              |      |      |             | +      | HSV+         |
|       |                 |                       |     | streptococcus       |     |      |               |       |     |    |            |          |                     |             |            |     |              |      |      |             |        |              |
|       |                 |                       |     |                     |     |      |               |       |     |    |            |          |                     |             |            |     |              | IgM+ |      |             |        | JE+          |

|   |            |               |   |                |     |         |    |      |      |     |      |        | [         |         |             |   |       |       | Ι | + | HSV+     |
|---|------------|---------------|---|----------------|-----|---------|----|------|------|-----|------|--------|-----------|---------|-------------|---|-------|-------|---|---|----------|
| Ŧ |            |               |   |                |     | 450     | 25 | 89   | 106  |     | 250  | n-590  | cryptoco  |         | india ink + |   |       |       |   | 1 | 115 V 1  |
|   |            |               |   |                |     | 1430    | 30 | 64   | 112  | 11  |      |        | mycobad   |         |             |   |       |       |   |   | ТВ       |
|   |            |               |   |                |     | 1450    | 50 | 04   | 112  | 11  | 1000 | L 430  | mycoba    |         |             |   |       |       |   |   |          |
|   |            |               |   | -44            |     |         |    |      |      |     | 1590 |        |           |         |             |   |       |       |   |   |          |
|   |            |               |   | streptococcus  |     |         | 28 | 80   |      |     | 1390 |        |           |         |             |   |       |       |   |   |          |
|   |            |               |   | pnuemocococc   | us  |         | 28 | 80   |      |     | 1200 |        |           |         |             |   |       |       |   |   | -        |
|   |            |               |   |                |     |         |    |      |      |     | 250  |        |           |         |             | _ |       |       | + |   | HOLL     |
|   |            |               |   |                |     |         | 10 | 100  | 10.6 |     | 250  | D 650  |           |         | <b>C</b> 14 | _ |       |       |   | + | HSV+     |
|   | falciparum |               |   |                |     | <br>550 | 10 | 120  | 106  |     | 678  | P-650  | staphloc  | occous  | GM+ve       |   |       |       |   |   |          |
|   |            |               |   |                |     |         |    |      |      |     |      |        |           |         |             | _ |       |       |   |   |          |
|   |            |               |   |                |     |         | 40 | 70   | 40   |     | 80   |        |           |         |             |   |       | IgM+  |   |   |          |
|   |            |               |   |                |     |         | 45 | 150  | 39   |     | 450  |        |           |         |             |   |       |       |   |   |          |
|   |            |               |   |                |     |         |    |      |      |     |      |        |           |         |             |   |       |       | + |   |          |
|   |            |               |   |                |     |         |    |      |      |     |      |        |           |         |             |   |       |       |   | + | HSV+     |
|   |            | mycobacteria  | + |                |     | 1050    | 30 | 130  |      |     |      | L 650  |           |         |             |   |       |       |   |   |          |
|   |            |               |   |                |     |         |    |      |      |     |      |        |           |         |             |   |       |       |   |   | TB       |
|   |            |               |   | streptococcus  |     | 450     | 20 | 90   |      |     |      |        |           |         |             |   |       |       | + |   |          |
|   | vivax      |               |   |                |     |         | 25 | 150  |      |     | 1200 | P-550  | streptoco | occus   | GM+ve       |   |       |       |   |   |          |
|   |            |               |   |                |     |         |    |      |      |     |      |        | *         |         |             |   |       |       |   |   |          |
|   |            |               |   |                |     |         |    |      |      |     |      |        |           |         |             |   |       |       | + |   |          |
|   |            |               |   |                |     |         | 35 | 85   |      |     |      |        |           |         |             |   | IgM+  |       |   |   |          |
|   |            |               |   | streptococcus  |     | 550     | 25 | 80   | 65   |     | 135  |        |           |         |             |   | 19111 |       |   | + | HSV+     |
|   |            |               |   | salmonella     |     | 550     | 20 | 00   | 05   |     | 155  |        |           |         |             |   |       |       |   |   | 115 1 1  |
| T |            | mycobacteria  |   | saimonena      |     | 1450    | 10 | 200  | 100  | 130 |      | I 500  | mycobad   | n       |             |   |       |       |   |   | TB+      |
|   |            | inycobacteria | + |                |     | 1450    | 10 | 200  | 100  | 130 |      | L 300  | mycoba    | 11      |             |   |       |       |   | * | TD⊤      |
|   |            |               |   |                |     | 450     | 20 | 400  | 120  | 10  | 765  | I 450  | mycobad   |         |             |   |       |       |   | - | TB+      |
|   |            |               |   |                |     | 450     | 20 | 400  | 120  | 12  | /05  | L 450  | пусова    | cterium |             | _ |       |       |   |   | IB+      |
|   | vivax      |               |   |                |     |         | 10 | 2.50 |      |     | 2000 | D 5 60 |           |         | <b>C</b> 14 | _ |       |       |   |   |          |
|   |            |               |   |                |     | <br>550 | 10 | 250  | 90   |     | 2000 | P-560  | pneumo    | occus   | GM-ve       |   |       |       |   |   |          |
|   |            |               |   |                |     |         |    |      |      |     |      |        |           |         |             |   |       |       |   | + |          |
|   |            |               |   |                |     | 850     | 20 | 290  | 96   |     |      |        | streptoco | occus   | GM+ve       | _ |       |       |   |   | ļ        |
|   |            |               |   | streptococcus  |     |         |    |      |      |     |      |        |           |         |             |   |       |       |   | + | HSV+     |
|   |            |               |   |                |     | 1590    | 15 | 300  | 130  | 16  |      |        | mycobad   | cterium |             |   |       |       |   |   | TB+      |
|   | falciparum |               |   |                |     |         |    |      |      |     |      |        |           |         |             |   |       |       |   |   |          |
|   |            |               |   |                |     | 650     | 25 | 269  | 98   |     | 1400 |        | streptoce | occcus  | GM+ve       |   |       |       |   |   |          |
|   |            |               |   |                |     |         |    |      |      |     |      |        |           |         |             |   |       |       |   |   |          |
|   |            |               |   | staphylococcus |     | 550     |    |      |      |     |      |        |           |         |             |   |       |       |   |   |          |
|   |            |               |   |                |     |         |    |      |      |     |      |        |           |         |             |   |       |       |   | + |          |
|   |            |               |   |                |     |         | 45 | 150  | 100  |     | 100  | P-800  |           |         |             |   |       |       |   |   | 1        |
|   |            |               |   |                |     | 650     | 40 | 75   |      |     | 120  |        | pneumo    | coccus  | GM-ve       |   |       | IgM=+ | 1 |   |          |
|   |            |               |   |                |     |         |    |      |      |     | - 20 |        | 1         |         |             |   |       | 3     |   |   |          |
| L |            |               |   | streptococcus  | 1 1 |         |    |      |      |     |      |        | 1         |         |             | + |       |       | + |   | <u> </u> |

|       |        |               |               | r – – – – |      |    |     |     | 1  | 1    | 1     | T T      | 1       | T     | r        | 1      |   | r      | r –      | 1 | 1    |
|-------|--------|---------------|---------------|-----------|------|----|-----|-----|----|------|-------|----------|---------|-------|----------|--------|---|--------|----------|---|------|
|       |        |               |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          | + |      |
| falci | iparum |               |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          |   |      |
|       |        |               |               |           | 450  | 15 | 300 | 100 |    | 145  | P-650 | neisseri | a       | GM-ve |          |        |   |        | +        |   |      |
|       |        |               |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          |   |      |
|       |        |               |               |           | 550  | 10 | 450 | jj  |    | 1430 | P-550 | pneumo   | cocus   | GM-ve |          |        |   |        |          | + |      |
|       |        |               |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          |   |      |
|       |        |               |               |           | 1345 | 20 | 300 | 550 | 70 | 980  | L 450 | mycoba   | cterium |       | +        |        |   |        |          |   | TB+  |
|       |        |               |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          |   |      |
|       |        |               | pneumococcus  |           | 550  |    |     |     |    |      |       |          |         |       |          |        |   |        |          | 1 |      |
|       |        |               | phoumococous  |           | 220  |    |     |     |    |      |       |          |         |       |          |        |   |        |          |   |      |
|       |        |               |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          | + |      |
|       |        |               |               | <br>      |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          | + |      |
|       |        |               |               | <br>      |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          |   |      |
|       |        |               |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          |   |      |
| falci | iparum |               | salmonella    |           | 390  |    |     |     |    |      |       |          |         |       | ļ        |        |   |        | L        |   |      |
|       |        |               |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          | + |      |
|       |        |               |               |           | 650  | 24 | 295 |     |    | 1350 | P-450 | streptoc | occus   | GM+ve |          |        |   |        |          |   |      |
|       |        |               |               |           |      | 45 | 75  |     |    |      |       |          |         |       |          |        |   | IgM+ve |          |   | CMV+ |
|       |        |               |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          |   |      |
|       |        |               |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          | + |      |
|       |        |               |               |           | -    |    |     | 450 | 75 |      |       |          |         |       |          |        |   |        |          | 1 |      |
|       |        | mycobacteria  | pneumococcus  |           | 1560 | 18 | 450 |     |    |      |       | mycoba   | cterium |       | +        |        |   |        |          |   | TB+  |
|       |        | inycobacteria | pheumococcus  |           | 1500 | 10 | 450 |     |    |      |       | myeooa   |         |       |          |        |   |        | +        |   | ID   |
|       |        |               |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        | т        |   |      |
|       |        |               |               | <br>      | (50  | 20 | 200 | 224 |    | 050  | D (50 | 1.1 .    | ļ       | CM    |          |        |   |        |          | + |      |
|       |        |               |               | -         | 650  | 30 | 290 | 234 |    | 950  | P-650 | staphloc | coccus  | GM+ve |          |        |   |        | -        | - | -    |
|       |        |               |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          |   |      |
| falci | iparum |               |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          |   |      |
|       |        |               |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          |   |      |
|       |        |               |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          |   |      |
|       | 1      | mycobacberia  |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        | +        |   |      |
|       |        |               |               |           |      |    |     |     |    |      |       |          |         |       |          | Rabies |   |        |          | + |      |
|       |        |               | staphlococcal |           | 450  | 30 | 76  |     |    |      | P-200 | pnemoc   | occus   | GM-ve | İ        |        |   |        |          | + | 1    |
|       |        |               |               |           |      |    |     | 1   |    | 1    |       |          |         |       | 1        | 1      | 1 | 1      |          | 1 |      |
|       |        |               |               |           |      |    |     |     |    |      |       |          |         | 1     | l        |        |   |        |          | + |      |
| viva  |        |               |               |           |      |    |     |     |    |      |       |          |         | 1     |          |        |   |        |          | 1 |      |
| viva  | in .   |               |               | <br>      | 450  | 35 | 45  |     |    | 1    | P-250 | <u> </u> | 1       |       | <u> </u> | 1      |   | ł      | <u> </u> |   |      |
|       |        |               | salmonella    |           | 450  |    |     |     |    |      |       |          |         |       | <u> </u> |        |   |        |          |   |      |
|       |        |               |               | <u> </u>  |      | 25 | 200 |     |    | 150  | P-350 |          |         |       | <u> </u> |        |   |        |          |   |      |
|       |        |               |               |           |      |    |     |     |    |      |       |          |         |       | ļ        |        |   |        | L        |   |      |
|       |        |               |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          |   |      |
|       |        |               |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          |   |      |
|       | T      |               |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          |   |      |
|       |        |               |               |           |      |    |     |     |    |      |       |          |         |       |          |        |   |        |          |   |      |

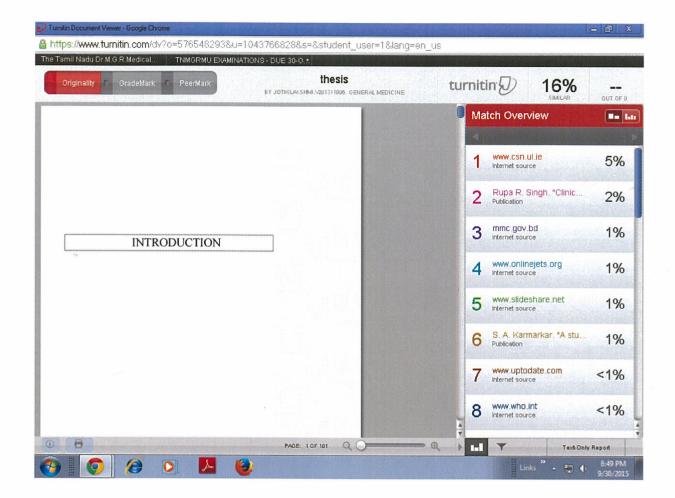
|     |     | IMAGING MOD/ |          |          |        |        |       | IMAGING MODA |        |           |       |         | IMAGING MODA        |         |           |          |        |      |                       |
|-----|-----|--------------|----------|----------|--------|--------|-------|--------------|--------|-----------|-------|---------|---------------------|---------|-----------|----------|--------|------|-----------------------|
| ASA | EBV | CT SCAN      |          |          |        |        |       | MRI SCAN     |        |           |       |         | MAGNETIC IMAGING MG |         | PROGNOSIS | NEURODI  |        |      | other system affected |
|     |     | Odema        | Focal    | HYDRO    | CEPHAL | TUBERI | JLOMA | Focal        |        | Basal exd | udate | DIFFUSE | MRS                 |         | IMPROVE   | NEURODI  | EFICIT | DEAD |                       |
|     |     |              |          |          |        |        |       |              |        |           |       |         |                     |         |           |          |        |      |                       |
|     |     | +            |          |          |        |        |       |              |        |           |       |         |                     |         |           |          |        |      |                       |
|     |     | +            |          |          |        |        |       |              |        |           |       |         |                     |         |           |          |        |      |                       |
|     |     |              |          |          |        |        |       |              |        |           |       |         |                     |         |           |          |        |      |                       |
|     |     |              |          |          |        |        |       |              |        |           |       |         |                     |         |           |          |        |      |                       |
|     |     |              |          |          |        |        |       |              |        |           |       |         |                     |         |           | visual D |        |      |                       |
|     |     | +            |          | +        |        | +      |       |              |        |           |       |         |                     |         |           |          |        |      | ARDS                  |
|     |     |              |          |          |        |        |       | Temperop     | arital | +         |       |         |                     |         |           |          |        |      |                       |
|     |     |              |          |          |        |        |       | REL          |        |           |       | REL     | neurocystic         | ersosis |           |          |        |      | GIT                   |
|     |     |              |          |          |        |        |       |              |        |           |       |         |                     |         |           |          |        |      |                       |
|     | +   |              |          |          |        |        |       |              |        |           |       |         |                     |         |           |          |        | D    | <br>MODS              |
|     |     | +            | subdural | effusion |        |        |       |              |        |           |       |         |                     |         |           | focal    |        |      |                       |
|     |     |              |          |          |        |        |       |              |        | +         |       |         |                     |         |           |          |        |      |                       |
|     |     |              |          |          |        |        |       |              |        |           |       |         |                     |         |           |          |        |      |                       |
|     |     |              |          |          |        |        |       |              |        |           |       |         | tuberuloma          | +       |           | SNHL     |        |      |                       |
|     |     |              |          | +        |        | +      |       |              |        | +         |       |         |                     |         |           | ~        |        |      |                       |
| +   |     | +            | Leptome  | nigitis  |        |        |       |              |        |           |       |         |                     |         |           |          |        |      |                       |
|     |     |              |          |          |        |        |       |              |        |           |       |         |                     |         |           |          |        |      |                       |
|     |     |              |          |          |        |        |       |              |        |           |       |         |                     |         |           |          |        |      |                       |
|     |     |              |          |          |        |        |       |              |        |           |       |         |                     |         |           |          |        |      |                       |
|     |     |              |          |          |        |        |       | temperopa    | arital | +         |       |         |                     |         |           |          |        |      |                       |

|   |   |   |         |            |   |    |         |   |   | REL     |             |          |         |          |   |          |     |
|---|---|---|---------|------------|---|----|---------|---|---|---------|-------------|----------|---------|----------|---|----------|-----|
|   |   | + |         |            |   |    |         |   |   | KLL     |             |          |         |          | D | M        | ODS |
|   |   | + | +       | +          | + |    |         |   | + |         | tuberculor  | na       |         |          | 2 |          | 501 |
|   |   |   | -       |            |   |    |         |   |   |         |             |          |         |          |   |          |     |
|   |   |   |         |            |   |    |         |   |   |         |             |          |         |          |   | Gľ       | Т   |
|   |   | + |         |            |   |    |         |   |   | <br>    |             |          |         |          |   |          |     |
|   |   |   |         |            |   |    |         |   |   | <br>REL | neurocyste  | cercosis |         |          |   |          |     |
|   |   |   |         |            |   |    |         |   |   |         |             |          |         |          |   |          |     |
|   |   | + | Leptome | nigitis    |   |    | Abscess |   |   | REL     | abcess      |          | focal   |          |   | AR       | ۲F  |
|   |   |   |         | Ũ          |   |    |         |   |   |         |             |          |         |          |   | AF       |     |
|   |   |   |         |            |   | ++ |         |   | + |         |             |          |         |          | D | M        | ODS |
|   |   |   |         |            |   |    |         |   |   |         |             |          |         |          |   | AR       |     |
|   | 1 | İ | 1       |            |   |    |         |   | İ |         | 1           |          |         |          |   | <u> </u> |     |
|   | 1 | İ | 1       |            |   |    |         |   | İ |         | 1           |          |         |          |   |          |     |
|   |   | + |         | +          |   |    |         |   |   |         |             |          |         |          |   |          |     |
|   |   | + |         |            |   |    |         |   |   |         |             |          |         |          |   | RS       | 5   |
|   |   | + |         |            |   |    |         |   |   |         |             |          |         |          |   |          |     |
|   |   | + | Subdura | l effusion |   |    |         | + |   | REL     | abscess     |          |         |          |   |          |     |
|   |   |   |         |            |   |    |         |   |   |         |             |          |         |          |   |          |     |
|   |   |   |         |            |   |    |         |   |   |         |             |          | SNHL    |          |   |          |     |
|   |   |   |         |            |   |    |         |   | + |         | neurocystic | cecosis  |         |          |   |          |     |
|   |   |   |         |            |   | ++ |         |   |   |         |             |          |         |          | D | DI       | С   |
|   |   | + |         |            |   |    |         |   |   |         |             |          |         |          |   |          |     |
|   |   |   |         | +          |   |    |         |   |   |         |             |          |         |          |   |          |     |
|   |   |   |         | +          |   |    |         |   | + |         |             |          |         |          |   |          |     |
|   |   | + |         |            | + |    |         |   |   |         |             |          |         |          |   |          |     |
|   |   |   |         |            |   |    |         |   | + |         |             |          |         |          |   |          |     |
|   |   | + |         |            |   |    |         |   |   | REL     | Abscess     |          |         |          |   |          |     |
|   | + |   |         |            |   |    |         |   |   |         |             |          |         |          |   |          |     |
|   |   | + | Leptome | nigitis    |   |    | Abscess |   |   |         |             |          |         |          |   |          |     |
|   |   |   |         |            |   |    |         |   | + |         |             |          |         |          |   |          |     |
|   |   | + |         | +          | + |    |         |   | + | REL     |             |          |         |          |   |          |     |
|   |   |   |         |            |   |    |         |   |   |         |             |          |         |          |   |          |     |
|   |   | + |         |            |   |    |         |   | + |         |             |          | BLURRIN | G VISION |   |          |     |
|   |   |   |         |            |   |    |         |   |   |         |             |          |         |          |   |          |     |
|   |   |   |         |            |   | ++ |         |   |   |         |             |          |         |          | D |          | RDS |
|   |   |   |         |            |   |    |         |   |   |         |             |          |         |          |   | AF       | RF  |
| + |   |   |         |            |   |    |         |   |   |         |             |          |         |          |   |          |     |
|   |   | + |         |            |   |    |         |   | + | REL     | Abscess     |          |         |          |   |          |     |
|   |   |   |         |            |   |    |         |   |   |         |             |          |         |          |   |          |     |
|   |   |   |         | +          |   |    |         |   |   |         |             |          |         |          |   |          |     |

|      |        |          |     | T | r | r       |        | 1     |      |             | 1  | 1 | 1            |         |   |           |
|------|--------|----------|-----|---|---|---------|--------|-------|------|-------------|----|---|--------------|---------|---|-----------|
|      |        |          |     |   |   |         |        |       |      |             |    |   |              |         |   |           |
|      |        |          |     |   | - |         |        |       |      |             |    |   |              |         |   | <br>      |
| <br> |        |          |     |   |   | ++      |        | <br>  | <br> |             |    |   |              |         | D | <br>MODS  |
|      | +      |          |     |   | - | ++      |        | +     |      |             |    |   |              |         | D | <br>MOD   |
|      | +      |          |     |   |   |         |        | +     |      |             |    |   | visual D     |         |   | <br>      |
| <br> | +      |          |     |   | + |         |        | <br>+ | <br> |             |    |   | visual D     |         |   | <br>      |
| <br> | +      |          |     |   | + |         |        | +     |      |             |    |   |              |         |   | <br>      |
| <br> |        |          |     |   |   |         |        |       |      |             |    |   |              |         |   | <br>Pneun |
|      |        | Meningi  | hia |   |   |         |        |       |      |             |    |   | SHNL         |         |   | Flieun    |
|      |        | wiennigi | 115 |   |   | ++      |        |       |      |             |    |   | SIINL        |         |   | <br>      |
|      |        |          |     |   |   |         |        |       |      |             |    |   |              |         |   |           |
| <br> |        |          |     |   |   |         |        |       |      |             |    |   |              |         |   |           |
|      | +      |          |     |   | } | }       |        |       |      |             |    |   |              |         |   |           |
|      | т      |          |     |   |   |         |        |       |      |             |    |   |              |         |   |           |
|      |        | Abscess  |     |   |   |         |        | +     |      |             |    |   |              |         |   |           |
|      |        | AUSCESS  |     |   |   |         |        | +     |      |             |    |   |              |         |   |           |
|      |        |          |     |   |   |         |        | +     |      |             |    |   |              |         |   |           |
|      |        |          |     |   |   |         |        |       |      |             |    |   |              |         |   |           |
|      | DIFFUS |          |     |   |   |         |        |       |      |             |    |   |              |         |   |           |
|      | DIFFUS |          |     |   |   |         |        |       | +    | tuberculom  |    |   |              |         |   | RS        |
|      |        |          |     |   |   |         |        |       | +    | tuberculoin | la |   |              |         |   | КS        |
|      |        |          |     |   |   |         |        |       |      |             |    |   |              |         |   |           |
|      | +      | meningit | ic  |   |   |         | Abcess | +     |      |             |    |   | bluring of v | vision  |   |           |
|      | т      | mennign  | 15  |   |   |         | AUCCSS | т     |      |             |    |   | oluring of   | VISIOII |   |           |
|      |        |          |     |   |   |         |        |       |      |             |    |   |              |         |   |           |
|      |        |          |     |   |   |         |        |       |      |             |    |   |              |         |   |           |
|      |        |          |     |   |   | ł – – – |        |       |      |             |    |   |              |         |   |           |
| -    |        | -        |     | + | } | }       |        |       |      |             |    |   |              |         |   |           |
|      | +      |          |     |   |   |         |        |       |      |             |    |   |              |         |   |           |
|      |        | meningit | ie  |   |   |         |        | +     |      |             |    |   | focal        |         | D | MOD       |
|      |        | mennigh  | 15  |   |   |         |        | 1     |      |             |    |   | iocai        |         | D | MOD       |
|      |        |          |     |   |   |         |        |       |      |             |    |   |              |         |   |           |
|      |        |          |     |   |   |         |        |       |      |             |    |   |              |         |   |           |
|      |        |          |     |   |   |         |        |       |      |             |    |   |              |         |   |           |
|      |        |          |     |   |   |         |        |       |      |             |    |   |              |         |   |           |
|      |        |          |     |   |   |         |        |       |      |             |    |   |              |         |   |           |
|      |        |          |     |   |   |         |        |       |      |             |    |   |              |         |   |           |
|      |        |          |     |   |   |         |        |       |      |             |    |   |              |         |   |           |
| -    |        | -        |     | + | } | }       |        |       |      |             |    |   |              |         |   |           |
| <br> |        |          |     |   |   |         |        |       |      |             |    |   |              |         |   |           |
|      |        |          |     |   |   |         |        |       |      |             |    |   |              |         |   |           |

# turnitin

### **Digital Receipt**


This receipt acknowledges that Turnitin received your paper. Below you will find the receipt information regarding your submission.

The first page of your submissions is displayed below.

| Submission author: | 201311006. General Medicine JOTH. |
|--------------------|-----------------------------------|
| Assignment title:  | TNMGRMU EXAMINATIONS              |
| Submission title:  | thesis                            |
| File name:         | MGR_thesis_akshaya.docx           |
| File size:         | 10.43M                            |
| Page count:        | 101                               |
| Word count:        | 9,161                             |
| Character count:   | 61,326                            |
| Submission date:   | 28-Sep-2015 11:12AM               |
| Submission ID:     | 576548293                         |
|                    |                                   |

| [ [ [            | INTRO | DUCTION |  |
|------------------|-------|---------|--|
|                  |       |         |  |
|                  |       |         |  |
|                  |       |         |  |
|                  |       |         |  |
|                  |       |         |  |
|                  |       |         |  |
| A Carlos Andrews |       |         |  |

Copyright 2015 Turnitin. All rights reserved.

