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INTRODUCTION 

The term “torque” has two different but related meanings for the 

orthodontist. On one hand it refers to the bucco-palatal root inclination, which 

can be measured on the lateral headfilm as the incisor inclination to the 

anterior cranial base or the maxillary plane, while on the other it describes the 

activation generated by torsion of the archwire in the bracket slot.88 

Correct buccolingual inclination of anterior teeth is considered 

essential for providing good occlusal relationships in orthodontic treatment. 

Inclination of the maxillary anterior teeth is particularly critical in establishing 

an esthetic smile line, proper anterior guidance, and a Class I canine and molar 

relationship5. 

Orthodontist’s define torque around the dental arch such that the x-axis 

follows the curve of the arch. Torque, in this sense, would be rotation 

perpendicular to the long axis of the tooth. This could be generated by a 

rotation through a moment or couple of forces.4  

The completely programmed bracket system created by 

Andrews (1989)3, was designed with the objective of using arches without 

bends. However, in spite of incorporating ideal torque characteristics in the 

structure of such brackets, in some cases it is necessary to apply additional or 

individual torque on some teeth. This would be necessary due to several 

factors38: mechanical side-effects such as variations in bracket slot and 

archwire dimension113, morphological differences in the buccal faces of 

teeth,20, 74, 75,111 changes in the position of the brackets, 71,119 different methods 

of bracket manufacturing40,121 and orthodontic wires,18,94 the play between the 
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wire and the bracket slot13,26, variations in the bracket designs28, properties of 

the materials constituting the brackets39,44,92 and wires94 and differences 

between the value of the torque informed by the manufacturer and the real 

value of the torque in the bracket base38. 

Self-ligating brackets introduced by Dr. Jacob Stolzenberg (1935)98 

are ligature-less bracket systems that have a mechanical device built into the 

bracket to close off the edgewise slot. They are generally smoother for the 

patients because of the absence of wire ligature and also do not require as 

much chair time.9,11,41 The precision arm or the sliding fourth wall accurately 

locks the archwire within the dimensions of the slot providing robust ligation 

and controlled tooth movement. 

The proclaimed chief advantages of self-ligating systems over 

conventional appliances include, (a) decrease in treatment duration,57,89, (b) 

anchorage conservation,109 (c) asepsis,28 (d) patient comfort.33,36,97  

Self-ligating brackets are broadly classified into Active and Passive 

self-ligating brackets; 

1) Active systems - those that have a spring clip that presses against 

the archwire, such as the InOvation-R (GAC Intl, NY), TimeTM 

(American Orthodontics, USA )  

2) Passive systems-those in which the self-ligating clip does not press 

against the wire such as Damon 3MX (Ormc, USA), SmartClip-3 

(3M Unitek,USA). 
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The finite element method (FEM) is a powerful computer simulation 

tool, which has been successfully applied to the mechanical study of stress and 

strain and solving problems in the mechanics of solids and structures.44,53 This 

makes it practical to elucidate the biomechanical components such as 

displacements, stress and strain included in the living structures from various 

external forces. 

In the finite element method, the entire region of the structure is 

divided into a set of elements that are connected by points called nodes.105 

Element types are decided and each element is assigned its material properties 

(Young’s Modulus and Poison’s Ratio). The forces and boundary conditions 

are defined to stimulate loads and constraint of the structures. The structural 

response is computed and then presented for display. 

The FEM has some distinct advantages over other methods of stress analysis. 

1) Compared to classical analytical methods, it is able to model much 

more closely structures of irregular geometries and non-homogeneous 

or anisotropic material properties and overcomes difficulties inherent 

in conventional experimental methods.46 

2) FEM has the potential for the equivalent mathematic modeling of a 

real object of complicated shape with different material properties. 

Thus FEM offers an ideal method of accurate modeling of tooth-

periodontium system with its complicated 3 Dimensional geometry.119 

3) The force systems that are used in an orthodontic patient can be 

complicated, FEM makes it possible to analytically apply various force 

systems at any point and in any direction.48 
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Clinically, torque control is often required in the maxillary incisors for an 

ideal inter-incisal angle, adequate incisor contact, and sagittal adjustment of 

the dentition in order to achieve an ideal occlusion.5 

Although the self-ligating edgewise bracket was introduced to 

orthodontists 75 years ago, recent advances in bracket technology have 

resulted in a number of new self-ligating bracket systems and greater interest 

in their use. Much of this interest is in response to information comparing the 

benefits of self-ligating systems with conventional edgewise brackets. Often, 

this information comes from marketing materials and non-refereed sources 

claiming that self-ligating bracket systems provide superior treatment 

efficiency and efficacy.22 

Because of the complexity of the experimental configuration, only a 

handful of experimental studies have been presented upon torque expression 

until now, moreover numerical analyses have not been carried out for torque 

expression in different self-ligating brackets on the tooth and its supporting 

structures.1,24,35,43 

Therefore the aim of the present study was to investigate the torque 

expression of different self-ligating brackets (active and passive) with 

various archwire combinations on the tooth and its supporting structures 

using finite element method. 
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REVIEW OF LITERATURE 

 

Torque can be defined from a mechanical or from a clinical point of view. 

Mechanically, it refers to the twisting of a structure about its longitudinal axis, 

resulting in an angle of twist. Torque is a shear-based moment that causes 

rotation. Clinically, in orthodontics, it represents the buccopalatal crown/root 

inclination of a tooth, and it is an orthodontic adaptation used to describe rotation 

around an x-axis. When applied in an orthodontic archwire/bracket interaction, it 

describes the activation generated by twisting an archwire in a bracket slot2. 

Depending on magnitude of torsion, the stiffness or resilience of the wire 

cross section, wire size, edge bevel and manufacturer tolerance, bracket slot size 

and manufacturer tolerance, engagement angle of the wire in the bracket slot, 

experimental measurement technique, bracket placement as related to tooth 

morphology8,29 and inclination of the tooth, the archwire moves the root of a tooth 

through the alveolar bone via localized pressure and tension generated by torsion 

in the archwire5. 

Considering the above factors the review of literature for this study is 

categorized into two groups:-  

1) FEM studies in orthodontics and,  

2) Torque and Self Ligating brackets in orthodontics 
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1) FEM STUDIES IN ORTHODONTICS  

Tanne et al (1987)100 investigated the stress levels induced in the 

periodontal tissue by orthodontic forces using the three-dimensional finite 

element method and concluded that during tipping movement, stresses non-

uniformly varied with a large difference from the cervix to the apex of the root.  

Tanne et al (1988)104 investigated the relationship between moment to 

force (M/F) ratios and the centers of rotation by use of the finite element method 

(FEM). They concluded that the center of resistance was located at 0.24 times the 

root length measured apical to the level of alveolar crest. The centers of rotation 

varied with the M/F ratios following a curve of hyperbola. The M/F ratio was -

9.53 for root movement (C, at the incisal edge), - 8.39 for translation, and -6.52 

for tipping around the apex. It was found that even a small difference in the M/F 

ratios produced clinically significant changes in the centers of rotation. 

Tanne et al (1991)106 investigated the nature of initial tooth displacements 

associated with varying root lengths and alveolar bone heights. The results 

showed that moment-to-force values at the bracket level for translation of a tooth 

decreased with shorter root length and increased with lower alveolar bone height. 

In addition, apico-gingival levels of the center of resistance shifted more 

gingivally to the cervix, or the alveolar crest with a shorter root. However, the 

relative distances of the centers of rotation from the alveolar crest in comparison 

with the alveolar bone heights were constant at 0.4 mm, with variations in the root 

length and alveolar bone height. Because this study showed that root length and 
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alveolar bone height affect the patterns of initial tooth displacements both in the 

center of resistance and the centers of rotation and also in the amount of 

displacement, forces applied during orthodontic treatment should take into 

consideration the anatomic variations in the root length and alveolar bone height 

so as to produce optimal and desired tooth movement. 

McGuinness et al (1992)69 conducted a finite element analysis (FEA) to 

determine the stress induced in the periodontal ligament in 3 dimensions when a 

maxillary canine tooth is subjected to and orthodontic force similar to that 

produced by an edgewise appliance. The findings suggested that even with the 

perfect edgewise mechanics it would be difficult to obtain canine movement by 

pure translation or bodily movement.  

Cobo et al (1993)19 determined the stress that appears in tooth, 

periodontal ligament and alveolar bone, when a labiolingual force of 100 gm is 

applied in a labiolingual direction in a midpoint of the crown of an inferior 

digitalized canine, and its changes depending on the degree of loss of the 

supporting bone. After applying the labiolingual force in the canine, a progressive 

increase of the stress in the labial and lingual zones of the tooth, periodontal 

membrane and alveolar bone was observed when the alveolar bone was reducing. 

In the mesial and distal zones, no compensating forces appeared which could 

provoke a tooth rotation during the tipping movements.  

Katona et al (1994)56 developed a finite element model (FEM) of an 

orthodontic bracket bonded to enamel with GIC. The primary purpose of this 

project was to ascertain the effects of load misalignment on the calculated stresses 
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within the cement layer. The results indicated that peak stress values increase as 

the load deflection angulation increases. If the tensile load is inadvertently applied 

entirely on one wing of the bracket, the stress components nearly doubled in 

magnitude. 

Ghosh et al (1995)37 generated finite element models for selected ceramic 

brackets and graphically displayed the stress distribution in the brackets when 

subjected to arch wire torsion and tipping forces. Six commercially available 

ceramic brackets, one monocrystalline and five polycrystalline alumina, of twin 

bracket design for the permanent maxillary left central incisor were studied. 

Three-dimensional computer models of the brackets were constructed and loading 

forces, similar to those applied by a full-size (0.0215 × 0.028 inch) stainless steel 

arch wire in torsion and tipping necessary to fracture ceramic brackets, were 

applied to the models. The brackets with an isthmus connecting the wings seemed 

to resist stresses better than the one bracket that did not have this feature. The 

design of the isthmus for the Transcend (Unitek/3M, Monrovia, Calif.) and 

Lumina (Ormco, Glendora, Calif.) brackets were found to be acceptable as well. 

The Starfire bracket ("A" Company, San Diego, Calif.) showed high stresses and 

irregular stress distribution, because it had sharp angles, no rounded corners, and 

no isthmus. The finite element method proved to be a useful tool in the stress 

analysis of ceramic orthodontic brackets subjected to various forces. This analysis 

provides key information to the development of an optimum bracket design. 
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Cobo et al (1996)18 studied the stress that appears in the tooth, the 

periodontal ligament, and the alveolar bone, when a couple and horizontal forces 

were applied to obtain the bodily movement of a lower digitalized canine and its 

changes depending on the degree of loss of the supporting bone. The analysis of 

tensions was carried out by means of the finite element method (FEM) with no 

bone loss and after reducing the support bone 2, 4, 6, and 8 mm. When the bone 

loss is 2 mm, an increased stress in the levels next to the alveolar crest is already 

apparent. After 4, 6, and 8 mm of bone support reduction, a change of the sign 

and an increment of the magnitude of stress in the lowest levels occurs. 

Middleton et al (1996)73 reported an initial time-dependent 

(continuous/dynamic) finite element model for tooth movement that uses newly 

developed software, the results being cross-referenced against historical data. 

These early results, from a two-dimensional mathematical model of a loaded 

canine tooth, suggest that the remodeling process may be controlled by the 

periodontal ligament rather than the bone. In the finite element model, bone was 

found to experience a low strain of 1 × 10-5, whereas the periodontal ligament 

experienced a strain of 0.1 when the "tooth model" is loaded. Only this latter 

figure is above the threshold usually reported to be necessary to initiate the 

remodeling process. 

Puente et al (1996)86 analyzed the distribution of the stress on dental and 

periodontal structures when a simple tipping dental movement or torque 

movement is produced. A tridimensional computer model based on finite element 

techniques was used for this purpose. The model of the lower canine was 
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constructed on the average anatomical morphology and 396 isoparametric 

elements were considered. The three principal stresses (maximum, minimum and 

intermediate) and Von Mises stress were determined at the root, alveolar bone and 

periodontal ligament (PDL). It was observed how the distribution of stress is not 

the same for the three structures studied. In all loading cases for bucco-lingually 

directed forces, the three principal stresses were very similar in the PDL. The 

dental apex and bony alveolar crest zones are the areas that suffer the greatest 

stress when these kind of movements are produced.  

Raboud et al (1997)87 conducted a numerical method to provide 

quantitative insight into three dimensional effects for typical appliance designs. 

Concluded, that the out-of-plane effects are independent of the in-plane behavior 

so that the usual forces and moment to force ratios are maintained. 

Jeon et al (1999)52 simulated the stress response in the periodontium of 

the maxillary first molar to different moment to force ratios, and to determine the 

moment to force ratio for translational movement of the tooth by means of the 

finite element method. Their results demonstrated the sensitivity of the 

periodontium to load changes. The stress pattern in the periodontal ligament for a 

distalizing force without counterbalancing moments showed high concentration at 

the cervical level of the distobuccal root due to tipping and rotation of the tooth. 

After various counter rotation as well as counter tipping moments were applied, 

an even distribution of low compression on the distal side of the periodontal 

ligament was obtained at a counter tipping moment to force ratio of 9:1 and a 

counter rotation moment to force ratio of 5:1. Furthermore, high stress 
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concentration was observed on the root surface at the furcation level in contrast 

with anterior teeth reported to display high concentration at the apex. This result 

may suggest that the root morphology of the maxillary first molar makes it less 

susceptible to apical root resorption relative to anterior teeth during tooth 

movement.  

Thomas et al (1999)107 reported that the tests commonly used for the 

evaluation of orthodontic adhesives measure tensile and shear bond strength. The 

two methods were compared with finite element analysis using a three-

dimensional model and the effect of misalignment of the tensile and shear forces 

were calculated. Applying a shear load produced significant compressive and 

tensile stresses in the adhesive layer. Under ideal conditions of shear loading, the 

induced tensile stress is over 5 times the induced shear stress. The model showed 

that a tensile load induces predominantly tensile stresses in the adhesive layer. 

The calculations indicate that the tensile test method is a robust testing method 

with low sensitivity to misalignment of the applied load. 

Geramy (2000)33 studied the behavior of initial tooth displacements 

associated with alveolar bone loss situations when loaded by a force of 1 N. The 

results revealed that the moment/force ratio (at the bracket level) required for 

producing bodily movement increases in association with alveolar bone loss. 

Bone loss causes center of resistance movement toward the apex, but its relative 

distance to the alveolar crest decreases at the same time. Center of rotation of the 

tipping movement also shifted toward the cervical line. Among the many 

differences between orthodontic treatment of an adolescent and an adult patient is 
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the presence of alveolar bone loss in the adult cases. Alveolar bone loss causes 

center of resistance changes as a result of the alterations in bone support. This 

necessitates modifications in the applied force system to produce the same 

movement as in a tooth with a healthy supporting structure. 

Jeon et al (2001)53 studied the use of finite element method to simulate 

the effect of alveolar bone loss on orthodontically induced stress in the 

periodontal ligament of the maxillary first molar. An anterior force of 300 g was 

applied at the center of the buccal crown surfaces of teeth with normal bone 

height and with bone loss that ranged from 2.0 to 6.0 mm. The results showed that 

force magnitude required lowering from 80% (2-mm bone loss) and gradually to 

37% (6-mm bone loss) of the initial load applied to the tooth without bone loss. 

The counter tipping moment (gram-millimeters) to force (gram) ratio should 

increase from 9 (no bone loss) to nearly 13 (6-mm bone loss) to maintain the 

same range of stress in the periodontal ligament as was obtained without bone 

loss. A linear relationship was observed between the amount of bone loss, the 

desired reduction in force magnitude, and the increase in M/F ratio. The results of 

this study indicate that a combination of force reduction and increased M/F ratio 

is required to achieve uniform stress in the periodontal ligament of a tooth with 

bone loss. 

Knox et al (2001)58 evaluated the influence of bracket base mesh 

geometry on the stresses generated in the bracket-cement-tooth continuum by a 

shear/peel load case. When the double-mesh bracket base was considered, the 

combined mesh layers resulted in a decrease in the stresses recorded in the most 
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superficial (coarse) mesh layer and an increase in the stresses recorded in the 

deepest (fine mesh) layer when compared with the single-layer designs in 

isolation. Modification of single-mesh spacing and wire diameter influences the 

magnitude and distribution of stresses within the bracket-cement-tooth 

continuum. The use of a double mesh design results in a reduction in the stresses 

recorded in the most superficial mesh. Mesh design influenced stress distribution 

in this study, primarily by determining the flexibility of the bracket base. 

Rudolph et al (2001)91 conducted a study to determine the types of 

orthodontic forces that cause high stress at the root apex. The material properties 

of enamel, dentin, PDL, and bone and 5 different load systems (tipping, intrusion, 

extrusion, bodily movement, and rotational force) were tested. The finite element 

analysis showed that purely intrusive, extrusive, and rotational forces had stresses 

concentrated at the apex of the root. The principal stress from a tipping force was 

located at the alveolar crest. For bodily movement, stress was distributed 

throughout the PDL; however, it was concentrated more at the alveolar crest. 

They conclude that intrusive, extrusive, and rotational forces produce more stress 

at the apex. Bodily movement and tipping forces concentrate forces at the alveolar 

crest, not at the apex. 

Melsen (2001)72 studied the tissue reaction to a force system generating 

translation of premolars and molars in the five Macaca fascicularis monkeys is 

described. Three force levels, 100, 200, and 300 cN were applied for a period of 

11 weeks. Based on these results and a finite element model simulating the 

loading, a new hypothesis regarding tissue reaction to change in the stress strain 
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distribution generated by orthodontic forces is suggested. The direct resorption 

could be perceived as a result of lowering of the normal strain from the 

functioning periodontal ligament (PDL) and as such as a start of remodelling, in 

the bone biological sense of the word. Indirect remodelling could be perceived as 

sterile inflammation attempting to remove ischaemic bone under the hyalinised 

tissue. At a distance from the alveolus, dense woven bone was observed as a sign 

of a regional acceleratory phenomena (RAP). The results of the intrusion could, 

according to the new hypothesis, be perceived as bending of the alveolar wall 

produced by the pull from Sharpey’s fibres. 

Schneider et al (2002)93 studied the optimal force system for bodily 

movement of a single-root tooth with an orthodontic bracket attached. This was 

achieved by the use of the numerical finite element method, including a distinct 

mechanical bone-remodeling algorithm. This algorithm works with equilibrium 

iterations separated in 2 calculation steps. Furthermore, a parametric 3- 

dimensional finite element model, which allows modifications in the root length 

and its diameter, is described. For different geometries, the ideal moment-by-

force ratios that induce a bodily movement were determined. The knowledge of 

root geometry is important in defining an optimal force system. 

Geramy (2002)34 investigated the stress components (S1 and S3) that 

appear in the periodontal membrane (PDM), when subjected to transverse and 

vertical loads equal to 1 N. A further aim was to quantify the alteration in stress 

that occurs as alveolar bone is reduced in height by 1, 2.5, 5, 6.5, and 8 mm, 

respectively. Six three-dimensional (3D) finite element models (FEM) of a human 
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maxillary central incisor were designed. The models were of the same 

configuration except for the alveolar bone height. The results showed that alveolar 

bone loss caused increased stress production under the same load compared with 

healthy bone support (without alveolar bone resorption). Tipping movements 

resulted in an increased level of stress at the cervical margin of the PDM in all 

sampling points and at all stages of alveolar bone loss. These increased stress 

components were found to be at the sub-apical and apical levels for intrusive 

movement. 

Kang et al (2003)55 analyzed the relationship between the critical contact 

angle and the torque angle in an orthodontic bracket and archwire assembly in 3 

dimensions. Three-dimensional mathematical models were created with geometric 

bracket-archwire parameters that included 2 slot sizes, 3 bracket widths, and 3 to 

4 wire sizes. From this, 3-dimensional mathematical equations (3DMEs) for the 

critical contact angle and the maximum torque that result in critical contact angles 

of 0º were derived and calculated. For all bracket-archwire combinations, the 

critical contact angle decreased as bracket width, torque angle, and wire size 

increased. Therefore, all bracket-archwire parameters except slot height had an 

effect on the critical contact angle. In addition, the effect of a beveled edge was 

investigated in some archwires. The results of this study provide theoretic and 

experimental bases for clinical orthodontic practice and indicate that torque angles 

should be included in the evaluation of the critical contact angle. 
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Toms et al (2003)108 sought to determine the importance of using 

nonlinear mechanical properties and non-uniform geometric data in computer 

predictions of periodontal ligament stresses and tooth movements. Predictions of 

the maximum and minimum principal stresses and von Mises stresses in the PDL 

were determined for extrusive and tipping forces. The results indicated that 

biofidelic finite element models predicted substantially different stresses in the 

PDL for extrusive loading than did the uniform thickness model, suggesting that 

incorporation of the hourglass shape of the PDL is warranted. In addition, 

incorporation of nonlinear mechanical properties for the PDL resulted in dramatic 

increases in the stresses at the apex and cervical margin as compared with the 

linear models.  

Cattaneo et al (2003)14 conducted a FEA that allowed them to simulate 

the displacement of a molar in relation to the well-defined morphology of the 

maxilla. When the molar was loaded with occlusal forces, the stresses were 

transferred predominantly through the infrazygomatic crest. This changed when 

mesial and distal displacements of the molars were simulated. In the model with 

mesial molar displacement, a larger part of the bite forces were transferred 

through the anterior part of the maxilla, resulting in the buccal bone being loaded 

in compression. In the model with distal molar displacement, the posterior part of 

the maxilla was deformed through compression; this resulted in higher 

compensatory tensile stresses in the anterior part of the maxilla and at the 

zygomatic arch. This distribution of the occlusal forces might contribute to the 

posterior rotation often described as the orthopedic effect of extraoral traction.  
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Kojimaa et al (2005)59 discussed a method that allowed the simulation of 

more complex tooth movements. A 3-dimensional finite element method was 

used to simulate the orthodontic tooth movement (retraction) of a maxillary 

canine by sliding mechanics and any associated movement of the anchor teeth. 

Absorption and apposition of the alveolar bone were produced in proportion to the 

stress of the periodontal ligament. The canine tipped during the initial unsteady 

state and then moved bodily during the steady state. It became upright when the 

orthodontic force was removed. The anchor teeth moved in the steady state and 

tipped in the mesial direction. The decrease in applied force by friction was about 

70%. The tipping of the canine decreased when the wire size was increased or 

when the applied force was decreased. They suggested that this method might 

enable one to estimate various tooth movements clinically. 

Ziegler et al (2005)120 studied the elastic properties of the periodontal 

ligament (PDL) in eight multi-rooted teeth were examined in a combined 

experimental and numerical study in six minipigs. The initial tooth movement of 

the mandibular primary molars surrounded by the periodontium was registered 

three-dimensionally (3D) in an optomechanical measuring system. The 

dissections were then embedded in resin and cut in transverse sections. Based on 

these sections, 3D finite element (FE) models were constructed and numerically 

loaded with the same force systems as used in the experiment. There was no 

significant difference in the material parameters determined for specimens with 

two, four or six roots. The results were in close agreement with the material 
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parameters of the PDL, determined in previous investigations of single-rooted 

human and pig teeth. 

Kojimaa et al (2006)60 developed a comprehensive mechanical, 3-

dimensional, numerical model for predicting tooth movement. Tooth movements 

produced by wire bending were simulated numerically. The teeth moved as a 

result of bone remodeling, which occurs in proportion to stress in the periodontal 

ligament. With an off-center bend, a tooth near the bending position was 

subjected to a large moment and tipped more noticeably than the other teeth. 

Also, a tooth far from the bending position moved slightly in the mesial or the 

distal direction. With the center V-bend, when the second molar was added as an 

anchor tooth, the tipping angle and the intrusion of the canine increased, and 

movement of the first molar was prevented. When a wire with an inverse curve of 

spee was placed in the mandibular arch, the calculated tendency of vertical tooth 

movements was the same as the measured result. In these tooth movements, the 

initial force system changed as the teeth moved. Tooth movement was influenced 

by the size of the root surface area. Concluded, that tooth movements produced by 

wire bending could be estimated.  

Kojima et al (2006)61  studied the combined effect of friction and an 

archwire’s flexural rigidity on canine movement in sliding mechanics, and to 

explain how to select a suitable archwire and force level for efficient bodily 

movement. As the frictional force decreased, both the net force acting on and the 

moving speed of the canine increased. The elastic deformation of the archwire 

increased, and the moving pattern of the canine changed from bodily movement 
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to tipping, although there was no clearance between the archwire and the bracket 

slot. When a light wire was used, wire deformation increased, and the canine 

experienced greater tipping. 

Jayade et al (2007)51 evaluated the magnitudes of initial and subsequent 

sequential deactivational third order moments generated in rectangular twisted 

archwires in order to judge their biologic acceptability. A finite element study was 

carried out with the MSC Patran/Nastran interface. Required twists were applied 

at the appropriate locations to derive the applied and reactionary moments both 

initially and during the time needed for complete deactivation. The results 

indicated that a round-tripping possibility does exist in certain clinical procedures. 

Furthermore, the moments produced could be quite high, thereby enhancing the 

possibility of root resorption. They concluded twists in rectangular archwires may 

be used only when reciprocal torque is needed on adjacent teeth. In other 

situations, alternative torquing methods should be considered.  

Hohmanna et al (2007)45 evaluated the risk of root resorption, individual 

finite element models (FEMs) of extracted human maxillary first premolars were 

created, and the distribution of the hydrostatic pressure in the periodontal 

ligament (PDL) of these models was simulated. The results of clinical 

examination and simulations were compared using the identical roots of the teeth. 

The regions that showed increased hydrostatic pressure correlated well with the 

locations of root resorption for each tooth. Increased torque resulted in increased 

high-pressure areas and increased magnitudes of hydrostatic pressure, correlating 
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with the experiments. Thus, concluded if hydrostatic pressure exceeds typical 

human capillary blood pressure in the PDL, the risk of root resorption increases. 

Reimann et al (2007)90 investigated the combined Centre of Resistance 

(CR) of the upper four incisors numerically using finite-element (FE) method. In 

the FE system, the model of the anterior segment was loaded with torques of 10 

Nmm each at the lateral incisors. The FE model indicated that the individual 

incisors moved independently, although they were blocked with a steel wire of 

dimension 0.46 × 0.65 mm2. The individual CRs were located at 5 mm distal and 

9 and 12 mm apical to the centre of the lateral brackets. Thus, the classical view 

of a combined CR for the anterior segment was disproved and the planning of 

orthodontic tooth movements of the upper incisors should no longer be based on 

that concept. 

Ulusoya et al (2008)110 evaluated the effects of the Class II activator and 

the Class II activator high-pull headgear (HG) combination on the mandible with 

3-dimensional (3D) finite element stress analysis. To investigate the effects of the 

Class II activator, a 3D model of the lower part of this appliance was constructed 

and fixed on the mandibular model. The Class II activator high-pull headgear 

model was established as described, and an extraoral traction force of 350 g was 

directed from the middle of the Class II activator to the top of the mandibular 

condyle. The stress regions were studied with the finite element method. The 

regions near the muscle attachment areas were affected the most. The inner part of 

the coronoid process and the gonial area had the maximum stress values. 
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Therefore, both functional appliances can cause morphologic changes on the 

mandible by activating the masticatory muscles to change the growth direction. 

Cattaneo et al (2008)15 demonstrated by FE analyses that the influence of 

the material properties of the PDL on the type of tooth movement. Moreover, the 

influence of the applied force level on the type of tooth movement, with a fixed 

M/F ratio, was evaluated and the results interpreted in the light of existing 

prescriptions for orthodontic tooth movement. By applying a range of values of 

M/F, different types of tooth movement were generated, although the classic 

prescription of the M/F ratio suggested in the literature could not be confirmed. 

Due to the nonlinear behavior of the periodontal ligament, loading modes with a 

constant M/F ratio, yet varying the force magnitude, resulted in different types of 

tooth movement. Therefore, the material properties of the periodontal ligament, 

the morphology of the root, and the alveolar bone are patient specific. Therefore, 

the M/F values generally advocated to obtain orthodontic tooth movement should 

be used only as guidelines. To be effective and accurate, the force system selected 

for a specific tooth movement must be monitored and the outcome compared with 

the predicted tooth movement.  

Holberg et al (2008)46 analyzed the strains induced in the sutures of the 

midface and the cranial base by headgear therapy involving orthopedic forces.  A 

finite element model of the viscerocranium and the neurocranium was used. The 

magnitude and the distribution of the measured strains depended on the level and 

the direction of the acting force. Overall, the strain values measured at the sutures 

of the midface and the cranial base were moderate. The measured peak values at a 
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load of 5 N per side were usually just below 20µ strain irrespective of the force 

direction. A characteristic distribution of strain values appeared on the anatomical 

structures of the midface and the cranial base for each vector direction. The 

measurements based on the finite element method provided a good overview of 

the approximate magnitudes of sutural strains with orthopedic headgear therapy. 

The signal arriving in the sutures is apparently well below threshold, since the 

maximum measured strains in most sutures were about 100 fold lower than the 

minimal effective strain. A skeletal effect of the orthopedic headgear due to a 

mechanical effect on sutural growth cannot be confirmed from these results. They 

concluded that the good clinical efficacy of headgear therapy with orthopedic 

forces is apparently based mainly on dentoalveolar effects, whereas the skeletal 

effect due to inhibition of sutural growth is somewhat questionable. 

Provatidis et al (2008)85 did a finite element model (FEM) of a dry 

human skull with the RME appliance cemented in place in order to evaluate these 

effects on the overall craniofacial complex with different suture ossification. The 

behaviour of the FEM was compared with the findings of a clinical study and to 

an in vitro experiment of the same dry skull. It was found that the 

maxillolacrymal, the frontomaxillary, the nasomaxillary, the transverse midpalatal 

sutures, and the suture between the maxilla and pterygoid process of the sphenoid 

bone did not influence the outcome of RME, while the zygomatico-maxillary 

suture influenced the response of the craniofacial complex to the expansion 

forces. Moreover, the sagittal suture at the level of the frontal part of the 
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midpalatal suture plays an important role in the degree and manner of maxillary 

separation.  

Gautam et al (2009)32 evaluated biomechanically the displacement 

patterns of the facial bones in response to different headgear loading by using a 

higher-resolution finite element method model than used in previous studies. 

Different headgear forces were simulated by applying 1 kg of posteriorly directed 

force in the first molar region to simulate cervical-pull, straight-pull, and high-

pull headgear. The distal displacement of the maxilla was the greatest with the 

straight-pull headgear followed by the cervical-pull headgear. The high-pull 

headgear had better control in the vertical dimensions. The center of rotation 

varied with the direction of headgear forces for both the maxilla and the 

zygomatic complex. A potential for chondrogenic and osteogenic modeling exists 

for the articular fossa and the articular eminence with headgear loading.  

Wei et al (2009)115 conducted a study to provide the lingual technique 

with valuable information by using a 3-dimensional (3D) finite element method 

(FEM). Horizontal retraction force, vertical intrusive force, and lingual root 

torque were applied to simulate labial and lingual orthodontic treatment. Loads of 

the same magnitude produced translation of the maxillary incisor in labial 

orthodontics but lingual crown tipping of the same tooth in lingual orthodontics. 

This suggests that loss of torque control of the maxillary incisors during retraction 

in extraction patients is more likely in lingual orthodontic treatment. Therefore, 

Lingual orthodontics should not simply follow the clinical experience of the labial 

techniques but should increase lingual root torque, increase vertical intrusive 
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force, and decrease horizontal retraction force properly to achieve the best 

orthodontic results. 

Huang et al (2009)47 investigated the torque capabilities of conventional 

and self-ligating brackets by using the finite element method. Three types of 

brackets were selected: self-ligating Hanson Speed and Damon MX, and 

conventionally ligated Discovery. Torque of 20° was applied to the maxillary 

right incisor with 0.46 X 0.64mm2 (0.018 X 0.025 in) and 0.48 X 0.64 mm2 

(0.019 X 0.025 in) archwires. Three kinds of wire alloys were used: stainless 

steel, titanium molybdenum, and nickel titanium. For the conventional Discovery 

brackets, 2 types of ligation were modeled: elastic and stainless steel wire 

ligatures. The torque angle/torque moment curves seemed to be dominated by the 

characteristics of the wire. The change of wire dimension increased the torque 

moments less than the change of wire alloy (125% increase for a 0.48X0.64mm2 

instead of a 0.46X0.64mm2 stainless steel wire, and 220% for a 0.46 X 0.64 mm2 

stainless steel instead of a nickel-titanium wire). The combined change of the wire 

alloy and wire dimension resulted in a 600% increase for a 0.48 X 0.64 mm2 

stainless steel instead of a 0.46 X 0.64 mm2 nickel-titanium wire. The play of the 

0.46 X 0.64 mm2 wires was about 9.0°, and the play of the 0.48X0.64mm2 wires 

was about 7.5°, with slightly more play for the Damon. Therefore, improving the 

adaptation of torque movements to the biomechanical reactions of the 

periodontium is best done by proper selection of both wire dimension and wire 

alloy. The effect of the bracket system is of minor importance, with the exception 
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of brackets with an active clip (eg, Speed), which had the least play and the 

lowest torquing moments of all the wires. 

 Kojimaa et al (2010)61 calculated the long-term tooth movements in en-

masse sliding mechanics. Long-term tooth movements in en-masse sliding 

mechanics were simulated with the finite element method. Tipping of the anterior 

teeth occurred immediately after application of retraction forces. The force system 

then changed so that the teeth moved almost bodily, and friction occurred at the 

bracket-wire interface. Irrespective of the amount of friction, the ratio of 

movement distances between the posterior and anterior teeth was almost the same. 

By increasing the applied force or decreasing the frictional coefficient, the teeth 

moved rapidly, but the tipping angle of the anterior teeth increased because of the 

elastic deflection of the archwire. Finite element simulation clarified the tooth 

movement and the force system in en-masse sliding mechanics. 

Xua et al (2011)116 determined the elastic modulus of the periodontal 

ligament (PDL). The study was carried out on eight human maxillary jaw 

segments containing central incisors. Displacements were measured under load 

using a electronic speckle pattern interferometry (ESPI). Subsequently, FEM 

presenting the same individual geometry as the respective autopsy material were 

developed to simulate tooth mobility numerically under the same force systems as 

were used in the experiment. A bilinear material parameter set was assumed to 

simulate tooth deflections. Thus, the force/deflection curves from the 

measurements showed a significant nonlinear behavior of elastic stiffness of the 

PDL.  
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2) TORQUE AND SELF LIGATING BRACKETS IN ORTHODONTICS 

 

Rauch (1959)88 stated that in order to attain our present-day goals of 

treatment, a definite technique for the application of torque force becomes 

imperative. The orthodontist will experience little difficulty if he will keep in 

mind the following fundamental principles: the crown of a tooth moves in the 

direction of torque; the root of a tooth moves in the opposite direction of torque; 

and, by the application of an auxiliary force derived from elastics or other 

sources, this torque action can he altered in such a way as to cause either the root 

or the crown of a tooth to move in whichever direction the operator may desire. 

Germane et al (1989)35 studied the facial surface contours of 600 

maxillary and mandibular teeth, including 50 of each type of tooth from central 

incisors to first molars, were measured. The magnitude of the variation found was 

so great as to suggest that differences between patients or differences in height of 

bracket placement are greater than the differences between the standard torque 

prescriptions now used in orthodontics. No single point, including the coronal 

midpoint (LA point), was found to be constant among teeth of the same type. 

Variation in facial surface contour tended to be greater in the posterior teeth than 

in the anterior teeth. Future custom construction of brackets, adjusted to 

individual facial contour differences, will also require information regarding 

optimal tooth position in the head, including compensations necessary for 

variations in facial skeletal pattern. 



REVIEW OF LITERATURE 
 

27 
 

Creekmore et al (1993)20 stated that the frequently anticipated results of 

treatment are not achieved by using preadjusted appliances and straight wires. 

This is due to inaccurate bracket placement, variations in tooth structure, 

variations in the maxillary/mandibular relationships, tissue rebound, and 

mechanical deficiencies of edgewise orthodontic appliances. Beyond the accuracy 

or inaccuracy of bracket placement and the fact that brackets are placed away 

from the center of resistance, orthodontic appliances have two additional 

significant mechanical deficiencies; play between the arch wire and the arch wire 

slot, and force diminution. These deficiencies cannot be eliminated from current 

appliances, however, they can be minimized by using reasonably stiff arch wires 

approximating the size of the arch wire slots. The amount of play plus the amount 

of force diminution inherent in your appliance can be added to or subtracted from 

the torque, tip, rotation, and height parameters for each bracket to deliver the teeth 

to the desired positions. Therefore treatment goals can be achieved with 

maximum efficiency. 

Isaacson et al (1993)48 reported traditional edgewise orthodontic 

mechanics are significantly limited in their ability to provide incisor torque 

control because of the limitations of bracket-to-bracket mechanics and the poorly 

defined reciprocal actions inherently produced. The science of mechanics dictates 

that all incisor torque control mechanisms must act through one of two basic 

principles: the moment of a couple or the moment of a force. The torquing arch is 

a modification of the traditional edgewise system and employs the moment of a 

couple to achieve incisor torque control and precise definition of reciprocal 
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effects. Alternatively, the base arch uses the moment of a force to also rotate 

incisors in a crown facial/root lingual direction. The base arch, however, includes 

a large moment to rotate molars in a crown distal/root mesial direction, and 

concurrent equilibrium forces to intrude incisors and extrude molars. Depending 

on how they are employed, torquing arches and base arches may also rotate 

molars in a faciolingual direction, enhance or diminish posterior anchorage, and 

increase or conserve arch perimenter. 

Odegaard et al (1994)79 demonstrated that the amount of play between 

bracket and wire in torsion for individual tooth movement is considerably larger 

than the amount expected. It has also been shown that the initial portion of the 

load/deflection curves are relatively flat for the smaller dimensions before a linear 

relationship between moment and deflection is achieved, indicating a restraining 

effect caused by the ligature. The resulting curves using wire "a" without ligature 

illustrates this point. The linear portions of the curves show that the change in 

effective rotational moment will change rapidly for small changes in the tooth 

axial inclination, suggesting that reactivation of the wires should take place at 

frequent intervals. For individual tooth torque, a more efficient method can be the 

use of highly elastic wires in combination with brackets with variable torque. 

Shivapuja et al (1994)95 reported the increased use of self-ligating bracket 

systems frequently raises the question of how they compare with conventional 

ligation systems. An in vitro and clinical investigation was undertaken to evaluate 

and compare these distinctly different groups, by using five different brackets. 

The Activa ("A" Company, Johnson & Johnson, San Diego, Calif.), Edgelok 
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(Ormco, GIendora, Calif.), and SPEED (Strite Industries Ltd., Cambridge, 

Ontario) self-ligating bracket systems displayed a significantly lower level of 

frictional resistance, dramatically less chairtime for arch wire removal and 

insertion, and promoted improved infection control, when compared with 

polyurethane elastomeric and stainless steel tie wire ligation for ceramic and 

metal twin brackets. 

 Harradine (2003)42 reported that currently available self-ligating brackets 

offer the very valuable combination of extremely low friction and secure full 

bracket engagement and, at last, they deliver most of the potential advantages of 

this type of bracket. These developments offer the possibility of a significant 

reduction in average treatment times and also in anchorage requirements, 

particularly in cases requiring large tooth movements. Whilst further refinements 

are desirable and further studies essential, current brackets are able to deliver 

measurable benefit with good robustness and ease of use. 

 Harzer (2004)43 investigated slot deformation and the equivalent torque 

capacity of polycarbonate brackets with and without a metal slot in comparison 

with those of a metal bracket. For this purpose, the expansion characteristics and, 

in a further investigation, the labial crown torque of an upper central incisor, were 

measured in a simulated intra-oral clinical situation, using the orthodontic 

measuring and simulation system (OMSS). Three types of bracket with a 0.018 

inch slot were tested: polycarbonate Brillant without a metal slot, Elegance with a 

metal slot and the metal bracket, Mini-Mono. For testing purposes the brackets 

were torqued with 0.016 × 0.022 inch and 0.018 × 0.022 inch ideal stainless steel 
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archwires. In the activating experiments, significantly higher torque losses and 

lower torquing moments were registered with both rectangular archwires with the 

polycarbonate brackets than with the metal bracket. In the simulation tests, 

significantly higher torquing moments were registered with the metal bracket than 

with the polycarbonate brackets. On the basis of the present results, all three 

brackets can be recommended for torquing. However, in view of the high torque 

losses, the torques programmed in the straightwire technique must be seen as 

questionable.  

Cash et al (2004)13 evaluated the slots of five upper left central incisor 

brackets from 11 commercially available bracket systems of 0.022-inch (0.5588 

mm) dimension. Results indicate that all bracket slots are oversized. Three 

bracket systems slots (Twin Torque, Clarity, and Mini Mono) were within 5% 

(61.08, 1.655, 1.75) of their stated dimensions with essentially parallel slot walls. 

The Elegance Plastic slot was parallel sided but oversized by 12% (61.15). The 

geometry of bracket slots was also variable. The Victory Series slot was slightly 

divergent with the top oversized by 6% (61.035). The Nu-Edge slot was divergent 

and slot top oversized by 14% (61.32). The Mxi Advant-Edge, Damon II SL, Elite 

Mini Opti-MIM Roth, and MBT were all convergent, and the base of the Damon 

slot was oversized by 17% (61.79). The Discovery bracket was convergent, and 

the slot base was oversized by 24% (61.255), which was the largest recorded 

variance. This bracket also had a 7% difference between the widths of the slot top 

and the base. Inaccurate machining of bracket slot dimensions and the use of 
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undersized archwires may directly and adversely affect three-dimensional tooth 

positioning.  

Pandis et al (2006)83 A randomized clinical trial done that the 

engagement mode of wire to bracket affects the buccolingual inclination of 

maxillary incisors in extraction and non-extraction treatment with self-ligating 

and conventional brackets. Difference in the buccolingual inclination of maxillary 

incisors before and after treatment with the two appliances across the two 

treatment groups (extraction and non-extraction).  Angular measurements of the 

Sella-Nasion and Nasion-A point to maxillary incisor axis was calculated. No 

difference was found in the mean difference of the two angles measured for the 

two bracket groups studied. Self-ligating brackets seem to be equally efficient in 

delivering torque to maxillary incisors relative to conventional brackets in 

extraction and non-extraction cases. 

Pandis et al (2007)81 investigated the effect of intraoral aging on the force 

applied during engagement of a wire into the slot of active self-ligating brackets. 

Two types of brackets were used: Speed and In Ovation-R. No difference was 

found between as-received and used brackets with respect to force exerted by the 

spring in 1 bracket group, whereas the other group showed extensive relaxation 

after use; neither group had permanent deformation. The consistency of the initial 

force levels varied significantly in each bracket group. Thus, the initial force 

levels and the effect of intraoral conditions on the stiffness of the clip seem to 

vary between products, with potential implications for the archwire engagement 

into the bracket slot and associated mechanotherapy.  
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Turnbull et al (2007)109 conducted a prospective clinical study, where 

they assessed the relative speed of archwire changes, comparing self-ligating 

brackets with conventional elastomeric ligation methods, and further assessed this 

in relation to the stage of orthodontic treatment represented by different wire sizes 

and types. The main outcome measure was the time to remove or place 

elastomeric ligatures or open/close self-ligating brackets for 2 matched groups of 

fixed appliance patients: Damon2 self-ligating bracket (SDS Ormco, Orange, 

Calif) and a conventional mini-twin bracket (Orthos, SDS Ormco). The Damon2 

self-ligating system had a significantly shorter mean archwire ligation time for 

both placing and removing wires compared with the conventional elastomeric 

system. Ligation of an archwire was approximately twice as quick with the self-

ligating system. The type of bracket and the size of wire used are statistically 

significant predictors for speed of ligation and chairside time. The self-ligating 

system offered quicker and arguably more efficient wire removal and placement 

for most orthodontic treatment stages. 

Streva et al (2007)99 verified the torque precision of metallic brackets 

with MBT prescription using the canine brackets as the representative sample of 

six commercial brands. Twenty maxillary and mandibular canine brackets of one 

of the following commercial brands were selected: 3M Unitek, Abzil, American 

Orthodontics, TP Orthodontics, Morelli and Ortho Organizers. The results showed 

that for the maxillary canine brackets, only the Morelli torque (-3.33º) presented 

statistically significant difference from the proposed values (-7º). For the 

mandibular canines, American Orthodontics (-6.34º) and Ortho Organizers (-
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6.25º) presented statistically significant differences from the standards (-6º). 

Comparing the brands, Morelli presented statistically significant differences in 

comparison with all the other brands for maxillary canine brackets. For the 

mandibular canine brackets, there was no statistically significant difference 

between the brands. There are significant variations in torque values of some of 

the brackets assessed, which would clinically compromise the buccolingual 

positioning of the tooth at the end of orthodontic treatment. 

Morina et al (2008)76 investigated the torque capacity of active and 

passive self ligating brackets compared with metallic, ceramic, and polycarbonate 

edgewise brackets. Six types of orthodontic brackets were included in the study: 

the self-ligating Speed and Damon2, the stainless steel (SS), Ultratrimm and 

Discovery, the ceramic bracket, Fascination 2, and the polycarbonate bracket, 

Brillant. All brackets had a 0.022-inch slot size and were torqued with 0.019 × 

0.025-inch SS archwires. For this purpose, the labial crown torque of an upper 

central incisor was measured in a simulated intraoral clinical situation using the 

orthodontic measurement and simulation system (OMSS). A torque of 20 degrees 

was applied and the correction of the misalignement was simulated 

experimentally with the OMSS. The ceramic bracket (Fascination 2) presented the 

highest torquing moment (35 Nmm) and, together with a SS bracket, the lowest 

torque loss (4.6 degrees). Self-ligating, polycarbonate, and selective metallic 

brackets demonstrated almost a 7-fold decreased moment developed during 

insertion of a 0.019 × 0.022- inch SS wire into a 0.022-inch slot and a 100 per 

cent increase in loss. 
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Badawi et al (2008)6 measured the difference in third-order moments that 

can be delivered by engaging 0.019 X 0.025-in stainless steel archwires to 2 

active self-ligating brackets (In-Ovation, GAC, Bohemia, NY; Speed, Strite 

Industries, Cambridge, Ontario, Canada) and 2 passive self-ligating brackets 

(Damon2, Ormco, Orange, Calif; Smart Clip, 3M Unitek, Monrovia, Calif). A 

bracket/wire assembly torsion device was developed. There was a significant 

difference in the engagement angle between the 2 types of brackets; on average, 

torque started to be expressed at 7.5° of torsion for the active self-ligating 

brackets and at 15° of torsion for the passive self-ligating brackets. The torque 

expression was higher for the active self-ligating brackets up to 35° of torsion. 

Torsion of the wire past this point resulted in a linear increase of the measured 

torque for the Damon2, the Smart Clip, and the In-Ovation brackets. The torque 

was relatively constant past 35° of torsion for the Speed bracket. They concluded 

that active self-ligating brackets are more effective in torque expression than 

passive self-ligating brackets. 

Nishio et al (2009)77 evaluated the resistance to deformation or fracture of 

esthetic brackets produced by archwire torsion. Six types of maxillary right 

central incisor brackets were analyzed: traditional ceramic brackets (cer); ceramic 

brackets reinforced with a stainless steel slot (cer/ss); ceramic brackets reinforced 

with a gold slot (cer/gold); traditional polycarbonate brackets (poly); 

polycarbonate brackets reinforced with a stainless steel slot (poly/ss); and 

polycarbonate brackets reinforced with ceramic fillers and a stainless steel slot 

(poly/cer/ss). They suggested that the stainless steel slot might enhance resistance 
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to deformation or fracture, although gold slots and ceramic fillers are ineffective 

for reinforcing esthetic brackets. 

Pandis(2009)82 comparatively assessed the magnitude and direction of 

forces and moments generated from different bracket systems, during the initial 

levelling and alignment stage of orthodontic treatment. Three types of brackets 

were used: Orthos2 (Ormco), Damon2 (Ormco), and In-Ovation R (GAC). The 

model was mounted on the Orthodontic Measurement and Simulation System 

(OMSS) and six static measurements were taken at the initial crowded state per 

bracket for the lateral incisor, canine, and first premolar. The lingually inclined, 

crowded lateral incisor presented an extrusive and buccal movement and showed 

the lowest force in the vertical direction, whereas the self-ligating group of 

brackets generated the highest force in the buccolingual direction. The moments 

applied by the three bracket systems followed the general trend shown for forces; 

in the vertical axis, the self-ligating brackets exerted lower forces than their 

conventional counterpart. This was modified in the buccolingual direction where, 

in most instances, the self-ligating appliances applied higher moments compared 

with the conventional bracket. In most cases, the magnitude of forces and 

moments ranged between 30 – 70 cN and 2 – 6 N mm, respectively. However, 

maximum forces and moments developed at the lateral incisor were almost four 

times higher than the average. 

Chung et al (2009)17 examined the influence of third-order torque on 

kinetic friction in sliding mechanics involving active and passive self-ligating 

brackets. Wire-slot frictional forces were quantified and compared across five sets 
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of brackets and tubes within a simulated posterior dental segment with -15, -10, -

5, 0, +5, +10, and +15 of torque placed in the second-premolar bracket; a working 

archwire was pulled through the slots. They concluded that third-order torque in 

posterior dental segments can generate frictional resistance during anterior 

retraction with the archwire sliding through self-ligating bracket slots. With small 

torque angles, friction is less with passive than with active self-ligating brackets, 

but bracket design is a factor. Frictional forces are substantial, regardless of 

ligation if the wire-slot torque exceeds the third-order clearance. 

Pandis et al (2010)80 compared the time required to complete the 

alignment of crowded maxillary anterior teeth (canine to canine) between Damon 

MX (Ormco, Glendora, Calif) and In-Ovation R (GAC, Central Islip, NY) self-

ligating brackets. No difference in crowding alleviation was found between the 2 

bracket systems. Higher irregularity index values were associated with the 

increased probability of delayed resolving of crowding. Conclusions: The use of 

passive or active self-ligating brackets does not seem to affect treatment duration 

for alleviating initial crowding. 

Chen et al (2010)16 conducted a systematic review to identify and review 

the orthodontic literature with regard to the efficiency, effectiveness, and stability 

of treatment with self ligating brackets compared with conventional brackets. 

Sixteen studies met the inclusion criteria, including 2 randomized controlled trials 

with low risk of bias, 10 cohort studies with moderate risk of bias, and 4 cross 

sectional studies with moderate to high risk of bias. Self-ligation appears to have a 

significant advantage with regard to chair time, based on several cross-sectional 
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studies. Analyses also showed a small, but statistically significant, difference in 

mandibular incisor proclination. No other differences in treatment time and 

occlusal characteristics after treatment were found between the 2 systems. No 

studies on long-term stability of treatment were identified. They concluded that 

despite claims about the advantages of self-ligating brackets, evidence is 

generally lacking. Shortened chair time and slightly less incisor proclination 

appear to be the only significant advantages of self-ligating systems over 

conventional systems that are supported by the current evidence. 

Archambault et al (2010)4 evaluated the quantitative effects on torque 

expression of varying the slot size of stainless steel orthodontic brackets and the 

dimension of stainless steel wire, and to analyze the limitations of the 

experimental methods used. In vitro studies measuring torque expression in 

conventional and self ligating stainless steel brackets with a torque-measuring 

device, with the use of straight stainless steel orthodontic wire without second-

order mechanics and without loops, coils, or auxiliary wires, were sought through 

a systematic review process. On the basis of the selected studies, in a 0.018 inch 

stainless steel bracket slot, the engagement angle ranges from 31 degrees with a 

0.016 X 0.016 inch stainless steel archwire to 4.6 degrees with a 0.018 X 0.025 

inch stainless steel archwire. In a 0.022 inch stainless steel bracket slot, the 

engagement angle ranges from 18 degrees with a 0.018 X 0.025 inch stainless 

steel archwire to 6 degrees with a 0.021 X 0.025 inch stainless steel archwire. 

Active stainless steel self-ligating brackets demonstrate an engagement angle of 

approximately 7.5 degrees, whereas passive stainless steel self-ligating brackets 
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show an engagement angle of approximately 14 degrees with 0.019 X 0.025 inch 

stainless steel wire in a 0.022 inch slot. They concluded that the engagement 

angle depends on archwire dimension and edge shape, as well as on bracket slot 

dimension, and is variable and larger than published theoretical values. Clinically 

effective torque can be achieved in a 0.022 inch bracket slot with archwire torsion 

of 15 to 31 degrees for active self-ligating brackets and of 23 to 35 degrees for 

passive self-ligating brackets with a 0.019 X 0.025 inch stainless steel wire. 

Fleming et al (2010)27 evaluated the clinical differences in relation to the 

use of self-ligating brackets in orthodontics. Randomized controlled trials (RCTs) 

and controlled clinical trials (CCTs) investigating the influence of bracket type on 

alignment efficiency, subjective pain experience, bond failure rate, arch 

dimensional changes, rate of orthodontic space closure, periodontal outcomes, and 

root resorption were selected. Concluded at this stage there is insufficient high-

quality evidence to support the use of self ligating fixed orthodontic appliances 

over conventional appliance systems or vice versa. 

Major et al (2010)64 stated that in all manufacturing processes there are 

tolerances; however, orthodontic bracket manufacturers seldom state the slot 

dimensional tolerances. Their experiment developed a novel method of analyzing 

slot profile dimensions using photographs of the slot. Five points are selected 

along each wall, and lines are fitted to define a trapezoidal slot shape. This 

investigation measures slot height at the slot’s top and bottom, angles between 

walls, slot taper, and the linearity of each wall. Slot dimensions for 30 upper right 

central incisor self-ligating stainless steel brackets from three manufacturers were 
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evaluated. Speed brackets have a slot height 2% smaller than the nominal 

0.559mm size and have a slightly convergent taper. In-Ovation brackets have a 

divergent taper at an average angle of 1.47 degrees. In-Ovation is closest to the 

nominal value of slot height at the slot base and has the smallest manufacturing 

tolerances. Damon Q brackets are the most rectangular in shape, with nearly 90-

degree corners between the slot bottom and walls. Damon slot height is on 

average 3% oversized.  

Major et al (2011)65 investigated the third-order torque on different types 

of self-ligated brackets by analyzing the bracket’s elastic and plastic deformations 

in conjunction with the expressed torque at varying angles of twist. An 

orthodontic bracket was mounted to a load cell that measured forces and moments 

in all directions. The wire was twisted in the bracket via a stepper motor, 

controlled by custom software. At the maximum torquing angle of 63° with 0.019 

X 0.025-in stainless steel wire, the total elastic and plastic deformation values 

were 0.063, 0.033, and 0.137 mm for Damon Q (Ormco, Orange, Calif), In- 

Ovation R (GAC, Bohemia, NY), and Speed (Strite Industries, Cambridge, 

Ontario, Canada), respectively. The total plastic deformation values were 0.015, 

0.006, and 0.086 mm, respectively, measured at 0_ of unloading. Conclusions: In-

Ovation R had the least deformation due to torquing of the 3 investigated bracket 

types. Damon Q and Speed on average had approximately 2.5 and 14 times 

greater maximum plastic deformation, respectively, than did In-Ovation R.  
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Major et al (2011)66 conducted a study was to quantify torque expression 

in 3 self-ligation bracket systems (Damon Q, In-Ovation R, and Speed) during 

loading and unloading. A stepper motor was used to rotate a wire in a fixed 

bracket slot from –15º to 63º in 3º increments, and then back to –15º. The bracket 

was mounted on top of a load cell that measured forces and moments in all 

directions. Results showed that Damon’s and In-Ovation’s maximum average 

torque values at 63º were 105 and 113 Nmm, respectively. Many Speed brackets 

experienced premature loss of torque between 48º and 63º, and the average 

maximum was 82 Nmm at 54º. The torque plays for Damon, In-Ovation, and 

Speed were 11.3º, 11.9º, and 10.8º, respectively. Generally, In-Ovation expressed 

the most torque at a given angle of twist, followed by Damon and then Speed. 

However, there was no significant difference between brackets below 34 Nmm of 

torque. From a clinical perspective, the torque plays between brackets were 

virtually indistinguishable. 
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MATERIALS AND METHODS 

Materials used in this study 

Brackets used - Two Active and two Passive self-ligating bracket systems 

were selected and one conventional bracket system served as control.  

1. Active self-ligating bracket systems - 

a) In-Ovation R (GAC-Dentsply-USA) 

b) TimeTM (American Orthodontics-USA) 

2. Passive self-ligating bracket systems - 

a) Smart Clip SL3-(3 M Unitek-USA) 

b) Damon 3MX- (Ormco Orthodontics-California) 

3. Conventional ligation system - 

 Ovation-(GAC-Dentsply-USA) 

Upper Right Central Incisor Stainless Steel Roth Prescription bracket with slot 

dimension of 0.022 x 0.028 inches was used in all the 3 groups. (Figure 1) 

 

Archwires used - 

a) 0.017 x 0.025 inches-straight length Stainless steel wires (GAC-USA) 

b) 0.019 x0.025 inches straight length Stainless steel wires (GAC-USA) 

c) 0.021 x 0.025 inches- straight length Stainless steel wires (GAC-USA) 
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Study methodology 

The steps involved in finite element analysis are:-  

1) Pre-Processing Phase: the steps involved in this phase included - 

a) Creating a 3-dimensional model which was achieved from a 

computed tomography scan [Figure 2(a)], and a white light 

scanner (Figure 3). 

b) Material properties (Youngs modulus and Poissons ratio) were 

assigned to the elements to determine the way they will behave 

when the load is applied (Table 1). 

2) Processing/Solution Phase: The boundary conditions in the finite element 

model were defined. These determine the degree of freedom of movement that 

is allowed for the model. 

3) Post-Processing Phase: This is the last step which displays the results 

obtained from the processing/solution phase. Results were obtained in 

graphical, numerical or animated format.   

 

1) PRE-PROCESSING STAGE:- 

(A)  3 Dimensional Modeling of Tooth and its Supporting Structures:- 

Computerized Tomography (CT) (GE Healthcare Technologies - 

Lightspeed VCT, Bharat Scans, Chennai.) image acquisitions in 

DICOM (Digital Imaging Communications in Medicine) format of an 

adult dry human skull was performed using 120 kV, 150 mA, 512 x 



MATERIALS AND METHODS 

 

43 
 

512 matrix, field of view 14 x 14 cm and slice thickness of 0.5 mm 

[Figure 2(a)].32,49,50  

These CT images consisted of 165 sections along the axial axis and 

123 sections along the coronal axis, were imported into the software program 

“Pro/Engineer Wildfire Version 4.0” (Parametric Technology Corporation) 

[Figure 2(b)]. 

From this point, segmentation was started. Segmentation is a process 

that consists of separating the right maxillary central incisor and its supporting 

structures from other adjacent anatomical structures in different groups or 

masks, such as enamel, dentine, pulp, cortical and cancellous bone according 

to their radiodensities expressed in Hounsfield units [Figure 2(c)]. 

A 3 dimensional model of the right maxillary central incisor and its 

supporting structures was generated by a Computer Aided 

Designing/Computer Aided Engineering (CAD/CAE) program. The 

creation of the periodontal ligament with a thickness of 0.25 mm was 

performed due to the impossibility to define this structure from CT images 

(pixel size = 0.273 mm). The isocurves of the cortical and cancellous bones 

were also exported, with their thickness being defined as 10 mm, and whose 

extremities corresponded to the position of the right maxillary central incisor. 

After the generation of a surface mesh for every structure, a volumetric mesh 

with tetrahedral elements was generated.54,91,102,112 

From the curves, Surfaces were created using a command called 

Boundaries. From these surfaces, a Solid is generated. Once the tooth was 

developed, in a similar fashion all other parts of the periodontium were created 

and assembled. This assembly was then exported to the analysis package 



MATERIALS AND METHODS 

 

44 
 

software (Ansys Workbench Version 11). The export was performed through a 

bidirectionally understandable translator called Initial Graphics Exchange 

Specifications (IGES). This file format of export is understandable by most of 

the software programs [Figure 2(c)].  

(B) 3 Dimensional Modeling of Brackets: - Reverse engineering is 

the process used for discovering the technological principles of the 

small components and analyzing their structure, function, and 

operations. Reverse engineering of the selected brackets was done by a 

Comet 5 White Light Scanner from Steinbichler Optotechnik 

GmbH, Germany (Figure 3).  

The white light scanner projected fringe (light) patterns on the bracket 

and the camera simultaneously captured the images, then advanced software 

algorithms triangulate and calculated the 3d-coordinates of numerous points 

spaced all over the surface of the bracket. The part of the bracket that was 

within the frame (illuminated zone with fringes) got scanned during a single 

measurement. For scanning the complete bracket several such measurements 

were carried out and merged together. 

In our study we also had to go through a hybrid modelling procedure 

where parametric CAD Modelling and Rapid Surfacing had to be employed. 

This is due to the fact that the brackets were too small by engineering 

standards and it had a combination of freeform geometry as well as geometric 

shapes.  
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The following steps were followed for hybrid modelling:  

i. Phase 1- The scan data was imported in software progran “Geomagic 

Studio”. Saving the bracket base all other regions were removed. This was 

exported as a Standard for the Exchange of Product (STEP) model data 

model to be used later. 

ii. Phase 2 - The scan data was imported into Pro/Engineer Wildfire5 and the 

same was aligned using symmetry planes. Similarly, cuts and slots were 

added and gradually the entire bracket was modelled. 

iii. Phase 3- The STEP model from Phase 1 was imported in the same file and 

this by default would form the base for the bracket, upon the upper half 

which was modelled in Phase 2. Corner radius was then added and the file 

was exported as IGS, STEP, or STL file, and this was used for method 

FEA. 

Once the scanning was completed, the data was post-processed 

(includes steps like alignment, matching, decimation, and smoothing) and 

exported into a 3D point cloud/ triangle mesh which is either a Binary or 

ASCII (.STL file). The data is of high accuracy, and the repeatability of the 

White Light Scanners is between 1-5 microns. (Figure 4) 

2) PROCESSING STAGE:- during this phase the software program Ansys 

Workbench Version 11 was used, which imported models with 100% 

data transfer or with 0% data loss. Once the data of the brackets, tooth and 

its supporting structures was imported, the software performed automatic 

meshing with defined material properties. The software established 

contacts automatically and defined them as a bonded contact.(Figure 5)  
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This means that the wire was not deformed until it came in contact 

with the slot walls. Thus the wire mobility was restricted by the slot walls and 

the ligature, respectively. A frictional coefficient “μ” between the bracket and 

the wire of 0.2 was used. The bracket of the maxillary central right incisor was 

torqued from its neutral position by a total of 20 degrees47 and the resultant 

forces were evaluated at 0mm, 4mm, 8mm and 12mm from the apex till the 

cervical region. The engagement angle that is is the amount of axial rotation 

that the wire is permitted to undergo before it contacts with the slot walls for 

the selected brackets was also evaluated. 

3) POST PROCESSING STAGE:- the torque angle/torque moment values 

in the simulated movements were recorded by the FE software package, 

Ansys Workbench Version 11 and evaluation of the results was performed 

from the graphical, numerical and animated format (Figure 6). 

Material Youngs Modulus Poisons Ratio 

Tooth 2.00E+04 0.3 

PDL 6.80E-01 0.49 

Cortical Bone 1.40E+04 0.31 

Cancellous Bone 2.50E+02 0.3 

Bracket 2.14E+05 0.3 

Wire 2.14E+05 0.3 

        Table 1: Material properties of Tooth, PDL, Bone, Bracket and Wire 



        

 

 

 

 

       

 

Figure 1: Brackets used in the study 
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(a) Computed Tomography Scanner (GE Healthcare Technologies - 
Lightspeed VCT) 

 

 

(b) Computed Tomography scan of the maxilla  

 

       

(c) 3 dimensional modelling of the tooth and its supporting structure 

Figure 2: Pre-Processing Stage for the Tooth and its supporting structure 



 

 

                      

 

 

Figure 3: Comet 5 White Light Scanner (Steinbichler Optotechnik GmbH, 
Germany) used for scanning the brackets. 



 

 

         

 

 

 

     

 

Figure 4: Pre-Processing Stage for the Brackets - 3 Dimensional models 
acquired from white light scanning. 
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Figure 5: Processing Stage: 20 degrees of Torque was applied to the maxillary 
right central incisor 

 

 

 

 

 

Figure 6: Post Processing Stage:  Representation of the results in a colour 
coded manner 
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RESULTS 

The values of the torque-moment delivered by various archwire 

dimensions onto the brackets and their resultant stress pattern on the root 

structure of the tooth and supporting periodontium were evaluated using the 

finite element analysis. They are shown in the spectrum of colours ranging 

from red (very high) to blue (lowest). 

Resultant Force with 0.017 x 0.025-in S.S.Archwire: The maximum 

torquing moments were generated by the Conventional Bracket (41Nmm)   

followed by InOvation-R (34.6Nmm), Damon 3MX (34.3Nmm), Smart Clip-3 

(32.5Nmm) and TimeTM (32Nmm) bracket. (Table 2, Graph 1) 

 

Resultant Force with 0.019 x 0.025-in S.S.Archwire: The maximum 

torquing moments were generated by the Conventional bracket (47.4Nmm) 

followed by InOvation-R (40Nmm), Damon 3MX (39.3Nmm), Smart Clip-3 

(38.1Nmm) and TimeTM (36.8Nmm) bracket. (Table 2, Graph 2) 

 

Resultant Force with 0.021 x 0.025-in S.S.Archwire: The maximum 

torquing moments were generated by the Conventional bracket (79Nmm) 

followed by InOvation-R (64Nmm), Damon 3MX (63.8Nmm), Smart Clip3 

(63.5Nmm) and TimeTM (61.2Nmm) bracket. (Table 2, Graph 3) 
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Stress Pattern by Various Bracket-Archwire combinations on the 

Tooth and Periodontium at different levels: Using the values obtained from 

the finite element analysis, the forces for the simulated torque moments were 

plotted for each of the bracket-archwire combination used in the study (Table 

4). The results were consistent in all the groups tested.   

The stress pattern values showed an increasing gradient from the apical 

third to the cervical region of the root surface when tested sequentially with 

S.S. wires, starting with 0.017 x 0.025-in, followed by 0.019 x 0.025-in, and 

finally 0.021 x 0.025-in (Table 4).   

Maximum Torquing Moments of brackets with variations in 

Archwire dimension: The graph summarizes the maximum torquing 

moments expressed by Conventional, InOvation-R, TimeTM, Smart Clip-3 and 

Damon3MX brackets with variations in archwire dimension. 

The conventional bracket system consistently exhibited the maximum 

torquing moments with the three archwires tested (0.017x0.025, 0.019x0.025 

and 0.021x0.025 inch wire). Within the self ligating group, the maximum 

torquing moments were expressed by InOvation-R followed by Damon3MX, 

Smart Clip-3 and TimeTM bracket (Graph 4) 

Angle of engagement for different brackets: There was considerable 

variation in the engagement angle among the bracket systems assessed. The 

Conventional bracket showed the least engagement angle of 3º followed by 

InOvation-R (4.3º), Damon3MX (6º), TimeTM (7.1º) and the highest by Smart 

Clip-3 (7.9º). (Table 3, Graph 5) 
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Bracket 

0.017 x 0.025 
 

0.019 x 0.025 0.021 x 0.025 

1 InOvation-R 34.6 Nmm 40 Nmm 64 Nmm 

2 TimeTM 32 Nmm 36.8 Nmm 61.2 Nmm 

3 Smart Clip-3 32.5 Nmm 38.1 Nmm 63.5 Nmm 

4 Damon 3MX 34.3 Nmm 39.3 Nmm 63.8 Nmm 

5 Conventional 41 Nmm 47.4 Nmm 79 Nmm 

Table 2: Torque values of different  bracket-archwire combinations 

 

 

Bracket Wire 
Engagement 

Angle (degrees) 
1 

InOvation-R 0.021x0.025 4.3 
2 

TimeTM 0.021x0.025 7.1 
3 

SmartClip3 0.021x0.025 7.9 
4 

Damon3MX 0.021x0.025 6 
5 

Conventional 0.021x0.025 3 
 

Table 3: Angle of Engagement for different bracket - archwire combinations 
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Bracket Archwire Height Force 
1)InOvation-R 0.017 x 0.025 0mm 0.34572 
    4mm 0.5239 
    8mm 0.95918 
    12mm 1.8218 
        
  0.019 x 0.025 0mm 0.28313 
    4mm 0.58375 
    8mm 1.5934 
    12mm 2.1359 
        
  0.021 x 0.025 0mm 0.4607 
    4mm 0.92308 
    8mm 1.5966 
    12mm 3.3512 
        
2)TimeTM  0.017 x 0.025 0mm 0.29834 
    4mm 0.48038 
    8mm 0.917467 
    12mm 1.4707 
        
  0.019 x 0.025 0mm 0.20859 
    4mm 0.49008 
    8mm 1.31567 
    12mm 1.5178 
        
  0.021 x 0.025 0mm 0.35471 
    4mm 0.87089 
    8mm 1.278 
    12mm 3.1544 
        
3)Smart Clip-3  0.017 x 0.025 0mm 0.25926 
    4mm 0.43482 
    8mm 0.92753 
    12mm 1.6246 
        
  0.019 x 0.025 0mm 0.24122 
    4mm 0.52882 
    8mm 1.1774 
    12mm 1.72286 
        
  0.021 x 0.025 0mm 0.46616 
    4mm 0.90113 
    8mm 1.3939 
    12mm 3.4628 
 
 

 
 

 
 

 
 

Table 4: Stress Values at 0, 4, 8 and 12mm induced by various bracket-archwire 

combinations on the root surface of the tooth and its supporting periodontium. 
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4) Damon 3MX 0.017 x 0.025 0mm 0.32737 
    4mm 0.46204 
    8mm 0.930193 
    12mm 1.75588 
        
  0.019 x 0.025 0mm 0.25748 
    4mm 0.53329 
    8mm 1.13 
    12mm 1.8058 
        
  0.021 x 0.025 0mm 0.46617 
    4mm 0.91332 
    8mm 1.5963 
    12mm 3.4998 
        
5)Conventional 0.017 x 0.025 0mm 0.44112 
    4mm 0.66171 
    8mm 1.54483 
    12mm 2.1316 
        
  0.019 x 0.025 0mm 0.38994 
    4mm 0.64615 
    8mm 1.95121 
    12mm 2.5171 
        
  0.021 x 0.025 0mm 0.47553 
    4mm 1.19607 
    8mm 1.8501 
    12mm 4.3597 
Table 4: Stress Values at 0, 4, 8 and 12mm induced by various bracket-

archwire combinations on the root surface of the tooth and its supporting 

periodontium.  
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Graph 1: Stress Pattern curves of the simulated torque moments with 
“0.017x0.025 inch” S.S.Archwire for various brackets. 

 

Graph 2: Moment-torque activation curves of the simulated torque 
moments with “0.019x0.025 inch” S.S.Archwire for various brackets. 
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Graph 3: Moment-torque activation curves of the simulated torque 
moments with “0.021x0.025 inch” S.S.Archwire for various brackets. 

 

Graph 4: Maximum Torquing Moments of brackets with variations in 
Archwire dimension 
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Graph 5: Engagement angle of different brackets. 
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Figure 7: STRESS PATTERN ON THE TOOTH AND 
PERIODONTIUM BY “INOVATION-R” BRACKET 

 

(a) 0.017 x 0.025” Stainless Steel Archwire 

 

 

(b) 0.019 x 0.025” Stainless Steel Archwire 

 

 

(c) 0.021 x 0.025” Stainless Steel Archwire 
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Figure 8: STRESS PATTERN ON THE TOOTH AND 
PERIODONTIUM BY “TIMETM” BRACKET 

 

(a) 0.017 x 0.025” Stainless Steel Archwire 

 

 

(b) 0.019 x 0.025” Stainless Steel Archwire 

 

(c) 0.021 x 0.025” Stainless Steel Archwire 
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Figure 9: STRESS PATTERN ON THE TOOTH AND 
PERIODONTIUM BY “SMART CLIP-3” BRACKET 

 

(a) 0.017 x 0.025” Stainless Steel Archwire 

 

 

(b) 0.019 x 0.025” Stainless Steel Archwire 

 

 

(c) 0.021 x 0.025” Stainless Steel Archwire 
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Figure 10: STRESS PATTERN ON THE TOOTH AND 
PERIODONTIUM BY “DAMON 3MX” BRACKET 

 

(a) 0.017 x 0.025” Stainless Steel Archwire 

 

 

(b) 0.019 x 0.025” Stainless Steel Archwire 

 

 

(c) 0.021 x 0.025” Stainless Steel Archwire 
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Figure 11: STRESS PATTERN ON THE TOOTH AND 
PERIODONTIUM BY “CONVENTIONAL” BRACKET 

 

(a) 0.017 x 0.025” Stainless Steel Archwire 

 

 

(b) 0.019 x 0.025” Stainless Steel Archwire 
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DISCUSSION 

The specialty of orthodontics has continued to evolve since its advent 

in the early 20th century. Changes in treatment philosophy, mechanics, and 

appliances have helped shape our understanding of orthodontic tooth 

movement. 

A major shift in orthodontics occurred when Andrews
3
 introduced the 

“straight wire appliance”. Instead of bending wires to place teeth in the proper 

orientation with an edgewise bracket, the Andrews appliance had the tip and 

torque values built into the brackets commonly known as the “appliance 

prescription”. In theory, these pre-adjusted brackets eliminated the need to 

repeatedly bend first, second, and third order bends each time the patient 

progressed to the next wire. The straight wire appliance revolutionized 

orthodontics by making the bracket much more efficient. Since then, many 

orthodontic companies have developed their own bracket systems with 

specific prescriptions, treatment philosophies, and mechanics. 

In the recent years, there has been a boost in the manufacturing and 

release of self-ligating appliances with active or passive ligation modes, 

leading to entice more clinicians due to their proclaimed time-saving ligation 

mode and the potential alterations in the load and moment expression during 

mechanotherapy. Some of these systems seem to present reduced friction, 

however their torquing characteristics remain uncertain. 

Although there is a conundrum concerning which self ligating bracket 

to set into practice, the issue of active clip or passive slide/clip is a major focus 

of the controversy. 
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Self-ligating brackets are broadly classified into Active and Passive 

self-ligating brackets; 

1) Active self-ligating brackets: Active brackets consist of a spring clip 

which comes in contact with the arch wire when engaged. Automatic 

seating of either a round or a rectangular archwire at the base of the slot is 

responsible for the light, continuous force
31

. The spring clip stores energy 

to press against the archwire for greater torque control.
6
 In the active self-

ligating system, more friction is produced as a result of the clip pressing 

against the archwire.
62

 

2) Passive self-ligating brackets:  In passive self-ligating bracket the slot is 

transformed into a tube by means of a labial "fourth wall" that does not 

contact the archwire.
21

 The full expression of bracket properties is 

achieved only when higher dimensional wires are used and the torque 

control is efficiently achieved only by using larger rectangular 

archwires.
67,84

 

Torque as described by Rauch
88

, is a moment generated by the torsion 

of a rectangular wire in the bracket slot. Torque can also be defined from a 

mechanical and a clinical point of view. Mechanically, it refers to the twisting 

of a structure about its longitudinal axis, resulting in an angle of twist. Torque 

is a shear-based moment that causes rotation. Clinically, in orthodontics, it 

represents the buccopalatal crown/root inclination of a tooth, and it is an 

orthodontic adaptation used to describe rotation around the x-axis. When 

applied in an orthodontic archwire/bracket interaction, it describes the 

activation generated by twisting an archwire in a bracket slot
114

.  
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Correct buccolingual inclination of anterior teeth is considered 

essential for providing good occlusal relationships in orthodontic treatment. 

Inclination of the maxillary anterior teeth is particularly critical in establishing 

an esthetic smile line, proper anterior guidance, and a Class I canine and molar 

relationship. Undertorqued maxillary anterior teeth affect the arch length and 

the space requirements. It has been shown that for every 5° of anterior 

inclination, about 1 mm of arch length is generated
78

. Undertorqued posterior 

teeth have a constricting effect on the maxillary arch, since they do not allow 

appropriate cusp to fossa relationships between the maxillary and mandibular 

teeth
113

. 

Tip, in–out, and rotation control have become highly uniform in all 

current and popular appliance prescriptions. Torque, on the other hand, is 

available in a variety of ranges. This would occur due to several factors: 

mechanical side-effects, morphological differences in the buccal faces of 

teeth, changes in the position of the brackets, different methods of bracket 

manufacturing and orthodontic wires, the play between the wire and the 

bracket slot, variations in the bracket designs, properties of the materials 

constituting the brackets and wires
 
and differences between the value of the 

torque informed by the manufacturer and the real value of the torque of the 

brackets
96

. 

Numerous studies have measured the torque characteristics of the 

bracket systems by a number of testing apparatus. 

Gmyrek
39

, Harzer
43

, and Morina
76

 used the Orthodontic 

Measurement and Simulation System (OMSS
10

) to measure the maximum 

torquing moment of self ligating bracket systems. The major components of 
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the OMSS are the two force – moment sensors capable of measuring forces 

and moments simultaneously in all three planes of space. 

Badawi et al
6
 developed a novel apparatus with a digital inclinometer 

to evaluate the torque expression of self ligating brackets. Torque was 

evaluated as the wire was twisted, all the other forces and moments were set to 

zero by device alignment. Vertical and horizontal alignment was maintained 

between the wire and the bracket during this process.  

However, these methods are quite cumbersome and depend on 

extensive instrumentation and further they fail to graphically display the 

changes for the clinician to appreciate.  

Finite Element Analysis (FEA) is a powerful computer-simulation 

tool for solving stress-strain problems in the mechanics of solids and 

structures in engineering. The study of orthodontic biomechanics requires the 

understanding of the stress and strain induced by orthodontic forces. Finite 

element analyses (FEA) offer a means of determining stresses in tooth, 

ligament, and bone structures for a broad range of orthodontic loading 

conditions. 

Thus, Finite Element Method is considered a superior method for 

determining stress distribution patterns and resultant force on structures of 

complex designs and known material properties. 

To the best of our knowledge, finite element analysis to investigate the 

torque expression of self ligating on the tooth and periodontium is  very scant.
 

Accordingly, this study was designed to investigate the torque 

expression of different self-ligating brackets and arch wire combinations on 

the tooth and its supporting structures implicating finite element method. 
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In the present study self-ligating brackets were divided into two 

groups- Active clip type [InOvation-R (GAC Intl, NY) & Time (American 

Orthodontics, USA)] and Passive clip type [Damon3MX (Ormco 

Orthodontics, California) & SmartClip3 (3M Unitek, United States)] whereas  

preadjusted twin bracket [Ovation (GAC Dentsply,USA)] served as control. 

These brackets were tested for their torque proficiency offered to stainless 

steel archwires. Three types of Stainless steel wires with varying dimensions 

were used, 0.017x0.025-in, 0.019x 0.025-in & 0.021 X 0.025-in wires. 

The upper central incisor was preferred for this study because the 

torque control of upper central incisor is considered of paramount importance 

in clinical situation. 

A 3 dimensional model of the right maxillary central incisor and its 

supporting structures was generated from a Computed Tomography (CT) scan 

by a Computer Aided Designing/Computer Aided Engineering 

(CAD/CAE) program. The creation of a periodontal ligament with a thickness 

of 0.25 mm was performed due to the impossibility to define this structure 

from CT images (pixel size = 0.273 mm).  

The brackets used in the study were scanned and 3 dimensional models 

and designed with Comet 5 k White Light Scanner from Steinbichler 

Optotechnik GmbH, Germany. The white light scanner projected fringe 

(light) patterns on the bracket and the camera simultaneously captured the 

images, then advanced software algorithms triangulated and calculated the 3d-

coordinates of numerous points spaced all over the surface of the bracket. The 

part of the bracket that was within the frame (illuminated zone with fringes) 
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got scanned during a single measurement. For scanning the complete bracket 

several such measurements were carried out and merged together.  

The software program, Ansys Workbench 11, was used for the study 

which can import models with 100% data transfer or with 0% data loss. Once 

the data was imported the software performed an automatic meshing with 

defined material properties. The software established contacts automatically 

and defined them as bonded contact.  

This means that the wire was not deformed until it came in contact 

with the slot walls. Thus the wire mobility was restricted by the slot walls and 

the ligature, respectively. A frictional coefficient “μ” between the bracket and 

the wire of 0.2 was used. The bracket of the maxillary central right incisor was 

rotated from the neutral position by a total of 20 degrees and the resultant 

forces were evaluated at 0mm, 4mm, 8mm and 12mm from the apex to 

cervical region of the root. The engagement angle for the selected brackets 

was also evaluated. 

 The results of the present study indicate the maximum torque values 

were consistently exhibited with the conventional ligation system when 

compared to the self ligating bracket systems. Amongst the self ligating 

brackets, InOvation-R exhibited the maximum torque values followed by 

Damon 3MX,  Smart Clip-3, and the least torque values were exhibited by the 

Time
TM

 self ligating bracket system (Table 2, Graph 4). Similar findings 

were observed in the study conducted by Morina et al.  

In the InOvation-R bracket, the slot has a short gingival horizontal wall 

of 0.0195-inches and a conventional occlusal horizontal wall of 0.0285 inches 

which lets the spring clip invade the slot depth (Figure 1). It was this unique 
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feature in the design of the bracket that helped in establishing more interaction 

between the archwire and the bracket, thereby improving the torque 

expression. This finding correlates with the earlier findings of Major et al
65

. 

The Damon3MX self ligating brackets consist of a sturdy passive slide 

which upon closing forms the fourth wall of the bracket slot. The full 

expression of bracket properties is achieved only when higher dimensional 

wires are used and the torque control is efficiently achieved only by using 

larger rectangular archwires.
21

 

The Smart Clip-3 self ligating brackets consist of nickel-titanium 

spring clips mesial and distal to the tie wings to capture the archwire inside the 

slot. This characteristic feature of the bracket that would have probably 

resulted in lesser amount of torque expression due to elastic deformation of the 

clip when interacting with larger archwire dimensions. This was in accordance 

with results published by Badawi et al
6
.  

In the Time self ligating bracket system, the active clip establishes a 

contact with the rest stop of the bracket first unless a full size archwire is 

employed. Due to its rigid nature, the clip itself possesses no elastic energy. In 

this respect, once closed, the bracket behaves similarly to the passive self 

ligating bracket, assuming the archwire is sitting passively within the bracket 

slot. As a consequence of this clip design, the prescribed torque available was 

reduced. Similar results were revealed by Budd et al
12

. 

The maximum torque values were consistently exhibited with the 

conventional ligation system. This is credited to the robust design of the 
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bracket and better engagement of the archwire within the slot by the stainless 

steel ligature ties.  

The torquing values displayed an escalation as the archwire 

dimensions were stepped up from 0.017 x 0.025 inches to 0.021 x 0.025 

inches in all the bracket groups examined. This signifies the importance of 

archwire dimension in torque expression. 

In the present study, the angle of engagement for all the bracket groups 

was also measured against the 0.021x0.025 inch archwire.  

The angle of engagement is the amount of axial rotation that the wire is 

permitted to undergo before it contacts with the slot walls. This angle was 

selected for evaluating the torque-play between the different bracket systems. 

After engaging the archwire in the bracket slot, the degree of torque expressed 

depends on the surface area of the bracket slot contacted by the archwire. 

Therefore, degree of angle of engagement is inversely proportional to the 

torque expressed by the brackets. 

In the present study, the conventional bracket exhibited the least angle 

of engagement when compared to the self ligating bracket systems. Amongst 

the self ligating brackets the least angle of engagement was exhibited by 

InOvation-R, followed by Damon 3MX, Time and highest angle of 

engagement by Smart Clip-3 self ligating system. These findings are 

concurring with those of Fischer Brandies et al
26

. 

The InOvation-R bracket presented the least angle of engagement          

(4.3º). This was probably due to the encroachment of the slot by the active 

spring clip which helped in establishing enhanced interaction between the 

archwire and the bracket slot and increasing the torque expression.   
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The Damon 3MX bracket presented an angle of engagement of 6º.  

This was the amount of play exhibited by the archwire within the bracket slot 

before it contacted the walls of the bracket. Thus, while using the Damon 

3MX bracket it must be kept in mind that to achieve proper torque control 

larger archwire dimensions that fill the slot must be used. This was in 

accordance with the study conducted by Huang et al
47

. 

The Time
TM

 bracket presented an engagement angle of 7.1º.  The 

increase in the play of the wire is attributed to the design of the active spring 

clip which actually rests passively on the rest stop of the bracket instead of 

encroaching it. 

The Smart Clip 3 bracket presented the highest angle of engagement of 

7.9º. This could probably be due to the inability of the nickel-titanium clips on 

the mesial and distal tie wings of the bracket to engage the archwire at earlier 

stages of torsion. 

The conventional bracket system exhibited the least angle of 

engagement of 3 º. This is the prime advantage of conventional bracket system 

compared with all the self ligating bracket systems evaluated. The stainless 

steel ligature tie around the bracket wings reduce the amount of torque play 

and thus enhance the torque expressed by the bracket. This was in accordance 

with the studies conducted by Badawi et al
6
, Morina et al

65
, and Huang et 

al
47

. 

Consequently, the present study demonstrated that the angle of 

engagement plays an important role in the torque expressed by the various 

brackets. This was established by the results which revealed higher torquing 
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moments for the brackets which had lower engagement angles as observed in 

the Conventional, InOvation-R and Damon 3MX bracket system. However, in 

spite of this fact, the Time
TM 

self ligating bracket which had lower engagement 

angle as compared to the Smart Clip-3 bracket failed to express higher torque 

values when compared to it. This may be owed to the incapability of the active 

clip in the Time
TM

 bracket to maintain the interaction between the archwire 

and bracket slot at higher torquing forces.     

However, the results of this study are not in agreement with a recent 

clinical investigation by Pandis et al
83

, which examined maxillary central 

incisor inclination with conventional and Damon brackets, and reported that 

there was no significant difference between the torque of incisors between the 

two appliances. However, the mechanotherapy used in that investigation 

greatly influenced the torque expression of the appliances since the use of 

rectangular NiTi reverse curve of Spee archwires, which are torqued more 

than 20 degrees, may cancel out any appliance variability in expressing torque. 

 The findings of the present study lay credence to the importance of 

bracket slot design and full slot archwire engagement and that angle of 

engagement is a parameter of clinical importance because it allows us to select 

a proper archwire dimension to effectively express the desired torquing 

moment.   

FEM may give results with a reasonable degree of accuracy, but this 

approach has certain limitations. The accuracy of the analysis is dependant on 

the modelling of structures as closely as possible to the actual. However, a 

certain amount of approximation manifested chiefly in terms of type and 
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number of arrangement of elements is inevitable in complex designs. Apart 

from this, one must be aware of the assumption used in the formulation, 

material characterization, nature of boundary conditions and the 

representations of loads. FEA has also failed to incorporate the time-

dependent changes exhibited by various materials and their effects on the 

biological tissues. All these factors affect the validity of the results. 

Thus, clinical trials are necessary to evaluate the in-vivo effects of the 

torque expression by different bracket-archwire combinations. 

Further studies evaluating torque expression of self ligation brackets 

need to be carried out in order to: 

1. Calculate the ideal amount of force required to deliver adequate 

torque by various self ligating bracket systems. 

2. Estimate torquing moments with variation in archwire alloy. 

3. Evaluation of torque expression on all maxillary anterior teeth 

simultaneously. 
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SUMMARY AND CONCLUSION 
 

This FEM study was carried out to investigate the torque expression of 

different self-ligating brackets and arch wire combinations on the tooth and its 

supporting structures. 

Two Active (Innovation-R and Time) and Passive (Smart Clip 3 and 

Damon3MX) self-ligating bracket systems were selected and one conventional 

(Ovation) bracket system served as control. Upper Right Central Incisor 

Stainless Steel Roth Prescription bracket with slot dimension of 0.022 x 0.028 

inches was used in all the groups. The brackets were tested against three S.S. 

archwire dimensions (0.017x0.025, 0.019x0.025 and 0.021x0.025 inches). 

A 3-dimensional model of the right maxillary central incisor and its 

supporting structures was generated from a Computed Tomography scan of a 

dry human skull by a CAD/CAE program. The brackets were scanned and 3-

dimensional models were designed with Comet 5 White Light Scanner.  

The close geometric diagram for the bracket, tooth and its supporting 

structures was prepared using Ansys Workbench Version 11. The bracket of 

the maxillary central right incisor was rotated from the neutral position by a 

total of 20 degrees.  

The angle of engagement and the resultant forces (stress concentration) 

were evaluated at 0mm, 4mm, 8mm and 12mm from the apex for different 

archwire-bracket combinations were recorded using the same software. 
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Based on the finite element analysis, the following conclusions were 

drawn:-  

(a) The maximum torque values were found with the conventional 

ligation system. These values exhibited an escalation as the 

archwire dimensions were stepped up from 0.017 x 0.025 inches to 

0.021 x 0.025 inches. Among the self ligating bracket systems 

tested, Innovation –R provided superior torque values followed by 

Damon3MX, Smart Clip3 and least values were observed for the 

Time self ligating bracket system. Therefore, the torque-moment 

behavior is determined by archwire dimension and the design of 

the bracket. 

(b) The least angle of engagement was observed for the Conventional 

bracket system followed by InOvation-R, Damon, Time and Smart 

Clip. Overall, this study indicates that the engagement angle is 

clinically significant, and is affected by archwire dimension, as 

well as by bracket slot dimension. 
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