# ANALYSIS OF FETOMATERNAL OUTCOME IN ECLAMPSIA

## A dissertation submitted to the

TAMILNADU Dr.M.G.R. MEDICAL UNIVERSITY

In partial fulfillment of the regulations for the award of the degree of

M.D. (Branch II) OBSTETRICS AND GYNECOLOGY



**COIMBATORE MEDICAL COLLEGE** COIMBATORE – 641 014

**APRIL 2012** 

# CERTIFICATE

This is to certify that the dissertation entitled "ANALYSIS OF FETOMATERNAL OUTCOME IN ECLAMPSIA" is abonafide record of work done by Dr.K.SASIKALA, under my guidance and supervision in the Department of Obstetrics and Gynaecology during the period of her Post Graduate study at Coimbatore Medical College, Coimbatore and submitted in partial fulfillment of requirements for the Degree of M.D.,Obstetrics and Gynecology, Branch (II) of The TamilnaduDr.M.G.R. Medical University, Chennai.

Prof.Dr.SUNDARI.P.M.D.,DGO., Unit Chief Obstetrics & Gynecology Prof.Dr.M.SWATHANDRA DEVI M.D.,DGO., Professor & Head of Department Obstetrics & Gynecology

Dean Coimbatore Medical College Coimbatore – 641 014

Date:

**Place: Coimbatore** 

# DECLARATION

I solemnly declare that the dissertation titled "ANALYSIS OF FETOMATERNAL OUTCOME IN ECLAMPSIA" was done by me from 2010 onwards under the guidance and supervision of Dr.M.Swathandra Devi M.D.,DGO.,

This dissertation is submitted to The TamilnaduDr.M.G.R. Medical University towards the partial fulfillment of the requirement for the Degree of M.D.,Obstetrics and Gynecology, Branch (II).

Dr.K.SASIKALA

Date: Place: Coimbatore

| batore Medical Loll<br>TORE, TAMILNADU, INDIA - 64<br>ato The T.N. Dr. MGR Medical University, Chemra<br>ErrHICS COMMITTEE<br>CERTIFIC COMMITTEE<br>: M. D (04G)<br>: M. D (04G)<br>: D. 004G)<br>: 2009 - 2012<br>: 2009 - 2012 | Coimbatore - 14.<br>Secretary<br>Date : 9 9 10<br>Ethics Committee | LOIMDAIDTE JUNELLNADU, INDIA - 6<br>(Affiliated to The T.N. Dr. MOR Medical University, Chem-<br>RETHICS COMMITTEE<br>ETHICS COMMITTEE<br>A CARTERICATE<br>Study : 2009 - 2012<br>: M. D (046)<br>: M. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## ACKNOWLEDGEMENT

I solicit my humble thanks to God Almighty for guiding me throughout my project work.

I express my gratitude to Dr.Vimala, the Dean Coimbatore Medical College Hospital for providing facilities to carry out this project work successfully.

I am extremely thankful to Prof.Dr. M. Swathandra Devi M.D., DGO., Head of Department of Obstetrics & Gynecology and my Unit Chief Dr. Sundari M.D.,DGO., for their valuable guidance, support and advice rendered in completion of my project.

I express my sincere thanks to Prof. Dr. Revathy, Prof. Dr .Usha Rani, Prof. Dr. Vijaya for their valuable help in the course of my project.

I thank Prof. Dr. Neelambikai M.D., professor of physiology and Head of Ethics Committee Coimbatore Medical College for the invaluable suggestions and corrections.

I am extremely thankful to Dr. V. Geetha M.D., Dr. Nallichandra M.D., Dr.Manonmani M.D., DGO., Dr.Savithri DGO., for their constant encouragement and support to carry out this study.

# **INDEX**

| S.NO | CONTENT               | PAGE NO |
|------|-----------------------|---------|
| 1.   | INTRODUCTION          | 1       |
| 2.   | AIM OF STUDY          | 3       |
| 3.   | REVIEW OF LITERATURE  | 4       |
| 4.   | MATERIALS AND METHODS | 32      |
| 5.   | RESULTS AND ANALYSIS  | 37      |
| 6.   | DISCUSSION            | 66      |
| 7.   | CONCLUSION            | 74      |
| 8.   | BIBLIOGRAPHY          |         |
| 9.   | ANNEXURES             |         |
|      | PROFORMA              |         |
|      | MATER CHART           |         |
|      | ABBREVIATIONS         |         |

# ABSTRACT

A cress-sectional hospital base study was conducted to analyze fetomaternal outcome in eclampsia, clinical characteristics that predispose as risk factors, changes in serum magnesium level and its influence on maternal outcome. Study conducted from 1<sup>st</sup> March 2010 to 30<sup>th</sup> June 2011 in the department of Obstetrics and Gynecology, Coimbatore Medical College Hospital, Coimbatore.

In our study there were total of 104 eclamptic patients with an incidence of 1.23%. Only 65.38% were booked patients and with regular antenatal checkups. Primigravida constituted 76%. Maximum incidence of eclampsia was in the age group between 21 and 25 years (58%). Antepartum eclampsia constituted 81%. Mean blood pressure on admission was  $156 \pm 15 / 103 \pm 12$  mm Hg. Headache was the commonest imminent symptom. 57% had vaginal delivery. Serum magnesium level was significantly low  $(1.74 \pm 0.28 \text{ mg/dl}; \text{ p value} < 0.05)$  in eclamptic patients. Maternal complications included PPH, HELLP, renal failure, abruptio placenta, pulmonary edema, aspiration and intra cerebral hemorrhage in decreasing order of frequency. There were 4 maternal deaths with case fatality ratio of 3.84%, contributing 10.5% of total maternal deaths. Half of the deaths were due to HELLP-DIC. Age >25 years, multipara, unbooked patients, seizures  $\geq$  5 episodes, systolic BP  $\geq$  160 mm Hg were significantly associated with maternal

complications. Platelet less than 1 lakh and serum magnesium level less than 1.6 mg/dl were associated significantly with adverse maternal outcome. Perinatal complications included small for gestational age, preterm, jaundice, seizures, respiratory distress, sepsis. There were 30 perinatal deaths contributing to 6.96% of total perinatal mortality. Perinatal mortality rate was 3.56/1000 live births. Multiparity, gestational age  $\leq 32$  weeks, seizures >5 episodes were significantly associated with perinatal mortality.

Key words: Eclampsia, fetomaternal outcome, serum magnesium.

## **INTRODUCTION**

Eclampsia has been a recognized pathological entity since the time of Hippocrates and ancient Greek.<sup>1</sup> It is derived from the Greek word meaning "flash out", in the sense of sudden event and dates back to seventeenth century. Eclampsia is perceived as the end of linear spectrum that stretches from the normal pregnancy through mild gestational hypertension, pre-eclampsia finally eclampsia.

It is an enigmatic disease and unique to pregnancy. A number of social, genetic, medical and obstetric conditions predispose to an increase risk of pre-eclampsia and eclampsia. It is the multisystem disorder. The exact etiology of pre-eclampsia is unknown. Several theories have been proposed over the years, most of which have not withstood the test of time. Some of these failed to stand up to further investigation, while others yielded conflicting results in different studies, and none could explain all the changes in this condition. As Boyd stated pre-eclampsia remains "die krankheit der theorian" – the disease of theories.

Worldwide it accounts for 50,000 maternal deaths annually.<sup>2</sup> It is said that pre-eclampsia and eclampsia contribute to death of a women every 3 minutes worldwide.<sup>3</sup>20 times more common in developing countries.Incidence of eclampsia in India is approximately 220 per 10,000 deliveries, contributing about 8% of maternal mortality<sup>4</sup>. It ranks second only to anemia in developing countries.

1

Pre-eclampsia is not preventable but eclampsia is preventable.In spite of the global and regional interventions and initiatives from government, its outcome in terms of maternal and perinatal mortality continues to be worse. Eclampsia is preceded by alarming symptoms and signs of pregnancy induced hypertension.The institution of vigilant antenatal care to detect risk factors and prompt treatment of cases of preeclampsia will ameliorate the disease burden.

Incidence, morbidities and mortalities of eclampsia remain unacceptably high in developing countries. This indicates the need for continued in depth studies into its characteristics and pattern. This study was undertaken to determine the incidence of eclampsia, identify the predisposing socio-demographic factors, demonstrate clinical profiles, changes in serum magnesium levels and analyze modes of management and resulting maternal and fetal outcome at Coimbatore Medical College Hospital.

# AIM OF THE STUDY

- 1. To record the clinical profile of patients with eclampsia and to assess the incidence of eclampsia.
- 2. To study the various maternal and fetal outcome by means of morbidity and mortality in eclampsia.
- 3. To analyze the clinical characteristics that predisposes as risk factor for eclampsia and fetomaternal outcome.
- 4. To analyze the changes in platelet count, serum magnesium level and their influence on maternal outcome.

## **REVIEW OF LITERATURE**

Hypertensive disorders complicate 5 to 10 % of all pregnancies and together they form the deadly triad along with hemorrhage and infection, contribute greatly to maternal morbidity and mortality rates. In developed countries, 16% of maternal mortality was due to hypertensive disorders<sup>5</sup>. Over half of these hypertension related deaths were preventable.<sup>6</sup>

The Working Group of the NHBPEP- National High Blood Pressure Education Program (2000) classification of hypertensive disorders complicating pregnancy is as follows:

- 1. Gestational hypertension
- 2. Pre-eclampsia
- 3. Eclampsia
- 4. Pre-eclampsia superimposed on chronic hypertension
- 5. Chronic hypertension

An important feature of this classification is differentiating preeclampsia and eclampsia from other hypertensive disorders because the former two are potentially more ominous. This concept is also important to interpret and appreciate studies that address the etiology, pathogenesis, and clinical management of pregnancy related hypertensive disorders.

## <u>GESTATIONAL HYPERTENSION</u>

The diagnosis of gestational hypertension is made in women whose blood pressure reaches 140/90 mm Hg or greater for the first time after mid pregnancy (20 weeks), but in whom proteinuria is not identified. Almost half of these women subsequently develop preeclampsia. Gestational hypertension is reclassified as transient hypertension if evidence for preeclampsia does not develop and the blood pressure returns to normal by 12 weeks postpartum.

#### <u>PREECLAMPSIA</u>

It is a pregnancy specific syndrome that can affect virtually every organ. Proteinuria is the surrogate objective marker that defines the system wide endothelial leak. It is defined by 24-hour urinary protein excretion exceeding 300 mg, persistent 30 mg/dL (1+dipstick) protein in random urine samples.<sup>7</sup>

#### ECLAMPSIA

The onset of convulsions in a woman with preeclampsia that cannot be attributed to other causes is termed eclampsia. The seizures are generalized and may appear before, during, or after labor. 10 % of eclamptic seizures develop before overt proteinuria is identified.<sup>8</sup>

#### ETIOPATHOGENESIS

Gestational hypertensive disorders are more likely to develop in women who

• Are exposed to chorionic villi for the first time.

- Are exposed to a superabundance of chorionic villi, as with twins or hydatidiform mole
- Have preexisting renal or cardiovascular disease
- Are genetically predisposed to hypertension developing during pregnancy.

Regardless of precipitating etiology, the cascade of events that leads to the preeclampsia is characterized by a host of abnormalities that result in vascular endothelial damage and subsequent vasospasm, transudation of plasma, and ischemic and thrombotic sequelae. Recently preeclampsia has been considered as two stage disorder. Stage 1 faulty endovascular trophoblastic remodeling that downstream causes the stage 2 clinical syndrome.<sup>9</sup>

## \* Abnormal trophoblastic invasion

In normal implantation, the uterine spiral arterioles undergo extensive remodeling as they are invaded by endovascular trophoblasts. These cells replace the vascular endothelial and muscular linings to enlarge the vessel diameter. In preeclampsia there may be incomplete trophoblastic invasion. With such shallow invasion myometrium, vessels are not lined by endovascular trophoblasts.<sup>10</sup>They do not lose endothelial lining and musculoelastic tissue, and their mean external diameter is only half that of vessels in normal placentas, abnormally narrow spiral arteriolar lumen impairs placental blood flow. The magnitude of defective trophoblastic

invasion of the spiral arteries correlates with the severity of the hypertensive disorder.

#### Immunological factors

Diminished perfusion and a hypoxic environment eventually lead to release of placental debris that incites a systemic inflammatory response, results in dysregulation of immune tolerance . Formation of blocking antibodies to placental antigenic sites might be impaired. Beginning in early second trimester women who develop preeclampsia, Th<sub>1</sub> action increased and the Th<sub>1</sub>/Th<sub>2</sub>ratio changes. Contributors to an enhanced immunologically mediated inflammatory reaction are stimulated by placental microparticles.<sup>11</sup>

### Endothelial cell activation

Briefly, cytokines such as tumor necrosis factor- $\alpha$ (TNF- $\alpha$ ), and the interleukins (IL) may contribute to the oxidative stress associated with preeclampsia. This is characterized by reactive oxygen species and free radicals that lead to formation of self-propagating lipid peroxides<sup>12</sup>. These in turn generate highly toxic radicals that injure endothelial cells, modify their nitric oxide production, and interfere with prostaglandin balance. These observations on the effects of oxidative stress in preeclampsia have given rise to increased interest in the potential benefit of antioxidants to prevent preeclampsia. Antioxidants are from a diverse family of compounds that function to prevent overproduction of and damage

caused by noxious free radicals. Dietary supplementation with antioxidants to prevent preeclampsia has thus far proven unsuccessful.

## ✤ Genetic factors

Preeclampsia is a multifactorial, polygenic disorder. An incidence risk factor for preeclampsia is 20 to 40 percent for daughter of preeclampsia. Thus the phenotypic expression of inherited gene will differ depending on interactions with environmental factors.

More than 70 genes have been studied for their possible association with preeclampsia. Seven of these have been investigated widely.<sup>13</sup>

| GENE              | FUNCTION<br>AFFECTED                       | CHROMOSOME |
|-------------------|--------------------------------------------|------------|
| MTHFR(C677T)      | Methylene<br>tetrahydrofolate<br>Reductase | 1p36.3     |
| F5(Leiden)        | Factor V                                   | 1q23       |
| AGT(M235T)        | Angiotensinogen                            | 1q42-q43   |
| HLA(Various)      | Human Leukocyte<br>Antigens                | 6p21.3     |
| NOS3(Glu 298 Asp) | Endothelial nitricoxide                    | 7q36       |
| F2(G20210A)       | Prothrombin                                | 11p11-q12  |
| ACE               | Angiotensin<br>converting enzyme           | 17q23      |

#### **GENETIC FACTORS:**

- Increased pressor response to infused norepinephrine and angiotensin II in women with early preeclampsia. Normal pregnant women develop refractoriness to vasopressor.
- Endothelial prostacyclin (PGI<sub>2</sub>) production decreases in preeclampsia. Thromboxane A<sub>2</sub> increases. PGI<sub>2</sub>/TXA<sub>2</sub>ratio decreases. The net result favors increased sensitivity to infused angiotensin II and ultimately vasoconstriction.
- Nitric oxide potent vasodilator is synthesized from L-arginine by endothelial cells. Withdrawal of nitric oxide results in a clinical picture similar to preeclampsia in a pregnant animal model<sup>14</sup>. It appears that preeclampsia is associated with decreased endothelial nitric oxide synthase expression, thus increased nitric oxide inactivation. These responses may be race related.<sup>15</sup>
- Soluble Fms –like tyrosine kinase 1(sFlt-1) is a variant of the Flt-1 receptor for placental growth factor (PIGF) and vascular endothelial growth factor (VEGF). Increased maternal sFlt-1 levels inactivate and decreased circulating free PIGF, VEGF concentrations leading to endothelial dysfunction.<sup>16</sup>
- Soluble endoglin (sEng) is a placenta- derived molecule that blocks endoglin which is a cofactor for TGF-β. This soluble form endoglin inhibits TGF hence decreased endothelial nitric oxide dependent vasodilatation.<sup>17</sup>

- Cardiac output in preeclampsia decreases likely due to increased peripheral vascular resistance.
- Hemoconcentration is hallmark of preeclampsia. Generalized vasoconstriction that follows endothelial activation and leakage of plasma into the interstitial space.
- ★ THROMBOCYTOPENIA- it is common hence platelet count is routinely measured in any form of gestational hypertension. The frequency and intensity of thrombocytopenia vary and are dependent on the severity and duration of the preeclampsia. Overt thrombocytopenia defined by platelet count less than 1,00,000 cells/µL – indicates severe disease. In general lower the platelet count, higher the rates of maternal and fetal morbidity and mortality<sup>18</sup>. In most cases delivery is advisable because thrombocytopenia continues to worsen. After delivery, the platelet count may continue to decrease for the first day or so. It then usually increases progressively to reach a normal level usually within 3 to 5 days. In some instances platelet count continues to fall after delivery like HELLP syndrome.
- Other platelet abnormalities include platelet activationwith increased degranulation, thromboxane A<sub>2</sub> release and in vitro platelet aggregation is decreased compared with the normal

increase characteristic of pregnancy.<sup>19</sup>This is likely due to platelet exhaustion following in vivo activation. Although the cause is unknown, immunological process or simply platelet deposition at sites of endothelial damage may be implicated.Platelet bound and circulating platelet–bindable immunoglobulins are increased, which suggest platelet surface alterations. Severe thrombocytopenia does not develop in fetus or infant in preeclamptic women.

KIDNEY- during normal pregnancy blood flow and glomerular filtration increase. With development of preeclampsia, there may be a number of reversible anatomical and pathophysiological changes. Renal perfusion and glomerular filtration are reduced. Glomerular endotheliosis blocking the filtration barrier. Intensive intravenous fluid management is not indicated for these women with oliguria, unless diminished urine output is caused by hemorrhage. Plasma uric acid is typically elevated in preeclampsia, due to reduction in filtration and enhanced tubular reabsorption. At least some degree of proteinuria will establish the diagnosis of preeclampsia. In 24-hour quantitative urinary specimen, the standard consensus threshold value used is>300 mg/24-hour. Urinary dip stick method is simple but with false positive and negative results. Worsening of proteinuria has been considered to

11

be a sign of severe disease, this may not be the case. It is currently being investigated.

◆ LIVER- hepatic changes in women with fatal eclampsia were described in 1856 by Virchow. The characteristic lesions commonly found in the liver periphery. Hemolysis, hepatocellular necrosis, and thrombocytopenia were later termed as HELLP syndrome. 10 percent HELLP had concurrent eclampsia<sup>20</sup>. They have worse outcome than only with preeclampsia. Liver involvement in preeclampsia is clinically significant in following circumstances. 1. Symptomatic involvement, typically manifest by moderate to severe right upper or midepigastric pain and tenderness, is usually only seen with severe disease. 2. Asymptomatic elevations of serum hepatic transaminase levels AST and ALT are considered markers for severe preeclampsia. Values seldom exceed 500 U/L. they inversely follow platelet levels. Both usually normalize within 3 days following delivery. 3. Hepatic hemorrhage from areas of infarction may extend to form a hepatic hematoma. These in turn may extend to form a subcapsular hematoma that may rupture. They can be identified using CT or Management usually consists of conservative and MRI. observation. Very few cases may require prompt surgical intervention.

12

◆ BRAIN- headaches and visual symptoms are common with severe preeclampsia, and associated convulsions define eclampsia. Principle lesions found in eclamptic women were cortical and subcortical petechial hemorrhages. Other frequently described major lesions were subcortical edema. The classical microscopic vascular lesions consist of fibrinoid necrosis of the arterial wall and perivascular microinfarcts and hemorrhage. Two general theories to explain cerebral abnormalities associated with eclampsia. Importantly, endothelial dysfunction that characterizes the preeclampsia syndrome likely plays a key role in both: 1. Response to acute and severe hypertension, cerebrovascular overregulation tovasospasm.<sup>21</sup>Deminished cerebral blood leads flow is hypothesized to result in ischemia, cytotoxic edema, and eventually, tissue infarction. 2. Sudden elevations in systemic blood pressure exceed the normal cerebrovascular autoregulatory capacity.<sup>22</sup> Forced vasodilation and vasoconstriction develops. At capillary level, disruption of hydrostatic pressure, hyperperfusion, and extravasation of plasma and red cells through endothelial tightjunctions openings leading to vasogenic edema. Clinical manifestations include 1. Headache and scotoma are thought to arise from cerebrovascular hyperperfusion that has a predilection for the occipital lobes. 50 to 70 percent of women have headaches and 20 to 30 percent have visual changes preceding eclamptic convulsions. 2. Convulsions are diagnostic for eclampsia.

3. Blindness is rare in preeclampsia but can in eclampsia. 4. Generalized cerebral edema may develop and is usually manifest by mental status changes that vary from confusion to coma. This situation is particularly dangerous because fatal supratentorial herniation may result.

✤ MAGNESIUM LEVELS IN ECLAMPSIA-the role of serum electrolytes in PIH has been studied. For long time it is known that sodium retention can cause hypertension and sodium restricted diet is advised to hypertensive patient. The serum potassium is also measured in hypertensive patient to screen mineralocorticoid induced hypertension and to provide a baseline before beginning a diuretic therapy. Recently other two electrolytes namely calcium and magnesium is gaining importance in preeclampsia. The decrease in serum magnesium level in preeclampsia is reported.<sup>23</sup> Calcium and magnesium can regulate blood pressure in a neurohumoral, renal and adrenal machanism<sup>24</sup>, which can explain their decrease in preeclampsia. Magnesium is the 4<sup>th</sup> most abundant cation in the body and is present in more than 300 enzymatic systems where it is crucial for ATP metabolism.<sup>25</sup> Magnesium may influence blood pressure by modulating vascular tone and structured through its effects on myriad biochemical reactions that control vascular contraction/dilation, growth/apoptosis, differentiation and inflammation. Magnesium acts as calcium channel antagonist. It stimulates production of vasodilator prostacyclin and nitric oxide and alters vascular responses to vasoconstrictors agents. Its deficiency level can also play a role in hypertension in pregnancy.<sup>26</sup>Regarding magnesium there are lots of contrast studies. Some studies do not support the hypothesis that low serum magnesium is a risk factor for developing hypertension and vascular dysfunction.<sup>27</sup>

- Magnesium modulates the cardiovascular effect of sodium and potassium and it is the co-factor for the sodium-potassium ATPase activity.<sup>28</sup>
- 2. It affects the cardiac and smooth muscle cells by altering the transport of calcium and its binding to the membrane and organ cells.
- <sup>3.</sup> It acts peripherally to produce peripheral vasodilatation and a fall in blood pressure. Thus, low levels of magnesium predispose to an increase in the arterial pressure.<sup>29</sup>
- It is known to increase the prostacyclin release from the endothelial cells of the blood vessels, which acts as a potent vasodilator. Magnesium depletion increases the vasoconstrictor effect of angiotensin II and nor-adrenaline.
- 5. Magnesium also has a substantial beneficial effect in preeclampsia for the prevention and treatment of convulsions. Therapeutic magnesium sulphate which is used in PIH inhibits phosphatidylinositol-4,5-bisphosphonate specific phospholipase c activity and subsequent calcium release in the cells, thus leading to

decreased intracellular calcium levels and a decrease in blood pressure.

- Hemodilution effect of estrogen and increased demand of fetus decreases the serum magnesium level and in preeclampsia urinary excretion of magnesium also increases so the level decreases further.<sup>30</sup>
- 7. Magnesium deficiency causes hemodynamic abnormalities such as arterial wall thickening, abnormal vascular tone and endothelial dysfunction which are due to alteration in the biology of cellular and non-cellular components of arterial wall. There may be a causal relationship between hypomagnesaemia and preeclampsia since magnesium is involved in blood pressure regulation through an intracellular inhibition of NO synthase in endothelial cells.<sup>31</sup>

#### <u>RISK FACATORS</u>

- AGE- risk of preeclampsia/eclampsia is increased at the extremes of reproductive age. 20-29 years, young primipara women. Maternal age over 40 years is associated with double the risk of preeclampsia irrespective of parity.<sup>32</sup>
- PARITY- primigravida have 15 times greater risk compared to multigravida of developing preeclampsia.<sup>33</sup>Although at a lower risk for developing preeclampsia multiparous women often develop severe forms of the disease and are at a higher risk of developing

severe morbidity such as eclampsia, renal failure, and pulmonary edema and hence higher mortality.<sup>34</sup>

- PREVIOUS PREECLAMPSIA- history of preeclampsia in the previous pregnancy is a strong predictor of recurrence of the disease. Risk in a subsequent pregnancy to be increasing by more than 6 times.<sup>35</sup>Early onset preeclampsia run a greater risk of recurrence. It has been observed that there is an increased incidence of preeclampsia with a different partner or donor sperm pregnancy meaning that every first pregnancy with a new partner is at greater risk.
- LONG BIRTH INTERVAL- the risk of preeclampsia in a multipara is found to be directly related to the time elapsed since the last delivery. If the interval between 2 pregnancies was more than 10 years the risk of preeclampsia is equaled the risk in primigravidas.<sup>36</sup>
- GENETIC FACTOR- a positive family history is a known risk factor as it is observed that the daughters of eclamptic women are at eight times higher risk of developing preeclampsia and hence has a genetic predisposition.<sup>37</sup>
- MULTIPLE PREGNANCY- it is a high risk for developing preeclampsia. Risk for preeclampsia is four times in twin pregnancies compared to singletons.<sup>38</sup>It was found that the risk was irrespective of the chorionicity and zygosity.

- ASSISTED REPRODUCTION- has a higher risk of preeclampsia because of the higher incidence of multiple pregnancies. Gamete donation found to increase the risk of preeclampsia. Women who conceived with donor sperm, donor oocytes or donated embryos showed that the rate of preeclampsia was increased to 18.1 percent compared with controls who consisted of women who either conceived spontaneously or with intrauterine insemination with husband's sperm.<sup>39</sup>
- OBESITY-it is an established risk factor by itself.<sup>40</sup>In addition it is one of the components of syndrome X, the other components of this medical disorder being type II diabetes and hypertension. It has been established that the waist circumference in early pregnancy which is a measure of central obesity especially when associated with insulin resistance is directly associated with preeclampsia.<sup>41</sup>
- PRE-EXISTING HYPERTENSION-Incidence of preeclampsia is much higher in women with chronic hypertension. The risk of preeclampsia is related to degree of hypertension. Superimposed preeclampsia is 46 percent in severe hypertension (diastolic of 110 mmHg or more) as against an incidence of 14 percent among those with mild hypertension (diastolic BP 90-119 mmHg).<sup>42</sup>
- DIABETES MELLITUS- risk of preeclampsia is roughly doubled by diabetes. Pre-existing diabetes mellitus are at greater risk than with those having GDM. As in hypertension risk is proportionate to

degree of DM. women with micro vascular complications are at higher risk than those without it.<sup>43</sup>

- DYSLIPIDAEMIA- It has been observed that preeclampsia is \* associated with increased triglyceride synthesis by the liver and decreased catabolism of the same at the periphery leading to elevated triglyceride levels. It is thought that adipocyte lipolysis which is a feature of normal pregnancy that leads to elevated nonesterified fatty acids is exaggerated in women destined to develop preeclampsia. Elevated NEFA concentrations in general, cause dyslipidemia in human causing hypertriglyceridemia. It also oxidative enhances stress. inflammation and endothelial dysfunction. features characteristics of pathogenesis of preeclampsia.<sup>44</sup>Probably women destined to develop preeclampsia possess a preexisting lipolytic defect. Similar situation is seen in individuals with central obesity.
- THROMBOPHILIAwhether hereditary acquired, \*\* or thrombophilia is well-established а high risk factor.<sup>45</sup>Antiphospholipid syndrome characterized by the presence of antibodies like lupus anticoagulant and/or anticardiolipin antibodies in association with clinical history suggestive of thrombosis or adverse pregnancy outcome is a high risk factor for development of preeclampsia. Thrombophilia, there is definite association with early onset preeclampsia.<sup>46</sup>

19

- Smoking is found to be associated with reduced incidence of preeclampsia though otherwise it is associated with a higher perinatal loss.<sup>47</sup>Stress is another important factor that predisposes to the development of preeclampsia.
- Certain placental and fetal factors have a bearing on the occurrence of preeclampsia. A large placenta as is often seen in multiple pregnancy, placental hydrops and molar pregnancy are associated with higher incidence of preeclampsia. Certain chromosomal defects like triploidy, trisomy 13, and trisomy 16 mosaicism are also frequently associated with preeclampsia. All conditions associated with poor placentation have a higher risk of developing preeclampsia.

#### PREDICTORS OF PREECLAMPSIA

Measurement of variety of biological, biochemical, and biophysical markers implicated in the pathophysiology of preeclampsia has been proposed to predict its development. Attempts have been made to identify early markers of faulty placentation, impaired placental perfusion, endothelial cell activation and dysfunction, and activation of coagulation. But unfortunately these testing strategies are with poor sensitivity and with poor positive predictive value for preeclampsia. However, combinations of tests, some yet to be adequately evaluated, that may be promising. Most of the testingare cumbersome and time consuming.

- PROVOCATIVE PRESSOR TESTS- there are three tests extensively evaluated to assess blood pressure increase in response to a stimulus. The "*roll over test*" measures the hypertensive response in women at 28-32 weeks who are resting in the left lateral decubitus position and the "roll-over" to assume a supine position. The *isometric exercise test* employs the same principle by squeezing a handball. The *angiotensin II infusion test* is performed by giving incrementally increasing doses intravenously, and the hypertensive response is quantified. All three tests found to have sensitivities ranging 55-70 percent and specificities approximately 85 percent.<sup>48</sup>
- UTERINE ARTERY DOPPLER VELOCIMETRY- faulty trophoblastic invasion of the spiral arteries. This results in decreased placental blood flow and increased uterine artery impedance in upstream. Increase flow resistance results in an abnormal waveform represented by an increased diastolic notch.
- PULSE WAVE ANALYSIS- finger arterial pulse "stiffness" is an indicator of cardiovascular risk. Investigations have evaluated its usefulness in preeclampsia prediction.<sup>49</sup>
- ENDOCRINE DYSFUNCTION-number of serum analyses that have been proposed to help predict preeclampsia are human chorionic gonadotropin (hCG), alpha-fetoprotein (AFP), estriol,

21

pregnancy associated protein A (PAPP A), Inhibin A, activin A, placental protein 13, corticotrophin releasing hormone.

- SERUM URIC ACID-it is one of the earliest laboratory manifestations of preeclampsia. It is likely results from reduced uric acid clearance from diminished glomerular filtration, increased tubular reabsorption, and decreased secretion. But they have very low sensitivity and specificity.
- Microalbuminuria and urine albumin:creatinine ratio have unacceptable sensitivity and specificity.<sup>50</sup>
- FIBRONECTINS-these high molecular weight glycoproteins serve a variety of cellular functions that include adhesion and morphology, migration, phagocytosis, and hemostasis.<sup>51</sup>Fibronectins are released from endothelial cells and extracellular matrix following endothelial injury. Recent studies concluded that neither cellular nor total fibronectins was clinically useful to predict preeclampsia.<sup>52</sup>
- COAGULATION ACTIVATION- thrombocytopenia and platelet dysfunction are integral features of preeclampsia. Platelet activation causes increased destruction and decreased concentrations. Mean platelet volume increases because of young platelet age. Although markers of coagulation activation are increased, there is a substantiate overlap between normal pregnancies.

- OXIDATIVE STRESS- increased levels of lipid peroxidases coupled with decreased antioxidant activity have raised the possibility that markers of oxidative stress might predict preeclampsia.<sup>53</sup> Malondialdehyde is a marker of lipid peroxidation. Other pro-oxidation markers include iron, transferrin, and ferritin, free fatty acids, triglycerides.<sup>54</sup>
- ANGIOGENIC FACTORS- an imbalance between proangiogenic and antiangiogenic factors is related to the pathogenesis of preeclampsia. Proangiogenic factors like vascular endothelial growth factors, placental growth factors begin to decrease before clinical preeclampsia develops. Antiangiogenic factors like soluble fms-like tyrosine kinase -1, soluble endoglin are increased.<sup>55</sup>
- FREE FETAL DNA-using polymerase chain reaction, free fetal DNA can be detected in maternal plasma. It is hypothesized that free DNA is released by accelerated apoptosis of cytotrophoblast.<sup>56</sup>

## PREVENTION

 LOW SALT DIET- one of the earliest research efforts to prevent preeclampsia was salt restriction.<sup>57</sup> But randomized control trial showed that a sodium restricted diet was ineffective in preventing preeclampsia.<sup>58</sup>

- CALCIUM SUPPLEMENTATION- women with low dietary calcium intake were at significantly increased risk for gestational hypertension. Trials have shown that unless women are calcium deficient, supplementation has no salutary effects.<sup>59</sup>
- FISH OIL SUPPLEMENTATION- the most common dietary sources are eicosapentaenoic acid and alpha-linoleic acid. With proclamations that supplementation with these fatty acids would prevent inflammatory mediated atherogenesis, it was not a quantum leap to posit that they might prevent preeclampsia.<sup>60</sup>
- ANTIHYPERTENSIVE DRUGS- women given diuretics had a decreased incidence of edema and hypertension, but not of preeclampsia. Because women with chronic hypertension are at high risk for preeclampsia, antihypertensive drugs reduce the incidence of superimposed preeclampsia.
- ANTIOXIDANTS- there are inferential data that an imbalance between oxidant and antioxidant activity may have an important role in the pathogenesis of preeclampsia. Vitamin C & E may decrease such oxidation. Moreover, women who developed preeclampsia were found to have reduced plasma levels of these two vitamins.<sup>61</sup>Thus dietary supplementation was propose as a

method to improve the oxidative capability of women at risk for preeclampsia.

- LOW-DOSE ASPIRIN- 50-150 mg daily, aspirin inhibits effectively platelet thromboxane A2 biosynthesis with minimal effects on vascular prostacyclin production.<sup>62</sup>In meta-analysis of 31 randomized trials, for women received antiplatelet agents, relative risk of preeclampsia was decreased significantly by 10 percent for development of preeclampsia, superimposed preeclampsia, preterm devlivery.<sup>63</sup>The number needed to treat was high. Because of marginal benefit, it seems reasonable to individualize use of low-dose aspirin to prevent preeclampsia. Collaborative Low Dose Aspirin Study in Pregnancy (CLASP), a large randomized controlled trial reported a reduction of 12% in preeclampsia.
- LOW-DOSE ASPIRIN PLUS HEPARIN- because of high prevalence of placental thrombotic lesions found with severe preeclampsia, there have been several observational trials to evaluate heparin treatment for affected women. Prophylaxis with low-molecular-weight heparin plus low-dose aspirin on pregnancy outcomes in women with a history of severe early-onset preeclampsia and low-birth weight infants. There were better pregnancy outcomes in women given low-dose aspirin plus low-

molecular-weight heparin compared with those given low-dose aspirin alone.<sup>64</sup>

## **CLINICAL FEATURES OF ECLAMPSIA:**

- Headache persistent occipital or frontal headaches
- Visual disturbance blurred vision and photophobia.

Examination of the optic fundi will show marked retinal edema and in the severe stages haemorrhage, exudates and papilledema may also be present.

- Restless and agitation
- Epigastric and/or right upper quadrant pain
- Nausea and vomiting
- Oliguria
- Laboratory evidence of disseminated intravascular coagulation

### **MATERNAL COMPLICATION:**

- Abruptio placenta is an important complication of hypertension in pregnancy and a massive unheralded bleed can have disastrous consequences.
- Cerebrovascular accident usually intracerebral haemorrhage,
   occasionally ruptured intracranial aneurysm or cerebral
   thrombosis. This may be fatal or the woman may be left with a

residual neurological deficit such as hemiplegia, dysphasia or visual disturbance.

- HELLP syndrome- hemolytic anemia, elevated liver enzymes, low platelets
- o Acute left ventricular failure with pulmonary edema
- Aspiration pneumonia
- o Acute renal failure
- Microangiopathic hemolyticanemia. The patient usually has evidence of severe widespread intravascular coagulation, which may be associated with eclampsia, renal failure, hepatic failure, cerebral thrombosis and circulatory collapse.
- Cardiopulmonary arrest.

## • FETAL COMPLICATIONS

- o Intrauterine death
- Intrauterine growth restriction. It does not appear to be related to the actual level of blood pressure, the duration of hypertension and the presence of proteinuria being more important factors
- Prematurity and its hazards: neonatal death, pulmonary, renal and hepatic dysfunction. Early labour may occur spontaneously, abruption, iatrogenic.
- Antepartum and intrapartum asphyxia is more likely to be due to anoxia associated with poor placental blood flow, maternal

hypoxia induced by eclampsia or excessive therapy with sedatives and anticonvulsants.

- Neonatal encephalopathy a systemic inflammatory response in the fetus, perhaps secondary to oxidative stress, could explain the link between maternal preeclampsia and neonatal encephalopathy, and this may occur through cerebral vasoconstriction.
- Effect of magnesium sulphate- hypermagnesaemia is seen.
   Lethargy, hypotonia, apnoea, respiratory depression, poor sucking reflex, decreased intestinal motility and delayed passage of meconium.

## MANAGEMENT OF ECLAMPSIA:

- In a patient who is convulsing or just had a convulsion, the first priority is to avoid maternal injury and immediate attention to the airways.
- The patient should be nursed in the left lateral position and any secretions or vomitus suctioned to avoid aspiration.
- A padded tongue blade or airway is inserted between the teeth to avoid tongue bite and maintain airway.
- Oxygen should be given by mask at 8-10 L/min to correct maternal and fetal hypoxia, and the oxygen saturation monitored with a transcutaneous pulse oximeter.

- Arterial blood gas analysis is indicated if the oximeter shows a saturation <92%.</li>
- An intravenous access is secured and treatment commenced to prevent recurrent seizures and control blood pressure.
- Once the patient is a little stable and not restless, she should be catheterized with an indwelling catheter and a vaginal examination performed to access the cervical status.

### CONTROL OF SEIZURES:

MAGNESIUM SULPHATE - The drug of choice for the control of seizures in eclampsia is magnesium sulfate.<sup>65</sup>A total loading dose of 14 g is given, 4 g as intravenous infusion (20 ml of 20 % solution) over 15 to 20 minutes and 10 g deep intramuscular, 5 g in each buttock (10 ml of 50 % solution). This is followed by 5 g intramuscularly every 4 hours.

Magnesium toxicity can lead to respiratory paralysis, cardiac conduction defects and cardiac arrest. It is however rare in clinical practice provided the drug is administered with proper monitoring. The suggested therapeutic plasma level of magnesium sulfate for treatment of eclamptic convulsions is 1.8-3.0mmol/L.The first sign of impending toxicity occurs with loss of patellar reflex which corresponds to a plasma level of 3.5-5mmol/L.Therefore, repeat doses should be given only if the patellar reflex is present, respiratory rate is greater than 12 per minute and urine output has been greater than 100 ml in previous 4 hours. Routine

monitoring of serum magnesium levels is not required when these signs are monitored, although it is desirable in women with impaired renal function who are at greater risk of magnesium toxicity. If a patient develops signs of toxicity, magnesium should be immediately discontinued, oxygen should be administered and serum magnesium level obtained.10 ml of 10% calcium gluconate solution should be infused slowly over a period of 3 minutes if magnesium toxicity occurs. Other anticonvulsant drugs and regimens which were used commonly for the treatment of eclamptic convulsions before magnesium sulphate became popular include phenytoin, diazepam and the "lytic cocktail".

### CONTROL OF BLOOD PRESSURE:

Persistent and severe elevation in blood pressure (>= 160/110 mm Hg) should be treated to prevent cerebro-vascular accidents, pulmonary edema and renal failure. The hypertensive crisis is managed by acute-acting anti-hypertensives.

### DELIVERY

The definitive treatment of eclampsia is delivery, irrespective of gestational age. Once the mother is stabilized, the status of the fetus is assessed. Fetal bradycardia lasting for 3 to 5 minutes is common observation during and immediately after an eclamptic seizure and does not necessitate an emergency caesarean delivery. However fetal

bradycardia lasting for 10 minutes necessitates evaluation for uterine hyperstimulation or placental abruption. The gestational age, cervical status, fetal condition and position need to be considered before determining the most appropriate route of delivery. Vaginal delivery is safe option resulting in low maternal mortality rates as long as fetal presentation and status are appropriate and labour progresses in an orderly fashion. Cervical ripening agents can be used to improve the Bishop score. Prolonged inductions should however be avoided.

# **MATERIALS AND METHODS**

### **PATIENTS AND METHODS**

All the patients admitted with eclampsia at the obstetric and gynecological department of Coimbatore Medical College Hospital, Coimbatore between 1<sup>st</sup> of March 2010 to 30<sup>th</sup> of June 2011, who fulfill the inclusion criteria were included as study population.

Forms which captured the required clinical information were used. Such information used included age, parity, booking status, gestational age at presentation, time of onset of fits (antenatal, intrapartum, post natal), blood pressure at time of fits / arrival at the hospital. Biochemical parameters included platelet count, serum magnesium level. Treatment modality employed, mode of delivery, fetal morbidity and mortality, maternal morbidity and mortality were recorded.

### **INCLUSION CRITERIA**

Patients with generalized tonic-clonic convulsions during pregnancy / labour / within 7 days of delivery were included.

### **EXCLUSION CRITERIA**

- Previous history of epilepsy
- Previous history of neurological disorders
- Features suggestive of encephalitis/ meningitis
- Any other secondary causes underlying seizures

### **WORKING DEFINITIONS:**

**ECLAMPSIA** – women with convulsions associated with signs of preeclampsia during pregnancy, labour or within 7 days of delivery, not attributed to other causes of seizures.

**BOOKED PATIENTS** - those who were registered at any health care providers for antenatal care and delivery (PHC/District hospitals/institutions/private hospitals).

**ANTEPARTUM ECLAMPSIA-** seizures occurring in preeclamptic women after 20 weeks of gestation before onset of labour.

**INTRAPARTUM ECLAMPSIA** - seizures occurring in pregnant women during labour.

**POSTPARTUM ECLAMPSIA** - seizures occurring after delivery and within seven days postpartum.

**RECURRENCE OF FITS** – considered when seizure occurs even after starting magnesium sulphate regimen.

**BLOOD PRESSURE** – taken in right arm, left lateral position, first and fifth korotkofff sound was taken as systolic and diastolic blood pressure at the time of admission.

**PLATELET COUNT** – normal range 1,50,000 - 3,00,000 cells/ $\mu$ L. overt thrombocytopenia when platelet count < 1,00,000 cells/ $\mu$ L.

**SERUM MAGNESIUM LEVEL** – sample taken on admission, before starting magnesium sulphate regimen.Normal value 1.8 – 3.0 mg/dl.

**HELLP SYNDROME** – hemolysis (schistocytes in blood smear, bilirubin >1.2 mg/dl), low platelet (<1 lakh) and elevated liver enzymes (AST  $\geq$ 72IU/L, LDH >600 IU/L). All three parameters should be present for a diagnosis of HELLP syndrome.

**PULMONARY EDEMA** – diagnosis is made clinically in a woman with tachypnea, tachycardia, lung signs such as crepitation and with or without fall in saturation, in the absence of other explainable causes.

**CEREBRAL HEMORRHAGE** – diagnosed with CT brain imaging.

**RENAL FAILURE** – decreased urine output of <30 ml/hr for more than 6 hours in spite of fluid challenge if the patient was not susceptible to pulmonary edema, elevated creatinine of >1.2mg/dl.

**STILL BIRTH OR FETAL DEATH** – the absence of signs of life at or after birth.

**EARLY NEONATAL DEATH** – death of a live born neonate during the first 7 days after birth.

**PERINATAL MORTALITY RATE** – the number of stillbirths plus early neonatal deaths per 1000 total births.

**SMALL FOR GESTATION** – below 10<sup>th</sup> percentile of growth for that gestational age using WHO nomogram chart.

**IUGR** – fetus less than 10<sup>th</sup> percentile of growth for that gestational age and with corroborative signs of compromised intrauterine environment such as oligohydramnios or an elevated head-abdomen circumference ratio, clinically loss of subcutaneous fat, loose skin folds, a wasted appearance.

### PROTOCOLS FOR MANAGEMENT OF ECLAMPSIA AT CMCH

- > On admission air ways and intravenous lines secured
- Foley's either inserted into bladder
- Convulsions controlled with intravenous loading dose magnesium sulphate (Pritchard's regimen)
- Further convulsions after initiation of treatment controlled with an intravenous bolus of 2 grams of MgSO<sub>4</sub>
- Hypertension controlled with antihypertensives, alphamethyldopa and nifidipine (through ryles tube if patient unconscious)
- Baseline investigations include complete blood cell count, serum urea, creatinine, liver function test and platelet count, serum electrolytes (including serum magnesium).
- Pregnancy was terminated irrespective of gestational age. Pelvic assessment and Bishop's scoring done. Labour accelerated if patient had spontaneous labour. Induction was given for unfavorableBishop's score. LSCS done for obstetrical indications.

- After delivery, patientskept under close monitoring andMgSO<sub>4</sub>regimen should be continued for 24 hours since last seizure or delivery depending on which occurred last.
- 48 hours after last fit and diastolic BP less than 100 mm Hg patients were shifted out of ICU and monitored in postnatal ward till discharge.
- Mothers were followed up till discharge and all babies referred to the neonatal ward were followed up for 7 days to collect data on perinatal complications, early neonatal deaths and cause of neonatal deaths. Cause of maternal death was selected from the case notes as recorded by the doctor who certified the death. A post-mortem examination was not performed. The admission book was used to check if all admitted cases were included.

# **RESULTS AND ANALYSIS**

### STASTICAL ANALYSIS

All the data were analyzed with SPSS software (version 13.0). Categoricalvariables were compared by Chi square test ( $\chi^2$ ) or Fischer exact test and continuous variables were presented as mean  $\pm$  SD and were compared by student "t" test. A probability value of <0.05 was considered statistically significant.


### **RESULTS AND ANALYSIS**

### **INCIDENCE:**

- ✓ Patients included in the study were those with the diagnosis of eclampsia, admitted in labour ward ICU between first of March 2010 and 30<sup>th</sup> of June 2011.
- ✓ There were total of**8405** deliveries during the study period.
- ✓ 104 eclamptic patients were admitted. This accounts for 124 per 10,000 deliveries
- ✓ Incidence of eclampsia at CMCH during the study period was 1.23%.
- ✓ 101 singleton and 3 twin deliveries.

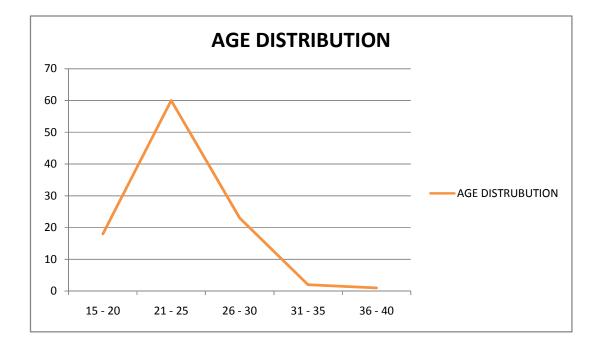
This is shown in the figure: 1

# FIGURE: 1 INCIDENCE OF ECLAMPSIA



# AGE:

Figure: 2show Age Distribution of Eclamptic patients.


The age range from 16 to 38 years.

58% of the patients were between 21 to 25 years, peak incidence occurred in this group.

75% of the patients were less than 25 years.

Teenage pregnancy accounts for 11%.

# **FIGURE: 2 AGE DISTRIBUTION**



# **TABLE: 1 AGE DISTRIBUTION**

| AGE IN YEARS | NUMBERS (n=104) | PERCENTAGE (%) |
|--------------|-----------------|----------------|
| 15 - 20      | 18              | 17%            |
| 21 – 25      | 60              | 58%            |
| 26 - 30      | 23              | 22%            |
| 31 - 35      | 2               | 2%             |
| 36 - 40      | 1               | 1%             |

### **BOOKING STATUS**

| Booked patients with regular antenatal checkup(ANC) | - 68 |
|-----------------------------------------------------|------|
| Booked patients with improper ANC follow up         | - 27 |
| Unbooked patients                                   | - 9  |

Among those patients with intrauterine fetal demise (n=24),only 40% had regular antenatal checkup.

Perinatal complications were considerably high in those with either irregular ANC or unbooked patients constituting 55%.

27% of patients with maternal complications never been had any antenatal visits.

#### **IMMINENT SYMPTOMS BEFORE ECLAMPSIA:**

Among 104 eclamptic patients 80 of them had imminent symptoms before onset of seizures. 11 patients did not have symptoms and 13 patients could not recollect the event before seizures.

**HEADACHE-** The most common symptom prior to eclampsia, predominantly in occipital region.Usually occur at least 6 hours before the onset of seizures. In some it had been for 3 to 4 days. 80 women with eclampsia had headache (77%).

**VOMITING** – it usually follows headache rather than occurring as isolated sign of imminent eclampsia. 22 patients out of eighty women

with symptoms of imminent eclampsia had vomiting along with headache.

**BLURRING OF VISION** – was present in 7 patients. Of which one had retinal detachment in one quadrant and resolved in one week after delivery.

**OLIGURIA** – 3 patients had decreased urine output before occurrence of eclampsia. among them 2 had renal failure.

**EPIGASTRIC PAIN** – one of the patients had epigastric pain as an imminent symptom.

Percentage of women with imminent symptoms has been given in the table: 2.

| IMMINENT SYMPTOMS | PERCENTAGE |
|-------------------|------------|
| HEADACHE          | 77%        |
| VOMITING          | 21%        |
| BLURRED VISION    | 7%         |
| OLIGURIA          | 3%         |
| EPIGASTRIC PAIN   | 0.96%      |

# TABLE : 2 IMMINENT SYMPTOMS OF ECLAMPSIA

### **CLINICAL FINDINGS AT PRESENTATION**

Clinical findings at the time on arrival at the hospital are listed in table: 3.

The majority of the patients had seizures several times before arrival at the hospital and only 34 (32.6%) of the patients arrived in the hospital within six hours of onset of convulsions. 12 patients had  $\geq 5$  seizures episodes, of which seven patients had been referred from places other than Coimbatore district. These patients had either no loading dose of magnesium sulphate or improper loading dose before referring. Two patients had native treatment in the form of heat application on forehead.

Ninety one patients had pedal edema (87.5%). Two patients had anemia (1.2%).

Totally 98 patients were in postictal drowsiness or confusion on admission (94.2%).

Ninety five patients had proteinuria on admission (91.3%).

| SIGNS                                               | NO OF PATIENTS<br>(Total patients<br>n=104) | PERCENTAGE |
|-----------------------------------------------------|---------------------------------------------|------------|
| Seizures ≥5 episodes                                | 12                                          | 11.5%      |
| Pedal edema                                         | 91                                          | 87.5%      |
| Post ictal drowsiness/<br>confusion at<br>admission | 98                                          | 94.2%      |
| Anemia                                              | 2                                           | 1.9%       |
| Proteinuria                                         | 95                                          | 91.3%      |

# **TABLE : 3 CLINICAL FINDINGS**

# PARITY:

As mentioned in all studies, most of them were primigravida. This accounted for 76%, whereas multigravida- 24%.

Parity distribution is illustrated in table: 4 as follows.

Among the multipara (n= 25) 15 had previous history of gestational hypertension /preeclampsia.

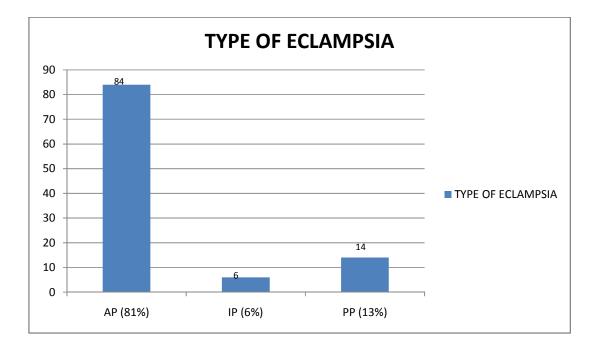
One had recurrence of eclampsia and 1 had chronic hypertension. One patient had history of second marriage where previous pregnancy was uneventful.

# **TABLE : 4 PARITY**

| PARITY         | NUMBER (n=104) | PERCENTAGE |
|----------------|----------------|------------|
| PRIMIGRAVIDA   | 79             | 76%        |
| G2P1           | 16             | 15%        |
| G3P2           | 5              | 5%         |
| G4P3 and above | 4              | 4%         |

# **TYPE OF ECLAMPSIA:**

Classification of eclampsia is based on onset of fit relative to delivery.


Antepartum Eclampsia contributed 81% (n = 84) of total cases.

While 6 (6%) had intrapartum and 14(13%) in postpartum period.

In this study none had seizures beyond 48 hours of delivery irrespective of mode of delivery.

Classification of eclampsia by onset of fits has been depicted in figure: 3.

### FIGURE: 3 TYPE OF ECLAMPSIA



### **BLOOD PRESSURE:**

Twenty patients had diastolic blood pressure >110 mm Hg on admission.

Nine patients had systolic blood pressure of more than or equal to 180 mm Hg.

Average diastolic pressure  $103.38 \pm 12.74$  mm Hg

Systolic pressure on an average  $156.25 \pm 15.71$  mm Hg

Three patients were normotensive on admission.

The diastolic pressure as a continuous variability has been put up in table: 5.

### **TABLE: 5 DIASTOLIC BLOOD PRESSURE AT THE TIME**

### **OF ADMISSION.**

| BP in mm Hg | NUMBER (104) | PERCENTAGE |
|-------------|--------------|------------|
| ≤90         | 8            | 7.69%      |
| 91 - 100    | 27           | 25.96%     |
| 101 - 110   | 49           | 47.11%     |
| 111 – 120   | 18           | 17.30%     |
| 121 – 130   | 2            | 1.91%      |

# **TABLE: 6 SYSTOLIC BLOOD PRESSURE AT THE TIME**

# **OF ADMISSION**

| BP in mm Hg | NUMBER (104) | PERCENTAGE |
|-------------|--------------|------------|
| ≤ 140       | 18           | 17.30%     |
| 141 – 150   | 25           | 24.03%     |
| 151 – 160   | 24           | 23.07%     |
| 161 – 170   | 18           | 17.30%     |
| 171 – 180   | 15           | 14.42%     |
| ≥181        | 4            | 3.84%      |

### **GESTATIONAL AGE:**

Onset of eclampsia less than 24 weeks of gestation was found in three patients, of which one known to have chronic hypertension.

Eighteen (17%) patients had eclampsia at term, gestational age  $\geq$ 37 weeks.

Gestational age at admission was more than 32 weeks in 75 (73%) patients.

Fifty patients had disparity in their gestational age and their clinical examination.

Gestational age of the patients on admission in weeks has been put up in table: 7.

| GESTATIONAL<br>AGE IN WEEKS | NUMBER(104) | PERCENTAGE |
|-----------------------------|-------------|------------|
| <24                         | 3           | 3%         |
| 25-32                       | 26          | 25%        |
| 33-36                       | 57          | 55%        |
| ≥37                         | 18          | 17%        |

**TABLE :7 GESTATIONAL AGE DISTRIBUTION** 

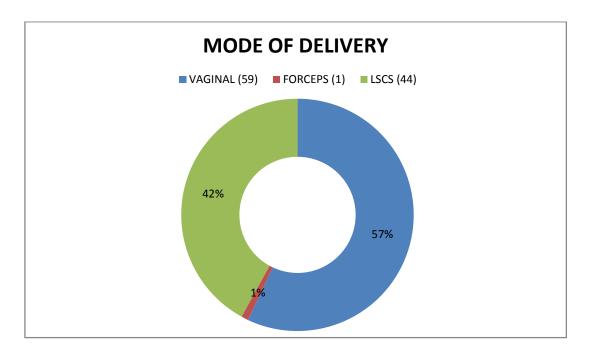

### **MODE OF DELIVERY:**

Figure: 4 project the mode of delivery in eclampsia patients.

Fifty Nine (57%) had successful vaginal delivery.

Forty four (42%) patients had Lower Segment Caesarian Section.

Indications included were failed induction (10), unfavorable cervix (16), and fetal distress (18).



### **FIGURE: 4 MODE OF DELIVERY**

# DEMOGRAPHIC CHARACTERISTICS – IN RELATION TO TYPES OF ECALMPSIA:

The demographic analysis of the study population in relation to types of eclampsia would be useful in comparing the outcome and to derive the recommendations at various level of health care providing system.

Age group distribution and occurrence of eclampsia types on analysis showed not much of significance in antepartum eclampsia. 82%(64) of women  $\leq 25$  years and 76%(20) of women  $\geq 25$  years had antepartum eclampsia. 78% (11) of postpartum eclampsia had women  $\leq$ 25 years.

Twenty one multipara (84%) had antepartum eclampsia against 79%(63) of primigravida had antepartum eclampsia.

Systolic blood pressure more than 160 mmHg were 37 in numbers, of which 33 had antepartum eclampsia. These features are shown in table: 8.

# TABLE: 8 DEMOGRAPHIC CHARACTERISTICS – TYPE OF ECLAMPSIA

| CHACTERISTICS               | ANTEPARTUM | INTRAPARTUM | POSTPARTUM |
|-----------------------------|------------|-------------|------------|
| Age ≤25 (n=78)              | 64         | 3           | 11         |
| Age >25 (n=26)              | 20         | 3           | 3          |
| Diastolic BP >110<br>(n=20) | 19         | 1           | NIL        |
| Systolic BP>160<br>(n=37)   | 33         | 1           | 3          |
| Primigravida (n=79)         | 63         | 3           | 13         |
| Multigravida (n=25)         | 21         | 3           | 1          |

### **PLATELETS:**

Fifty nine patients had thrombocytopenia, of which 30 patients had overt thrombocytopenia (<1 lakh). 45 patients had normal platelet count. Platelet count in eclamptic patients has been shown in table: 9.

### TABLE:9 PLATELET COUNT IN ECLAMPSIA.

| PLATELET COUNT    | NUMBERS (104) | PERCENTAGE |
|-------------------|---------------|------------|
| < 50,000          | 3             | 3%         |
| 50,000-1,00,000   | 27            | 26%        |
| 1,00,000-1,50,000 | 29            | 28%        |
| >1,50,000         | 45            | 43%        |

### **SERUM MAGNESIUM LEVEL:**

Serum magnesium level was measured in all eclamptic patients on admission.

The mean value of serum magnesium in eclamptic women studied was  $1.74 \pm 0.28$  (mean  $\pm$  SD). This was significantly lower than the normal value of 1.8 - 3.0 mg/dl, (p < 0.05).

Those with maternal complications the serum magnesium levels were  $1.41 \pm 0.15$ . This was statistically significant of p <0.001 (t value- 10.25).

Patients without complications of eclampsia had magnesium level of 1.84  $\pm 0.16$ .

Magnesium level in those who had recurrence of seizures (47.6%) is 1.60  $\pm 0.12$ .

Serum magnesium level associated with and without complications is shown in table: 10.

# TABLE: 10 SERUM MAGNESIUM LEVEL

| Normal magnesium level            | 1.8 – 3.0 mg/dl               |
|-----------------------------------|-------------------------------|
| Average of total patients (n=104) | $1.74 \pm 0.28 \text{ mg/dl}$ |
| With complications (n=18)         | $1.41 \pm 0.15$ mg/dl         |
| Without complications (n=86)      | $1.84 \pm 0.16$ mg/dl         |
| Recurrence of seizures (n=49)     | $1.60 \pm 0.12 \text{ mg/dl}$ |

# **FETAL OUTCOME:**

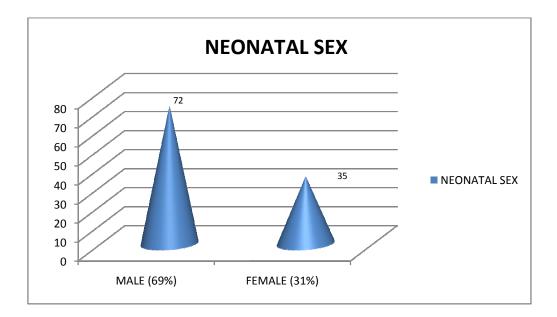
### **BIRTH WEIGHT:**

Birth weight of all neonates irrespective of outcome was recorded. This is shown in table: 11.

Sixty One neonates were with birth weight  $\leq 2$ kg.

Only 17 were above 2.5Kg birth weight.

One hundred and one(101) singleton and 3 twins were delivered, total of

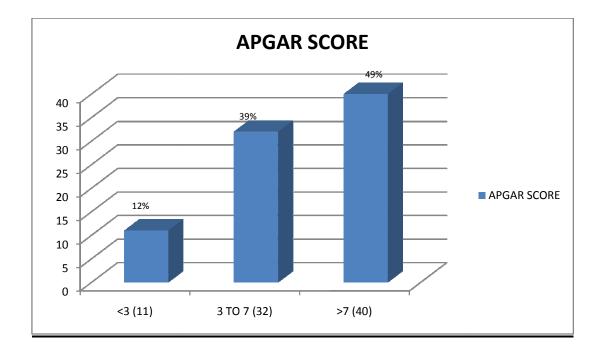

107 babies. Three deliveries were less than 24 weeks of gestation.

| BIRTH WEIGHT IN | NUMBER  | PERCENTAGE |
|-----------------|---------|------------|
| Kg              | (n=107) |            |
| ≤1.0            | 9       | 8.41%      |
| 1.1 – 1.5       | 14      | 13.08%     |
| 1.6 - 2.0       | 38      | 35.51%     |
| 2.1 - 2.5       | 29      | 27.10%     |
| 2.6 - 3.0       | 17      | 15.88%     |

# **TABLE: 11 BIRTH WEIGHT**

# SEX:

As mentioned in review of literature, in this study also male sex preponderance is seen. Male baby -72 (69%), female baby -35 (31%). This is shown in following figure: 5.




# **FIGURE: 5 NEONATALSEXES**

### **PERINATAL MORBIDITY:**

There were 83 live births among 104 eclampsia patients.Neonatal wellbeing was assessed by Apgar score at 5min.40 (49%) babies had Apgar of  $\geq$ 7 at five minutes.11 (12%) babies had score of <3. There were 41 NICU admissions among live births.

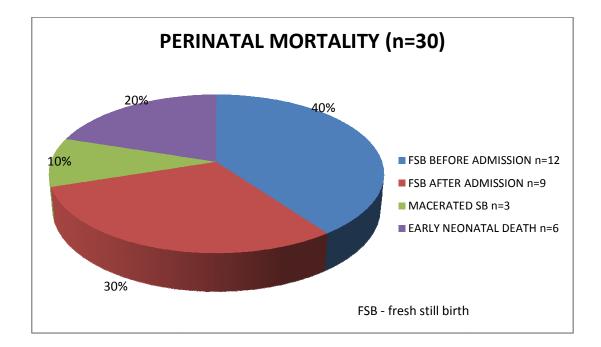
Thirty Nine(39) of 83 live births were small for gestation. 16 small for gestation babies were admitted in NICU.8 were preterm babies, including 3 twins. 16 babies had respiratory distress, which was settled in 24 -48 hrs.11 had jaundice, required phototherapy.6 neonates had seizures during NICU admission due to hypoxia.2 had sepsis.6 neonatal deaths were recorded.Apgar score at 5 minutes is shown in figure: 6.



### FIGURE: 6 APGAR SCORE AT 5 MINUTES

Table: 12 show the perinatal morbidity in 80 live births.

| PERINATAL MORBIDITY  | NUMBER (n=83) | PERCENTAGE |
|----------------------|---------------|------------|
| NICU admissions      | 41            | 49.39%     |
| Small for gestation  | 39            | 46.98%     |
| Preterm              | 8             | 9.63%      |
| Jaundice             | 11            | 13.25%     |
| Seizures             | 6             | 7.22%      |
| Respiratory distress | 16            | 19.27%     |
| Sepsis               | 2             | 2.40%      |


### **TABLE: 12 PERINATAL MORBIDITY**

### **PERINATAL MORTALITY:**

There were 431 perinatal deaths during the study period, 30 were due to eclampsia constituting 6.96%. There were 24 still births, of which 12 were before admission and 9 after admission. 3 were macerated still birth.Six neonatal deaths were registered; all were less than 48 hrs.of admission in NICU.

Perinatal mortality rate to eclampsia was **3.56/1000** live births.Perinatal mortality was figured out in figure: 7.

### FIGURE: 7 PERINATAL MORTALITY



# **SMALL FOR GESTATION:**

Thirty nine (39) of 107 babies (36.4%) were small for gestation.

As maternal age increases number of small babies were also increased.53% of babies born to mothers of age more than 25 were small for gestation.(P<0.05)

Longer the duration of preeclampsia as marked by proteinuria more than 4 weeks increased babies with small for gestation. 62% patients with proteinuria more than 4 weeks had small for gestation. (P<0.01)

Earlier the onset of preeclampsia higher the rate of small for gestation. 30 patients among small for gestation group had onset of preeclampsia between 28-30 weeks of gestation.(P<0.01)

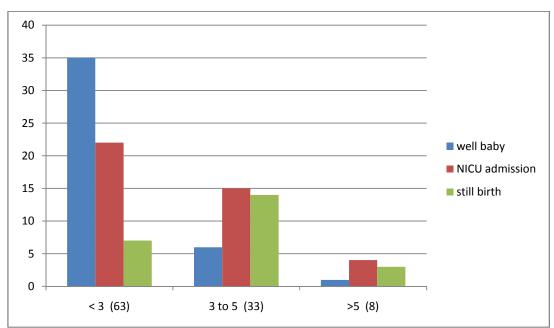
Maternal comorbid conditions like chronic hypertension, anemia, twin pregnancy were associated with increase in small for gestation babies. Out of 26 small for gestation 21 babies were IUGR.

 TABLE: 13 RISK FACTORS FOR SMALL FOR GESTATION IN

 ECLAMPSIA

| Risk factors                                       | Small for<br>gestation<br>(n=39) | Appropriate for<br>gestation<br>(n = 68) | P<br>value |
|----------------------------------------------------|----------------------------------|------------------------------------------|------------|
| Age > 25<br>(n = 26)                               | 14                               | 12                                       | < 0.05     |
| Onset of<br>preeclampsia<br>< 28 weeks<br>(n = 29) | 19                               | 10                                       | <0.01      |
| Proteinuria > 4<br>weeks<br>(n = 57)               | 35                               | 22                                       | <0.01      |
| Maternal<br>comorbidity<br>(n = 16)                | 12                               | 4                                        | <0.01      |

### **NUMBER OF SEIZURES AND PERINATAL OUTCOME:**


As number of seizures increased, it had impact on perinatal outcome. Total number of babies 107.63 patients had seizures less than 3. Of which 35 (54%) were well babies, 7 (11%) were stillbirth, 22 (33%) had NICU admissions.8 patients had seizures more than five episodes. Only 12% (1) was well baby, 50% (4) had NICU admissions, 38% (3) of

babies were still birth. The impact of the repeated seizures on perinatal outcome is shown in table: 14.

| NO OF<br>SEIZURES | NO OF<br>PATIENTS<br>(n=104) | WELL<br>BABY<br>(n=42) | NICU<br>ADMISSION<br>(N=41) | STILL<br>BIRTH<br>(n=24) |
|-------------------|------------------------------|------------------------|-----------------------------|--------------------------|
| < 3               | 63                           | 35<br>(54%)            | 22 (33%)                    | 7 (11%)                  |
| 3 - 5             | 33                           | 6 (16%)                | 15 (42%)                    | 14<br>(42%)              |
| >5                | 8                            | 1 (12%)                | 4 (50%)                     | 3 (38%)                  |

# TABLE: 14NUMBER OF SEIZURES AND PERINATALOUTCOME





### **RISK FACTORS FOR PERINATAL MORTALITY:**

Twenty two of 78 women with age less than 25 years had perinatal mortality which includes 18 still births and 4 early neonatal deaths.10 of 13 multipara women (79.92%) had 7 still births and 3 neonatal deaths.

Nearly 50% of those women with either irregular ANC or unbooked had perinatal mortality.Gestational age at eclampsia also had impact. 15 perinatal mortalities occured among 29 women with gestational age less than 32 weeks.These parameters has been put in table: 15.

| Risk factors                    | Total<br>(n) | Perinatal<br>mortality(n=30) | Percentage | P<br>value |
|---------------------------------|--------------|------------------------------|------------|------------|
| Age $\leq 25$                   | 78           | 22                           | 28.20 %    | < 0.05     |
| Multiparity                     | 13           | 10                           | 79.92 %    | <<br>0.001 |
| Irregular ANC/<br>Unbooked      | 36           | 18                           | 50.00 %    | < 0.01     |
| Gestational age $\leq 32$ weeks | 29           | 15                           | 51.72 %    | < 0.01     |
| Seizures > 5<br>episodes        | 8            | 3                            | 38%        | < 0.05     |
| AP eclampsia                    | 84           | 23                           | 27.38%     | < 0.05     |

#### **TABLE: 15 RISK FACTORS FOR PERINATAL MORTALITY**

# **MATERNAL COMPLICATIONS**

Major complications of mothers with eclampsia were recorded.

Top on the list was postpartum hemorrhage (6), in spite of active management of third stage of labour. There were four (4) HELLP syndrome.Two (2) patients had renal failure, both required hemodialysis. Two patients had abruptio placenta. One (1) patient had aspiration during fits before admitting to hospital.One (1) had intracerebral hemorrhage, with admitting BP of 178/116 mm of Hg. Two patients had pulmonary edema.

Maternal complications are listed in table: 16

| MATERNAL                 | NUMBER | PERCENTAGE |  |
|--------------------------|--------|------------|--|
| COMPLICATIONS            | (n=18) | (%)        |  |
| Post PartumHemmorhage    | 6      | 5.76       |  |
| HELLP syndrome           | 4      | 3.84       |  |
| Renal failure            | 2      | 1.92       |  |
| Abruptio placenta        | 2      | 1.92       |  |
| Aspiration               | 1      | 0.96       |  |
| Intracerebral hemorrhage | 1      | 0.96       |  |
| Pulmonary edema          | 2      | 1.92       |  |

**TABLE: 16 MATERNAL COMPLICATIONS** 

### **MARTERNAL MORTALITY:**

Total number of maternal deaths during the study period was 38. Maternal deaths due to eclampsia were four (4).10.5% of total maternal deaths were due to eclampsia.3.84% maternal mortality was seen in 104 eclampsia patients during study period.25% was due to neurological cause and 50% was due to HELLP syndrome, 25% was due to pulmonary edema.Cause of maternal mortality is shown in table: 17.

| CAUSES                    | NUMBER (n=4) | PERCENTAGE |
|---------------------------|--------------|------------|
| HELLP syndrome-DIC        | 2            | 50%        |
| Intra cerebral hemorrhage | 1            | 25%        |
| Pulmonary edema           | 1            | 25%        |

#### TABLE: 17 MATERNAL MORTALITY – CAUSES

### **<u>RISK FACTORS ANALYSIS OF MATERNAL OUTCOME:</u>**

Age less than 25 – among 26 eclampsia patients 16 were associated with maternal complications. This constituted 61.5% (p < 0.001) of total women less than 25 years.

Primigravida as already proven, has strong correlation with eclampsia but only 12 of 91 primigravida had complications. This did not have statistical significance.

On the other hand multigravida had higher proportion of maternal complications. 6 out of 13 multigravida patients had maternal complications, contributing 46.15% with p value <0.01.

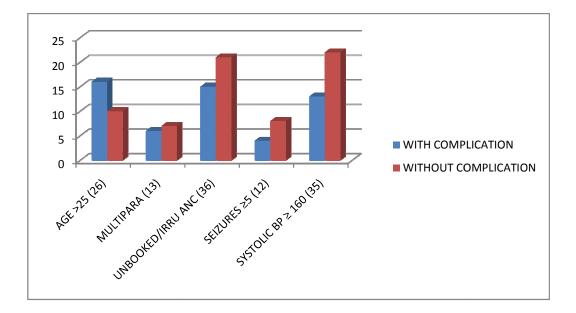
Unbooked and patients with irregular antenatal checkup had more maternal complications. Recurrence of seizures  $\geq 5$  episodes had higher complications than with less than five episodes (33.33% Vs 15.21% p<0.01).

Admission systolic blood pressure more than 160 mm Hg had significance in maternal complications. 13 among 35 patients with systolic blood pressure >160 mm Hg had complications, contributing 37.14%.

On the other side even with diastolic blood pressure of >110 mm Hg did not have significant impact on maternal complications. (4 of 20 patients, 20.06%).

Influence of various factors over maternal complications is enlisted in table: 18

# **TABLE: 18 RISKFACTORS FOR MATERNAL**


# **COMPLICATIONS**

| RISKFACTORS                                       | MATERNAL<br>COMPLICATIONS | PERCENTAGE | P<br>VALUE      |
|---------------------------------------------------|---------------------------|------------|-----------------|
| Age > 25 (n=26)                                   | 16                        | 61.5%      | < 0.001         |
| Multipara (n=13)                                  | 6                         | 46.15%     | < 0.01          |
| Primipara (n=91)                                  | 12                        | 13.18%     | NS <sup>*</sup> |
| Unbooked/<br>Irregular ANC<br>(n=36)              | 15                        | 41.66%     | <0.01           |
| Recurrence of<br>Seizure ≥5 (n=12)                | 4                         | 33.33%     | <0.01           |
| Systolic BP<br>$\geq 160 \text{ mm hg}$<br>(n=35) | 13                        | 37.14%     | <0.01           |
| Diastolic BP<br>> 110 mm hg<br>(n=20)             | 4                         | 20.06%     | NS*             |

\*NS-NOT SIGNIFICANT

### **FIGURE: 9 RISKFACTORS FOR MATERNAL**

### **COMPLICATIONS**



### PLATELET COUNT AND MATERNAL COMPLICATIONS:

Platelet count had impact on maternal outcome in eclampsia.14 of 30 women with platelet count less than 1,00,000 had maternal complications. Constituting 46.66%, p value <0.01.Only 2 of 45 women with platelet count more than 1,50,000 had complications.This is shown in table: 19.

| PLATELET<br>COUNT     | TOTAL<br>(n=104) | NO OF<br>MATERNAL<br>COMPLICATIONS<br>(n=18) | PERCENTAGE<br>(%) | P<br>VALUE |
|-----------------------|------------------|----------------------------------------------|-------------------|------------|
| < 1,00,000            | 30               | 14                                           | 46.66%            | < 0.01     |
| 1,00,000-<br>1,50,000 | 29               | 2                                            | 6.89%             | < 0.01     |
| > 1,50,000            | 45               | 2                                            | 4.44%             | < 0.01     |

**TABLE: 19 PLATELET AND MATERNAL COMPLICATIONS** 

# <u>SERUM MAGENESIUM LEVEL AND MATERNAL</u> <u>COMPLICATIONS:</u>

Normal serum magnesium level as already mention is taken as 1.8 - 3 mg/dl.Lower the magnesium level more the maternal complications.13 of 30 (43.33%) women with serum magnesium level 1.00-1.59 mg/dl had complications, with p value less than 0.01. But only 3 of 63 of women with serum magnesium level 1.60-2.09 mg/dl had complications.When magnesium level was 2.10 - 2.50 mg/dl two patients had renal failure hence elevated serum magnesium due to impaired excretion. The relation with serum magnesium level is shown in table: 20.

| SERUM                | TOTAL          | MATERNAL<br>COMPLICATIONS |                   |            | _          |
|----------------------|----------------|---------------------------|-------------------|------------|------------|
| MAGNESIUM<br>(mg/dl) | TOTAL<br>n=104 | WITH<br>(n=18)            | WITHOUT<br>(n=96) | PERCENTAGE | P<br>VALUE |
| 1.00 - 1.59          | 30             | 13                        | 27                | 43.33%     | < 0.01     |
| 1.60 - 2.09          | 63             | 3                         | 60                | 4.76%      | < 0.01     |
| 2.10 - 2.50          | 11             | 2                         | 9                 | 18.18%     | < 0.05     |

 TABLE: 20
 SERUM MAGNESIUM AND MATERNAL

 COMPLICATIONS

# <u>TYPE OF ECLAMPSIA –PERINATAL ANDMATERNAL</u> <u>OUTCOME:</u>

Most common type was antepartum eclampsia, contributing 81% of total eclampsia patients. Among 24 still births 23 occurred in antepartum eclampsia and 1 in postpartum eclampsia (95.83% vs 4.16%). 34 of 41 NICU admissions were due antepartum eclampsia compared to 3 and 4 admissions in intrapartum and postpartum eclampsia respectively . But intrapartum eclampsia had higher proportion of NICU admissions than antepartum and postpartum eclampsia (50.00% vs 40.47% and 28.57%). 82.92% of NICU admissions were from antepartum group. There were no maternal mortality or morbidity in intrapartum eclampsia group. All four maternal mortality were in antepartum eclampsia and 2 in postpartum eclampsia group (19.04% vs 14.28%). 88.88% of maternal complications occurred in antepartum eclampsia. The above data is shown in following table: 21.

|                                 | ANTEPARTUM |        |     | PARTU<br>M | POSTPARTUM |        |  |
|---------------------------------|------------|--------|-----|------------|------------|--------|--|
| Stillbirth(n=24)                | 23         | 95.83% | NIL | NIL        | 1          | 4.16%  |  |
| Nicu admissions(n=41)           | 34         | 82.92% | 3   | 7.31<br>%  | 4          | 9.75%  |  |
| Maternal<br>complications(n=18) | 16         | 88.88% | NIL | NIL        | 2          | 11.11% |  |
| Maternal mortality(n=4)         | 4          | 100%   | NIL | NIL        | NIL        | NIL    |  |

 TABLE: 21 TYPE OF ECLAMPSIA – PERINATAL AND

 MATERNAL OUTCOME

## DISCUSSION

#### **Incidence of eclampsia:**

In our study over a period of 16 months 104 patients of eclampsia had been studied, with the incidence of 1.24%. Incidence in India varies between 0.5% and 1.8% <sup>66</sup>. This incidence is similar to other African countries,  $1.32\%^{67}$ . But still far behind the developed countries whose incidence is 8.4/10,000 deliveries<sup>68</sup>.

#### **Clinical profile:**

Eclampsia occurred in both extremes of age group in reproductive women. In our studyage group between 21 and 25 years constitute the maximum percentage of eclampsia(58%) similar to other studies<sup>69</sup>.

The incidence of eclampsia is higher than figures from developed countries where there is better compliance with antenatal clinic attendances and easier access to specialist care, this is further demonstrated by the finding that only 65.38% of eclampsia patients had regular antenatal attendances in our study.

The significant difference observed in the incidence of eclampsia amongst the very young and the primigravida (76%) compared to multigravida is in keeping with the findings of other studies<sup>70</sup>.

Antepartum eclampsia accounted for the majority (81%) of the cases in our study. This was the finding in some earlier works<sup>71</sup>. But

study from UK showed relatively higher proportion of post partum eclampsia  $(44\%)^{72}$  which was explained due to better antenatal care.

The need for vigilance and close monitoring of patients in the immediate postpartum period especially those with features of preeclampsia is highlighted by the fact that 88% of first convulsions in postpartum period occurred within 12 hours of delivery<sup>73</sup>.

Premonitory imminent symptoms were present in variable duration before seizures. 80 patients had imminent symptoms. Most common was headache, which was there in all patients who had imminent symptoms.

Regarding gestational age maximum distribution was between 32 - 37 weeks (57%), comparable to other studies<sup>74</sup>. 17% of women presented at term,  $\geq 37$  weeks.

Overt Thrombocytopenia (< 1 lakh) seen in 29% eclamptic women in our study

Serum magnesium levels of eclamptic patients were significantly lower than normal value  $(1.74 \pm 0.28 \text{ mg/dl vs } 1.8 - 3.0).$ 

Although the definitive management of eclampsia is delivery of the fetus and placenta as early as possible but as the eclampsia patient goes into labour quickly most of the patients delivered vaginally (57% vs 42% LSCS) consistent with other study from Pakistan<sup>74</sup>. Demographic picture is compared in table: 22 with study from Orrisa<sup>75</sup> and Canada<sup>76</sup>.

| CHARACTERS   | OUR<br>STUDY -<br>2011 | Singh S et al<br>(ORRISA-2011) | CANADIAN<br>STUDY -2011 |
|--------------|------------------------|--------------------------------|-------------------------|
| Incidence    | 124/10000              | 320/10000                      | 8.4/1000                |
| Unbooked     | 28.84%                 | 97.4%                          | -                       |
| Age <25      | 69%                    | 46%                            | 30.5%                   |
| AP eclampsia | 81%                    | 81.64%                         | 70%                     |
| Primiparity  | 76%                    | 73%                            | 54.96%                  |

#### **TABLE: 22 DEMOGRAPHIC COMPARISION**

#### Perinatal morbidity and mortality:

Perinatal mortality in our study is 3.56/1000 total births.6.96% of perinatal deaths were due to eclampsia. This is comparable to studies from India (30 - 40 %)<sup>77</sup> and neighbor countries like Nepal and Bangladesh<sup>78</sup>.

Antepartum eclampsia was strongly associated with preterm eclampsia and hence is also associated with increased risk of perinatal complications and small for gestation.

As the number of fits increased rate of NICU admission increased. 50% NICU admissions and 38% mortality when number of seizures were more than 5. Age  $\leq 25$  years, early onset preeclampsia, proteinuria more than four weeks duration and maternal comorbidity were significantly associated with small for gestation (p <0.01).

Perinatal mortality was significantly associated with multiparity (79.92% vs 20.08% p < 0.001).

Unbooked and patients with defaulting ANC care had 50% perinatal mortality (p<0.01).

Gestational age less than 32 weeks had higher perinatal mortality (p<0.01). This is due an obvious reason of prematurity.

Perinatal complications included NICU admissions, prematurity, birth asphyxia, seizures, respiratory distress, IUGR and sepsis.

Late arrival of patients after onset of fits and recurrence result in severe intrauterine hypoxia and intrauterine death. Eclampsia occurring preterm necessitates preterm delivery. Available neonatal care facilities also determine the perinatal outcome.

Basic characteristics and perinatal outcome is compared between Indian study from Karnataka<sup>79</sup> and Canadian study<sup>76</sup> in table: 23.

#### **TABLE: 23PERINATAL OUTCOME COMPARISION**

|                    | OUR<br>STUDY -<br>2011 | RAJSRI et al –<br>(KARNATAKA<br>2011) <sup>79</sup> | CANADIAN<br>STUDY –<br>(2011) <sup>76</sup> |
|--------------------|------------------------|-----------------------------------------------------|---------------------------------------------|
| NICU<br>admissions | 51.25%                 | 47.88%                                              | 24.5%                                       |
| SGA*               | 37.5%                  | -                                                   | 20.6%                                       |
| Seizure            | 7.5%                   | 10%                                                 | 0.3%                                        |
| RDS <sup>†</sup>   | 20%                    | 13%                                                 | 0.7%                                        |
| Sepsis             | 2.5%                   | 4%                                                  | 0.24%                                       |
| Jaundice           | 13.5%                  | 22%                                                 | -                                           |
| Stillbirths        | 23%                    | 20%                                                 | 0.18%                                       |
| Preterm            | 10%                    | 31%                                                 | 17%                                         |
| Perinatal<br>death | 3.56/1000              | 3.50/1000                                           | -                                           |

\*SGA – small for gestation.

*†*RDS – respiratory distress syndrome.

#### Maternal outcome:

In our study 17.30% (n=18) of eclampsia patients had complications.

Eclampsia continues to be associated with significant maternal morbidity and mortality.

Leading cause of maternal complications in our study was postpartum hemorrhage(33% of complications contributed by PPH) similar to other study<sup>74</sup>. But in some studies pulmonary causes were leading morbidity,Renal failure, abruption, HELLP syndrome, rupture uterus, aspiration, intracerebral hemorrhage were the other causes of mortality.

As in other studies patient who suffered intracranial hemorrhage did not survive.

When age and parity increased the outcome of eclamptic mothers was bad.

Thirty six (n=36) 41.6% of unbooked and patients with irregular ANC had complications.

Twenty nine, n= 29 (28%) women had blood pressure more than or equal to 160/110 mmHg at admission. This group of patients developed most complications<sup>80</sup>.

There were 4 maternal deaths during our study period. Constituting 3.8% of case fatality rate and contributing to 10.5% of total maternal deaths during the same period in our institution.

Maternal deaths were high among those who experienced antepartum eclampsia compared to those who had intrapartum or postpartum eclampsia. This could be partly explained by the relatively longer duration or possibly repeated episodes of convulsions from the onset of the first fit that often increases the mortality. Maternal outcome is compared in table: 24. This is done with an Indian<sup>75</sup> and Nigerian study<sup>81</sup>.

|                             | OUR<br>STUDY -<br>2011 | Singh S et al<br>(ORRISA-2011) | NIGERIAN<br>STUDY -2010 |
|-----------------------------|------------------------|--------------------------------|-------------------------|
| Case fatality rate          | 3.8%                   | 4.4%                           | 8.5%                    |
| Maternal<br>mortality ratio | 8%                     | 10.44%                         | 12%                     |
| Maternal complications      | 17.3%                  | 26.58%                         | 30%                     |
| Pulmonary<br>edema          | 25%                    | 71%                            | -                       |
| Acute renal failure         | NIL                    | 14.2%                          | -                       |
| Cerebral cause              | 25%                    | 14.2%                          | -                       |
| Hellp-DIC                   | 50%                    | NIL                            | -                       |

#### **TABLE: 24 COMPARISION OF MATERNAL OUTCOME.**

Last four rows indicate causes for maternal deaths.

#### Platelet and serum magnesium in maternal outcome:

Thrombocytopenia is associated with preeclampsia and eclampsia. As the platelet count dropped below 1 lakh (overt thrombocytopenia) the maternal complications increased. 46.66% had maternal complications compared to platelets more than 1,50,000 were only 2 of 45 patients had complications<sup>81</sup>.

Serum magnesium is low during pregnancy but reduces further during preeclampsia<sup>82</sup>. In our study the serum magnesium level was significantly low1.74  $\pm$  0.28 mg/dl (p<0.01).

Furthermore low level of magnesium was found in patients with maternal complications than without complications  $(1.41 \pm 0.15 \text{ vs } 1.84 \pm 0.16 \text{ p} \text{ value } <0.001)$ .But 18.18%(n=11)patients(including 2 patients with renal failure) had magnesium values between 2.10 - 2.50mg/dl which may be due to renal dysfunction as explained by ShaliniM et al.,<sup>83</sup>.

## CONCLUSION

- To reduce the incidence and complications of eclampsia, there is dire need to improve antenatal care at community level. This includes booking of all antenatal mothers, identify the high risk mothers and ensureproper antenatal care with regular BP monitoring, which will result in early diagnosis of gestational hypertension. Health care providers and pregnant women with high BP should be sensitized for the imminent symptoms and early referral if it is present.
- Multiparity is associated with adverse maternal and perinatal outcome hence it advisable to limit the family size.
- Eclamptic patients should be given full loading dose before referring them to tertiary care to avoid recurrence of seizures and its hypoxic injury to both mother and fetus.
- Vigilant postpartum care is required since postpartum eclampsia is common in first 12 hours of delivery and PPH is the most common maternal complication.
- Early diagnosis and treatment of preeclampsia, appropriate measures to prevent recurrence of seizures and prompt referral to centre with newborn care facilities will reduce the perinatal mortality due to eclampsia.
- Low platelet and low serum magnesium level were associated with adverse maternal outcome in eclamptic patients. Further studies are needed to validate the low serum magnesium level as predictor of maternal complications in eclampsia.

| S.No | NAME        | AGE | IP NUMBER | ADRESS        | PARITY<br>INDEX | BOOKING STATUS | LMP AGE | PA AGE | DIFF | SYSTOLIC BP |
|------|-------------|-----|-----------|---------------|-----------------|----------------|---------|--------|------|-------------|
| 1    | SATHYA      | 16  | 52572     | gobi          | primi           | IRRU ANC       | 28      | 28     | _    | 180         |
| 2    | RUBIDEVI    | 17  | 9518      | MADUKARAI CBE | primi           | REG ANC        | 36      | 36     |      | 152         |
| 3    | BINU        | 17  | 34897     | CBE           | primi           | REG ANC        | 32      | 30     | 2WKS | 160         |
| 4    | SUGANTHY    | 18  | 69989     | SALEM         | primi           | REG ANC        | 28      | 28     |      | 140         |
| 5    | RABIYA      | 18  | 69986     | CBE           | primi           | REG ANC        | 36      | 36     |      | 152         |
| 6    | MOHANA      | 19  | 58016     | AVINASHI      | primi           | IRRU ANC       | 34      | 28     | 6WKS | 160         |
| 7    | SANGEETHA   | 19  | 59011     | SATHY         | primi           | REG ANC        | 36      | 32     | 4WKS | 170         |
| 8    | SUGANYA     | 19  | 71348     | TIRUPUR       | primi           | REG ANC        | 30      | 26     | 4WKS | 162         |
| 9    | SUGANYA     | 19  | 71345     | PALLADUM      | primi           | REG ANC        | 40      | 36     | 4WKS | 160         |
| 10   | PUSHPALATHA | 19  | 70824     | UDUMALAI      | G2A1            | UB             | 34      | 34     | _    | 170         |
| 11   | GEETHA      | 19  | 15147     | gobi          | primi           | IRRU ANC       | 22      | 22     |      | 154         |
| 12   | poornima    | 20  | 9436      | cbe           | primi           | REG ANC        | 38      | 34     | 4WKS | 150         |
| 13   | RANJITHA    | 20  | 30399     | CBE           | primi           | REG ANC        | 37      | 32     | 5WKS | 170         |
| 14   | RABIYA      | 20  | 55317     | CBE           | primi           | REG ANC        | 38      | 38     |      | 150         |
| 15   | ANDICHI     | 20  | 24000     | UDUMALAI      | primi           | REG ANC        | 34      | 34     |      | 114         |
| 16   | SARATHY     | 20  | 6780      | CBE           | primi           | REG ANC        | 36      | 32     | 4WKS | 170         |
| 17   | SUDHA       | 20  | 2724      | METTUPALAYAM  | primi           | REG ANC        | 40      | 36     | 4WKS | 140         |
| 18   | SARASU      | 20  | 74565     | CBE           | primi           | IRRU ANC       | 34      | 32     | 2WKS | 172         |
| 19   | DEVI        | 21  | 111545    | SULUR CBE     | PRIMI           | REG ANC        | 38      | 38     | _    | 150         |
| 20   | BAGAVATHY   | 21  | 24470     | ANAIMALAI     | PRIMI           | REG ANC        | 32      | 32     |      | 140         |
| 21   | UMADEVI     | 21  | 39700     | UDUMALAI      | primi           | REG ANC        | 36      | 32     | 4WKS | 150         |
| 22   | SARADHA     | 21  | 34918     | SATHY         | primi           | IRRU ANC       | 36      | 30     | 6WKS | 174         |
| 23   | MEENA       | 21  | 11324     | CBE           | primi           | REG ANC        | 36      | 36     |      | 160         |
| 24   | MUMTAJ      | 21  | 14332     | ERODE         | primi           | IRRU ANC       | 32      | 28     | 4WKS | 170         |
| 25   | КАМАТСНІ    | 21  | 26544     | ERODE         | primi           | UB             | 36      | 36     | _    | 174         |
| 26   | JOTHIMANI   | 21  | 31241     | CBE           | primi           | IRRU ANC       | 38      | 34     | 4WKS | 190         |
| 27   | JANAKI      | 21  | 32215     | CBE           | primi           | REG ANC        | 34      | 34     | _    | 130         |
| 28   | KRITHIGA    | 21  | 45413     | CBE           | primi           | REG ANC        | 36      | 36     |      | 160         |
| 29   | ISWARYA     | 21  | 56732     | CBE           | primi           | REG ANC        | 36      | 36     |      | 162         |
| 30   | mallika     | 22  | 9941      | gobi          | primi           | IRRU ANC       | 36      | 30     | 6wks | 140         |
| 31   | GAYATHRI    | 22  | 9272      | CBE           | PRIMI           | IRRU ANC       | 37      | 30     | 7WKS | 150         |
| 32   | VENI        | 22  | 24582     | UDUMALAI      | G2P1L1          | IRRU ANC       | 39      | 36     | 3WKS | 152         |
| 33   | SIVAGAMI    | 22  | 54780     | SATHY         | primi           | IRRU ANC       | 28      | 28     | Ľ    | 160         |
| 34   | SUBULAKSHMI | 22  | 64908     | ERODE         | primi           | IRRU ANC       | 28      | 28     |      | 148         |
| 35   | JAYANTHI    | 22  | 2661      | AVINASHI      | primi           | REG ANC        | 22      | 22     |      | 150         |

| S.No | NAME          | AGE | IP NUMBER | ADRESS       | PARITY<br>INDEX | BOOKING STATUS | LMP AGE | PA AGE | DIFF     | SYSTOLIC BP |
|------|---------------|-----|-----------|--------------|-----------------|----------------|---------|--------|----------|-------------|
| 36   | VANITHA       | 22  | 34545     | CBE          | primi           | REG ANC        | 36      | 30     | 6wks     | 178         |
| 37   | KALAI         | 22  | 67578     | CBE          | primi           | REG ANC        | 36      | 32     | 4WKS     | 160         |
| 38   | AMUTHA        | 22  | 34567     | CBE          | primi           | REG ANC        | 36      | 36     | _        | 154         |
| 39   | CHITRA        | 23  | 10987     | CBE          | PRIMI           | REG ANC        | 38      | 36     | 2WKS     | 160         |
| 40   | RANI          | 23  | 39763     | POLLACHI     | primi           | REG ANC        | 36      | 36     | _        | 180         |
| 41   | HEMAVATHY     | 23  | 36777     | CBE          | G2P1L1          | REG ANC        | 34      | 28     | 6WKS     | 124         |
| 42   | DEVI          | 23  | 32425     | CBE          | primi           | REG ANC        | 36      | 36     | _        | 160         |
| 43   | KAMALEESHWARI | 23  | 34528     | KOTHAGIRI    | primi           | IRRU ANC       | 36      | 30     | 6WKS     | 162         |
| 44   | RANGANAYAKI   | 23  | 34568     | PEELAMEU CBE | primi           | REG ANC        | 38      | 38     | _        | 130         |
| 45   | JOTHI         | 23  | 11562     | CBE          | primi           | REG ANC        | 36      | 36     | _        | 140         |
| 46   | NAGAMANI      | 23  | 12358     | CBE          | primi           | REG ANC        | 28      | 26     | 2WKS     | 178         |
| 47   | VAITHESHWARI  | 23  | 21981     | gobi         | primi           | REG ANC        | 38      | 38     | _        | 160         |
| 48   | muthuselvi    | 23  | 26586     | dharapuram   | primi           | UB             | 38      | 38     | _        | 170         |
| 49   | GEETHA        | 23  | 3425      | KOTHAGIRI    | primi           | IRRU ANC       | 32      | 26     | 6wks     | 178         |
| 50   | PANDEESHWARI  | 23  | 62630     | SULUR CBE    | primi           | REG ANC        | 36      | 34     | 2WKS     | 150         |
| 51   | PANDISELVI    | 23  | 33422     | CBE          | primi           | IRRU ANC       | 36      | 30     | 6WKS     | 178         |
| 52   | CHITRA        | 23  | 56458     | CBE          | primi           | REG ANC        | 36      | 36     | _        | 150         |
| 53   | JAYALAKSHMI   | 23  | 34289     | TIRUPUR      | G2P1L1          | IRRU ANC       | 36      | 30     | 6wks     | 180         |
| 54   | muthuselvi    | 23  | 676899    | CBE          | primi           | REG ANC        | 36      | 36     | _        | 172         |
| 55   | HEMAPRIYA     | 23  | 3556      | CBE          | primi           | REG ANC        | 34      | 34     | _        | 140         |
| 56   | MANI          | 23  | 54672     | CBE          | primi           | REG ANC        | 34      | 34     | _        | 130         |
| 57   | PRIYA         | 24  | 114435    | OOTY         | G4P1L1A2        | REG ANC        | 36      | 36     | _        | 142         |
| 58   | NASERA        | 24  | 112323    | UDUMALAI     | PRIMI           | REG ANC        | 38      | 38     | _        | 180         |
| 59   | PREMA         | 24  | 52686     | ERODE        | primi           | IRRU ANC       | 38      | 34     | 4WKS     | 150         |
| 60   | SARASWATHY    | 24  | 43678     | CBE          | G2A1            | REG ANC        | 28      | 28     | _        | 152         |
| 61   | SATHYA        | 24  | 61871     | TIRUPUR      | primi           | REG ANC        | 28      | 28     | _        | 150         |
| 62   | AMUTHA        | 24  | 60714     | ΟΟΤΥ         | G2A1            | IRRU ANC       | 36      | 30     | 6WKS     | 190         |
| 63   | THERAISA      | 24  | 45644     | METTUPALAYAM | G2P1L1          | IRRU ANC       | 36      | 36     | _        | 132         |
| 64   | MEENA         | 24  | 21298     | UDUMALAI     | primi           | REG ANC        | 32      | 32     | _        | 170         |
| 65   | FARITHA BANU  | 24  | 31562     | CBE          | primi           | REG ANC        | 36      | 36     | _        | 176         |
| 66   | ANDICHI       | 24  | 65867     | gobi         | primi           | REG ANC        | 32      | 32     | _        | 140         |
| 67   | ARIFA         | 24  | 31657     | TIRUPUR      | primi           | REG ANC        | 36      | 36     | L        | 170         |
| 68   | VALLI         | 24  | 65432     | CBE          | primi           | REG ANC        | 36      | 36     |          | 148         |
| 69   | MANIMEGALAI   | 24  | 55655     | TIRUPUR      | primi           | IRRU ANC       | 34      | 28     | <br>6wks | 160         |
| 70   | CHINNU        | 24  | 43433     | CBE          | G2A1            | REG ANC        | 32      | 32     | _        | 150         |

| S.No | NAME          | AGE | IP NUMBER | ADRESS          | PARITY<br>INDEX | BOOKING STATUS | LMP AGE | PA AGE | DIFF      | SYSTOLIC BP |
|------|---------------|-----|-----------|-----------------|-----------------|----------------|---------|--------|-----------|-------------|
| 71   | SELVI         | 25  | 71021     | CBE             | G2A1            | UB             | 22      | 22     |           | 148         |
| 72   | mallika       | 25  | 19887     | POLLACHI        | primi           | REG ANC        | 36      | 30     | 6wks      | 160         |
| 73   | KAVITHA       | 25  | 21307     | TIRUPUR         | G2A1            | IRRU ANC       | 28      | 26     | 2WKS      | 182         |
| 74   | CHITRA DEVI   | 25  | 3979      | TIRUPUR         | primi           | UB             | 36      | 32     | 4WKS      | 150         |
| 75   | ESWARI        | 25  | 43531     | TIRUPUR         | primi           | REG ANC        | 36      | 34     | 2WKS      | 140         |
| 76   | DEVI          | 25  | 7895      | ERODE           | primi           | REG ANC        | 36      | 32     | 4WKS      | 168         |
| 77   | SEETHALAKSHMI | 25  | 10453     | OOTY            | primi           | IRRU ANC       | 34      | 26     | 8W        | 160         |
| 78   | MEENA         | 25  | 43244     | TIRUPUR         | primi           | REG ANC        | 36      | 36     | _         | 140         |
| 79   | SIVAGAMI      | 26  | 60266     | TIRUPUR         | primi           | REG ANC        | 28      | 28     |           | 164         |
| 80   | KATHAYEE      | 26  | 40622     | CBE             | primi           | IRRU ANC       | 36      | 30     | 6wks      | 160         |
| 81   | dhanalakshmi  | 26  | 65075     | PERUR CBE       | G2A1            | REG ANC        | 38      | 34     | 4WKS      | 140         |
| 82   | SAJITHA       | 26  | 48289     | CBE             | primi           | REG ANC        | 36      | 36     | _         | 158         |
| 83   | VASANTHA      | 27  | 10161     | TIRUPUR         | primi           | IRRU ANC       | 36      | 32     | 4WKS      | 170         |
| 84   | CHITRA        | 27  | 23371     | KUNIYAMUTHR CBE | primi           | REG ANC        | 32      | 32     | _         | 162         |
| 85   | SANUMA        | 27  | 37999     | CBE             | primi           | REG ANC        | 34      | 32     | 2WKS      | 136         |
| 86   | LATHAMANI     | 28  | 109877    | SIRUMUGAI CBE   | G2P1L1          | REG ANC        | 28      | 32     | 4WKS      | 150         |
| 87   | MAHESHWARI    | 28  | 23029     | CBE             | primi           | IRRU ANC       | 38      | 32     | 6WKS      | 170         |
| 88   | SUMATHY       | 28  | 6173      | AVINASHI        | G3P2L1          | REG ANC        | 28      | 28     | _         | 172         |
| 89   | KARTHIGA DEVI | 28  | 5007      | TIRUPUR         | primi           | UB             | 32      | 30     | 2WKS      | 160         |
| 90   | RANJITHA      | 28  | 45432     | CBE             | G2A1            | REG ANC        | 36      | 32     | 4WKS      | 160         |
| 91   | SACHU         | 28  | 32436     | CBE             | primi           | REG ANC        | 34      | 34     | _         | 148         |
| 92   | dhanalakshmi  | 29  | 11144     | arulpuram cbe   | primi           | IRRU ANC       | 36      | 32     | 4WKS      | 150         |
| 93   | RAMALAKSHMI   | 30  | 58257     | VALPARAI        | G3P2L1          | REG ANC        | 28      | 28     | _         | 200         |
| 94   | SELVI         | 30  | 58023     | TIRUPUR         | G3P1L1A1        | UB             | 32      | 32     |           | 156         |
| 95   | KASTHURI      | 30  | 49289     | ERODE           | G2P1L1          | IRRU ANC       | 38      | 32     | 6wks      | 140         |
| 96   | MYLAL         | 30  | 70144     | ANNAMALAI       | primi           | UB             | 36      | 32     | 4WKS      | 164         |
| 97   | ANANDHI       | 30  | 14745     | TIRUPUR         | G2P1L1 TWIN     | REG ANC        | 34      | 34     | _         | 142         |
| 98   | SELVI         | 30  | 30053     | MADUKARAI CBE   | G2P1L0          | REG ANC        | 34      | 34     | _         | 150         |
| 99   | SARANYA       | 30  | 50032     | MADUKARAI CBE   | primi           | REG ANC        | 34      | 34     |           | 150         |
| 100  | GOWRI         | 30  | 34345     | CBE             | G3P1L1A1        | REG ANC        | 32      | 30     | 2WKS      | 144         |
| 101  | VENILLA       | 30  | 34564     | CBE             | G4P1L1A2        | REG ANC        | 34      | 30     | 4WKS      | 150         |
| 102  | ESWARI        | 32  | 1940      | CBE             | G3P2L2          | REG ANC        | 36      | 36     | İ_        | 150         |
| 103  | PREMA         | 35  | 34770     |                 | G10P9L8         | UB             | 26      | 20     | _<br>6wks | 164         |
| 104  | PARIMALA      | 38  | 71101     | MADUKARAI CBE   | G5P3L3A1        | REG ANC        | 28      | 28     |           | 180         |

| S.No | NAME        | AGE | IP NUMBER | diastolic<br>BP | ТҮРЕ | TIMES | MODE    | WT IN KG | PLAT   | MAGNESIUM LEVEL | BABY |
|------|-------------|-----|-----------|-----------------|------|-------|---------|----------|--------|-----------------|------|
| 1    | SATHYA      | 16  | 52572     | 132             | AP   | 1     | LSCS    | 1        | 87000  | 1.94            | IUD  |
| 2    | RUBIDEVI    | 17  | 9518      | 110             | AP   | 4     | LSCS    | 2.7      | 180000 | 1.53            | NICU |
| 3    | BINU        | 17  | 34897     | 102             | AP   | 3     | VAGINAL | 2.1      | 280000 | 2.1             | NICU |
| 4    | SUGANTHY    | 18  | 69989     | 90              | AP   | 1     | VAGINAL | 1.1      | 207000 | 2.3             | NICU |
| 5    | RABIYA      | 18  | 69986     | 104             | AP   | 1     | LSCS    | 2.5      | 264000 | 2.5             | WB   |
| 6    | MOHANA      | 19  | 58016     | 100             | PP   | 2+1   | VAGINAL | 2        | 120000 | 1.43            | IUD  |
| 7    | SANGEETHA   | 19  | 59011     | 102             | PP   | 2     | LSCS    | 2.2      | 290000 | 2.12            | WB   |
| 8    | SUGANYA     | 19  | 71348     | 100             | AP   | 2     | VAGINAL | 1        | 200000 | 1.94            | NICU |
| 9    | SUGANYA     | 19  | 71345     | 104             | AP   | 1     | LSCS    | 2.5      | 210000 | 1.89            | WB   |
| 10   | PUSHPALATHA | 19  | 70824     | 110             | AP   | 5     | VAGINAL | 1        | 74000  | 1.33            | NICU |
| 11   | GEETHA      | 19  | 15147     | 100             | AP   | 3     | VAGINAL | 0.6      | 250000 | 1.45            | IUD  |
| 12   | poornima    | 20  | 9436      | 100             | AP   | 1     | VAGINAL | 2.1      | 30000  | 1.35            | IUD  |
| 13   | RANJITHA    | 20  | 30399     | 112             | AP   | 3     | VAGINAL | 3        | 180000 | 1.92            | NICU |
| 14   | RABIYA      | 20  | 55317     | 110             | AP   | 7     | LSCS    | 2.5      | 300000 | 1.35            | WB   |
| 15   | ANDICHI     | 20  | 24000     | 72              | AP   | 3     | LSCS    | 1.75     | 180000 | 1.36            | NICU |
| 16   | SARATHY     | 20  | 6780      | 110             | AP   | 3     | LSCS    | 1.9      | 100000 | 2.34            | NICU |
| 17   | SUDHA       | 20  | 2724      | 114             | AP   | 1     | VAGINAL | 2        | 230000 | 2.19            | NICU |
| 18   | SARASU      | 20  | 74565     | 110             | AP   | 3     | VAGINAL | 2        | 100000 | 1.33            | NICU |
| 19   | DEVI        | 21  | 111545    | 110             | AP   | 2     | LSCS    | 2.6      | 200000 | 1.67            | WB   |
| 20   | BAGAVATHY   | 21  | 24470     | 112             | AP   | 4     | LSCS    | 2.1      | 110000 | 1.89            | IUD  |
| 21   | UMADEVI     | 21  | 39700     | 100             | AP   | 4     | VAGINAL | 2        | 100000 | 1.88            | IUD  |
| 22   | SARADHA     | 21  | 34918     | 110             | AP   | 3     | VAGINAL | 1.3      | 140000 | 1.93            | WB   |
| 23   | MEENA       | 21  | 11324     | 110             | PP   | 2     | LSCS    | 2.3      | 120000 | 1.99            | WB   |
| 24   | MUMTAJ      | 21  | 14332     | 106             | AP   | 3     | VAGINAL | 1.4      | 40000  | 1.4             | IUD  |
| 25   | КАМАТСНІ    | 21  | 26544     | 110             | PP   | 1     | LSCS    | 2.5      | 122000 | 1.25            | WB   |
| 26   | JOTHIMANI   | 21  | 31241     | 90              | AP   | 2     | VAGINAL | 2        | 111000 | 2.33            | WB   |
| 27   | JANAKI      | 21  | 32215     | 90              | AP   | 2     | VAGINAL | 2        | 120000 | 1.98            | NICU |
| 28   | KRITHIGA    | 21  | 45413     | 102             | PP   | 1     | VAGINAL | 2.8      | 200000 | 2.13            | WB   |
| 29   | ISWARYA     | 21  | 56732     | 114             | AP   | 1     | VAGINAL | 2.7      | 340000 | 1.89            | WB   |
| 30   | mallika     | 22  | 9941      | 110             | AP   | 5     | VAGINAL | 1.9      | 150000 | 1.46            | WB   |
| 31   | GAYATHRI    | 22  | 9272      | 116             | AP   | 1     | VAGINAL | 1.8      | 120000 | 2.34            | WB   |
| 32   | VENI        | 22  | 24582     | 100             | AP   | 2     | LSCS    | 2.3      | 120000 | 1.76            | NICU |
| 33   | SIVAGAMI    | 22  | 54780     | 136             | AP   | 2     | VAGINAL | 1.3      | 290000 | 1.66            | NICU |
| 34   | SUBULAKSHMI | 22  | 64908     | 90              | IP   | 2     | VAGINAL | 1.5      | 100000 | 2.45            | WB   |
| 35   | JAYANTHI    | 22  | 2661      | 100             | AP   | 3     | VAGINAL | 0.5      | 42,000 | 1.96            | IUD  |

| S.No | NAME          | AGE | IP NUMBER | diastolic<br>BP | ТҮРЕ | TIMES | MODE    | WT IN KG | PLAT   | MAGNESIUM LEVEL | BABY |
|------|---------------|-----|-----------|-----------------|------|-------|---------|----------|--------|-----------------|------|
| 36   | VANITHA       | 22  | 34545     | 110             | AP   | 4     | LSCS    | 2        | 110000 | 1.88            | NICU |
| 37   | KALAI         | 22  | 67578     | 110             | AP   | 2     | VAGINAL | 2.3      | 240000 | 1.76            | WB   |
| 38   | AMUTHA        | 22  | 34567     | 112             | AP   | 2     | VAGINAL | 2.4      | 130000 | 1.98            | WB   |
| 39   | CHITRA        | 23  | 10987     | 100             | PP   | 1     | VAGINAL | 2.1      | 110000 | 1.67            | WB   |
| 40   | RANI          | 23  | 39763     | 108             | AP   | 3     | LSCS    | 1.7      | 100000 | 1.45            | IUD  |
| 41   | HEMAVATHY     | 23  | 36777     | 92              | AP   | 1     | LSCS    | 1.80     | 100000 | 1.33            | IUD  |
| 42   | DEVI          | 23  | 32425     | 120             | AP   | 2     | LSCS    | 2.4      | 230000 | 1.81            | WB   |
| 43   | KAMALEESHWARI | 23  | 34528     | 110             | AP   | 12    | LSCS    | 1.4      | 80000  | 1.23            | IUD  |
| 44   | RANGANAYAKI   | 23  | 34568     | 84              | AP   | 4     | LSCS    | 2.8      | 240000 | 1.91            | WB   |
| 45   | JOTHI         | 23  | 11562     | 100             | IP   | 1     | OUTLET  | 3        | 200000 | 1.95            | WB   |
| 46   | NAGAMANI      | 23  | 12358     | 116             | AP   | 5     | VAGINAL | 0.6      | 55000  | 1.35            | IUD  |
| 47   | VAITHESHWARI  | 23  | 21981     | 110             | AP   | 3     | LSCS    | 2.7      | 65000  | 1.84            | WB   |
| 48   | muthuselvi    | 23  | 26586     | 102             | РР   | 5+1   | LSCS    | 3        | 154000 | 1.32            | NICU |
| 49   | GEETHA        | 23  | 3425      | 120             | AP   | 5     | VAGINAL | 0.7      | 374000 | 1.56            | IUD  |
| 50   | PANDEESHWARI  | 23  | 62630     | 110             | РР   | 2     | VAGINAL | 2        | 230000 | 1.82            | WB   |
| 51   | PANDISELVI    | 23  | 33422     | 100             | AP   | 2     | VAGINAL | 2        | 120000 | 1.87            | NICU |
| 52   | CHITRA        | 23  | 56458     | 100             | PP   | 1     | VAGINAL | 2.6      | 250000 | 1.86            | WB   |
| 53   | JAYALAKSHMI   | 23  | 34289     | 110             | IP   | 4+1   | LSCS    | 2.1      | 88,000 | 1.89            | NICU |
| 54   | muthuselvi    | 23  | 676899    | 106             | AP   | 1     | LSCS    | 2.4      | 200000 | 1.92            | WB   |
| 55   | HEMAPRIYA     | 23  | 3556      | 110             | AP   | 1     | LSCS    | 2.4      | 120000 | 1.94            | WB   |
| 56   | MANI          | 23  | 54672     | 90              | AP   | 1     | VAGINAL | 2.3      | 270000 | 1.96            | WB   |
| 57   | PRIYA         | 24  | 114435    | 110             | AP   | 1     | VAGINAL | 2.3      | 100000 | 1.74            | WB   |
| 58   | NASERA        | 24  | 112323    | 106             | AP   | 2     | LSCS    | 2.7      | 180000 | 1.72            | WB   |
| 59   | PREMA         | 24  | 52686     | 110             | AP   | 4     | LSCS    | 1.5      | 100000 | 1.35            | IUD  |
| 60   | SARASWATHY    | 24  | 43678     | 110             | AP   | 2     | VAGINAL | 1        | 200000 | 1.67            | NICU |
| 61   | SATHYA        | 24  | 61871     | 102             | AP   | 2     | LSCS    | 1.3      | 140000 | 1.79            | NICU |
| 62   | AMUTHA        | 24  | 60714     | 110             | AP   | 2     | VAGINAL | 2        | 145000 | 1.76            | NICU |
| 63   | THERAISA      | 24  | 45644     | 80              | AP   | 1     | LSCS    | 2.5      | 100000 | 1.49            | IUD  |
| 64   | MEENA         | 24  | 21298     | 116             | AP   | 1     | VAGINAL | 1.6      | 140000 | 1.78            | NICU |
| 65   | FARITHA BANU  | 24  | 31562     | 100             | AP   | 2     | VAGINAL | 2.6      | 123000 | 1.82            | WB   |
| 66   | ANDICHI       | 24  | 65867     | 100             | AP   | 2     | VAGINAL | 2        | 260000 | 1.85            | NICU |
| 67   | ARIFA         | 24  | 31657     | 100             | AP   | 2     | LSCS    | 2.6      | 123000 | 1.84            | WB   |
| 68   | VALLI         | 24  | 65432     | 110             | PP   | 2     | VAGINAL | 2.6      | 260000 | 1.86            | WB   |
| 69   | MANIMEGALAI   | 24  | 55655     | 100             | AP   | 3     | LSCS    | 1.8      | 170000 | 1.64            | NICU |
| 70   | CHINNU        | 24  | 43433     | 110             | AP   | 2     | LSCS    | 2.3      | 180000 | 1.71            | NICU |

| S.No | NAME          | AGE | IP NUMBER | diastolic<br>BP | ТҮРЕ | TIMES | MODE    | WT IN KG | PLAT   | MAGNESIUM LEVEL | BABY |
|------|---------------|-----|-----------|-----------------|------|-------|---------|----------|--------|-----------------|------|
| 71   | SELVI         | 25  | 71021     | 106             | AP   | 5     | VAGINAL | 0.8      | 100000 | 1.21            | IUD  |
| 72   | mallika       | 25  | 19887     | 110             | AP   | 3     | VAGINAL | 1.5      | 150000 | 1.73            | WB   |
| 73   | KAVITHA       | 25  | 21307     | 110             | AP   | 2     | VAGINAL | 1.2      | 112000 | 1.75            | IUD  |
| 74   | CHITRA DEVI   | 25  | 3979      | 100             | AP   | 4     | VAGINAL | 2        | 200000 | 1.71            | NICU |
| 75   | ESWARI        | 25  | 43531     | 102             | AP   | 2     | VAGINAL | 2.1      | 180000 | 1.77            | NICU |
| 76   | DEVI          | 25  | 7895      | 110             | AP   | 4     | VAGINAL | 2        | 200000 | 1.79            | NICU |
| 77   | SEETHALAKSHMI | 25  | 10453     | 116             | AP   | 4     | VAGINAL | 1        | 180000 | 1.61            | IUD  |
| 78   | MEENA         | 25  | 43244     | 110             | РР   | 1     | VAGINAL | 2.5      | 150000 | 1.63            | WB   |
| 79   | SIVAGAMI      | 26  | 60266     | 112             | AP   | 2     | VAGINAL | 1.75     | 280000 | 1.65            | NICU |
| 80   | KATHAYEE      | 26  | 40622     | 100             | AP   | 1     | LSCS    | 1.8      | 100000 | 1.67            | IUD  |
| 81   | dhanalakshmi  | 26  | 65075     | 104             | AP   | 2     | LSCS    | 2        | 94000  | 1.69            | WB   |
| 82   | SAJITHA       | 26  | 48289     | 100             | AP   | 2     | VAGINAL | 2.6      | 280000 | 1.77            | WB   |
| 83   | VASANTHA      | 27  | 10161     | 112             | AP   | 5     | LSCS    | 1.8      | 120000 | 1.49            | IUD  |
| 84   | CHITRA        | 27  | 23371     | 104             | AP   | 1     | LSCS    | 1.7      | 55000  | 1.36            | NICU |
| 85   | SANUMA        | 27  | 37999     | 100             | AP   | 1     | VAGINAL | 2.3      | 130000 | 2.32            | WB   |
| 86   | LATHAMANI     | 28  | 109877    | 106             | PP   | 4+6   | LSCS    | 1.7      | 180000 | 1.47            | NICU |
| 87   | MAHESHWARI    | 28  | 23029     | 112             | AP   | 4     | VAGINAL | 1.2      | 59000  | 1.5             | IUD  |
| 88   | SUMATHY       | 28  | 6173      | 100             | AP   | 3     | LSCS    | 0.7/0.8  | 122000 | 1.85            | IUD  |
| 89   | KARTHIGA DEVI | 28  | 5007      | 104             | РР   | 4+1   | LSCS    | 1.9/2    | 92000  | 1.43            | NICU |
| 90   | RANJITHA      | 28  | 45432     | 100             | AP   | 1     | VAGINAL | 2.4      | 120000 | 2.01            | NICU |
| 91   | SACHU         | 28  | 32436     | 106             | AP   | 1     | LSCS    | 2.6      | 180000 | 1.67            | WB   |
| 92   | dhanalakshmi  | 29  | 11144     | 102             | AP   | 2     | LSCS    | 2        | 100000 | 1.97            | NICU |
| 93   | RAMALAKSHMI   | 30  | 58257     | 120             | AP   | 3     | VAGINAL | 2.2      | 280000 | 1.83            | NICU |
| 94   | SELVI         | 30  | 58023     | 110             | AP   | 2     | LSCS    | 2        | 120000 | 1.33            | NICU |
| 95   | KASTHURI      | 30  | 49289     | 110             | AP   | 2     | LSCS    | 2.5      | 150000 | 1.38            | WB   |
| 96   | MYLAL         | 30  | 70144     | 100             | PP   | 1+1   | VAGINAL | 1        | 90000  | 1.6             | NICU |
| 97   | ANANDHI       | 30  | 14745     | 100             | IP   | 2+1   | VAGINAL | 1.8      | 200000 | 1.57            | NICU |
| 98   | SELVI         | 30  | 30053     | 116             | IP   | 2     | LSCS    | 2        | 98000  | 1.65            | NICU |
| 99   | SARANYA       | 30  | 50032     | 100             | IP   | 2     | VAGINAL | 2.2      | 280000 | 2.03            | WB   |
| 100  | GOWRI         | 30  | 34345     | 100             | AP   | 1     | VAGINAL | 2.3      | 280000 | 1.65            | WB   |
| 101  | VENILLA       | 30  | 34564     | 112             | AP   | 2     | LSCS    | 2        | 100000 | 1.98            | NICU |
| 102  | ESWARI        | 32  | 1940      | 110             | AP   | 3     | VAGINAL | 1.75     | 270000 | 1.87            | NICU |
| 103  | PREMA         | 35  | 34770     | 120             | AP   | 1     | VAGINAL | 0.7      | 95000  | 1.37            | IUD  |
| 104  | PARIMALA      | 38  | 71101     | 100             | AP   | 3     | VAGINAL | 1        | 100000 | 1.33            | IUD  |

| S.No | NAME        | AGE | IP NUMBER | NEONATAL COMP      | MATERNAL COMP | SEX | IMM SIGNS | AN DIAGN |
|------|-------------|-----|-----------|--------------------|---------------|-----|-----------|----------|
| 1    | SATHYA      | 16  | 52572     |                    | RENAL FAILURE | F   | H1WK      | BP +     |
| 2    | RUBIDEVI    | 17  | 9518      | TWINS              |               | M/F | _         | BP(-)    |
| 3    | BINU        | 17  | 34897     |                    |               | М   | Н         | BP(-)    |
| 4    | SUGANTHY    | 18  | 69989     |                    |               | М   | Н         | BP(-)    |
| 5    | RABIYA      | 18  | 69986     |                    |               | М   | H,V       | BP(-)    |
| 6    | MOHANA      | 19  | 58016     |                    |               | М   | Н         | BP +     |
| 7    | SANGEETHA   | 19  | 59011     | SGA                | RENAL FAILURE | М   | Н         | BP(-)    |
| 8    | SUGANYA     | 19  | 71348     | PRETERM            |               | М   | Н         | BP(-)    |
| 9    | SUGANYA     | 19  | 71345     | SGA                |               | М   | Н         | BP(-)    |
| 10   | PUSHPALATHA | 19  | 70824     | SEIZURES           | РРН           | М   | Н         | BP +     |
| 11   | GEETHA      | 19  | 15147     |                    | СНТ           | М   | Н         | BP +     |
| 12   | poornima    | 20  | 9436      |                    | HELLP,MM      | М   | _         | BP +     |
| 13   | RANJITHA    | 20  | 30399     | SGA                |               | М   | _         | BP(-)    |
| 14   | RABIYA      | 20  | 55317     |                    |               | М   | _         | BP(-)    |
| 15   | ANDICHI     | 20  | 24000     |                    | РРН           | М   | Н         | BP(-)    |
| 16   | SARATHY     | 20  | 6780      | SGA                |               | М   | H,V       | BP(-)    |
| 17   | SUDHA       | 20  | 2724      | SGA                |               | М   | H,V       | BP(-)    |
| 18   | SARASU      | 20  | 74565     | sepsis             | РРН           | М   | Н         | BP(-)    |
| 19   | DEVI        | 21  | 111545    |                    |               | F   | _         | BP +     |
| 20   | BAGAVATHY   | 21  | 24470     |                    |               | М   | _         | BP(-)    |
| 21   | UMADEVI     | 21  | 39700     |                    |               | М   | H(+)      | BP(-)    |
| 22   | SARADHA     | 21  | 34918     | SGA                |               | М   | _         | BP +     |
| 23   | MEENA       | 21  | 11324     |                    |               | F   | Н         | BP(-)    |
| 24   | MUMTAJ      | 21  | 14332     |                    | HELLP,MM      | М   | Н         | BP +     |
| 25   | КАМАТСНІ    | 21  | 26544     |                    | ABRUPTION     | М   | Н         | BP +     |
| 26   | JOTHIMANI   | 21  | 31241     | SGA                |               | М   | H,V       | BP(-)    |
| 27   | JANAKI      | 21  | 32215     |                    |               | М   | H,V       | BP(-)    |
| 28   | KRITHIGA    | 21  | 45413     |                    |               | М   | _         | BP +     |
| 29   | ISWARYA     | 21  | 56732     |                    |               | М   | H,V       | BP +     |
| 30   | mallika     | 22  | 9941      | SGA                |               | М   | _         | BP(-)    |
| 31   | GAYATHRI    | 22  | 9272      | SGA                |               | F   | _         | BP +     |
| 32   | VENI        | 22  | 24582     | LBW                |               | М   | _         | BP(-)    |
| 33   | SIVAGAMI    | 22  | 54780     | preterm DIED -1DAY |               | М   | H10D      | BP +     |
| 34   | SUBULAKSHMI | 22  | 64908     |                    |               | М   | Н         | BP +     |
| 35   | JAYANTHI    | 22  | 2661      |                    | РРН           | М   | Н         | BP +     |

| S.No | NAME          | AGE | IP NUMBER | NEONATAL COMP      | MATERNAL COMP      | SEX | IMM SIGNS | AN DIAGN |
|------|---------------|-----|-----------|--------------------|--------------------|-----|-----------|----------|
| 36   | VANITHA       | 22  | 34545     | SGA                |                    | М   | H,V       | BP +     |
| 37   | KALAI         | 22  | 67578     | SGA                |                    | М   | Н         | BP +     |
| 38   | AMUTHA        | 22  | 34567     |                    |                    | F   | Н         | BP(-)    |
| 39   | CHITRA        | 23  | 10987     |                    |                    | М   | _         | BP +     |
| 40   | RANI          | 23  | 39763     |                    |                    | М   | H-12      | BP(-)    |
| 41   | HEMAVATHY     | 23  | 36777     |                    | PULMONARY EDEMA MM | F   | _         | BP(-)    |
| 42   | DEVI          | 23  | 32425     |                    |                    | F   | H,V,BV    | BP +     |
| 43   | KAMALEESHWARI | 23  | 34528     |                    |                    | М   | Н         | BP +     |
| 44   | RANGANAYAKI   | 23  | 34568     |                    |                    | М   | Н         | BP(-)    |
| 45   | JOTHI         | 23  | 11562     |                    |                    | F   | Н         | BP(-)    |
| 46   | NAGAMANI      | 23  | 12358     |                    | ICH,MM             | М   | Н         | BP(-)    |
| 47   | VAITHESHWARI  | 23  | 21981     |                    |                    | М   | Н         | BP(-)    |
| 48   | muthuselvi    | 23  | 26586     |                    | PULMONARY EDEMA    | М   | H,V,BV    | BP +     |
| 49   | GEETHA        | 23  | 3425      |                    |                    | М   | H,V       | BP +     |
| 50   | PANDEESHWARI  | 23  | 62630     |                    |                    | М   | Н         | BP +     |
| 51   | PANDISELVI    | 23  | 33422     | SEIZURES           |                    | М   | Н         | BP(-)    |
| 52   | CHITRA        | 23  | 56458     |                    |                    | М   | Н         | BP +     |
| 53   | JAYALAKSHMI   | 23  | 34289     | DIED -1DAY         |                    | F   | H,V,BV    | BP +     |
| 54   | muthuselvi    | 23  | 676899    |                    |                    | М   | Н         | BP(-)    |
| 55   | HEMAPRIYA     | 23  | 3556      |                    |                    | М   | Н         | BP +     |
| 56   | MANI          | 23  | 54672     |                    |                    | F   | Н         | BP(-)    |
| 57   | PRIYA         | 24  | 114435    |                    |                    | М   | _         | BP(-)    |
| 58   | NASERA        | 24  | 112323    |                    |                    | М   | _         | BP +     |
| 59   | PREMA         | 24  | 52686     |                    | ABRUPTION          | F   | Н         | BP +     |
| 60   | SARASWATHY    | 24  | 43678     | DIED -1DAY         |                    | F   | Н         | BP(-)    |
| 61   | SATHYA        | 24  | 61871     | preterm,DIED -1DAY |                    | М   | H,V,BV    | BP(-)    |
| 62   | AMUTHA        | 24  | 60714     | SGA                |                    | F   | Н         | BP +     |
| 63   | THERAISA      | 24  | 45644     | MACERATED          | ASPIRATION         | М   | _         | BP(-)    |
| 64   | MEENA         | 24  | 21298     |                    |                    | М   | Н         | BP(-)    |
| 65   | FARITHA BANU  | 24  | 31562     |                    |                    | F   | H,V       | BP +     |
| 66   | ANDICHI       | 24  | 65867     | SEIZURES           |                    | М   | Н         | BP(-)    |
| 67   | ARIFA         | 24  | 31657     |                    |                    | F   | H,V       | BP +     |
| 68   | VALLI         | 24  | 65432     |                    |                    | М   | Н         | BP +     |
| 69   | MANIMEGALAI   | 24  | 55655     | SEIZURES           |                    | F   | H,V       | BP +     |
| 70   | CHINNU        | 24  | 43433     | PRETERM            |                    | F   | Н         | BP +     |

| S.No | NAME          | AGE | IP NUMBER | NEONATAL COMP | MATERNAL COMP | SEX | IMM SIGNS | AN DIAGN |
|------|---------------|-----|-----------|---------------|---------------|-----|-----------|----------|
| 71   | SELVI         | 25  | 71021     |               |               | М   | Н         | BP(-)    |
| 72   | mallika       | 25  | 19887     | SGA           |               | М   | H2D       | BP(-)    |
| 73   | KAVITHA       | 25  | 21307     |               |               | F   | Н         | BP(-)    |
| 74   | CHITRA DEVI   | 25  | 3979      | SEIZURES      |               | М   | Н         | BP(-)    |
| 75   | ESWARI        | 25  | 43531     | sepsis        |               | F   | _         | BP +     |
| 76   | DEVI          | 25  | 7895      | SGA           |               | М   | Н         | BP +     |
| 77   | SEETHALAKSHMI | 25  | 10453     |               |               | F   | H,V       | BP +     |
| 78   | MEENA         | 25  | 43244     |               |               | F   | Н         | BP +     |
| 79   | SIVAGAMI      | 26  | 60266     | PRETERM       |               | М   | H,V       | BP(-)    |
| 80   | KATHAYEE      | 26  | 40622     |               |               | F   | Н         | BP(-)    |
| 81   | dhanalakshmi  | 26  | 65075     | SGA           |               | М   | Н         | BP(-)    |
| 82   | SAJITHA       | 26  | 48289     |               |               | М   | Н         | BP(-)    |
| 83   | VASANTHA      | 27  | 10161     |               |               | М   | _         | BP(-)    |
| 84   | CHITRA        | 27  | 23371     | SEIZURES      | HELLP         | F   | _         | BP +     |
| 85   | SANUMA        | 27  | 37999     |               |               | М   | Н         | BP(-)    |
| 86   | LATHAMANI     | 28  | 109877    | PRETERM       |               | М   | _         | BP(-)    |
| 87   | MAHESHWARI    | 28  | 23029     |               | РРН           | F   | _         | BP +     |
| 88   | SUMATHY       | 28  | 6173      | TWINS         |               | F/F | H,V,BV    | BP +     |
| 89   | KARTHIGA DEVI | 28  | 5007      | TWINS         |               | M/F | H,V,BV    | BP +     |
| 90   | RANJITHA      | 28  | 45432     | SGA           |               | М   | Н         | BP(-)    |
| 91   | SACHU         | 28  | 32436     |               |               | F   | Н         | BP(-)    |
| 92   | dhanalakshmi  | 29  | 11144     | SGA           |               | М   | _         | BP +     |
| 93   | RAMALAKSHMI   | 30  | 58257     | PRETERM       |               | М   | H,V,BV    | BP +     |
| 94   | SELVI         | 30  | 58023     | PRETERM       |               | М   | Н         | BP(-)    |
| 95   | KASTHURI      | 30  | 49289     |               | HELLP         | F   | Н         | BP(-)    |
| 96   | MYLAL         | 30  | 70144     | DIED -1DAY    | РРН           | F   | H2D       | BP(-)    |
| 97   | ANANDHI       | 30  | 14745     |               |               | М   | _         | BP +     |
| 98   | SELVI         | 30  | 30053     | DIED -1DAY    |               | F   | H,V       | BP +     |
| 99   | SARANYA       | 30  | 50032     |               |               | F   | Н         | BP +     |
| 100  | GOWRI         | 30  | 34345     |               |               | F   | Н         | BP +     |
| 101  | VENILLA       | 30  | 34564     | SGA           |               | М   | H,V       | BP +     |
| 102  | ESWARI        | 32  | 1940      |               |               | F   | Н         | BP(-)    |
| 103  | PREMA         | 35  | 34770     |               | СНТ           | М   | _         | BP +     |
| 104  | PARIMALA      | 38  | 71101     |               |               | М   | Н         | BP +     |

## **BIBLIOGRAPHY**

- Chesley LC. Ashort history of eclampsia. Obstet Gynecol. 1974; 43:500-602.
- Duley L. maternal mortality associated with hypertensive disorders of pregnancy in Africa, Asia, Latin America and the Caribbean. Br J Obstet Gynecol. 1992;99:547.
- Jenny E Mayers, Philip N Baker. Current Opinion in Obstet and Gynecol. 2002;14:119-25.
- Ahaheen BM, Hassan L, Obaid M. Eclampsia, a major cause of maternal and perinatal mortality prospective analysis is at a tertiary care hospital of Peshwar. J Pak Med Assoc. 2003 Aug; 53(8): 346-50.
- Khan KSM Wojdyla D, Say L, et al. WHO analysis of causes of maternal death A systemic review. Lancet 367:1066,2006
- Berg CJM Harper MA, Atkinson SM, et al. Preventability of pregnancy related deaths.ObstetGynecol 106:1228, 2005.
- Lindheimer MD, Conrad K, Karumanchi SA. Renal physiology and disease in pregnancy. In Alpren RJ, Hebert SC,(eds): Seldin and Giebisch's The Kindey: Physiology and Pathophysiology, 4<sup>th</sup> ed. New York, Elsevier, 2003, p2339.
- Chesley LC. Diagnosis of preeclampsia. Obstet and Gynecol 65: 423, 1985.
- 9. Redman CWG, Sargent IL, Roberts JM. Immunology of abnormal pregnancy and preeclampsia. In Lindheimer MD, Roberts JM,

Cunningham FG (eds): Chesley's Hypertensive Disorders in Pregnancy, 3<sup>rd</sup> ed. New York, Elsevier, 2009, p 129.

- 10.Fisher SJ, McMaster M, Roberts JM. The placenta in normal pregnancy and preeclampsia. Am J Obset Gynecol. 2004; 154:806.
- 11.Mostello D, Catlin TK, Roman L, et al. Preeclampsia in the parous woman: Who is at risk? Am J ObstetGynecol 2002; 187: 425.
- 12.Menten GT, van der Hoek YY, Marko Sikkema J, et al. The role of lipoprotein in pregnancies complicated by preeclampsia. Med Hypotheses. 2005; 64: 162.
- 13.Ward K, Lindheimer MD. Genetic factors in the etiology of preeclampsia/eclampsia. p 51, 2009.
- 14.Conrad KP, Vernier KA. Plasma level, urinary excretion and metabolic production of cGMP during gestation in rats. Am J Physiol. 1989; 257:R847.
- 15.Walllace K, Wells A, Bennett W. African-Americans, preeclampsia and future cardiovascular disease: Is nitric oxide the missing link? Abstract No 827, Presented at the 29<sup>th</sup> Annual Meeting of the Society for Maternal- Fetal Medicine, 2009 January 26-31.
- 16.Maynard SE, Min J-Y, Merchan J, et al. Excess placental soluble fmslike tyrosine kinase may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003; 111(5):649.

- 17.Levine RJ, Hauth JC, Curet LB, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med. 2006; 355:992.
- 18.Leduc L, Wheeler JM, Kirshon B, et al.Cogulation profile in severe preeclampsia. Obstet and Gynecol.1992; 79:14.
- 19.Kenny L, Baker P, Cunningham FG: Plateletsm coagulation and the liver. InLindheimer MD, Roberts JM, Cunningham FG (eds): Chesley's Hypertensive Disorders in Pregnancy, 3<sup>rd</sup> ed. New York, Elsevier, 2009, p 335.
- 20.Sep S, Verbeek J, Spaanderman M, et al. Clinical differences between preeclampsia and the HELLP syndrome suggest different pathogeneses. Reprod Sci.2009; 16: 176a.
- 21.Trimmer BL, Homer D, Mikhael MA: Cerebral vasospasm and eclampsia. Stroke 19:326, 1988.
- 22.Schwartz RB, Feske SK, Polak JF, et al. Preeclampsia-eclampsia: Clinical and neuroradiographic correlates and insights into the pathogenesis of hypertensive encephalopathy. Radiology.2000; 217:371.
- 23.Kar J, Jina R, Srivastava K, M ishra RK, Singh VB, Sharma N. Serum magnesium level in normal and abnormal pregnancy. J ObstetGynaecol India. 2001; 51: 38-40.
- 24.Ruth L, Jason AS, Richard MS. Magnesium induced vasodilatation in the dorsal vein. Br J Obstet Gynaecol.2004; 111:446-51.

- 25.Byrd, Jr. R.P. and T.M. Roy. Magnesium: Its proven and potential clinical significance. South Med. J .2003; 96:104.
- 26.Yogi A., G.E. Callera, T.T. Antunes, R.C. Tostes and R.M. Touyz, Vascular biology of magnesium and its transporters in hypertension. Magnes. Res., 2011(in press).
- 27.Punthumapol, C. and B. Kittichotpanich, Serum calcium, magnesium and uric acid in preeclampsia and normal pregnancy. J. Med. Assoc. Thai.2008; 91:968-973.
- Newman, J.C. and J.L. Amarasingham. The pathogenesis of eclampsia: the magnesium ischaemia hypothesis. Med. Hypotheses, 40:250-256, 1993.
- 29.Rensnick LM, Gupta RK, Gruenspan H, et al: Hypertension and peripheral insulin resistant- possible mediating role of intracellular free magnesium. Am. J. hypertens.1990; 3:373.
- 30.Kesteloot H., Urinary cations and blood pressure Population studies. Ann. Clin. Res.1984; 16:72-80.
- 31.Sanders, R., A. Konijnenberg. H.J. Huijgen, H. Wolf, K. Boer and G.T. Sanders, Intracellular and extracellular, ionized and total magnesium in preeclampsia and uncomplicated pregnancy. Clin. Chem. Lab. Med.1999; 37:55-59.
- 32.Bobrovski RA, et al. under appreciated risks of the elderly multipara. AJOG. 1995;172:1764-70.

- 33.MacGillivray L. Some observations on the Incidence of preeclampsia. Journal of Obstet and Gynaecol of the British Commonwealth. 1959;65:536-9.
- 34.Sibai BM, et al. pulmonary edema in severe eclampsia-eclampsia: analysis of 37 consecutive cases AJOG. 1985; 156:1174-9.
- 35.Lee CJ, et al. risk factors for preeclampsia in an Asian population. Int J Gynecol Obstet. 2000;70:327-33.
- 36.Skjaerven R, et al. The interval between pregnancies and the risk of preeclampsia. N Engl J Med. 2002;346:33-8.
- 37.Baird D Epidemiological aspects of hypertensive pregnancy, Clinical Obstetrics and Gynecology 1977;4:ss 531-48.
- 38.Lewis G, Drife J, (eds). Why mothers die: report of the fifth confidential enquiries into maternal deaths in United Kingdom 1997-1999. London: RCOG press; 2001.
- 39.Salah P, et al. the influence of donated gametes on the incidence of hypertensive disorders of pregnancy. Human reprod 1999;14:2268-73.
- 40.Kaaja R, et al. evidence of a state of increased insulin resistance in preeclampsia; metabolism 1999;14:2268-73.
- 41.Bianco A.T, et al. Pregnancy outcome and weight gain recommendations for the morbidly obese women. ObstetGynaecol 1998;91:97-102.
- 42.Mc Cowan LME, et al. Perinatal morbidity in chronic hypertension BJOG 1996;103:123-9.

- 43.Sibai BM. Risk factors, pregnancy complications and prevalence of hypertensive disorders in women with pregravid diabetes mellitus. J Matern fetal Med 2000;9:62-5.
- 44.Sanchez SE, Williams MA, Muy-Rivera M, Qiu C, Vadachkoria S, Bazul V. A case control study of oxidized low density lipoproteins and preeclampsia risk. Gynecolendocrinol 2005 oct; 21(4): 193-9.
- 45.Huong DL, et al. A study of 75 pregnancies in patients with antiphospholipid syndrome. J Rheumatol 2001; 28: 2025-30.
- 46.Shehata HA, Nelson-Piercy C, Khamashata MA. Management of pregnancy in antiphospholipid syndrome. Rheum Dis Clin North Am. 2001; 27: 643.
- 47. Cnattingius S, et al. Am J ObstetGynaecol. 1997; 177: 156-61.
- 48.Conde-Agudelo A, Romero R, Lindheimer MD: Tests to predict preeclampsia. In Lindheimer MD, Roberts JM, Cunningham FG (eds): Chesley's Hypertensive Disorders in Pregnancy, 3<sup>rd</sup> ed. New York, Elsevier, 2009, p 191.
- 49. Vollebregt K, Van Leijden L, Westerhof B, et al: Arterial stiffness is higher In early pregnancy in women, who will develop preeclampsia. Abstract No 712. Presented at the 29<sup>th</sup> Annual Meeting of the society for Maternal Fetal Medicine, January 26-31, 2009.
- 50.Poon LC, Kametas N, Bonino S, et al: Urine albumin concentration and albumin-creatinine ratio at 11 to 13 weeks in the prediction of preeclampsia.BJOG 2008;115:866.

- 51.Chavarria ME, Lara-Gonzalenz L, Gonzalez-Gleason A, et al. Maternal plasma cellular fibronectin concentrations in normal and preeclamptic pregnancies: A longitudinal study for early prediction of preeclampsia. Am J Obstet Gynecol. 2002; 187: 595.
- 52.Leeflang MM, Cnosssen JS, van der Post JA, et al: Accuracy of fibronectin tests for the prediction of preeclampsia: A systemic review. Eur J ObstetGynecolReprod Biol. 2007; 133(1): 12.
- 53.Walsh SC: Lipid peroxidation in pregnancy. Hypertens pregnancy.1994; 13:1.
- 54.Bainbridge SA, Sidke EH, Smith GN: Direct placental effects of cigarette protect women from preeclampsia: The specific roles of carbon monoxide and antioxidant systems in the placenta. Med hypotheses. 2005; 64:17.
- 55.Maynard S, Epstein FH, Karumanchi SA: Preeclampsia and angiogenic imbalance. Annu Rev Med. 2008;59:61.
- 56.DiFederico E, Genbacev O, Fisher SJ. Preeclampsia is associated with widespread apoptosis of placental cytotrophoblast within the uterine wall. Am J Patho. 1999; 155:293.
- 57.De Snoo K: The prevention of eclampsia. Am J Obstet Gynecol. 1937;34:911.
- 58.Knuist M, Bonsel GJ, Zondervan HA, et al. Low sodium diet and pregnancy induced hypertension: A Multicentre randomized controlled trial. Br J Obstet Gynecol,1988;105:430.

- 59.Sibai BM, Cunningham FG: Prevention of preeclampsia and eclampsia. In Lindheimer MD, Roberts JM, Cunningham FG (eds): Chesley's Hypertensive Disorders in Pregnancy, 3<sup>rd</sup> ed. New York, Elsevier, 2009, p 215.
- 60.Makrides M, Duley L, Olsen SF: Marine oil, and other prostaglandin precursor supplementation for pregnancy uncomplicated by preeclampsia or intrauterine growth restriction. Cochrane Database Syst Rev 3:CD003402, 2006.
- 61.Raijmakers MT, Dechend R, Poston L: Oxidative stress and preeclampsia: Rationale for antioxidant clinical trials: Hypertension,2004;44:374.
- 62. Wallenburg HC, Makovitx JW, Dekker GA, et al: Low-dose aspirin prevents pregnancy-induced hypertension and preeclampsia in angiotensin-sensitive primigravida. Lancet. 1986; 327:1.
- 63.Askie LM, Henderson-Smart DJ, Stewart LA: Antiplatelet agents for the prevention of preeclampsia: A meta-analysis of individual data. Lancet.2007;369:179.
- 64.Sergis F, Clara DM, Galbriella F, et al: Prophylaxis of recurrent preeclampsia: Low molecular weight heparin plus low dose aspirin versus low-dose aspirin alone. Hypertension Pregnancy. 2006;25:115.
- 65.The Magpie Trial Collaborative group. Do women with preeclampsia and their babies benefit from magnesium sulphate? The magpie Trial; A randomized placebo-controlled trial. Lancet. 2002; 359:1877

- 66.BhargavaAdarsh, Pant Reena, ChutaniNimmi, SudhaKumariSingh: In search of accelerated recovery from Eclampsia. J ObstetGynecol India, 2006; 56(5):402 - 405.
- 67.Agida ET, Adeka BI, Jibril KA. Pregnancy outcome in eclamptics at the University of Abuja Teaching Hospital, Gwagwalada, Abuja: A 3 year review. Niger J ClinPract 2010;13:394-8.
- 68. Tuffnell D J et al. outcome of severe preeclampsia/eclampsia. BJOG. July 2005;112(7):875-880.
- 69.Oluwarotimi A, Abimbola O Adetokunbo F,AbidoyeG.,s Improving the clinical outcome in cases of eclampsia. The internet journal of Third World Medicine ISSN : 1539 – 4646.
- 70.Ikechebeju JI, Okoli CC: review of eclampsia at the NnamdiAzikiwe university hospital.2002;22:287-280.
- 71.Onuh SO, Aisien AO. Maternal and fetal outcome in eclamptic patients in Benin City, Nigeria. Journal of obstetrics and gynaecology. 2004;24:765-768.
- 72.Douglas LA, Redman CWG: Eclampsia in the United Kingdom. British medical journal. 1994 Nov;309:1395-1400.
- 73.Tarner CE, Hakverdi AU, Aban M. prevalence, management and outcome in eclampsia. international Journal of Obstetrics and Gynecology. 1996;53:11-15.
- 74.Marina Khanum, Fatema Ashraf, HumairaSahrin: A Clinical study of 100 cases of eclampsia in Rajshahi Medical College Hospital. TAJ. 2004;17(2):80-83.

- 75.S. Singh & A.K. Behera: Eclampsia In Eastern India: Incidence, Demographic Profile And Response To Three Different Anticonvulsant Regimes Of Magnesium Sulphate. *The Internet Journal of Gynecology and Obstetrics*. 2011 Volume 15 Number 2.
- 76.Shilang Liu et al. Incidence, risk factors and associated complications of eclampsia. AJOG. Nov 2011;118(5):987-994.
- 77.Maternal and perinatal mortality due to eclampsia. Indian JPediart.June 1993;30(6):771-3.
- 78.Rayamjhi AK, Uprety D, Agrawal A, Pokhrel H: fetomaternal outcome in eclampsia. JNMA. Dec 2003;42:341-345.
- 79.Rajasri G, Yaliwal, Jaju PB, M Vanishree: Eclampsia and perinatal outcome – A retrospective study in teaching hospital. Journal of Clinical Diagnostic Research.Oct 2011;55(5):1056-1059.
- 80.Shahnaz Nadir Jamil, Akhtar: Maternal outcome in eclampsia. Journal of medical sciences. July 2005;13(2):161-164.
- 81.Vigile P, De Gracia: thrombocytopenia and eclampsia. International Journal of Gynecology and Obstetrics. April 1998;61(7):15-20.
- 82.Indumathi V, Kodliwadmath MV: the role of serum electrolytes in pregnancy induced hypertension. Journal of clinical and Diagnostic Research. Feb 2011;5(1):66-69.
- 83.Shalinimaksane et al. Study of lipid profile and magnesium in normal pregnancy and in pre eclampsia: A case control study. Asian Journal of Biochemistry.2011;6(3):228-239.

# PROFORMA

# ANALYSIS OF FETOMATERNAL OUTCOME IN ECLAMPSIA

| NAME                                         | AGE         | IP NO | D:                      |  |  |  |  |  |  |
|----------------------------------------------|-------------|-------|-------------------------|--|--|--|--|--|--|
| ADRESS:                                      |             |       |                         |  |  |  |  |  |  |
| BOOKING STAT                                 | TUS:        |       | PARITY:                 |  |  |  |  |  |  |
| GESTATIONAL AGE:                             |             |       |                         |  |  |  |  |  |  |
| TYPE OF ECLAN                                | MPSIA: AP/I | P/PP  | NUMBER OF FITS:         |  |  |  |  |  |  |
| ADMISSION BP                                 | :           | TIMI  | E SINCE FITS: <6HRS / > |  |  |  |  |  |  |
| ANTENATAL DIAGNOSIS OF PREECLAMPSIA: YES/NO. |             |       |                         |  |  |  |  |  |  |
| INDUCTION: YE                                | ES/NO.      |       | MODE OF DELIVERY:       |  |  |  |  |  |  |
| SEX:                                         |             |       |                         |  |  |  |  |  |  |
| APGAR AT 5MI                                 | N:          |       | LIVE/STILLBIRTH:        |  |  |  |  |  |  |
| BIRT                                         | H WEIGHT:   |       |                         |  |  |  |  |  |  |
| NICU ADMISSION: YES/NO.                      |             |       |                         |  |  |  |  |  |  |
| PERINATAL COMPLICATIONS:                     |             |       |                         |  |  |  |  |  |  |
| MATERNAL COMPLICATIONS:                      |             |       |                         |  |  |  |  |  |  |
| IF MATERNAL DEATH – CAUSE:                   |             |       |                         |  |  |  |  |  |  |

>6HRS

## **ABBREVIATIONS**

- AP antepartum
- BP blood pressure
- CHT chronic hypertension
- DIC disseminated intravascular coagulation
- FBS fresh still birth
- ICH intra cerebral hemorrhage
- IP intrapartum
- IUGR intra uterine growth restriction
- LSCS lower segment caesarian section
- MgSo4 magnesium sulphate
- MM maternal mortality
- PIH pregnancy induced hypertension
- PP postpartum
- PPH post partum hemorrhage
- SGA small for gestation
- WB well baby