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OBJECTIVES:

This observational study  assessed the hemodynamic changes that occurred in ASA II and III patients 

undergoing major elective spine surgery on changing position from supine to prone using the Flo Trac 

sensor.  Additionally,  it  observed the effect  of  10ml/kg of  crystalloid fluid administered as  a bolus 

before turning prone. 



METHODS:

Twenty-nine   patients  were  prospectively  studied.  Patients  with  valvular  heart  disease,  chronic 

obstructive pulmonary disease,  renal  dysfunction and arrhythmia were excluded .After establishing 

venous access, radial arterial cannulation was undertaken  and  the Flotrac transducer was connected. 

Other  routine  monitors  were  connected.  Induction  was  carried  out  with  fentanyl  ,  propofol  and 

vecuronium;  patients were intubated  and mechanical ventilation established with tidal volumes of at 

least 8ml/kg. Anaesthesia was maintained with  air /oxygen and Isoflurane titrated to a MAC of 0.8.  

Variables  measured  were  heart  rate  (HR),  systolic  blood  pressure  (SBP),  diastolic  blood  pressure 

(DBP), mean arterial pressure (MAP), stroke volume variation (SVV), pulse pressure variation (PPV), 

cardiac  output  (CO)  and  cardiac  index(CI).Variables  were  measured  after  induction  in  the  supine 

position (T1) and every 5 minutes after turning prone up to 15 minutes (T2-T4). All patients received 

fluid bolus of 10ml/kg of crystalloids before change of position. A fall in cardiac index by more than  

20%  from  baseline  (T1)  warranted  treatment  with  crytalloids  upto  10ml/kg  and/or  boluses  of 

vasopressors.  Failure  to  respond  to  these  warranted  starting  inotropic  agents.  

Statistical  analysis  was  performed  using  SPSS  software.  A General  Estimating  Equations  (GEE) 

analysis was performed to analyze the change in variables across the  time points (T2-T4) along with 

the significance of change (p value), with  T1 as the reference.  A paired t-test analysis was additionally 

done between time points T1 and T4. Correlation between variables (PPV and CO, SVV and CO and 

PPV and SVV) were assessed in the prone position at two time points using Pearson correlation test.  

Levene's test for Equality of Variance was used to analyse the difference in variables among patients on 

differing prone supports and among diabetic versus non-diabetic patients. 



RESULTS:

There was a significant change in SBP (p=0.025), SVV (p=0.002) and PPV(p=0.02) 5 minutes after 

change of position to prone. However, there was no significant fall (p>0.05) in CO or CI  during this  

time. There was a significant change in all hemodynamic variables (HR: p<0.001, SBP p<0.001, MAP 

p=0.014, PPV:p=0.024, SVV p=0.002, CO p<0.001, CI: p=0.003) except DBP 15 minutes after turning 

prone.  A strong positive  correlation  was  found to  exist  between  SVV and  PPV  at  T2  (r=0.835; 

p=<0.001) and T4 (r=0.75; p<0.001) while CO correlated weakly with SVV and PPV. Type of support 

(Relton-Hall  vs.  bolsters)  and  presence  of  diabetes  did  not  significantly  affect  PPV and  SVV.  In 

conclusion, there was a statistically significant change in all hemodynamic variables 15 minutes after 

turning prone. There was no significant fall in CO or CI 5 minutes after turning prone; whether this can  

be attributed to the fluid bolus administered before change in position cannot be established at present. 
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Hemodynamics, prone position, Flo Trac, physiological monitoring



AIM

To study hemodynamic changes from supine to prone position using Flo Trac sensor.
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OBJECTIVES

1. To observe the hemodynamic changes when turning from supine to prone position in 

ASA II and III patients undergoing major spine surgery  using Flo Trac sensor.

2. To observe the response to a bolus of fluid  (10ml/kg of crystalloid) before turning prone.
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INTRODUCTION
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Hemodynamic  monitoring  is  an  essential  component  of  any  form  of  anesthesia. 

Maintenance of optimum hemodynamics is important, especially in patients with disease 

processes. Hypotension and hypovolemia in these patients may lead to critical end-organ 

dysfunction. Over-hydration, on the other hand,leads to hemodilution, interstitial edema and 

has been implicated in increasing morbidity and  prolonging hospital stay. It is therefore 

evident that optimum use of intravenous fluids is needed.

A variety of tools are available for  monitoring intraoperative hemodynamics. Clinical signs 

such as pallor, pulse volume characterization and pattern of respiration have proved to be 

unreliable methods. For decades, static variables such as central venous pressure (CVP) and 

pulmonary capillary wedge pressure were used as standards for monitoring hemodynamic 

variables. In recent years, studies have shown that they cannot be relied upon. In addition to 

this, they require invasive procedures which carry inherent risks. 

Dynamic variables are those that depend on the interaction between the heart and the lung. 

There are various indices used in modern-day practice. They are broadly categorized as non-

invasive and invasive . The non-invasive indices include the plethysmography variability 

index and the ECG variability index. Indices derived from analysis of the arterial pressure 

waveform have proved to be reliable in assessing intravascular volume and in predicting 

responsiveness  to  fluid  challenge.  These  include  pulse  pressure  variation(PPV),  systolic 

pressure variation (SPV) and stroke volume variation (SVV). 
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During  mechanical  ventilation,  there  are  cyclical  changes  that  occur  in  the  arterial 

waveform. The increase in intrathoracic pressure due to the positive pressure ventilation 

results in a fall in right ventricular (RV) preload. Increase in the transpulmonary pressure 

which  also  occurs  during  positive  pressure  ventilation  results  in  an  increase  in  the  RV 

afterload. Consequent to these effects, the RV stroke volume decreases. Fall in RV stroke 

volume subsequently leads to fall in the left ventricular (LV) preload and LV stroke volume. 

There is a fall in the left ventricular afterlaod  and an increase in the left ventricular preload 

during inspiration. Thus, during mechanical ventilation, systolic pressure is maximal during 

inspiration . When positive pressure ventilation is released ( that is, expiration), the venous 

return  returns  to  baseline  as  do  the  systolic  pressure  and  the  stroke  volume.  Pulse 

pressure(PP) is the difference between the systolic and the diastolic pressure. PP is directly 

proportional to the systolic pressure and inversely proportional to the arterial compliance. If 

arterial compliance is assumed to be constant, then pulse pressure is directly related to left 

ventricular stroke volume. Pulse pressure variation (PPV) is used to quantify the change in 

pulse pressure with respiration and is expressed as a percentage.

Cardiac output monitoring is routinely not practiced in clinical anesthesia, except in patients 

with significant co-morbid illnesses who might benefit from its use or in patients in whom 

large  fluid  shifts  are  expected  (eg.  Liver  transplantation).The  invasive  nature  of  the 

technology required for the traditional cardiac output monitoring precludes its use. It is also 

expensive. Techniques of monitoring cardiac output are broadly classified as non-invasive, 
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minimally invasive and invasive. The invasive method (thermodilution technique) requires 

the insertion of  a pulmonary artery catheter. The minimally invasive techniques include 

transpulmonary thermodilution,  the PiCCO system and the LiDCO system, all  of which 

require the insertion of a central venous catheter. Doppler ultrasound and trans-esophageal 

echocardiography  are  operator-dependent.  Waveform  analysis  of  the  Flo  Trac  system 

generates cardiac output in addition to dynamic variables and requires only a peripherally 

placed arterial line. 

It  is  a  routine  practice  to  measure  intraarterial  blood pressure  in  major  surgeries  where 

significant blood loss or fluid shifts are expected and in patients with significant co-morbid 

illnesses. Attaching a Flo Trac sensor to the arterial line may provide valuable information 

which may prove essential in decision-making. 

Change  of  position  from  supine  to  prone  is  associated  with  significant  hemodynamic 

changes.  These include fall  in cardiac index (CI)  and an increase in systemic vascular 

resistance (SVR).  Fall in cardiac output occurs primarily as a result of  decrease in stroke 

volume. In healthy individuals , however, blood pressure is invariably maintained due to the 

concomitant increase in systemic vascular resistance. In patients with significant co-morbid 

illnesses,  a  change  in  position  from  supine  to  prone  may  worsen  hemodynamics 

significantly. 

Thermodynamic variables other than cardiac output are also affected as a result of change in 

position. A fall in the stroke volume that results from the prone position occurs as a result of 

fall in right ventricular preload. This causes more pronounced cyclic variations produced by 
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mechanical ventilation and is manifest as an increase in the PPV and SVV. 

Hemodynamic changes in the prone position may also be affected by the type of support  

used  in  positioning.  Improper  positioning of  the  prone  support  would  cause  abdominal 

compression which decreases lung compliance. This impedes the venous return to the right 

heart which results in a fall in the stroke volume and , as per Frank-Starling law, in the 

cardiac output.  Moreover, an increase in the abdominal pressure would lead to an increase 

in  the  pressure  in  the  epidural  venous  plexuses  with  resultant  increased  intra-operative 

blood loss.

Patients with conditions such as diabetes, hypertension and ischemic heart disease may be 

using a variety of drugs which include beta blockers, calcium channel blockers, angiotensin 

receptor  blockers,  ACE inhibitors  and  nitrates.  They may also  have  varying degrees  of 

autonomic dysfunction which may not have been diagnosed preoperatively. Anesthesia in 

these group of patients is fraught with the hazards of hypotension and resultant end-organ 

damage. These changes are often worsened when a change in position occurs. 

This  study aimed  at  determining  the  hemodynamic  changes  that  occur  with  change  in 

position as defined by the Flo Trac sensor.  The Flo Trac sensor  is  a  special  transducer 

connected to a peripherally placed arterial line and measures hemodynamic variables over 

20s intervals. Unlike previous studies in which majority of participants belonged to ASA 

I,the group of patients studied belonged to ASA Class II and II and underwent major spine 

procedures  (Posterior  Lumbar  Intervertebral  Fixation  (PLIF),  Transforaminal  lumbar 

Intervertebral Fixation(TLIF),  laminectomies in 3 or more levels with or without tumour 
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excision) in the prone position. The various variables studied included heart rate, systolic 

blood  pressure,  diastolic  blood  pressure,  mean  blood  pressure,pulse  pressure  variation 

(PPV), stroke volume variation (SVV) , cardiac output (CO) ,cardiac index (CI).
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REVIEW OF LITERATURE
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In the peri-operative  period, use of anesthetic agents, surgical interventions and positive 

pressure pressure ventilation all have a tremendous impact on the cardiovascular status of a 

patient.  These changes are all  the more important and potentially fatal if the patient has 

significant co-morbid illnesses. Hemodynamic monitoring during this crucial period aims at 

anticipating and preventing significant  hemodynamic changes before irreversible  damage 

occurs.

Almost all anesthetic agents have a depressant effect on the cardiovascular system. Induction 

and  maintenance  of  anesthesia  is  associated  with  attenuation  of  cardiovascular  reflexes, 

peripheral vasodilation, fall in cardiac output and blood pressure. Establishment of positive 

pressure ventilation is  further associated with a decrease in  systemic venous return as a 

result  of the rise in intrathoracic pressure.  A combination of these factors,  together with 

disease characteristics of the patient, such as a 'fixed-output' state , can result in profound 

cardiovascular depression during general anesthesia. 

Hemodynamic monitoring is an integral part of intraoperative monitoring.  It enables the 

clinician to ascertain the adequacy of circulatory function of the patient.  Monitoring the 

circulation is included as one of the 'Standards for Basic Anesthetic Monitoring' as described 

by the American Society of Anesthesiologists(ASA).(1)
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Modalities  of  hemodynamic  monitoring  are  numerous  and  varied.  They range from  as 

simple a maneuver as 'finger on the pulse' to the many sophisticated technologies available 

today that allow determination of beat to beat variables which enable better management of 

hemodynamics in high risk patients. Historically, the techniques available for monitoring the 

circulatory status of the patient under anaesthesia included crude methods such as placing a 

finger on the pulse for characterization of pulse volume, determining the color of skin and 

mucosal membranes, assessment of the pattern of ventilation and capillary refill time.  The 

advent of electronic monitoring has freed the clinician from clerical tasks and enabled him to 

fine-tune his clinical judgment and skills. They allow for  'continual' as well as 'continuous'  

monitoring of different variables. 

One of the most important therapeutic and earliest interventions in the event of circulatory 

instability is volume expansion. The physiological basis of this intervention is the Frank-

Starling law. An increase in the preload of the heart (the end-diastolic volume) is expected to 

cause an increase in the stroke volume and hence the cardiac output. However, the stroke 

volume  also  depends  on  the  ventricular  contractility.  A  decrease  in  the  ventricular 

contractility  would  result  in  a  decrease  in  the  slope  of  the  relationship  between  stroke 

volume and end-diastolic volume. Studies have shown that only 40-72% of patients who are 

critically  ill  and who have been  treated  with  fluid  challenge  respond with  a  significant 

increase  in  stroke  volume  and  cardiac  output.(2)  It  is  evident  that  administration  of 

intravascular  fluids needs to carried out judiciously. Over- zealous administration would 
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result in pulmonary , hemodilution and peripheral edema; whereas under-filling the patient 

would result in inadequate oxygen delivery to the tissues.  (3) Goal directed  use of fluids 

intraoperatively has been shown  to decrease  the length of hospital stay in the post-operative 

period as well as result in earlier return of bowel function and reduce the incidence of nausea 

and vomiting.  (4)Optimum use of fluids is enabled through the measurement of different 

variables.

Modalities  of  assessment  of  intravascular  fluid  status  can  be  broadly  divided  as  those 

derived from clinical assessment of the patient, measurement of static variables and dynamic 

variables. 

CLINICAL SIGNS

In  the  past,  clinical  signs  were  used  to  assess  fluid  status  and  evaluate  response  to 

resuscitation with intravenous fluids. These included techniques such as assessment of skin 

turgor, chest movement, pattern of respiration, characterization of the volume of palpated 

pulse and urine output.(5)

STATIC VARIABLES

Since  clinical  signs  were  found  to  be  unreliable,  static  variables  were  used  to  monitor 

intraoperative and postoperative hemodynamics.  These included variables such as central 

venous pressure(CVP) and pulmonary capillary wedge pressure(PCWP).
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CENTRAL VENOUS PRESSURE (CVP)

 For decades, CVP has been used as a tool to monitor intravascular volume and response to 

fluid challenge. A  CVP of 8-12mmHG for non-ventilated and 12-15mmHg for mechanically 

ventilated patients has been set as one of the targets to be achieved in early resuscitation of 

patients with sepsis.(6) Literature in recent years suggests that CVP is neither reflective of 

the circulating blood volume, nor can it be used to assess response to fluid challenge.(7,8) 

Similarly,  pulmonary capillary wedge pressure  has  also  been shown to  be  unreliable  in 

determining response  to fluids. (9,10)

RIGHT  VENREICULAR  END-DIASTOLIC  VOLUME  (RVEDV)   AND  LEFT 

VENTRICULAR END-DIASTOLIC AREA (LVEDA)

Other static variables that have been studied include right ventricular end-diastolic volume 

(RVEDV)  and   left  ventricular  end-diastolic  area  (LVEDA).  While  the  former  required 

insertion  of  a  pulmonary  artery  catheter,  the  latter  is  measured  by  transesophageal 

echocardiography using the trans-gastric short-axis view of the left ventricle. Neither has 

been found to be reliable predictors of fluid responsiveness.(2)
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DYNAMIC VARIABLES

Dynamic variables are those variables that are derived from the interaction between the heart 

and the lungs during mechanical  ventilation.  Prerequisites for accuracy of hemodynamic 

monitoring using most  dynamic variables include that 

– the patient be mechanically ventilated with tidal volumes of at least 8ml/kg

– the patient not have spontaneous breaths

– the patient not have arrhythmia.(5,11,12)

Some of the dynamic indices in clinical practice include the following

cardiac output and cardiac index

pulse pressure variation

stroke volume variation. 

Many  of  the  dynamic  variables  are  measured  using  invasive  arterial  blood  pressure 

monitoring  which  involves  cannulation  of  one  of  the  arteries  in  the  body.  The  artery 

cannulated may be the radial artery, brachial artery, axillary artery or the femoral artery. 

15



INDICATIONS FOR PLACEMENT OF ARTERIAL LINE

Indications for placement of an arterial line include the following:(13)

-Patients  with  conditions  which  warrant  beat-to-beat  assessment  of  the  blood  

pressure and in whom close monitoring of blood pressure is required.

-Patients who require repeated sampling of arterial blood gas.

-Patients who are receiving vasoactive agents. 

-Patients in whom assessment of non-invasive blood pressure may not be possible or 

accurate. Eg: burns, obese patients.

-Patients who require frequent and prolonged blood pressure monitoring and may  

develop neuropraxia or tissue injury as a result of repetitive inflation of the blood 

pressure cuff. 

-Patients who require monitoring of cardiac output – analysis of waveform gives 

information about the cardiovascular status.

PRINCIPLES BEHIND INVASIVE ARTERIAL MONITORING

HYDRAULIC COUPLING

The basic principle of invasive arterial blood pressure monitoring is to provide a column of 
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fluid that connects the arterial blood to a transducer. It requires the following components:

– intra-arterial cannula

–  tubing with liquid column

– pressure transducer

– microprocessor with display screen

– mechanism for calibration and zeroing. 

The pressure waveform of the arterial pulse is transmitted across the fluid column to the 

transducer where it is converted into an electrical signal. The microprocessor then processes 

the  signal,  amplifies  it  and  converts  it  so  that  it  is  visible  on  the  display  screen.  The 

information is displayed on the screen graphically and numerically.

ARTERIAL CANNULATION

Ideally, the ascending aorta is the place to monitor arterial waveform. As this is impractical,  

other sites are used for intra-arterial cannulation. Commonly used sites include the radial 

artery,  femoral  artery,  brachial  artery and the axillary artery.  The arterial  waveform will 

differ in morphology depending on where the cannula is placed. As the distance from the 

aorta increases there is a decrease in the compliance , oscillation and reflection of the blood 

pressure  waves.  This  is  reflected  in  the  deformed  morphology of  a  peripherally  placed 
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arterial  waveform as  compared  to  the  aortic  waveform.  The  systolic  blood  pressure  is 

typically higher and the diastolic pressure lower in the peripheral arterial waveform; (Fig: 1) 

the mean pressures, however, are similar.(14) 
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Figure 1:Variation in morphology of the arterial waveform from the aortic root to dorsalis 

pedis  artery.  As  the  distance  from the  aorta  increases,  systolic  pressure  increases  ,  the 

upstroke is steeper, the dicrotic notch appears later and the diastolic pressure decreases. The 

mean arterial pressure remains constant.
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THE MODIFIED ALLEN TEST

The radial artery is the most commonly catheterised artery. The Allen test was originally 

described by E. V. Allen in 1929 to assess the collateral blood flow from the ulnar artery to 

the hand. The radial and ulnar arteries are compressed by the examiner and the patient is 

asked to make a tight fist so as to exsanguinate the palm. The fist is then opened,the pressure 

over the ulnar artery released and the color of the palm is observed. Normally, a flush should 

appear  over  the  hand;  pallor  of  the  hand lasting  more  than  10 seconds  is  indicative  of 

reduced ulnar collateral supply. 

A normal or negative Allen test, however, does not guarantee against digital ischemia.(15–

17) Conversely, patients with a positive Allen's test have had radial artery catheterisation 

without  incident.  (18,19) The  Allen  test,  therefore,  cannot  be  relied  on  to  avoid  digital 

ischemia following radial arterial cannulation.

Technique of percutaneous intra-arterial cannula placement

Radial artery is the most popular choice for cannulation due to the easy accessibility and 

good collateral circulation available to the hand. The hand is positioned for cannulation by 

ensuring gentle dorsiflexion at the wrist and the artery is palpated along its course. After 

preparing the skin with an antiseptic solution, local anesthetic is injected (1% lignocaine). 

Local  anesthetic  not  only  ensures  analgesia  during  the  procedure  and  thus  patient 

cooperation, but, if applied appropriately in the subcutaneous plane, prevents vessel spasm 
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and enables better control of the catheter in this plane.(20)

A 20 gauge catheter-over- needle assembly is introduced at an angle of 30-45 degrees to the 

skin until  blood from the  artery is  visualized as  a  'flash'  in  the hub of  the needle.  The 

catheter-needle assembly is then flattened and introduced a few millimeters into the artery, 

all the time ensuring that backflow of blood is present. This ensures that the catheter tip, 

which is slightly proximal to the needle tip, is now within the vessel lumen. The catheter is 

then threaded into the vessel. (Fig: 2) Proximal pressure is applied to occlude the vessel, the 

needle is removed and the pressure tubing attached to the catheter.  A sterile dressing is  

applied, and the catheter is secured in place with either sutures or tapes. 

In the transfixion technique,  the anterior and posterior walls  of the vessel are punctured 

intentionally and the needle is removed. The catheter is removed till the tip is within the 

lumen and then it is threaded. (Fig: 3)

Needle-guidewire-catheter  assemblies  are  available  where  a  sterile  guidewire  may  be 

introduced through the catheter  to  aid insertion  using the modified Seldinger  technique.

(13,20) Alternatively, ultrasound guided catheterisation of the artery may be carried out.(21) 

The femoral artery is catheterised using the modified Seldinger technique. (Fig: 4)
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Figure 2: Direct technique of percutaneous arterial cannulation. A- The catheter with the 

stylet is passed through the skin and subcutaneous plane. B- Once the stylet is within the 

artery and 'flash' of blood is seen, it is halted. C- The assembly is flattened and introduced a 

few more millimeters to ensure catheter tip is within the vessel. D- The catheter is threaded 

into the vessel and the stylet is removed.
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Figure 3:Transfixion technique. A-  The catheter with the stylet is passed through the skin 

and subcutaneous plane.  B- The assembly is  passed through the artery.  C-  The stylet  is 

removed. D- The catheter is withdrawn until blood is visualised. E- The catheter is advanced 

into the vessel.
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Figure  4:The  Seldinger  technique.  A-  The  needle  is  passed  through  the  skin  and 

subcutaneous  plane.  B-  When  blood  appears  in  the  needle,  it  is  held  steady.  C-  The 

guidewire is passed through. D- The needle is removed. E- The catheter is passed over the 

guidewire while maintaining control of the guidewire. F- The guidewire is removed as the 

catheter is advanced into the vessel.
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PRESSURE TRANSDUCER

Typical pressure transducers contain strain gauges made of silicone crystals that distort with 

changes  in  blood  pressure.  A diaphragm and  a  variable  resistance  transducer  contained 

within the strain gauge connects the fluid wave to an electric signal. When the diaphragm is 

distorted, a change in voltage occurs across a Wheatstone bridge circuit; this voltage change 

can be calibrated accurately to reflect the arterial pressure. (14)

ARTERIAL WAVEFORM ANALYSIS

A wide variety of information can be obtained from the analysis of the waveform that is  

derived  following  arterial  cannulation.   The  morphology  of  the  arterial  wave  differs 

depending on the site of cannulation. 

A typical arterial waveform (Fig:5) has the following points:(22)

    a) Systolic upstroke –  a sharp up-stroke associated with left ventricular ejection  

and opening of the aortic valve.

     b) Systolic peak

c) Systolic decline – decline in the waveform as the ventricular flow is dispersed 
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peripherally. Isovolumetric relaxation and diastolic filling of the heart occurs 

during t his time

d)Dicrotic notch – as a result of isovolumetric relaxation, there is slight fall in 

pressure just before closure of the aortic valve. It is also called the incisura.

     e) Diastolic run-off – run-off to distal arterioles reflected by further fall in 

pressure

      f) End-diastole

Stroke work is represented by the  area under the systolic portion of the waveform.
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Figure  5: Arterial  pressure  waveform.  a-  systolic  upstroke,  b-  systolic  peak,  c-  systolic 

decline, d-  dicrotic notch, e- diastolic run-off, f- end-diastole.
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The morphology of the arterial wave differs depending on the site of cannulation. (Fig:1)  A 

peripheral arterial waveform will have a steeper upstroke, higher peak systolic pressure, a 

lower end-diastolic pressure and a later dicrotic notch.  This phenomenon is called pulse 

amplification. The mean pressure,however, is similar to a centrally placed arterial waveform. 

This difference can be attributed to differences in amplification elasticity and distortion in 

the smaller vessels.(22,23)
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CARDIAC OUTPUT MONITORING

PHYSIOLOGY OF CARDIAC OUTPUT

Cardiac output (CO) is the volume of blood flow from the heart in a minute. It is measured 

in liters per minute. In average adult male, the cardiac output averages 5-6l/min. An increase 

in the oxygen demand in the body is met by an increase in the cardiac output. Although 

numerous  factors  that  determine  the  oxygen delivery to  the  tissues  (hemoglobin,  partial 

pressure of arterial oxygen and saturation), cardiac output remains the most important one.

Cardiac output is dependent on the stroke volume (SV) and the heart rate (HR).  Stroke 

volume is the volume of blood pumped out of the heart during each ventricular contraction 

or heart beat. Normal stroke volume in an adult ranges from 60-100ml/beat. 

CO = SV x HR

HEART RATE

Cardiac output is a product of stroke volume and heart rate. A decrease in stroke volume as 

would occur in a failing heart would cause in a compensatory rise in the heart rate as a result  

of neurochemical mechanisms that come into play. This maintains a normal cardiac output 

up to such a point where a rise is in heart rate is so high that diastolic filling of the ventricles 
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is compromised resulting in lower end-diastolic volume and stroke volume. In addition to 

this,  myocardial  perfusion  is  compromised  as  the  time  for  diastole,  when  myocardial 

perfusion  occurs,  is  critically  diminished;  this  may  result  in  myocardial  ischemia  or 

infarction. On the other hand, too slow a heart rate may be inadequate to meet the oxygen 

demands of the body.

STROKE VOLUME

The following factors determine stroke volume - 

preload

afterload 

cardiac contractility.

Each of the above factors, will, therefore, affect the cardiac output. 

PRELOAD

Preload refers to the degree of ventricular muscle stretching that occurs at end-diastole. It is 

influenced by

the compliance of the ventricle

the volume and pressure of the blood within the ventricles.
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THE FRANK-STARLING LAW

The  Frank-Starling  law  conceptualizes  the  effect  of  preload  on  stroke  volume.  It  was 

described by Starling in 1914, where the muscle fiber length determined the cardiac muscle 

work and the force of contraction. The intra-ventricular volume at the end of diastole (left 

ventricular  end-diastolic  volume  LVEDV)  represent  the  myofilament  length  which  is 

difficult to measure directly.  The venous return to the heart determines the end-diastolic 

volume. The more the ventricle is stretched, the greater the stroke volume until the cardiac 

muscle fibers are stretched beyond their limit.(Fig: 6) At this point, the stroke volume begins 

to decline, as is seen in a failing heart. 

AFTERLOAD

Afterload is the resistance that the heart must overcome so as to eject blood. It is the systolic  

load on the left ventricle after contraction begins. Compliance of the aorta, which is the 

ability of the aorta to give way to ventricular systolic forces, determines afterlaod.

CONTRACTILITY

It is the intrinsic contractile performance of the heart independent of the loading conditions. 

It  is  difficult  to  describe  the  contractile  performance  independent  of  the  preload  and 

afterload.  It  is difficult  to estimate contractility clinically.  Ejection fraction, which is the 

most common surrogate used, is load-dependent. (24)
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Figure 7: Frank-Starling Law.
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MEASUREMENT OF CARDIAC OUTPUT

The  ideal  technology used  to  measure  cardiac  output  should  be  accurate,  non-invasive, 

continuous, reliable and compatible in the adult as well pediatric patient. Currently, no single 

technique incorporates all these facets. (25)

The  methods  available  to  calculate  cardiac  output  may  be  classified  as  non-invasive 

methods, minimally invasive methods and invasive methods.(25)

INVASIVE METHODS: 

THERMODILUTION TECHNIQUE

It is a variant of the indicator dye dilution method where indocyanine green dye is used. In 

the  thermodilution  technique,  a   thermistor  which  is  attached  to  the  distal  end  of  the 

pulmonary  artery  catheter  (PAC)  is  used  to  measure  the  change  in  temperature  of  the 

injectate which is introduced via the proximal lumen of the PAC located in the right atrium. 

Some  fundamental  methodological  assumptions  are  made  for  valid  measurement;  the 

thermal indicator must be injected as a rapid bolus, there must be no intra-cardiac shunts and 

there must be complete mixing of the injectate with the blood in the right atrium. Physical 

basis for the thermodilution method is given by the Stewart-Hamilton equation. The average 

of three readings is taken.
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FICK PRINCIPLE:  (  25)

The Fick  principle  is  based on the law of  conservation of  mass  and was postulated  by 

Adolph Fick in 1870. It is considered the most accurate method of measuring cardiac output. 

This technique presumes a stable hemodynamic status that allows for diffusion of gas across 

the alveolar capillary membrane  during the short transit time of the blood through the lungs. 

Is also assumes that all the oxygen is transferred to the blood in the lungs. The total oxygen 

consumption is the product of the  arterio-venous oxygen content difference and the blood 

flow through the lungs (that is, the cardiac output)

VO2  =  CO x  (CaO2- CvO2) ,

where,  VO2   is the oxygen consumption, CO is the cardiac output ,  CaO2 is the arterial 

oxygen content of oxygen and CvO2  the mixed venous oxygen content of oxygen. Cardiac 

output can be computed from the above equation.

MINIMALLY INVASIVE METHODS

DOPPLER ULTRASOUND  (25)  

Blood flow velocity is measured in the descending thoracic aorta using a transesophageal 

doppler probe.  The flow rate of the blood passing through the aorta at  a give instant is 
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expressed as the product of the cross-sectional area of the aorta at that time (either derived 

from a nomogram or measured using M-mode) and the average velocity of the blood over 

the  area.  This  comprehensively and  immediately reflects  the  function  of  the  heart  as  a 

pulsatile organ modified by vascular tone. Stroke distance is the distance  a column of blood 

travels during each systole and is the product of blood velocity and left ventricular ejection 

time.

Stroke distance = blood velocity x LV ejection time

Stroke Volume = stroke volume x cross-sectional area of aorta

Cardiac Output = stroke volume x heart rate 

Analysis of the velocity-time waveforms provide information regarding preload, afterload 

and contractility. 

TRANSESOPHAGEAL ECHOCARDIOGRAPHY

Perrino et al demonstrated that multi-plane transesophageal echocardiography can be used to 

determine cardiac output. Aortic blood flow velocity was measured in the transverse plane 

mid-papillary transgastric short-axis view  after rotating the imaging array to 1200   and the 

aortic valve area was calculated using planimetry; the stroke volume was computed from 

these values.(26)
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PARTIAL CARBON DIOXIDE REBREATHING

The basis of measuring cardiac output from partial carbon dioxide rebreathing is the Fick 

principle using carbon dioxide as the marker gas. As per Fick principle, all the oxygen taken 

up by the  lungs  is  transferred  to  the  blood.  Cardiac  output  is  measured  as  the  ratio  of  

consumption of oxygen to the difference in oxygen content between the arterial and venous 

blood. Carbon dioxide elimination is easier to measure than oxygen consumption.

TRANSPULMONARY THERMODILUTION

This  technique  utilizes  the  modified  version  of  the  Stewart-Hamilton  equation.  A cold 

indicator is injected into a central vein (PAC is not required) and the change in temperature 

is  measured  across  the  cardiopulmonary  system  at  a  centrally  placed  arterial  site  (for 

example, the femoral artery or axillary artery). The cardiac output is reflected by the change 

in temperature.

Although  transpulmonary  thermodilution  has  been  shown  to  be  comparable  to 

thermodilution  cardiac  output  determination  using  pulmonary  artery  catheter,  it  is  non-

continuous. Moreover, it is complex and labour intensive requiring frequent calibration. (27) 
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PULSE CONTOUR ANALYSIS

Analysis of the arterial pulse waveform is used to measure and monitor the stroke volume on 

a beat-to-beat and continuous basis. Aortic compliance is the change in aortic volume for 

unit  change in aortic pressure (dv/dp);  it  exhibits a non-linear behaviour which makes it 

difficult  to  estimate  the  stroke  volume.  The  stroke  volume is  estimated  from the  aortic 

waveform represented a peripheral pulse. Several knowledge models which represent the 

systemic circulation are used to compute the stroke volume from the arterial  waveform. 

Some of the popular models include the modified three element windkessel model and the 

lumped windkessel model.

Pulse  contour  analysis  allows  for  continuous  monitoring  of  cardiac  output  and  other 

hemodynamic variables on a beat-to-beat basis. 

PiCCO SYSTEM 

PiCCO is  pulse-induced continuous  cardiac  output.  When pulse  contour  analysis  of  the 

arterial  waveform  and  continuous  cardiac  output  monitoring  by  trans-pulmonary 

thermodilution are incorporated  (as in PiCCO), a variety of hemodynamic variables besides 

cardiac output  are  obtained.  These include stroke volume (SV),  stroke volume variation 

(SVV), systemic vascular resistance (SVR) and intrathoracic blood volume. The basis for 

analysis is the pulse contour algorithm developed by Wesseling et al. The need for central 

venous and a central arterial access for injectate administration and calibration limit the use 
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of this device.(28) 

LITHIUM INDICATOR DILUTION

The LiDCO system integrates a lithium indicator dilution cardiac output system with pulse 

contour analysis and requires administration of non-toxic doses of lithium via a centrally or 

peripherally placed venous access.  A lithium-sensing electrode is  attached to  the arterial 

catheter which also has a device that draws blood at a constant rate. The cardiac output is  

calculated  from the area under the concentration-time curve and has to be corrected for the 

PCV (packed cell volume) since distribution of lithium does not extend to the blood cell 

volume. The need for frequent calibration (every 8 hours)  and concerns regarding use in 

patients on therapeutic lithium and on neuromuscular blocking agents limits the use of the 

LiDCO system. (25,28)

FLO TRAC/ VIGILEO

The PiCCO and the LiDCO systems require calibration. The Flo Trac/Vigileo™ system was 

developed by Edwards Life Sciences. It was released for clinical use in 2005. It computes 

cardiac output without external calibration.

The system consists of

– the Flo Trac sensor (Fig:8)  - a specialised transducer which processes the arterial 

waveform

– the Vigileo monitor (Fig:9) – a stand-alone display unit. It applies the algorithm 

to calculate and display continuously the cardiac output and other hemodynamic 
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variables. 

The  demographic  data  of  the  patient  is  fed  into  the  monitor.  The  data  entered  is  the 

following:

age

sex

height

weight.

The above have the ability to detect  the changes in  vascular  compliance and peripheral 

vascular resistance of the patient through analysis  of the arterial  waveform morphology. 

Once  the  patient  data  is  entered  and  the  system is  zeroed,  hemodynamic  variables  are 

provided at intervals of 20 seconds.

 The following formula is used to calculate the cardiac output

APCO = PR · sd(AP). X, 

where  APCO is  the  arterial  pressure  cardiac  output,  PR is  the  pulse  rate  and sd(AP).X 

represents the stroke volume. 

sd(AP)  represents pulsatility using standard deviation of the pressure wave over an interval 

of 20 seconds. The frequency at which derived from the patient characteristics ( i.e., age, 

sex, weight and height) and the morphology of the waveform. Langewouters et al  quantified 

the compliance of the aorta  in human cadavers(29); younger individuals who are male with 

a higher body surface area have more compliant aortas than those who are female, have a 
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lower body surface area or are older. Baseline determination of the patient's vascular tone is 

using the Langewouters' criteria. However, further analysis of the waveform for real-time 

effects  of  vascular  tone  are  also  incorporated  into  the  system.  Real-time  effects  of  the 

vascular tone are described in terms of the following: 

skewness -  the slope exhibited on the rise of the arterial waveform

kurtosis – the degree of wideness or flatness.

An increase in vascular tone is determined as a decrease in the value of X; this will reduce 

the influence of the pulsatility index in determining the cardiac output.  X is recalculated 

every minute.

Determining the real-time changes in the vascular tone allows reliable calculation of cardiac 

output without the need for calibration; hemodynamic variables are provided at intervals of 

20 seconds. 

Since its introduction in 2005, Flo Trac has undergone two major revisions. Whereas the first 

generation Flo Trac computed X at intervals of 10 minutes, this was improved to 1-minute 

intervals  in  the second generation.  The third generation Flo Trac launched in 2009,  has 

software which has improved accuracy for cardiac output measurement in patients in whom 

systemic vascular resistance is low. (28,30)
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Figure 8: Flo Trac transducer 
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   Figure 9:  The Vigileo monitor displaying cardiac index (CI), stroke volume variation 

(SVV), cardiac output (CO) and stroke volume (SV)
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NON-INVASIVE METHOD

ELECTRICAL IMPEDENCE CARDIOGRAPHY

Paired electrodes are placed at points that define the lower and upper limits of the thorax as 

well  as the width (distance between the electrodes).  A radiofrequency signal  transmitted 

across the thorax from the outer section of the electrodes is sensed by the inner section of the 

electrodes. Changes in the blood volume of the thoracic aorta are correlated to the stroke 

volume. These pulsatile changes cause changes in the amplitude of the propagated electrical 

signal. Changes in intrathoracic volume also produce changes that are reflected as phase 

shifts  between  the  applied  and  sensed  signals.  Non-invasive  cardiac  output  monitors 

(NICOM) are less influenced by patient's movement, body shape or location of electrodes on 

the thorax.(25,30) 

CARDIAC INDEX

Cardiac index(CI) is derived from the cardiac output. Since patients differ widely in body 

size and weight, cardiac output is frequently expressed in terms of cardiac index. 

CI = CO / BSA

where, CI is the cardiac index, CO is the cardiac output and BSA is the body surface area. 

The unit is liters/minute/sq. meter. Normal range of CI is between 2.5-4.5l/min/sq.m. (14)
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HEMODYNAMIC INDICES

DYNAMIC NON-INASIVE INDICES

INFERIOR VENA CAVA MEASUREMENTS

Measurement  of  central  venous  pressure  is  invasive  requiring  the  presence  of  a  central 

venous  catheter.  Inferior  vena  caval  diameter(IVCD)  measured  by  transthoracic 

echocardiography has been used as a non-invasive tool to measure the intravascular volume 

status. 

The physiological basis behind measurement of IVC diameter is as follows. In an individual 

breathing  spontaneously,  during  inspiration,  there  is  a  fall  in  the  intrathoracic  pressure 

causing an increase in the venous return; this leads to a decrease in the IVCD by about 50%. 

The reverse is observed during exhalation. In a patient being mechanically ventilated, the 

increase in pleural pressure caused by positive pressure ventilation leads to a fall  in the 

venous return. The net result is the reverse of what is observed in a spontaneously breathing 

patient; that is, there is an increase in the IVCD during inspiration and a decease during 

expiration.

The subcostal approach is used, with the transducer being place 1-2cm to the right of the 

midline,  just  below the  xiphisternum and the  marker  dot  pointing  cephalad  towards  the 
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sternal notch. A stable 2-D image (visualisation is not lost during movements of respiration) 

of the inferior vena cava entering the right atrium is obtained and the M-mode line is placed 

and M-mode tracing obtained. After freezing the M-mode image, the calipers are used to 

measure the maximum and the minimum diameter of the IVC tracing. 

IVC DIAMETER

The  IVC  diameter  indicates  the  volume  status  of  the  patient,  but  not  the  fluid 

responsiveness. 

A low value less than 12mm is suggestive of a volume depleted status and is predictive of a 

low right atrial pressure.(31) Higher values may indicate either a normal right atrial pressure 

or a high pressure (high CVP). However, there are wide variations seen, and absolute values 

are not reliable in patients who are being mechanically ventilated, since IVC diameter varies 

with  the  end-expiratory pressure.  IVC diameter  increases  as  the  end-expiratory pressure 

increases.

A 'virtual IVC' is when the IVC is so collapsed that it cannot be visualized. Such a condition  

indicates severe hypovolemia irrespective of whether the patient is spontaneously breathing 

or receiving positive pressure ventilation - the exception being the presence of raised intra-

abdominal pressure so high as to cause compression of the IVC. 

IVC COLLAPSABILITY INDEX
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It is calculated as 

(IVC max-IVC min) / IVC max x 100.

In patients breathing spontaneously, a collapsability index of more than 50% has been found 

to  be  suggestive  of  low  right  atrial  pressures  (<10mm Hg).  However,  in  mechanically 

ventilated patients, it has failed to reflect the CVP. (31)

IVC VARIABILITY INDEX (d IVC)

dIVC = (IVC max – IVC min) / IVC mean

In a mechanically ventilated patient, a variation of 12% or more indicates that the patient is 

likely to respond to fluids (>90% predictive value)(32)

IVC DISTENSIBILITY INDEX

It is calculated as 

(IVC max – IVC min) / IVC min x 100.

An 18% or  more  variation  indicates  responsiveness  to  fluids  in  mechanically ventilated 

patients.(specificity and sensitivity of 90%)(32)

Although the above measurements are non-invasive, they are not practical to apply in the 

operative room. They are also operator dependent. 
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PLETHYSMOGRAPHIC VARIABILITY INDEX (PVI)

The basis of this index is the respiratory variations in the pulse volume when preload is not 

adequate. Dynamic variations in the perfusion index over respiratory cycle are measured. 

The PVI is calculated as the following

PVI = (PImax – PI min)/ PI max  X 100%

Various studies have shown that PVI is a reliable index of fluid responsiveness.(33–35)

While it is a non-invasive method of assessing response to fluid challenge, its limitations 

include the fact that it is a peripheral measure and, as such, is subject to tissue perfusion and 

vasomotor tone. (36)

ECG VARIABILITY INDEX

Chnages in the morphology of the electrocardiogram has been suggested as being reflective 

of the change in volume status. The basis of this index is the 'Brody effect'  - an increase in  

the preload of left ventricular increases the R wave amplitude. In a heart which is preload-

dependent,  changes  in  respiration  during  positive  pressure  ventilation  will  cause  large 

changes in the cardiac volume. This will  vary the resistance across cardiac tissue and is 

reflected as variation in the R wave amplitude.(36) 

The variations in lead II  of the electrocardiogram is studied.  The amplitude of the QRS 
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complex has been observed to increase with an increase in the preload.  The maximum and 

minimum QRS amplitudes (ECG max and ECG min respectively) over a respiratory cycle 

are measured. The ECG variability is. calculated as

[(ECG max – ECG min) / (ECG max + ECG min)/2]  

Studies have found that ECG variability correlates well with pulse pressure variation and 

stroke volume variation.(37–39)

DYNAMIC VARIABLES FROM  ARTERIAL PRESSURE WAVEFORM ANALYSIS

Analysis  of  the  arterial  waveform  provides  dynamic  indices  other  than  cardiac  output. 

These include the pulse pressure variation (PPV), systolic pressure variation (SPV) and the 

stroke volume variation(SVV). 

HEART-LUNG INTERACTION

Changes in respiration cause variations in the systolic pressure as well as the pulse pressure.  

In  an  individual  breathing spontaneously,  a  decrease in  blood pressure  is  observed with 

inspiration.  However, the maximum fall  in systolic pressure that occurs does not exceed 

5mmHg.  Kussmaul  described  pulsus  paradoxus,  the  exaggeration  of  this  phenomenon, 

wherein  the  pulse  disappears  during  inspiration  and  returns  during  expiration  (seen  in 

constrictive pericarditis). 
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During positive pressure ventilation, however, the reverse of this phenomenon is observed. 

During inspiration,  there is an increase in arterial  blood pressure and a fall in the blood 

pressure  is  observed  during  exhalation.  This  has  been  called  reversed  pulsus  paradox, 

respirator  paradox,  systolic  pressure  variation,  paradoxical  pulsus  paradox  and  pulse 

pressure variation at different times. 

Changes in stroke volume during inspiration:(40,41)

1. There is a a decrease in the venous return or blood flow in the vena cava. This is  

attributed to the  increase in pleural pressure caused by mechanical ventilation and 

rise in right atrial  pressure. Fall  in the venous return results  in a decrease in the 

preload of the right ventricle, which in turn causes a low right ventricular output 

(Frank Starling law). A decrease in the right ventricular outflow translates to a fall in 

the pulmonary blood flow and subsequently to the left ventricular filling and output. 

2. Alveolar  pressure  is  the  pressure  surrounding  the  pulmonary  capillaries.  Pleural 

pressure  is  the  pressure  surrounding  the  pulmonary arterial  bed.  Transpulmonary 

pressure is  the difference between the alveolar  pressure and the pleural  pressure. 

During inspiration, the rise in alveolar pressure is greater than that of the pleural 

pressure;  as  a  result,  transpulmonary  pressure  increases  during  this  cycle  of 

respiration.  Increase  in  the  transpulmonary  pressure  impedes  right  ventricular 

outflow by increasing the right ventricular afterload.
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3. As the rise in alveolar pressure is greater than the rise in pleural pressure during 

inspiration, blood from the capillaries is squeezed towards the left side of the heart, 

resulting in an increase in the left ventricular preload.

4. During inspiration, left ventricular afterload is decreased. Positive pleural pressure 

decreases the systolic intracardiac pressure and increases the systolic extracardiac 

pressure because of a fall in the thoracic blood volume.

In short, during inspiration 

– right  ventricular  preload  decreases  and  right  ventricular  afterload  increases 

resulting in a decrease in the right ventricular stroke volume,

- left ventricular preload increases and left ventricular afterload decreases, resulting 

in an increase in the left ventricular stroke volume. 

The transit time of blood in the pulmonary capillaries is approximately 2 seconds. Because 

of this transpulmonary delay, a fall in the right ventricular output during inspiration causes a 

fall in the left ventricular output only after a few heartbeats. This is usually manifested in the 

expiratory period. 
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Changes in pulse pressure with respiration(40)

The pulse pressure is directly proportional to the stroke volume and inversely proportional to 

the vessel (arterial) compliance.  If the arterial compliance remains constant, the changes in 

stroke volume will vary only with changes in the pulse pressure with respiration. Unlike 

pulse pressure, systolic pressure is less closely related to ventricular stroke volume. This is 

because changes in systolic pressure  depend on changes in the pleural pressure which may 

result in variance in systolic pressure even during a single mechanical breath. 
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SYSTOLIC PRESSURE VARAITION (SPV)

Systolic pressure variation determines the respiratory variation in systolic blood pressure by 

calculation  the  difference  in  the  maximum systolic  pressure  and  the  minimum systolic 

pressure over a single mechanical breath. SPV is divided into 2 components  δ up and  δ 

down. (Fig: 10) The former is the difference between the maximal systolic pressure and the 

reference systolic pressure while the latter is the difference between the reference systolic 

pressure  and  the  lowest  systolic  pressure,  both  over  a  single  mechanical  breath.  The 

reference systolic pressure is the systolic pressure measured at end-expiration or during an 

apneic pause lasting 5-30seconds. The  δup reflects the increase in systolic pressure during 

inspiration which may reflect the inspiratory increase in stroke volume of the left ventricle , 

the rise in pleural pressure or both. The   δ   down  reflects  the decrease in LV stroke volume 

during expiration as a consequence of the decrease in right ventricular stroke volume during 

inspiration.
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Figure  10:  Systolic  pressure  variation.SP  max-  maximum  systolic  pressure  during 

inspiration, SP min- minimum systolic pressure during expiration, SP ref – reference systolic 

pressure during apnoeic period. δ up = SP max – SP ref,  δ down = SP ref – SP min 

.

53



PULSE PRESSURE VARIATION

Michard  et  al  quantified  variation  in  arterial  pulse  pressure  with  respiration  using  the 

following formula:

PPV = PPmax -PPmin / Ppmean,

where, PPmax  is the maximum pulse pressure  and PPmin is the minimum pulse pressure 

over a single mechanical breath and Ppmean is the mean of PPmax and PPmin. (42) (Fig: 

11)
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Figure 11: Pulse pressure variation.PP- pulse pressure , PP max – maximum pulse pressure 

during a single breath, PP min- minimum pulse pressure during a single breath.
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STROKE VOLUME VARIATION

Pulse contour analysis computes the area under the systolic part of the pressure waveform 

based on the modified Wesseling algorithm. Variation of the stroke volume with respiration 

is  calculated  accurately  when  the  time  frame  during  which  the  calculations  are  made 

includes at least one complete respiratory cycle. (40)

SVV (%) = (SVmaximum -SVminimum) /SV mean

where,  SV maximum and SVminimum are the  maximum and minimum stroke volumes 

respectively and mean stroke volume of the values calculated over a particular time frame. 

(Fig: 12) 
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Figure 12: Stroke volume variation (SVV). SV max- maximum stroke volume during a 

mechanical breath,  SV min – minimum stroke volume during a mechanical breath. Area 

under the systolic part of the arterial waveform represents the stroke work,
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CLINICAL APPLICATION 

The  main applications of dynamic variables such as PPV and SVV are 

– assessment of volume status and cardiac preload

– in predicting the hemodynamic response to intravascular volume expansion. 

– In predicting hemodynamic response to positive end-expiratory pressure. 

Rick and Burke, in 1978, were the first to establish a link between the variation in arterial 

pressure variation, then called the 'respirator paradox', and the volume status of critically ill 

patients.(43) Subsequently,  many  studies  have  shown  that  increasing  the  blood  volume 

decreases the respiratory variation in the arterial pressure and vice versa. (44–46)

A fluid challenge should increase the cardiac preload and result in an increase the stroke 

volume  and  cardiac  output  (Frank-Starling  mechanism).  Predicting  whether  a  patient  is 

likely to respond to a fluid challenge would not only detect those who would benefit from 

fluid filling, but also avoid the hazards of unnecessary administration of intravascular fluids. 

Numerous  studies  have  established  the  role  of  SPV,  PPV  and  SVV  in  predicting 

responsiveness to fluid expansion.(44–48)

Application of  positive end-expiratory pressure (PEEP) results  in  hemodynamic changes 

which may be deleterious. Increase in pleural pressure leads to a fall in the right ventricular 

filling;  increase  in  the  transpulmonary  pressure  causes  a  rise  in  the  right  ventricular 

58



afterload. The above two changes are major determinants of respiratory variation  of pulse 

pressure  and stroke  volume.  When  cardiac  output  falls  with  application  of  PEEP,  pulse 

pressure variation increases  with PEEP.  If  cardiac  output  is  not  affected  by PEEP,  PPV 

remains unaffected. (44,49)

Various factors affect the measurement  of PPV and SVV. Technical factors such as clot 

formations, presence of air bubbles within the tubing, compliant tubing and excessive tube 

length can affect the dynamic response of the system. 
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THE PRONE POSITION

HEMODYANMIC CHANGES WITH CHANGE OF POSITION FROM SUPINE TO 

PRONE

The prone position was developed  to  enable surgical  access for surgeries involving the 

back.  However,  the  prone  position  is  associated  with  a  number  of   changes  in  the 

cardiovascular  and  respiratory  physiology  as  well  as  complications  as  a  result  of  the 

position, that need to be taken into account. 

PHYSIOLOGICAL CHANGES

Backofen et al observed that when  patients were moved from the supine to prone position, a 

decrease in cardiac index occurred. The main reason for the reduced cardiac output was a 

fall in the stroke volume; the  heart rate remained more or less constant. A concomitant 

increase in the systemic vascular resistance maintained the mean arterial pressure. On the 

other  hand,  Yokoyama  et  al  (50) observed  that  there  were  no  significant  hemodynamic 

changes  on turning a  patient  to  a  flat  prone position;  however,  on  turning them onto  a 

convex saddle frame, significant drop in cardiac output and stroke volume were observed. 

Other variables remained unchanged. It was suggested that the position of the heart at level 

that was higher that the limbs and head impeded venous return and caused a fall  in the 

cardiac index. Various studies have confirmed the fall in cardiac output on turning prone.

(51–53)
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Pulmonary compliance is also decreased. The frame used to support the body or the surgical 

table applies pressure on the abdomen; this increased intra-abdominal pressure is referred to 

the  diaphragm  and  the  lungs  resulting  in  a  decrease  in  the  pulmonary  compliance.  It 

manifests as a rise in peak airway pressures during mechanical ventilation. 

The increased intrathoracic pressure has also been suggested as cause for the fall in cardiac 

output. A rise in the intrathoracic pressure causes a decrease in the arterial filling leading to a 

fall in the stroke volume. Baroreceptor inhibition as a result of the decreased arterial filling 

would cause an increase in the sympathetic activity. It is manifest as increased heart rate and 

total peripheral vascular resistance in prone patients. (54)

A decrease in the left ventricular compliance as a result of an increase in the intrathoracic 

pressure has also been suggested as a reason for fall in cardiac output.

Compression of the abdomen and viscera also results in compression of the blood vessels, 

mainly the inferior vena cava (IVC). This can result in decrease in venous return (preload) to 

the  right  heart  and  cause  a  fall  in  the  stroke  volume  and  cardiac  output.  Additionally, 

compression of the major intraabdominal vessels  forces the blood to return via alternate 

pathways to the heart. One such alternate pathway is through the epidural plexus of vein, the 

engorgement of which during major spine surgery results in increased surgical blood loss. 

The extent to which hemodynamic and pulmonary compliance changes occur vary with the 

type of frame used. In a study done on healthy volunteers, Waldsworth et al showed that 
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cardiac index significantly dropped in patients who were turned prone onto the Relton-Hall 

frame and knee-chest prone position (17% and 20% respectively) but not in those who were 

positioned on the evacuatable mattress and pillows(11% and 3%) respectively.(55)
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PRONE POSITIONING FRAMES

THE ANDREW FRAME

It  supports  the  patient  in  a  kneeling  position  and  does  so  by  supporting  the  chest  and 

allowing the abdomen to hang free. Patient is positioned in a modified knee-chest position 

with the help of a chest pad and a tibial support. The tibial support may be adjusted to obtain 

the required hip flexion.  This  support   allows for  better  ventilation and prevents  rise  in 

intraabdominal pressure. Thigh support bolsters are essential to prevent the patient sliding 

off the table. The legs are at level below the heart and therefore there is risk of venous stasis.

THE RELTON-HALL FRAME

It consists of four individually adjustable supports which are placed in two V-shaped pairs, 

tilting inwards at and angle of 45 degree. (Fig: 13) It supports the antero-lateral pelvis and 

the  lateral  thoracic  cage.  The  advantages  of  this  support  include  that  it  reduces  the 

intraabdominal  pressure,  tends  to  correct  scoliosis,    is  adjustable  for  a  variety of  body 

habitus , is stable and can provide skeletal traction. However, it tends to increase lumbar 

lordosis which may make it unsuitable for lumbar disc surgeries. (56)
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Figure 13: Patient positioned in the prone position on the Relton-Hall frame. 
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THE WILSON FRAME

The Wilson frame is one of the simplest and most readily available frames. It consists of 2 

curved full-length pads which provides support to the pelvis and chest. It can be adjusted 

laterally to relieve pressure on the abdomen. It provides good flexion of the lumbar spine 

and  adequate  decompression  of  the  abdomen.  The  Wilson  Plus  frame  which  is  a 

modification allows for complete radiolucency.(57) The Wilson frame has been associated 

with  a  higher  incidence  of   post-operative  vision  loss   as  a  result  of  ischemic  optic 

neuropathy when compared to other frames. It was postulated that the reason for the same 

was the venous congestion that resulted from the position of the head below the heart. (58)

The choice of anesthetic used may influence the hemodynamic profile on turning prone. 

Sudheer et al(52) compared patients who received inhalational anesthetic with isoflurane to 

patients who receive total intravenous anesthesia(TIVA) with target controlled infusion of 

propofol. They found a significant drop in cardiac index in all patients on turning prone onto 

the Montreal mattress with a significantly greater fall in cardiac index in the patients who 

received TIVA.

All of the studies that have been done in patients undergoing surgery in the prone position 

have been on patients belonging to American Society of Anesthesiologist (ASA) Class I, II 

and III; majority belonging to the former two classes.(59–62) 

Patients belonging to ASA Class II and Class III (for example, patients with controlled or 

uncontrolled diabetes mellitus and hypertension and ischemic heart disease) are often on 
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medications  such  as  beta  blockers,  angiotensin  receptor  blockers,  ACE  inhibitors  and 

nitrates. Additionally, autonomic dysfunction may be present in these patients.

PERIOPERATIVE AUTONOMIC DYSFUNCTION

The  incidence  of  severe  autonomic  dysfunction  is  about  1  in  1000  individuals   and  is 

characterized by unpredictable responses to pharmacological and physiological stimuli.  It 

may be primary or occur secondary to systemic illness such as diabetes mellitus. (63)

Autonomic  dysfunction  can  occur  as  a  result  of  dysfunction  of  the  afferent  limb  ,  the 

autonomic center or the efferent limb. Supine hypertension results when dysfunction of the 

afferent  limb  is  present,  whereas  dysfunction  of  the  efferent  limb  or  center  results  in 

orthostatic hypotension which may often be disabling. 

In an individual with autonomic dysfunction, the couterregulatory effect of the barorecptor 

control is lost. Anesthetic agents further suppress the baroreceptor reflex and this patients are 

vulnerable to hypotension during to anesthesia.  The loss of heart  rate variability seen in 

many patients does not allow for appropriate cardiovascular response to acute changes in 

blood  volume.  Moreover,  their  response  to  vasopressors  is  unpredictable  because  of 

denervation hypersensitivity that exists.(63)  
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DIABETIC  AUTONOMIC  NEUROPATHY  –  CARDIOVASCULAR  AUTONOMIC 

NEUROPATHY

Autonomic  dysfunction  is  well  documented  in  patients  with  diabetes  mellitus.  Although 

diabetic autonomic neuropathy can affect different organ systems, cardiovascular autonomic 

neuropathy (CAN) is the most important clinical form of diabetic autonomic neuropathy 

because of its life-threatening consequences. 

CAN occurs because of damage to the autonomic nerves innervating the heart and blood 

vessels, resulting in abnormal control of heart rate and vasomotor responses. 

A patient with CAN may present with one of the following : orthostatic hypotension, resting 

tachycardia, silent myocardial infarction, exercise intolerance. 

Cardiovascular autonomic neuropathy is determined based on a battery of tests rather than a 

single  test.  Clinical  tests  available  test  both  the  parasympathetic  and  the  sympathetic 

systems. (64) 

Clinical tests of the parasympathetic nervous system:

Heart rate response to Valsalva maneuver: The Valsalva ratio is measured (ratio of longest to 

shortest R-R interval) in a seated subject who is made to blow in to a mouthpiece for 15  

seconds while holding a pressure of 40 mm Hg. Normal value is >1.21
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Heart rate response to standing: 30:15 ratio is measured as the patient stands from a supine 

position. A maximal tachycardia response seen around the 15th beat is normally followed by 

a  bradycardia  usually around the 30th beat.  Ratio of the R-R interval  at  the30th (longest 

interval) to the 15th  beat (shortest interval) is the 30:15 ratio. Normal value is >1.04

Heart rate response to deep breathing: The patient takes 6 deep breaths in a minute. Mean 

difference between the maximum and minimum heart rate during 3 breathing cycles is taken. 

Normal value is > 15 beats/minute. 

Clinical tests of sympathetic nervous system:

Blood pressure response to standing: The difference between the standing systolic blood 

pressure and the resting supine systolic blood pressure is measured. Normal difference is < 

10mm Hg.

Blood pressure response to sustained hand grip: Hand grip which is 30% of the maximum 

hand grip is maintained for 5 minutes. Normally,  a difference of more than 16mmHg is 

observed between the initial diastolic blood pressure and the diastolic blood pressure just 

before release.

Involvement  of  the  parasympathetic  nervous  system  precedes  the  involvement  of  the 

sympathetic nervous system. Therefore,  a positive test  involving blood pressure changes 
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suggests severe autonomic dysfunction.   Apart  from the tests  of autonomic dysfunction, 

diabetic autonomic dysfunction is characterised by resting tachycardia. 

Perioperative management of patients with autonomic dysfunction should involve providing 

adequate  hydration,  maintaining  euvolemic  status  and  optimising  pharmacological 

treatment.  Hypotension  is  common  during  anesthesia  and  responds  well  to  alpha  1 

adrenoreceptor agonist such as phenylephrine. Indirect acting agents such as ephedrine may 

be less effective as they depend on the release of noradrenaline from postganglionic nerve 

fibers  for their action; this may be lacking in this group of patients.  (63)

Burgos et al in 1989 reported increased incidence of post-induction hypotension in diabetic 

patients with autonomic dysfunction.(65)  Hemodynamic lability on induction of anesthesia 

in patients with autonomic dysfunction is well documented.(66,67).

Although autonomic dysfunction associated with diabetes has been well studied, autonomic 

nerve dysfunction also occurs in other conditions.  Key among them are elderly patients, 

hypertensive  patients,  patients  with  coronary  artery  disease  and  patients  on  various 

medications  such  as  calcium  channel  blockers,  beta  adrenergic  blocking  agents  and 

angiotensin-converting enzyme inhibitors. 

Hypotension following induction of anaethesia in patients on angiotensin receptor blockers 

(ARB) and angiotensin-converting enzyme inhibitors (ACEI)is a know complication. ACEI, 

because of  its  ability to  inhibit  angiotensin  II  mediated  sympathetic  response,  may also 

reduce responsiveness to exogenous vasopressors used to treat the hypotension(68). Brabant 
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et al showed in their study that the incidence of hypotension was significant in patients on 

ARB than with  other  drugs,  especially  if  these  drugs  were  continued  up to  the  day of  

surgery. The other group of drugs studied were  ACEI, calcium channel blockers and beta 

blockers. Hypotension occurring in patients on ARB was more difficult to treat than that 

occurring in the other groups. (69) Rosenman et al found that patients receiving preoperative 

ARB /ACEI had higher incidence of intraoperative hypotension (RR 1.5, CI 1.15 – 1.96)(70)

The above mentioned studies have been performed on patients undergoing surgery in the 

supine position. Change of position from supine to prone will often cause an exaggerated 

hemodynamic response in patients with significant co morbid illnesses, more so in patients 

with autonomic dysfunction. (63)Presence of cervical spine pathology who have autonomic 

dysfunction also exhibit labile hemodynamic on turning to the prone position. (71)

This study observed the hemodynamic changes that occur in a specific group of patients 

belonging to either ASA Class II or III, on changing position from supine to prone. The Flo 

Trac/Vigileo™ system was used to measure the hemodynamic variables. It further observed 

the effect of fluid challenge of 10ml/kg of crystalloids administered to these patients before 

they were turned to the prone position. 
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MATERIALS AND METHODS
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STUDY SETTING

This  study was  carried  in  the  spine  surgery(orthopedic)  and the  neurosurgery operating 

rooms. Subjects were selected the day before the surgery.

STUDY DESIGN

This study was designed to be an observational study.

CALCULATION OF SAMPLE SIZE

Biais et al , in their study 'Abilities of pulse pressure variations and stroke volume variations

to predict fluid responsiveness in prone position during scoliosis surgery'  have reported that 

significant  correlation  between  PPV and  CO in  prone  position  was  0.77.  However,  we 

expected  a  poor  correlation  in  patients  with  co-morbid  illnesses  like  diabetes  mellitus, 

hypertension and ischemic heart disease. Therefore, we estimated the sample size with the 

correlation of around 0.4 to 0.5. Keeping Alpha and Beta errors at 5% and 20% respectively,  

we needed to study nearly 30 subjects.
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Regression  methods  -  Sample  size  for  correlation 

coefficient analysis (testing against population value)
Sample correlation coefficient 0.4 0.5 0.3

Population correlation coefficient 0 0 0

Power (1- beta) % 80 80 80

Alpha error (%) 5 5 5

1 or 2 Sided 2 2 2

Required sample size 47 29 85

SUBJECTS

Patients who belonged to ASA Class II or III with co-morbid illnesses such as diabetes 

mellitus, hypertension  or ischemic heart disease and who were scheduled to undergo major 

instrumental spine surgery in the prone position were recruited after explaining the aims and 

objectives of the study and obtaining informed consent. The study was conducted over a 

period  of  7  months.  31  patients  were  recruited;  however  2  were  excluded.  One  of  the 

excluded patients had insufficient data and the other did not meet the inclusion criteria. 
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INCLUSION CRITERIA

▪ Age : 18-70 years

▪ ASA II  or  ASA III  patient  with  co-morbid  illnesses  which  included diabetes 

mellitus, hypertension and/or ishcemic heart disease.

▪ Undergoing elective major spine surgery in prone position.

EXCLUSION CRITERIA

•  Age < 18 years, >65 years

• Left ventricular dysfunction or regional wall motion abnormality

• Emergency surgery

• ASA I/IV / V

• Valvular heart disease,

• Arrhythmia

• Pulmonary disease (COPD and asthma)

• Renal dysfunction

• BMI < 18kg/m2 or > 40 kg/m2

Data collection occurred within the confines of the operating theatre. 

74



METHODOLOGY
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After obtaining clearance from the Institutional Review Board (IRB), thirty-one patients 

belonging  to  American  Society  of  Anesthesiologist  (ASA)  Class  II  and  III  undergoing 

elective major spine instrumentation surgery in the prone position were studied. 

Major spine surgery was defined as  

Posterior Lumbar Intervertebral Fixation (PLIF)

Transforaminal lumbar Intervertebral Fixation(TLIF)

Laminectomies in 3 or more levels with or without tumour excision. 

Patients  with  valvular  heart  disease,  chronic  obstructive  pulmonary  disease,  renal 

dysfunction  ,  left  ventricular  dysfunction,  valvular  heart  disease  and  arrhythmia  were 

excluded from the study. Patients were recruited after obtaining informed consent on the day 

before the surgery. 

In  all  patients,  peripheral  venous  access  was  established  using  a  large  bore  cannula. 

Percutaneous radial arterial cannulation was undertaken with a 20G cannula in an aseptic 

manner and after infiltration of local anesthetic (2% lignocaine). The standard technique or 

the transfixion technique was used. Needle-guidewire-catheter assemblies were used only in 

case of difficulty in cannulating the artery. The Flo Trac transducer was connected to the 

arterial line and zeroed after ensuring correct position at the mid-axillary level. The other 

monitors which included an electrocardiogram, pulse oximeter, end-tidal carbon dioxide, 

and  temperature (post-induction) were  connected and displayed using PHILIPS Intelli Vue 

MP50 monitor. A PHILIPS agent analyser was also used and the values displayed on the MP 
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50 monitor.  Baseline  values  before  induction  (T0)  were  noted.  Heart  rate(HR),  systolic 

blood pressure (SBP), diastolic blood pressure (DBP) , mean arterial pressure (MAP) and 

pulse pressure variation (PPV) were displayed on the PHILIPS Intelli Vue MP50 or MP 40 

monitor ,(Fig:14) whereas stroke volume variation(SVV), cardiac output (CO) and cardiac 

index (CI) were displayed on the Vigileo stand-alone monitor.

Following pre-oxygenation, induction of general anesthesia was carried out with fentanyl 2-

4mcg/kg, propofol 2mg/kg and vecuronium 0.15mg/kg. After ventilating to ensure adequate 

time for the muscle relaxant to act, patients were intubated with appropriate endotracheal 

tube. Mechanical ventilation was established with intermittent positive pressure ventilation 

using volume controlled ventilation with tidal volumes of at least 8ml/kg. The ventilator 

used was DATEX-OHMEDA Aestiva /Aespire.  Anesthesia was maintained with  a mixture 

of  air  /oxygen  and  isoflurane  titrated  to  an  end-tidal  value  of  1.0(  MAC  value  of 

0.8).Following intubation, end-tidal carbon dioxide was maintained between 35 and 40mm 

Hg with  inspired  oxygen  concentration  of  at  least  0.40  (FiO2).  Muscle  relaxation  was 

maintained  with  boluses  of  vecuronium  and  analgesia  was  provided  with  intravenous 

morphine 0.1mg/kg and fentanyl as required. Before change of position all patients received 

crystalloids  up  to  10ml/kg.  All  variables  were  measured  after  establishing  mechanical 

ventilation and before turning prone (T1)

Following preloading the  patients  with 10ml/kg of  crystalloid,  change in  position  from 

supine to prone was undertaken. This was done after ensuring complete muscle paralysis 

and an end-tidal isoflurane concentration of at-least 1.0(MAC of 0.8). Patients undergoing 

surgery  under  spine  surgery  were  positioned  on  the  Relton-Hall  frame  and  patients 
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undergoing surgery under neurosurgery were positioned on 2foam bolsters, one under the 

chest  and  the  other  under  the  pelvis.  Care  was  taken  to  ensure  that  the  frames  were 

positioned  in  such  a  manner  so  as  to  prevent  abdominal  compression.  Ventilation  was 

rechecked  in  the  prone  position.  Head  position  was  checked  to  ensure  excessive  neck 

flexion did not occur. Eyes were checked to ensure direct pressure on the eyeballs did not 

occur. Other position- related complications were looked for - excessive abduction at the 

shoulder was avoided, pressure over the axilla and the elbows was prevented with adequate 

padding, genitals in the male patients and breasts in the female patients were checked to 

ensure proper positioning and pressure points on the lower limbs were padded appropriately. 

All peripheral pulses were checked in the prone position. 

 The transducer of the Flo Trac was adjusted to the mid-axillary level and zeroed again. Five 

minutes after prone positioning, readings were noted for all variables(T2). Readings were 

noted every 5 minutes thereafter until skin incision.(T3 - Tn).  

A fall in cardiac index by more than 25% from baseline (T1) warranted treatment with fluid 

bolus using crystalloids up to 10ml/kg and/or boluses of vasopressors such as ephedrine 

6mg if  heart  rate  was  <80  beats  per  minute  or  phenylephrine  50-100mcg  if  heart  rate 

was>80beats per minute. Failure to respond to fluid bolus up to 10ml/kg and repeated doses 

of vasopressors  warranted institution of hemodynamic support with noradrenaline infusion. 
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Figure 14:   PHILIPS Intelli Vue MP 40 monitor displaying ECG, HR (heart rate), ABP (arterial 

blood  pressure)  with  waveform,  SpO2(saturation)  with  waveform,  etCO2 (end-tidal  carbon 

dioxide)  with  waveform,  PPV  (pulse  pressure  variation),  MAC  (minimum  alveolar 

concentration) of Isoflurane , Temp (nasopharyngeal temperature) , RR (respiratory rate), inO2 

and  etO2(inspired  and  expired  oxygen  concentrations)  and  inISO  and  etISO  (inspired  and 

expired isoflurane concentration)
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STATISTICAL ANALYSIS
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Since skin incision occurred in more that half the patients after 15 minutes of turning prone,  

analysis of the collected data was done only up to T4 (15 minutes after turning prone).

The data obtained was entered into an Excel spread sheet. Statistical analysis was performed 

using  the  SPSS  software.  All  the  hemodynamic  variables  were  entered  as  continuous 

variables and the mean (+/-SD) of each variable at each time was computed. 

A General Estimating Equations (GEE) analysis was performed to analyze the change in 

hemodynamic variables across the various time points. For this analysis, T1 (baseline, post-

induction,  supine)  was  taken as  the  reference.  Variables  at  T2 (5 minutes  after  turning 

prone), T3 (10 minutes after turning prone) and T4 (15 minutes after turning prone) were 

compared to T1 and change in these variables along with the significance of change (p 

value) was computed. 

A paired t-test analysis was additionally done between time points T1 and T4 . Mean values 

of the variables along with the mean change in the variables were calculated. This analysed 

whether the change in the variables was significant from T1 to T4. 

Correlation  between  variables  (PPV and  CO,  SVV and  CO  and  PPV and  SVV)  were 

assessed in the prone position at two time points. Pearson correlation test was used for this 

purpose. The correlation coefficient ( r) was calculated and correlation was described as 

positive, negative or inverse. The strength of correlation was also assessed was well as the 
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significance. 

Levene's test for Equality of Variance was used to analyse the difference in variables among 

patients on differing prone supports and among diabetic versus non-diabetic patients. Mean 

values  of  the  variables  in  each  group  was  calculated  and  presence  of  any  significant 

difference between values was examined.
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PARTICIPANT FLOW CHART
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 RESULTS
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A total of thirty one patients were recruited for this observational study. Of the 31 patients, 1 

did not meet the inclusion criteria and the other had missing data. Analysis was therefore 

done on data collected from twenty-nine patients.  Heart rate (HR), Systolic Blood pressure 

(SBP), Diastolic Blood pressure (DBP), Mean Arterial Pressure (MAP) and Pulse Pressure 

Variation  (PPV) were  displayed  on  the  PHILIPS Intelli  Vue  MP50 monitor  and Stroke 

Volume Variation (SVV), Cardiac Output (CO) and Cardiac Index (CI) were displayed on 

the Flo Trac Vigileo monitor.

The age ranged from 41 to 70 years with a mean age of 56.4 years. Majority of the patients  

were female (62.1%).  Approximately half the patients were in the normal range for body 

mass index (BMI) and the rest were overweight or belonged to grade I obesity category. 

Most of the patients belonged to ASA II (89.7%). The co-morbid illnesses seen in these 

patients were hypertension, diabetes mellitus and ishcemic heart disease in decreasing order 

of frequency. Most of the patients underwent orthopedic spine surgery and were positioned 

on  the  Relton-Hall  frame  (82.8%);  the  rest  who  underwent  neurosurgical  spine  surgery 

procedures were positioned on foam bolsters positioned horizontally across the chest and 

pelvis (Table 1).
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Table 1:   Demographic details of participants   

Characteristics
Age in years, Mean ± SD (range) 56.4 +/- 7.8  (41-70)
Gender
          Male, n (%) 11 (37.9)
          Female, n (%) 18 (62.1)

Height in cm, Mean ± SD (range) 156.1 +/- 9.5 (140-174)

Weight in kg, Mean ± SD (range) 61.6+/- 11.2 (44 -90)

BMI in kg/m2

          Normal (18.5 – 24.9), n (%) 16 (55.2)
         Overweight (25- 29.9), n (%) 8 (27.6)
         Obesity (30-34.9), n (%) 5 (17.2)

ASA Status
          ASA II, n (%) 26 (89.7)
          ASA III, n (%) 3 (10.3)
Co-morbid illnesses
         Diabetes mellitus, n (%) 15 (51.7)
          Hypertension, n (%) 24 (82.8)
          IHD, n (%) 3 (10.3)

Type of support
        RH frame, n (%) 24 (82.8)
        Bolsters, n (%) 5 (17.2)

Abbreviations: ASA – American Society of Anesthesiologists; BMI-Body Mass Index; IHD 

– Ischemic Heart Disease; RH – Relton Hall; SD – Standard Deviation
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Haemodynamic variables were assessed at various time points from baseline (T1 – values 

after induction in the supine position) to different time points five minutes apart after turning 

the patient prone. (T2, T3, T4 – 5, 10 and 15 minutes after turning prone respectively). The 

mean values of all the variables over these time periods are described in table 2.

Table 2  : Haemodynamic variables before and after turning prone  

Haemodynamic 

variables

Baseline (T1) T2 T3 T4

HR (mean ± SD) 86.6 +/-16.08 85.03+/-16.12 81.55 +/-16.49 76.04+/- 16.31

SBP (mean ± SD) 125.16+/-23.67 111.69+/- 

27.38

116.45+/-

25.76

102.8+/-17.97

DBP (mean ± SD) 67.16+/-10.7 63.28+/-17.34 62.72+/-17.45 61.52+/-14.27

MAP (mean ± SD) 88.16+/-16.54 80+/-20.71 83.24+/-18.01 76.04+/-16.26

SVV (mean ± SD) 11.29+/-4.85 14.86+/-5.36 14.5+/-4.73 14.79+/-3.78

PPV (mean ± SD) 11.04+/-4.51 14.67+/-5.24 13.84+/-4.72 14.67+/-5.05

CO (mean ± SD) 5.59+/-2.33 4.86+/-2.62 4.92+/-1.42 4.12+/-1.06

CI (mean ± SD) 3.46+/-1.72 2.90+/-1.47 3.02+/-0.75 2.52+/-0.57
Abbreviations: CI - cardiac index; CO - cardiac output; DBP – diastolic blood pressure; HR 

– heart rate; MAP – mean arterial pressure; PPV – pulse pressure variation; SBP – systolic 

blood pressure; SVV – stroke volume variation 
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A General  Estimating Equations  (GEE) analysis  (Table 3)was performed to  analyse  the 

change  in  variables  from baseline  (T1  –  values  after  induction  in  the  supine  position) 

through different time points five minutes apart after turning the patient prone. (T2, T3, T4 – 

5, 10 and 15 minutes after turning prone respectively.)

Table 3:  Change in variables across time points T2 to T4 as compared to baseline T1  

T1 - baseline T2 (p value) T3 (p value) T4 (p value)

HR - -1.59 (0.481) -5.06 (0.009) -10.07 (<0.001)

SBP - -11.58 (0.025) -6.82 (0.286) -20.83 (<0.001)

DBP - -2.58 (0.376) -3.13 (0.355) -4.93 (0.152)

MAP - -6.72 (0.078) -3.48 (0.430) -11.2 (0.014)

PPV - 2.9 (0.020) 2.04 (0.122) 3.10 (0.024)

SVV - 3.31 (0.002) 2.9 (0.010) 3.33 (0.002)

CO - -0.57 (0.185) -0.54 (0.139) -1.34 (<0.001)

CI - -0.55 (0.087) -0.38 (0.192) -0.87 (0.003)
Abbreviations: CI - cardiac index; CO - cardiac output; DBP – diastolic blood pressure; HR 

– heart rate; MAP – mean arterial pressure; PPV – pulse pressure variation; SBP – systolic 

blood pressure; SVV – stroke volume variation

88



HEART RATE:

Heart  rate  showed  a  downward  trend  (Fig:15)  following  turning  prone  with  significant 

change noted 10 and 15 minutes after the position was assumed. (p<0.01)

89

0 1 2 3 4
0

20

40

60

80

100

Figure 15 :Trend of heart rate from supine (T1) to prone (T2,T3,T4)
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SYSTOLIC BLOOD PRESSURE

Significant fall in systolic blood pressure (p=0.025) was noted 5 minutes after turning prone 

and 15 minutes after turning prone (p<0.001). Although there was a fall in SBP as compared 

to baseline value 10 minutes after change of position, it was not significant.(Fig:16)
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Figure  16: Trend of Systolic Blood Pressure (SBP) from supine T1 to prone (T2,T3, T4)
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DIASTOLIC BLOOD PRESSURE

Although there was a decrease in the trend of diastolic blood pressure on turning prone, the 

change was  not found to be significant at any time point.(Fig:17)
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Figure 17  :Trend of Diastolic Blood Pressure (DBP) from supine T1 to prone  (T2, T3,T4)
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MEAN ARTERIAL PRESSURE

Fall  in  MAP was  significant  15  minutes  after  changing  to  prone  position.  (p=  0.014) 

(Fig:18)
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Figure  18: Trend of Mean Arterial Pressure (MAP) from supine T1 to prone (T2, T3,T4)
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PULSE PRESSURE VARIATION

The rise in PPV with change in position  (Fig: 19) to prone was significant at 5 minutes 

(p=0.020) and at 15 minutes (p=0.024) 
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PPV

Time points (T1,T2,T3,T4)

PP
V

 (%
)



STROKE VOLUME VARIATION

The increase in SVV (Fig:20) on turning prone was found to be significant at all time points 

(p = 0.002,0.010 and 0.002 at 5, 10 and 15 minutes respectively).
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Figure 20 : Trend of SVV from supine T1 to prone (T2,T3,T4)
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CARDIAC OUTPUT

Significant  fall  in  cardiac  output  occurred  at  15  minutes  after  tuning  prone  (p<0.001). 

(Fig:21)
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CARDIAC INDEX

Fall in cardiac index (Fig:22) was significant at 15 minutes after change in position to prone 

(p=0.003).
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Comparison between T1 and T4 using paired t-test revealed statistically significant changes 

in the various haemodynamic parameters (Table 4). Except DBP, all other variables showed 

a significant change at time T4. 

Table 4:   Change in variables from T1 to T4 (paired t-test)  

Haemodynamic 

variables

Baseline (T1) T4 Difference 95% CI p-value

HR (mean ± SD) 86.6 +/-16.08 76.04+/- 

16.31

10.56+/-11.96 5.61-15.5 <0.001

SBP (mean ± SD) 125.16+/-23.67 102.8+/-

17.97

22.36+/-30.68 9.69-35.02 0.00 1

DBP (mean ± SD) 67.16+/-10.7 61.52+/-

14.27

5.64+/-18.07 -1.820-13.1 0.13

MAP(mean ± SD) 88.16+/-16.54 76.04+/-

16.26

12.12+/-24.48 2.01-22.22 0.02

SVV (mean ± SD) 11.29+/-4.85 14.79+/-3.78 -3.5+/-5.16 -5.68 - -1.31 0.03

PPV (mean ± SD) 11.04+/-4.51 14.67+/-5.05 -3.63+/-6.87 -6.52- -0.72 0.02

CO (mean ± SD) 5.59+/-2.33 4.12+/-1.06 1.46+/-2.05 0.61 – 2.31 0.0 2

CI (mean ± SD) 3.46+/-1.72 2.52+/-0.57 0.95 +/-1.67 0.24 – 1.65 0.01
Abbreviations: CI - cardiac index; CO - cardiac output; DBP – diastolic blood pressure; HR 

– heart rate; MAP – mean arterial pressure; PPV – pulse pressure variation; SBP – systolic 

blood pressure; SVV – stroke volume variation
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CORRELATION STUDIES

Correlations were assessed for PPV and CO, SVV and CO and PPV and SVV using Pearson 

Correlation.(Table 5)

Table 5 :   Correlations between SVV and PPV with CO at T2 an T4  

Correlation

s

Pearson’s correlation coefficient

T2 T4

PPV  and 

CO

-0.15 -0.16

SVV  and 

CO

-0.37 -0.06

PPV  and 

SVV

0.83 * 0.75 *

*p<0.001

PPV and CO:

A weak  inverse  correlation  was  found at  T2  (  r=  -0.15;  p=  0.452)  and  T4  (r  =  -0.16; 

p=0.434).
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SVV and CO:

A weak inverse correlation was found to exist  between SVV and CO at  T2 (r= -0.374; 

p=0.046) and T4 (r=-0.061; p=0.777)

PPV and SVV

A strong positive correlation was found to exist  between SVV and PPV at T2 (r=0.835; 

p=<0.001) and T4 (r=0.75; p<0.001).
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COMPARISON  OF  HEMODYNAMIC  VARIABLES  BETWEEN  DIFFERENT 

PRONE SUPPORTS 

Hemodynamic variables of the patients who were positioned on the Relton-Hall frame were 

compared to those of the patients placed on foam bolsters. Statistical analysis was carried 

out using Levene's test for Equality of Variances . (Table 6)

Heart rate and cardiac index were the two variables which showed significant change over 

the time period based on the type of support used. (p=0.02 for HR and p=0.03 for CI). None 

of the other variables changed significantly as a result of the difference in prone support 

used. (Table 6)
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Table 6:   Comparison of hemodynamic variables on Relton-Hall frame versus foam bolsters.  

 

Relton-Hall 

frame

Foam bolsters 95%  CI

(confidence 

interval)

 p value

HR(mean+/-SD) 84.2+/-16.7 74.7+/-15.5 1.47-17.6 0.02

SBP(mean+/-

SD)

115+/-25.3 108.8+/-24.1 -6.11-18.5 0.32

DBP(mean+/-

SD)

63.5+/-15.4 62.8+/-15.6 -6.81 – 8.29 0.85

MAP(mean+/-

SD)

82.2+/-18.45 79.4+/-18.7 -6.25-11.83 0.54

SVV(mean+/-

SD)

13.9+/-5.17 13.55+/-5.88 -2.19-3.0 0.76

PPV(mean+/-

SD)

14.1+/-5.37 11.7+/-4.54 -0.35-5.03 0.08

CO(mean+/-SD) 4.96+/-2.13 4.30+/-0.99 -0.3-1.63 0.18

CI(mean+/-SD) 3.11+/-1.33 2.45+/-0.6 0.05-1.23 0.03

Abbreviations: CI - cardiac index; CO - cardiac output; DBP – diastolic blood pressure; HR 

– heart rate; MAP – mean arterial pressure; PPV – pulse pressure variation; SBP – systolic 

blood pressure; SVV – stroke volume variation
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COMPARISON  OF HEMODYNAMIC  VARIABLES  BETWEEN  DIABETIC  AND 

NON-DIABETICS

Hemodynamic variables of the patients who were diabetic were compared to those of the 

patients who were not. Statistical analysis was carried out using Levene's test for Equality of 

Variances . (Table 7)

No statistical significance was found in any of the hemodynamic variables between diabetic 

and non-diabetic patients( Table 7)
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Table 7:   Comparison of hemodynamic variables between diabetic and non-diabetic   

patients

Diabetics Non-diabetics 95% confidence 

interval

 p value

HR (mean+/-SD)

 

83.1+/-14.7 81.9+/-18.8 -5.09-7.56 0.7

SBP(mean+/-

SD)

115+/-26.4 112.8+/-24 -7.26-11.66 0.65

DBP(mean+/-

SD)

62.6+/-16.7 64.2+/-13.6 -7.33-4.22 0.6

MAP(mean+/-

SD)

81.7+/-19.1 81.6+/-17.8 -6.89-6.98 0.99

SVV(mean+/-

SD)

13.4+/-5.3 14.2+/-5.2 -2.81-1.18 0.42

PPV(mean+/-

SD)

13.2+/-4.8 14.1+/-5.6 -2.93-1.17 0.4

CO(mean+/-SD) 5.1+/-2 4.5+/-1.8 -0.17-1.31 0.13

CI(mean+/-SD) 3.1+/-1.2 2.8+/-1.3 -0.18-0.76 0.23

Abbreviations: CI - cardiac index; CO - cardiac output; DBP – diastolic blood pressure; HR 

– heart rate; MAP – mean arterial pressure; PPV – pulse pressure variation; SBP – systolic 

blood pressure; SVV – stroke volume variation
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DISCUSSION
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In this study, I found that although cardiac output and cardiac index did not immediately 

decrease in the prone position, there was a significant decrease these variables at a later time 

point. SVV and PPV showed significant change immediately following position change (5 

minutes) and at a later time point (15 minutes). 

Surgery of the spine performed in the prone position is associated with multiple hazards, of 

which those relating to hemodynamic changes are most acute and may be life-threatening. 

Change of position to prone in associated with a decrease in  the cardiac output. Yokoyama 

et al found a significant fall in cardiac index and stroke volume when positioning patients on 

a convex saddle as opposed to a flat surface(50)

The data from this study shows that there was a significant increase in PPV and SVV within 

5 minutes of turning prone. Biais et al reported an increase in SVV and PPV on turning 

prone in their study (59)This phenomenon may be explained by different mechanisms. 

Positioning the patient in the prone position causes the heart to be at a higher hydrostatic 

level as compared to the lower limbs. Such a position would impede the venous return. This 

results in a fall the preload to the right side of the heart. Decrease in the right ventricular 

preload causes more pronounced cyclic variations produced by mechanical ventilation and is 

manifest as an increase in the PPV and SVV. 

A decrease in the chest compliance  is  often recognised during change in position from 

supine  to  prone.  This  is  often  the  result  of   abdominal  compression  due  to  improper 

105



positioning on the prone frame. A fall in the compliance of the chest could impede venous 

return  and subsequently cause an increase in the SVV.   Although care was taken to ensure 

that the abdomen hung free, change in the compliance of the respiratory system was not 

monitored in this study. Moreover, intra-abdominal pressure monitoring was not undertaken. 

Hence it is difficult to ascertain whether rise in abdominal pressure caused a rise in PPV and 

SVV.  

Although there was a change in the cardiac output and cardiac index after 5 minutes of prone 

position,  it  was  not  a  significant  change  (p=0.185  p=  0.087  respectively).  All  patients 

received 10ml/kg of crystalloids before they were turned to the prone position. This suggests 

that the preload that was administered may have prevented a fall in the cardiac output and 

cardiac index. However, it is not possible with this study to determine that preload prevented 

a fall in the cardiac output; a randomized control study with patients who received preload 

and who did not receive preload would be needed to determine the same. 

There was a significant fall  in the systolic blood pressure 5 minutes after turning prone 

(p=0.025).  Blood  pressure  is  the  product  of  cardiac  output  and  systemic  vascular 

resistance(SVR).

 

Blood pressure = cardiac output X systemic vascular resistance.

Significant change in mean arterial pressure (MAP) did not occur. Fall in cardiac output did 

occur, although it was statistically insignificant. It can be postulated that there was probably 

an  increase  in  the  SVR  which  maintained  the  MAP  even  with  fall  in  the  cardiac 
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output/index.  This this has been explained to occur in earlier studies with ASA I and ASA II  

patients, In the absence of a central  venous catheter, is is not possible to measure SVR using 

Flo Trac. Pump et al postulated that a decrease in the arterial pressure causes baroreceptor 

inhibition which leads to sympathetic stimulation and an increase in the systemic vascular 

resistance.(54) 

Ten minutes following prone position, a significant fall was noted in the heart rate (p=0.009) 

and in the SVV (p=0.010). Change in the other variables (SBP, DBP, MAP, PPV, CO and CI) 

were  not  found  to  be  significant.  A lack  of  surgical  stimulus  while  patient  was  being 

prepared for surgery would explain the fall in heart rate. 

Fifteen minutes after assuming the prone position, significant fall  was noted in HR, SBP, 

MAP,  CO and  CI  (p<0.001,  p<0.001,  p=0.014,  p<0.001  and  p=0.003  respectively)  and 

significant rise in SVV and PPV were noted (p=0.002 and p=0.024 respectively). Poon et al, 

in their study , found significant change in heart rate, stroke volume, cardiac index and blood 

pressure  10  minutes  after  change  of  position  to  prone.(53)Anesthetic agents  cause  fall 

peripheral vasodilation and myocardial depression. Peripheral vasodilation causes a fall in 

the systemic vascular resistance. Myocardial depression causes a fall in the stroke volume 

and  cardiac  output.  Combination  of  the  above  mentioned  factors  along  with  a  lack  of 

surgical stimulus could explain the fall in the HR, SBP, MAP, CO and CI. In a vasodilated 

patient, the variations of pulse pressure and stroke volume with respiration would be more 

prominent and result in higher SVV and PPV values. 

Additionally, administration of analgesic agents such as morphine could have further caused 
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fall in peripheral venous tone and vascular resistance. Morphine  has been shown to have 

parasympathomimetic   and sympatholytic  effects  as  well  as  effects  on  the  baroreceptor 

reflex.(72,73) Since there is no data available on the time of administration of morphine, it is 

not possible to ascertain whether this caused significant changes or not.

The pulse pressure is directly proportional to the stroke volume and inversely proportional to 

the vessel (arterial) compliance.  If the arterial compliance remains constant, the changes in 

stroke volume will vary only with changes in the pulse pressure with respiration.(40) In the 

Pearson Correlation done for SVV and PPV, a similar result  was obtained. In the prone 

position,  SVV  was  found  to  have  a  strong  significant   positive  correlation  with 

PPV(p<0.001).  Biais et al also found similar correlation between SVV and PPV in prone 

position in their study (r=0.77; p<0.0001)(59)

However, a weak correlation was found to exist between SVV and CO (r= -0.374, p=0.046 

at T2 and r=0.061, p=0.777 at T4) and PPV and CO (r= -0.15,p=0.452at T2 and r= -0.16; 

p=0.434 at T4).The relationship was also inverse; that is, as SVV and PPV increased, CO 

was found to decrease. This is observed clinically. When volume expansion is administered, 

and increase in the preload results in an increase in the stroke volume; which subsequently 

leads to an increase in the cardiac output. As the patient is filled, the variation in stroke 

volume and pulse volume with respiration decreases. The lack of strength of correlation 

between SVV and CO,and PPV and CO suggests that changes in pulse pressure and stroke 

volume cannot be used as a surrogate or indicator for changes in the cardiac output. Monnet 

et al, in their study on ICU patients, found that systolic pressure and pulse pressure could be 

used to detect changes in cardiac output.(r= .56, p < .0001for pulse pressure and r = .55, p 
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< .0001for systolic pressure).(74) However, this study was done in patients who were in the 

supine position. Moreover the sample size for the above mentioned study was much larger. 

Hemodynamics in the prone position are affected by a number of variables; one of the main 

factors which affect it is the type of support that is used. Numerous studies have shown fall 

in cardiac index based on the type of support that was used. Various explanations have been 

put forward for the observed fall in cardiac index. Depending on the  type of support that is 

used, the heart may be positioned at a hydrostatically higher level that the lower limbs. This 

impedes venous return to the heart, resulting in a decrease in the preload and thus the cardiac 

output.  Compression  of  the  abdomen has  been implicated  in  causing  fall  in  the  cardiac 

output. Abdominal compression results in decreased pulmonary compliance which in turn 

causes decreased cardiac filling due to a fall in the compliance of the left ventricle. This 

results in a fall in the stroke volume and cardiac output. Compression of the abdomen may 

also cause direct compression of the inferior vena cava which would result in a decrease in 

the venous return. 

Comparison of effects of four different types of prone-positioning frames on hemodynamics 

was  performed  by  Waldsworth  et  al  in  their  study  which  revealed  that  cardiac  index 

significantly dropped in patients who were turned prone onto the Relton-Hall  frame and 

knee-chest prone position (17% and 20% respectively) but not in those who were positioned 

on the evacuatable mattress and pillows(11% and 3%) respectively. (55)

In  this  study,  a  significant  change  in  cardiac  index  was  detected  (p=0.03)  between  the 

patients positioned on Relton-Hall frame and bolsters. There was no significant change in 
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cardiac output statistically. This discrepancy can be explained by the missing data in cardiac 

output at time T4 which could have affected the results. Because of this, the effect of the 

type of support on cardiac output and cardiac index cannot be commented upon. There was a 

significant change in heart rate between the two groups; none of the other variables showed 

significant difference between the groups. 

It  is also important to note that the distribution of patients between the two groups was 

unequal  .  (n=24  for  Relton-Hall  and  n=5  for  bolsters).  If  the  number  of  patients  was 

comparable, it is conceivable that the results may have been different. 

Autonomic dysfunction among patients  with diabetes  mellitus  has been well  researched. 

Perioperative management of patients with autonomic dysfunction should involve providing 

adequate  hydration,  maintaining  euvolemic  status  and  optimising  pharmacological 

treatment.  Hypotension  is  common  during  anesthesia  and  responds  well  to  alpha  1 

adrenoreceptor agonist such as phenylephrine. Indirect acting agents such as ephedrine may 

be less effective as they depend on the release of noradrenaline from postganglionic nerve 

fibers  for their action; this may be lacking in this group of patients. (63)

Burgos et al reported increased incidence of post-induction hypotension in diabetic patients 

with  autonomic  dysfunction.(65)   Hemodynamic  lability  on  induction  of  anesthesia  in 

patients with autonomic dysfunction is well documented.(66,67). Change in position from 

supine to prone may compound and worsen hypotension in these group of patients.  Effect 

of change in position on hemodynamics in anesthetised patients with diabetic autonomic 

dysfunction has not been well studied. Approximately half the patients in this study were 
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diabetics  (n=15).  Hemodynamic  variables  were  compared  between  diabetic  and  non-

diabetics on turning prone and did not show any significant difference between the groups. 

However, tests of autonomic dysfunction were not performed on these group of patients 

preoperatively; therefore,with this study,  it is not possible to state that diabetic patients with 

autonomic dysfunction are more at risk of developing hemodynamic instability on turning 

prone. Moreover, autonomic dysfunction is not isolated to diabetic patients; it can occur in 

other  clinical  conditions  such  as  elderly  patients,  hypertensive  patients,  patients  with 

coronary  artery  disease  and  patients  on  various  medications  such  as  calcium  channel 

blockers, beta adrenergic blocking agents and angiotensin-converting enzyme inhibitors. 
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CONCLUSION
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This  observational  study  on  the  hemodynamic  changes  in   ASA II  and  III  patients 

undergoing major spine surgery in the prone position using Flo Trac sensor showed that -

• There was no statistically significant fall in cardiac output or cardiac index 

immediately  after  change  of  position  (5  minutes)  to  prone.  Significant 

change in pulse pressure variation and stroke volume variation was observed 

during this time.

• There was a  statistically significant  change in  all  hemodynamic  variables 

except diastolic blood pressure 15 minutes after turning prone.

• A strong correlation was found to exist between SVV and PPV in the prone 

position. However, CO correlated weakly with SVV and PPV. 

• Type of support (Relton-Hall vs. bolsters) did not significantly affect PPV 

and SVV.

• Hemodynamic variables did not vary significantly between diabetic and non-

diabetic patients.
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LIMITATIONS
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This study had the following limitations:

The  time  of  administration  of  intravenous  drugs  which  may  have  had  effects  on 

hemodynamics is not known. 

The presence or absence of autonomic dysfunction is not known; therefore the impact it  

may have had on hemodynamics on turning to the prone position cannot to ruled out. 

The distribution of patients on the different supports was unequal. If the number were 

more equal, the results may have been different.

There was missing data in some of the variables, which may have affected results. 
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