A Dissertation on

# "RANDOMISED CONTROL STUDY COMPARING THE HAEMODYNAMIC CHANGES TO INTUBATION USING LEVITAN OPTICAL STYLET ALONE VERSUS INTUBATION USING LEVITAN OPTICAL STYLET ALONG WITH MACINTOSH LARYNGOSCOPE"

Submitted to the

#### THE TAMILNADU DR. M.G.R. MEDICAL UNIVERSITY

In partial fulfilment of the requirements

For the award of degree of

M.D. (Branch-X)

#### ANAESTHESIOLOGY



# GOVERNMENT STANLEY MEDICAL COLLEGE & HOSPITAL THE TAMILNADU DR. M.G.R. MEDICAL UNIVERSITY, CHENNAI, TAMILNADU

**APRIL**, 2015

#### **DECLARATION BY THE CANDIDATE**

I, Dr.D.PREETHI , solemnly declare that the dissertation, titled "RANDOMISED CONTROL STUDY COMPARING THE HAEMODYNAMIC CHANGES TO INTUBATION USING LEVITAN OPTICAL STYLET ALONE VERSUS INTUBATION USING LEVITAN OPTICAL STYLET ALONG WITH MACINTOSH LARYNGOSCOPE" is a bonafide work done by me during the period of NOVEMBER 2013 to AUGUST 2014 at Government Stanley Medical College and Hospital, Chennai under the expert guidance of Dr.MATHAN KUMAR, M.D, D.A, Professor and Head, Department Of Anaesthesiology, Government Stanley Medical College, Chennai.

This thesis is submitted to The Tamil Nadu Dr. M.G.R. Medical University in partial fulfilment of the rules and regulations for the M.D. degree examinations in Anaesthesiology to be held in April 2015.

Chennai-1 Date: **Dr.D.PREETHI** 

#### **CERTIFICATE BY THE GUIDE**

This is to certify that the dissertation titled, "RANDOMISED CONTROL STUDY COMPARING THE HAEMODYNAMIC CHANGES TO INTUBATION USING LEVITAN OPTICAL STYLET ALONE VERSUS INTUBATION USING OPTICAL STYLET ALONG WITH MACINTOSH LARYNGOSCOPE" is a genuine work done by Dr.D.PREETHI for the partial fulfilment of the requirements for M.D. (Anaesthesiology) Examination of The Tamilnadu Dr. M.G.R. Medical University to be held in April 2015, under my supervision and the guidance

A masure -

Dr.R.MATHAN KUMAR,M.D,D.A., Professor and Guide, Department of Anaesthesiology and Critical Care, Stanley Medical college and Hospital, Chennai – 600 001.

#### **CERTIFICATE BY THE H.O.D**

This is to certify that the dissertation titled, "RANDOMISED CONTROL STUDY COMPARING THE HAEMODYNAMIC CHANGES TO INTUBATION USING LEVITAN OPTICAL STYLET ALONE VERSUS INTUBATION USING OPTICAL STYLET ALONG WITH MACINTOSH LARYNGOSCOPE" is a genuine work done by Dr.D.PREETHI for the partial fulfilment of the requirements for M.D. (Anaesthesiology) Examination of The Tamilnadu Dr. M.G.R. Medical University to be held in April 2015, under my supervision and the guidance

Annowith

Dr.R.MATHAN KUMAR,M.D,D.A., Professor and HOD of Anaesthesiology, Department of Anaesthesiology and Critical Care, Stanley Medical college and Hospital, Chennai – 600 001.

#### **ENDORSEMENT BY HEAD OF THE INSTITUTION**

This is to certify that the dissertation "RANDOMISED CONTROL STUDY COMPARING THE HAEMODYNAMIC CHANGES TO INTUBATION USING LEVITAN OPTICAL STYLET ALONE VERSUS INTUBATION USING LEVITAN OPTICAL STYLET ALONG WITH MACINTOSH LARYNGO SCOPE" presented herein by Dr.D.PREETHI is an original work done in the Department of Anaesthesiology, Government Stanley Medical College and Hospital, Chennai in partial fulfilment of regulations of the Tamilnadu Dr. M.G.R. Medical University for the award of degree of M.D. (Anaesthesiology) Branch X, under my supervision during the academic period 2012-2015.

#### Dr. AL.MEENAKSHI SUNDARAM, M.D., D.A.

Dean Stanley Medical College, Chennai -600001

#### **ACKNOWLEDGEMENTS**

I wish to express my sincere thanks to **Prof. Dr. AL. MEENAKSHI SUNDARAM**, **M.D.**, Dean, Government Stanley Medical College and Hospital for having permitted me to utilize the facilities of the hospital for the conduct of the study.

My heartfelt gratitude to **Prof. R. MATHAN KUMAR, M.D., D.A.**, Professor and Head, Department of Anaesthesiology, Government Stanley Medical College and Hospital for his motivation, valuable suggestions, expert supervision, guidance and for making all necessary arrangements for conducting this study.

I thank **Prof. S. PONNAMBALA NAMASIVAYAM M.D., D.A., D.N.B.**, for his constant encouragement and support.

I thank **Prof. N. KRISHNAN, M. D., D. A.**, for his constant motivation and valuable suggestions in carrying out this study.

I thank **Prof. KUMUDHA LINGARAJ, M.D., D.A.**, for her ideas and immense support.

I thank Prof. DHANASEKARAN, M.D., D.A., for his constant support and encouragement throughout the study I thank Prof. Dr. BALASUBRAMANIUM, M.S, D.L.O(ENT), Professor and Head of the Department of ENT, for permitting me to conduct the study in ENT Theatre.

I express my heartfelt gratitude to Assistant Professors **Dr. SARAVANA KUMAR**, **M.D.,DNB**, **Dr. MANOHARAN**, **D.A**, **Dr. S. SRI VIKRAM PRABU**, **M.D.,DNB**, who had evinced constant and keen interest in the progress of my study right from the inception till the very end and were instrumental in the successful completion of the study.

I wish to thank all Assistant Professors especially for their help and encouragement during the study.

I thank Mr.EZHIL RADHAKRISHNAN, for helping me in statistical analysis.

My sincere thanks to all those post graduates who helped me during this study period.

I thank the staff nurses and theatre personnel, Government Stanley Medical Hospital for their cooperation and assistance.

I owe my gratitude to all the patients included in the study and their relatives, for their whole hearted co-operation and consent.

### **ABBREVIATIONS**

HR-Heart rate

SBP-Systolic blood pressure

DBP-Diastolic blood pressure

MAP-Mean Arterial pressure

mm hg-millimeters of mercury

SPO<sub>2</sub>-Oxygen saturation

HPA-Hypothalamopituitary adrenal axis

SAM-Sympathethic adrenomedullary system

ECG-Electrocardiogram

Levitan FPS-First Pass Stylet

ASA-American Society of Anaesthesiologist

**SD-Standard Deviation** 

ETCO<sub>2</sub>-End Tidal Carbon dioxide

# LIST OF TABLES

| S.NO | TITLE                                                                                          | Page no |
|------|------------------------------------------------------------------------------------------------|---------|
| 1    | Different sizes of Macintosh laryngoscope blades                                               | 14      |
| 2    | Comparison of age and weight between the groupa A and B                                        | 56      |
| 3    | Comparison of gender differences between the groups A and B                                    | 59      |
| 4    | Comparison of Mallampatti classification between<br>the groups A and B                         | 61      |
| 5    | Comparison of interincisor gap and thromental distance<br>between the two groups               | 63      |
| 6    | Comparison of ASA status between the two groups                                                | 66      |
| 7    | Comparison of heart rate changes between<br>the two groups at varied intervals                 | 68      |
| 8    | Comparison of Systolic blood pressure changes between<br>the groups at various time intervals  | 70      |
| 9    | Comparison of Diastolic blood pressure changes between<br>the groups at various time intervals | 72      |
| 10   | Comparison of Mean Arterial pressure changes between<br>the groups at various time intervals   | 74      |
| 11   | Comparison of SPO2 between the groups at various time intervals                                | 76      |
| 12   | Comparison of time taken for intubation between the groups                                     | 78      |
| 13   | Comparison of ease of intubation between the groups                                            | 80      |
| 14   | Comparison of failure rate between the groups                                                  | 82      |

# **LIST OF FIGURES**

| S.NO | TITLE                                                                                           | Page no |
|------|-------------------------------------------------------------------------------------------------|---------|
| 1    | Anatomy of larynx - midsagittal and<br>laryngoscopic view                                       | 7       |
| 2    | Cartilages of larynx                                                                            | 8       |
| 3    | Nerve supply of larynx                                                                          | 10      |
| 4    | Airway Axes                                                                                     | 22      |
| 5    | Picture of conventional Macintosh Laryngoscope                                                  | 23      |
| 6    | Parts of Macintosh Laryngoscope                                                                 | 24      |
| 7    | Picture of Levitan Optical Stylet                                                               | 28      |
| 8    | Picture depicting holding of the Levitan Optical Stylet<br>with Piston Grip                     | 29      |
| 9    | ENT Operating Room - patient mask ventilated before intubation                                  | 46      |
| 10   | Jaw thrust manoeuvre given by the assistant                                                     | 46      |
| 11   | Levitan opticals stylet introduction into the oral cavity                                       | 47      |
| 12   | Patient intubated with Levitan optical stylet alone                                             | 47      |
| 13   | Fibreoptic viewing with Levitan optical stylet                                                  | 48      |
| 14   | Laryngoscopy done with Macintosh Laryngoscope and<br>Intubation carried out with levitan stylet | 50      |
| 15   | Laryngoscopy done with macintosh laryngoscope                                                   | 61      |
| 16   | With Levitan optical stylet patient intubated                                                   | 61      |

# CONTENTS

| S.NO | TOPIC                             | P.NO |
|------|-----------------------------------|------|
| 01.  | INTRODUCTION                      | 1    |
| 02.  | AIM OF THE STUDY                  | 3    |
| 03.  | REVIEW OF LITERATURE              | 30   |
| 04.  | MATERIALS AND METHODS             | 41   |
| 05.  | OBSERVATION AND RESULTS           | 55   |
| 06.  | DISCUSSION                        | 85   |
| 07.  | CONCLUSION                        | 99   |
| 08.  | SUMMARY                           | 100  |
| 09.  | ANNEXURE                          |      |
|      | BIBLIOGRAPHY                      |      |
|      | MASTERCHART                       |      |
|      | PROFORMA                          |      |
|      | ETHICAL COMMITTEE APPROVAL LETTER |      |
|      | PATIENT INFORMATION SHEET         |      |
|      | INFORMED CONSENT FORM             |      |
|      | TURNITIN - PLAGIARISM SCREEN SHOT |      |
|      | DIGITAL RECEIPT                   |      |

#### **CHAPTER 1**

#### **INTRODUCTION**

Airway management is the fundamental aspect of anaesthetic practice and emergency and critical care medicine. Endotracheal intubation is a rapid, simple, safe and non surgical technique that achieves all the goals of airway management, maintains airway patency, protects the lungs from aspiration and permits leak free ventilation during mechanical ventilation, and so remains the gold standard procedure for airway management<sup>1</sup>.Since the upper airway is highly innervated by glossopharyngeal and vagus nerves, airway instrumentation results in significant haemodynamic responses.

The circulatory response to laryngeal and tracheal stimulation following intubation manifested as reflex sympathoadrenal stimulation and was described early in 1940 by Reid and Bruce<sup>2</sup>.

Sympathoadrenal responses such as increase in heart rate,blood pressure though short lived ,have detrimental effects in high risk patients especially those with cardiovascular diseases,increased intracranial pressure or anomalies of cerebral vessels<sup>3</sup>.

Laryngoscopy and tracheal intubation induced pressor response have been associated with increase in catecholamine levels such as norepinephrine and epinephrine<sup>4</sup>. Rise of these catecholamines are associated with the elevation of blood pressure and heart rate.

Intubation period is considered as one of the greatest risk in surgical patients with coronary diseases. Although the response may be transient, it is significant and is of great concern<sup>5,6</sup>.

Cardiovascular responses to intubation and laryngscopy have been extensively studied over past three decades. Many factors affect these responses such as technique of laryngoscopy and intubation and use of airway gadgets such as optical stylets, light wand, fiberoptic bronchoscopy<sup>5</sup>.

1

Haemodynamic responses during intubation to secure the airway posses a leading cause of morbidity and mortality in the operative and emergency settings. Failure to attenuate these responses can lead to catastrophic outcomes<sup>7</sup>.Problems with tracheal intubation and pressor responses remains the major cause of death and disability due to anaesthesia in analysis of records of UK medical defense socities and in the American Society of Anaesthesiology closed claim database.Though these hemodynamic responses are inevitable they can be reduced to a certain extent by pharmacological and mechanical methods.These issues have stimulated the development of the novel techniques of intubation with optical stylet with the aim of reducing the pressor response to intubation.

In 1979 Katz and Benz coined the term optical stylet. In 1994,Dr.Richard Levitan ,deviced the optical stylet for difficult and emergency intubations for securing the airway.

Whether this optical stylet can bypass the haemodynamic responses in routine normal intubations are yet to be confirmed in our Indian population.

So a prospective randomised study evaluating the haemodynamic responses using both the Levitan optical stylet and Macintosh laryngoscope in adult patients in elective general anaesthesia cases was undertaken in our Stanley medical college.

2

# **AIMS AND OBJECTIVE**

#### CHAPTER 2

#### AIM

A randomised control study comparing the haemodynamic changes to intubation using Levitan optical stylet alone versus intubation using Levitan optical stylet along with Macintosh laryngoscope.

#### **OBJECTIVE**

#### **PRIMARY OUTCOME MEASURES:**

To compare the haemodynamic changes to intubation using Levitan optical stylet alone versus intubation using Levitan optical stylet along with Macintosh laryngoscope.

#### SECONDARY OUTCOME MEASURES:

- 1. Ease of intubation
- 2. Intubation time with two techniques
- 3. Complications
- 4. Failure rate

#### **HISTORY OF LARYNGOSCOPY AND INTUBATION**

Visual examination of the larynx has a history rich in personalities and anecdotes. Before 1800 physicians could only appreciate the larynx anatomy from autopsy specimens.

For more than a hundred years ago tracheotomy was considered a reliable method of intubation. By the end of the late nineteenth century advances in anatomical and physiological sciences and appreciation of germ theory of disease reduced the morbidity and mortality in this procedure.

It was in twentieth century when there was a transformation of the practices of tracheotomy, endoscopy and non surgical tracheal intubation to the essential components of the practices of various fields like anaesthesia, critical care, gastroenterology, surgery and pulmonology.

The first man to visualise the glottis apparatus and the uppermost part of trachea and to present his observations at royal society London was a Spanish vocal was Manuel Garcia.

On 23<sup>rd</sup> April 1895 Alfred Kirsten of Germany visualised the vocal cord directly using an oesophagoscope.

In 1913 Chevalier Jackson reported highest success rate for direct laryngoscopy and introduction of new laryngoscope blade with light source at the distal tip.

Janeway popularised the use of direct laryngoscopy in the practice of anaesthesiology.

In 1943 Sir Robert Reynolds Machintosh achieved significant advances in tracheal intubation by using a curved laryngoscope blade which remains to this date the most widely used blade for orotracheal intubation.

Besides the conventional laryngoscopy many alternatives to direct laryngoscopies have been developed. They are Indirect Fibroptic viewing laryngoscopes like flexible fibroptic bronchoscope which is also known as Rhinoscope, which is indispensible in Otorhinolaryngology.Other fibroptic laryngoscopy devices are Bullard scope, Upsher

5

scope, Wu scope. In case of difficult intubation these instruments are used extensively. In 1966 Schigato Ikeda proposed his idea for flexible fibroptic bronchoscope which is a very flexible instrument inserted into rigid bronchoscope.

Conventional direct laryngoscopy is now replaced by video laryngoscopy, due to frequent failure in direct laryngoscopy procedure. The fibroptic viewing laryngoscope has a limitation of fogging of lens. In an attempt to overcome these problems Mr. John Berall from New York City designed straight video laryngoscope in 1988.

In 1979 Katz and Berci coined the term optical stylet.

Since 1995 more than ten optical stylet devices have been deviced.Murphy's successful nasal intubation with cholidochoscope placed through a tracheal tube lead to the invention of fibroptic technology for intubation.

In 2001 general surgeon John Allen Pacey deigned the first commercially available video laryngoscope.

In 1994 Dr Richard Levitan, an emergency medicine resident at Bellevue hospital felt the lack of modality in difficult airway lead to the invention of shikani optical stylet in 1999. Its shorter version FPS was invented.

# ANATOMY

Laryngoscopy and tracheal intubation involves manipulation of the upper airway. Larynx is located within the anterior aspect of neck opposite the third to sixth cervical vertebra. Its primary function is to allow the passage of air and preventing others secretions and foreign bodies.

Larynx consists of framework of articulating cartilages linked together by ligaments which moves in relationship to each other Mainly sensory part of the airway is of concern during cardiovascular response to laryngoscopy and intubation.

The airway involves nasal cavity, oral cavity, pharynx, larynx, trachea and bronchial divisions

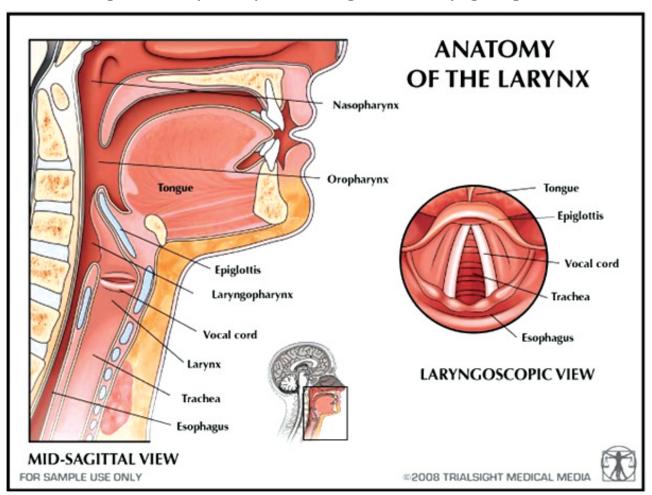
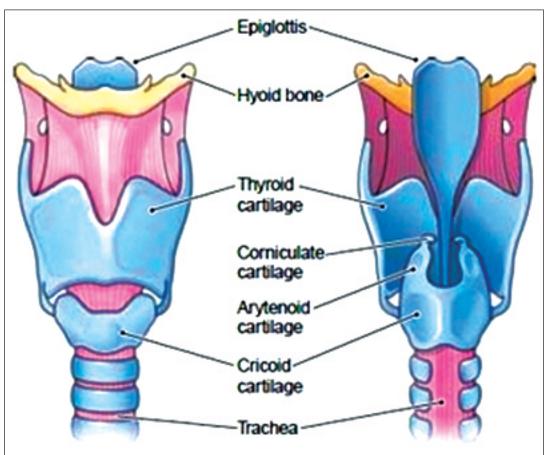




Fig1. Anatomy of larynx - midsagittal and laryngoscopic view

#### CARTILAGES:

Three unpaired : Thyroid ;Cricoid ;Epiglottis

Three paired : Arytenoid ; Corniculate ; Cuneiform





#### **CRICOID CARTILAGE:**

Its a complete ring of hyaline cartilage around trachea which has a shape of signet ring. It attaches to thyroid by cricothyroid membrane. Superior thyroid artery traversing the upper part of the membrane. Hence incision in the lower part of the membrane is recommended.

THYROID CARTILAGE: It is the largest cartilage of larynx.

**EPIGLOTTIS**: It is the leaf shaped structure between base of the tongue and larynx. The tip of Macintosh laryngoscope blade rest in valleculla which is the common site of impaction of foreign body in the upper airway. **ARYTENOID**: Three sided pyramid shape lateral extension of base is muscular process. medial extension is vocal process.

#### **SENSORY INNERVATION OF THE AIRWAY**:

#### NASAL CAVITY:

Innervated by ophthalmic and maxillary divisions of trigeminal nerve.

- Anterior and upper part of the septum, anterior roof, anterior parts of middle and inferior conchae with lateral walls in front of it are supplied by anterior ethmoidal nerve ,branch of nasociliary nerve
- Vestibule supplied by infraorbital nerve
- Floor near anterior spine, part of septum ,anterior part of the lateral wall receives branches from superior alveolar nerve
- Posterior three quarters of lateral wall, roof ,floor and septum are innervated by branches of pterygopalatine ganglion and anterior palatine nerves.

All nerves except nasociliary nerve supplied by maxillary nerve. Nasociliary nerve is a branch of ophthalmic nerve

#### **ORAL CAVITY**

Oral cavity innervated by trigeminal and glossopharyngeal nerves

#### **TONGUE:**

In presulcal area of the tongue general sensation is carried by the lingual branch of the manidular nerve. Taste sensation by the chorda tympani nerve, a branch of facial nerve. In postsulcal area (posterior 1/3)of tongue both general and taste sensation carried by glossopharyngeal nerves

#### PALATE

Greater, lesser and nasopalatine branches of maxillary nerve and glossopharyngeal nerve provides sensory supply to the palate

#### JAW

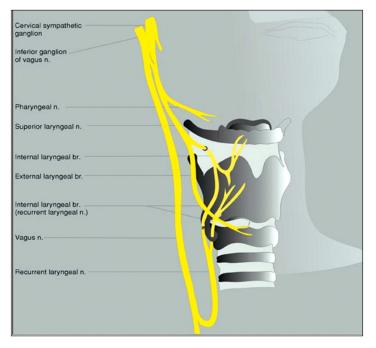
Upper jaw-receives anterior and posterior alveolar nerves while lower jaw receives inferior alveolar nerve along with contribution from buccal and lingual nerves

#### **PHARYNX:**

Pharynx is supplied by pharyngeal plexus which is formed by glossopharyngeal nerve and sympathetic postganglionic fibres from superior cervical ganglion and parasympathetic fibres through glossopharyngeal nerve.

#### **EPIGLOTTIS:**

Pharyngeal surface of the epiglottis by the glossopharyngeal nerve


Laryngeal surface by the vagus nerve

#### LARYNX

The main nerves of the larynx are the recurrent laryngeal nerve, internal and external laryngeal branches of the superior laryngeal nerve

External branch of superior laryngeal nerve gives motor innervations to cricothyroid muscle.

Recurrent laryngeal nerve gives motor supply to all other muscles of the larynx.



#### Fig3. Nerve supply of larynx

It also provides sensory supply to the mucosa of the larynx below the level of vocal cords

#### **TRACHEA:**

Vagus , recurrent laryngeal branch of vagus and sympathetic nerves from superior cervical ganglion carry sensory impulses from the trachea.

#### **BRONCHIAL TREE:**

Vagus as parasympathetic and post ganglionic fibers from inferior cervical ganglion and middle cervical ganglion as sympathetic parts of the autonomic system supply the bronchial tree.

Sympathetic supply to the airway is derived from thoracic 1-5 segments of the spinal cord.

# PHYSIOLOGY OF SYMPATHETIC RESPONSE TO LARYNGOSCOPY AND TRACHEAL INTUBATION

Laryngoscopy and tracheal intubation are frequently associated with sympathetic response. Diagnostic laryngoscopy under anaesthesia and tracheal suctioning are also associated with adverse circulatory changes<sup>12</sup>. Severe hypertension, tachycardia, increase in intracranial pressure can also be seen<sup>13,6</sup>. This haemodynamic response has two components, initially to laryngoscopy and then to the tracheal intubation. Stress response is primarily regulated by two neuroendocrine systems-hypothalamopituitary adrenal axis (HPA) and sympathetic adrenomedullary system(SAM)

The predominant response is tachycardia and arterial hypertension. The latter is due to increased cardiac output and is associated with transient rise in central venous pressure.

Sympathetic innervation via the cardioaccelerator fibres from the upper five thoracic segments increase the rhythmicity of the sinoatrial node and enhances the rate and force of contraction .Sympathetic system plays a little role at rest

Supraglottic traction during laryngoscopy<sup>15</sup> or superficial stimulation of airway or passage of tracheal tube into trachea may be associated with reflex sympathetic changes<sup>16</sup>. Other contributory factors to hypertension and tachycardia like anxiety, baroreceptor mediated reflex after induction etc are less important than laryngotracheal stimulation. The tracheal intubation following laryngoscopy is not only accompanied by increased sympathetic activity but also increased sympathoadrenal activity.

Increased hypothalamic activity and increased traffic in sympathetic efferent tracts are observed. Release of trophic hormones from hypothalamus stimulate release of ACTH, TSH, GH, FSH, lutenizing hormone and prolactin in addition to ADH from the pituitary<sup>14</sup>.

Afferent impulses are carried through trigeminal, glossopharyngeal, vagus and sympathetic nerves from the airway. These impulses are relayed in cranial nerve nuclei,

vasomotor and autonomic regulatory areas. Key areas that integrate cardiovascular responses and maintain cardiovascular system homeostasis are nucleus solitarius, dorsal vagal nucleus, nucleus ambiguous and parabrachial nucleus<sup>13</sup>.

The nucleus solitarius is the area of primary central synapse for baroreceptor mediated reflexes and relay station for peripheral information to hypothalamic sympathetic control centers. It projects directly to intermediolateral nucleus of the spinal cord, the common pathway for preganglionic sympathetic outflow. This along with nucleus ambiguous play an important role in control of secretion of vasopressin<sup>17</sup>.

Increase in sympathetic and hypothalamo pituitary adrenal activity is responsible for cardiovascular changes seen with laryngoscopy and tracheal intubation.

Different studies have shown rise of mean blood pressure of 20-40 mm hg when compared with awake control levels and 35-60 mm hg when compared with preintubation values <sup>18</sup> and elevation of plasma noradrenaline and adrenaline by 45% and 40% respectively <sup>19</sup>. A correlation between changes in mean arterial pressure and noradrenaline and pulse pressure or heart rate and adrenaline is found.

Norepinephrine levels may double from 160 to 300 pg/ml and continue for 4 to 8 minutes. Epinephrine levels may quadruple from 70 to 280 pg/ml.

Surprisingly increase in plasma noradrenaline concentration and mean arterial pressures of upto 100% and 50% respectively can be correlated whereas noradrenaline concentration can increase upto 200% of the basal value<sup>14</sup>.

13

# SUGGESTED MECHANISM OF HAEMODYNAMIC RESPONSE<sup>20,21</sup>

LARYNGOSCOPY AND ENDOTRACHEAL INTUBATION STIMULATION OF MECHANORECEPTORS IN LARYNX AFFERENT STIMULI THROUGH IX AND X CRANIAL NERVES TO **MEDULLA REFLEX ACTIVATION OF VASOMOTOR CENTER** SYMPATHETIC NEURAL OUTPUT ADRENAL MEDULLA HEART RELEASE OF CATECHOLAMINE BLOOD VESSELS **PRESSOR RESPONSE** TACHYCARDIA **HYPERTENSION** RAISED INTRACRANIAL PRESSURE RAISED INTRAOCULAR PRESSURE

#### PATHOLOGICAL RESPONSE TO INTUBATION

- Significant neuro endocrine responses such as tachycardia and hypertension occur during airway manipulation in patients with cardiac disease, particularly myocardial ischemia which is evident by ST segment depression in ECG and increased pulmonary artery diastolic blood pressure<sup>22</sup>. So it is essential to maintain heart rate and blood pressure of these patients within 20 % of the normal awake value.<sup>23</sup>
- Myocardial ischemia occurs when there is a mismatch between oxygen supply and demand
- Laryngospasm reflex initiated during intubation, wherein the afferent being the glossopharyngeal nerve and efferent is vagus. It is a monosynaptic response, occurs when the patient is in the lighter plane of anaesthesia Intracranial aneurysms and AV malformations can even rupture during laryngoscopy. Autoregulation will be impaired in patients with intracranial mass lesions, brain edema or acute hydrocephalus, so during endotracheal intubation there is a increase in arterial blood pressure with marked increase in cerebral blood flow and blood volume causing a dangerous increase in intracranial pressure leading to cerebral catastrophy (brainstem herniation and death).

#### METHODS ACCENTUATING THE STRESS RESPONSE

- Improper alignment of the three axes (oropharyngeal and laryngeal axes)
- Laryngoscopy blade which impinges on the vallecula and epiglottis
- More stimulation of cardioaccelatory fibres by the mechanical laryngoscopy blades
- More force on the glottis structures during intubation
- Poor head extension and neck flexion
- Lighter plane of anesthesia
- Prolonged intubation time
- Less expertise in laryngoscopy

# METHODS OF ATTENUATING HAEMODYNAMIC RESPONSE TO INTUBATION

Stress response to intubation can be attenuated by the following methods

- Mechanical factors
- Pharmacological methods

PHARMACOLOGICAL METHODS: aimed at different levels of the reflex arc.

Block of the peripheral sensory receptors and afferent input - topical application and infiltration of superior laryngeal nerve.

- Block of the central mechanisms of integration of sensory input fentanyl, morphine, droperidol etc.
- Block of the efferent pathway and effector sites IV lignocaine, β-blockers, calcium channel blockers, hydralazine etc.<sup>24</sup>

# PHARMACOLOGICAL METHODS:

1. Local Anesthetics: Lignocaine

a)It is given as a viscous gargle for oropharyngeal anaesthesia

b)aerosol for intratracheal anaesthesia

c)intravenous

d)local instillation or local spray around the vocal cord

e)regional nerve blocks

2.) Vasodilators – Nitroglycerine

Sodium Nitroprusside

Hydralazine

3) Magnesium sulphate

4) Narcotics – Fentanyl, Sufentanil, Remifentanil, Morphine, Pethidine.

Fentanyl is the most commonly used narcotic.It is a potent analgesic, has a short duration of action, does not increase intracranial tension and has minimal circulatory changes.

5) Calcium channel blockers- Nifedipine, Nicardipine, Verapamil, Diltiazem

6) Adrenergic blockers-Beta blocker-Metoprolol, Esmolol

-Alpha blocker-Phentolamine

Alpha and beta blocker-Labetalol

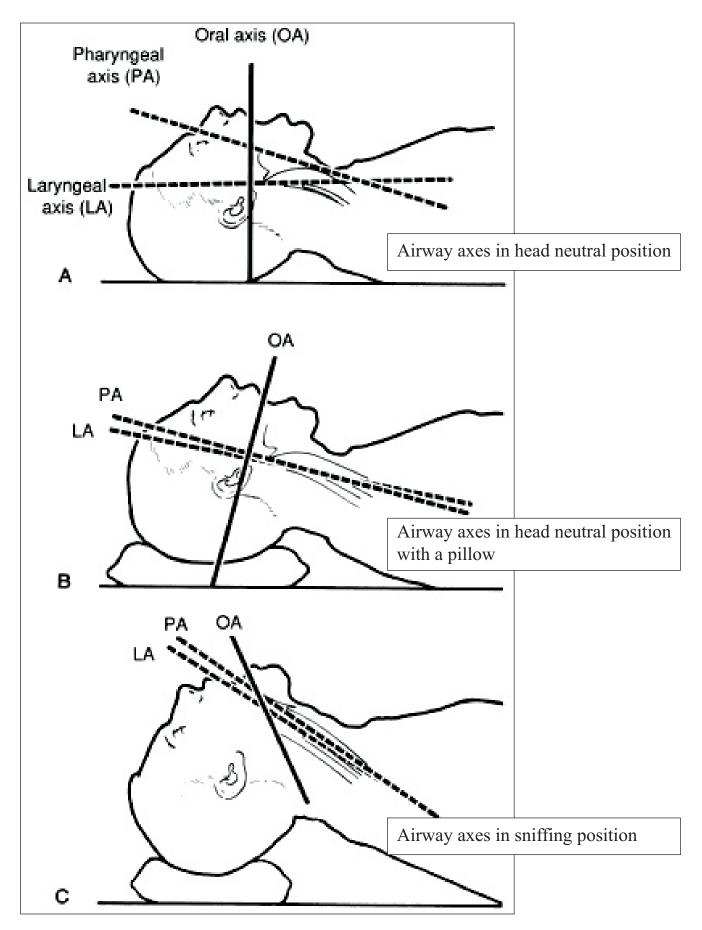
7) Central sympatholytics- Clonidine and Dexmedetomidine. They act by decreasing central sympathetic outflow.

8) Sedatives and anxiolytics.

#### **MECHANICAL METHODS to attenuate the stress response:**

It has been observed that amount of forces exerted during laryngoscopy and intubation is the key determinant for mechanical stimulation of stretch receptors present in the respiratory tract<sup>25</sup>. Over more than ten decades intubation was done with conventional Macintosh laryngoscope and it is associated with significant haemodynamic changes mainly due to the forces exerted by the laryngoscopy blade on the vallecula and it is more vunerable in high risk patients such as ischemic heart disease ,cerebrovascular disease patients. This need to be prevented.

- In early 90 s McCoy laryngoscopic blade was introduced and there is hinge on the distal part of the blade to avoid lifting force on the vallecula
- Intubating devices such as airway scope and glidescope (videolaryngoscope) introduced by Japanese associated with less haemodynamic response.Video laryngoscope do not require alignment of oral, pharyngeal and laryngeal axes for visualization of glottic structures and endotracheal intubation. Airway scope designed in such a manner to confirm to the contour of the pharynx and mouth and reduced movement of the neck is necessary for intubation. Glidescope with its unique 60° curvature functions independent of line of sight and reduces upward lifting force
- Intubation using an intubating laryngeal mask airway: The laryngeal mask airway offers a much less invasive way of maintaining the airway as it does not pass through the glottis but is placed over the glottis. It does not require instrumentation i.e. use of the laryngoscope. It acts as an intermediate between the endotracheal tube and the oropharyngeal airway
- Intubation using Fibreoptic bronchoscopy:Fiber optic bronchoscope is the gold standard for difficult intubation.it consists of the fiberoptic system which transmits images from the tip of the instrument to the eyepiece or the video available in different sizes 2.5 mm,3.5mm and 5.5 mm .Intubation using


fiberoptic bronchoscopy requires higher expertise for securing the airway and it is not portable, can't be used in emergency difficult airway situations.

Intubation using light wand:Light wand relies on the principle of transillumination of the tissues of neck. The light serves to guide the tube into the larynx.Direct visualization of larynx is not required for successful use.

#### Airway axes<sup>26</sup>

- To maximize the potential exposure of the glotting opening, it is essential that oral axis, pharyngeal axis and laryngeal axis approximate a straight line thereby affording the shortest distance from the teeth to the glottis opening
- > This is best done by placing the patient in a position called as "sniffing" position.
- Elevating (using a blanket, folded towels, foam rest, etc) the occiput approximately
   10 cm higher than the shoulder blades provide the necessary cervical flexion to
   better align the laryngeal and pharyngeal axes.
- Extension of the head on the atlanto occipital joint by the practioner's free hand (or by an assistant) will serve to maximally align the oral axis with the laryngeal and pharyngeal axes.
- Sniffing position is considered the optimal "classical" position of the head and neck for facilitating intubation proposed by MAGILL IN 1936.
- This sniffing position is essential for both direct laryngoscopy and fiberoptic stylet intubation
- > Improper alignment can lead to difficult and failed intubation.





# **Conventional Macintosh laryngoscope**<sup>10</sup>:

Laryngoscopes are used to view the larynx and adjacent structures, most commonly for the purpose of inserting a tube into the tracheobronchial tree.Other purposes including placing a gastric tube or transesophageal echocardiac probe, foreign body removal and visualizing and assessing the upper airway<sup>27</sup>.

Parts of laryngoscopes are

- 1.Blade
- 2.Handle



Fig5. Picture of conventional Macintosh Laryngoscope

#### Blade:

The blade is the component that is inserted into the mouth. Blades are in available in more than one size, the blades are numbered ,with the number increasing with size. The blade is composed of several parts, including the base, heel, tongue,flange,web,tip,and light source.

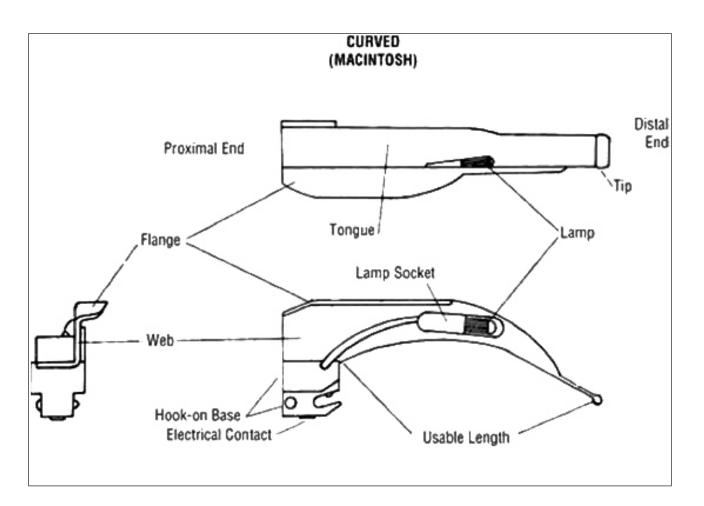



 Table 1: Different sizes of Macintosh Laryngoscope blades<sup>28</sup>

| Markings | Intended use |  |
|----------|--------------|--|
| 0        | Neonate      |  |
| 1        | Small child  |  |
| 2        | Child        |  |
| 3        | Adult        |  |
| 4        | Large adult  |  |

**BASE** is the part that attaches to the handle. It has a slot for engaging the hinge pin of the handle. The end of the base is called the **Heel**.

**Tongue(Spatula)** is the main shaft. It serves to compress and manipulate the soft tissues(especially the tongue) and lower jaw. The long axis of the tongue may be straight or curved in part or all of its length. Blades are commonly referred to as curved or straight ,depending on the predominant shape of the tongue.

**Hook-on(hinged,folding**) connection between the handle and blade is most commonly used. The handle is fitted with a hinge pin that fits into a slot on the base of the blade. This allows the blade to be quickly and easily attached or detached. A single-piece laryngoscope has a switch on the handle that controls power to the lamp.

**The light source** is a bulb attached to the blade. For a detachable handle and blade, the light source is energised when the blade and handle are locked in the operating position<sup>25</sup>.

**The Flange** projects off the side of the tongue and connected to it by the web. It serves to guide instrumentation and deflect tissues from the line of vision.

The Tip(beak) contacts either the epiglottis or the vallecula and directly or indirectly elevates the epiglottis. It is usually blunt and thickened to decrease trauma.

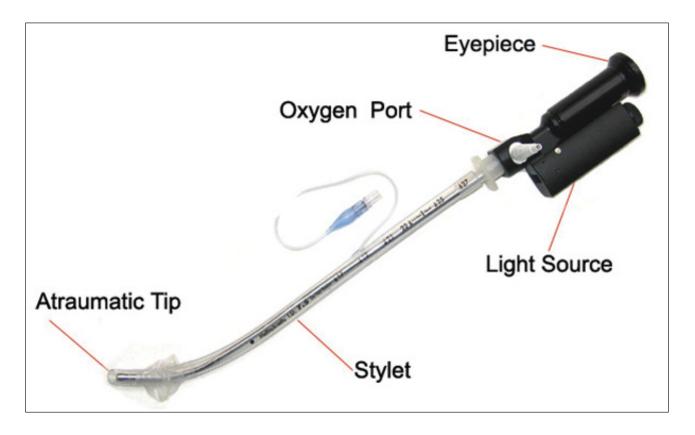
Lamp(bulb) that transmits light from a source in the handle. The lamp screws into a socket that has a metallic contact. On most blades, the socket is located near the tip. When the blade is in the working position, electrical contact with the power source in the handle is made. The socket is subject to soiling by fluids that can affect the electrical contacts, causing the light to fail.

**Handle:** The handle is the part held in the hand during use. It provided the power for the light .Most often, disposable batteries are the power source. Handles with rechargeable batteries are available. Handle designed to accept blades that have a light bulb have a

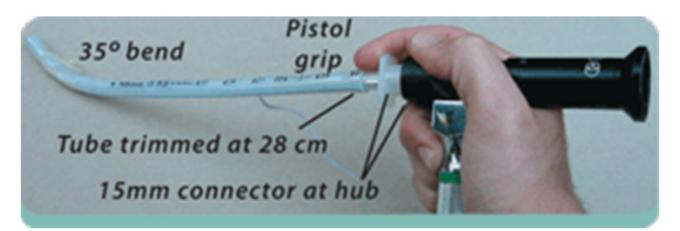
25

metallic contact, which completes an electric circuit when the handle and blade are in the working position. Handles containing batteries and using fibreoptic illumination contain a halogen lamp bulb. When the handle and blade are locked in the working position, an activator switch is depressed. This provides a connection between the bulb and batteries. A halogen lamp bulb has longer life than other light bulbs.

### LEVITAN OPTICAL STYLET


Dr. Richard Levitan was instrumental in designing optical stylet Levitan in 1999 which revolutionised the management of emergency and difficult airways by the anaesthesiologists, otolaryngologist and emergency physicians all over the world<sup>26</sup>.

## **DESIGN OF LEVITAN**<sup>27</sup>


It serves dual purpose of direct laryngoscopy and fibreoptic intubation.

Parts of the Levitan are

- Battery operated light source
- ➢ High resolution eye piece
- Port for oxygen insufflations
- ➢ Malleable stylet
- Atraumatic airway tip



Levitan optical stylet has a narrow stylet diameter of 5 mm allowing it to pass through nose or mouth. It is highly flexible and malleable instrument allowing it to conform to the anatomy of the patient. Navigation of the Endotracheal into trachea under visualisation is possible with high resolution eyepiece with fibreoptics. Levitan optical stylet is 29 cm in length<sup>29</sup>. It is used as an independent device for difficult intubation and for correct placement of endotracheal tubes. It has a port for oxygen. Working channel can be used to instill local anaesthetics to anesthetise the airway. It is portable and reusable. It can be connected to CCTV system which aids in teaching and training. Endotracheal tube is trimmed at 28 cm .Distal end of the optical stylet is bend at 35 degrees<sup>28</sup>. The Levitan optical stylet is holded in a piston grip for easy fiberoptic intubation. Fig8. Picture depicting holding of the Levitan Optical Stylet with Piston Grip



#### APPLICATIONS

- 1. The laryngeal structures can be visualised clearly along with associated abnormalities.
- 2. In difficult endotracheal intubation like mandibular hypoplasia ,obstructed airway,post radiotherapy patients ,fixed cervical spine.
- 3. For confirming the correct placement of endotracheal tubes
- 4. For insertion of Ryles tube.
- 5. Better views can be obtained with fiberoptic imaging

## **REVIEW OF LITERATURE**

#### **CHAPTER 3**

#### **REVIEW OF LITERATURE:**

**Yao yun –tai et al** <sup>33</sup>in 2008 compared the endotracheal intubation with optical stylet using left molar approach and direct laryngoscopy. After getting informed consent from patients and ethical committee clearance.40 normotensive [ASA PS 1] and 40 hypertensive patients [ASA PS 2,blood pressure .140/90 known hypertensive on antihypertensive medication] scheduled for elective surgery under general anaesthesia were included in the study. They were randomised into four groups according to computer generated randomisation table. Group 1: Direct laryngoscopy in normotensive patients. Group2:Shikani optical stylet in normotensive patients. Group 3:Direct laryngoscopy in hypertensive patients. Group 4:Shikani optical stylet in hypertensive patients. Exclusion criteria were as follows : MPC 3-4, upper airway abnormalities such as oropharyngeal abscess, vocal cord polyp etc and respiratory illness such as asthma,tobacco,infection etc.neck surgery patients were also excluded.Premedication was spared. All antihypertensive drugs were continued by hypertensive patients. In addition they were given tab nifedipine 5 mg. Diastolic BP, saturation, Heart rate were monitored.Midazolam 2mg and Fentanyl 100 microgram were administered.After preoxygenation for five minutes Propofol 2 mg/kg was given. After the loss of eye lash reflex patient ventilated manually.Patient in group 1 and group 3 intubated with conventional laryngoscopy. Group 2 and Group 4 intubated with optical stylet .Statistical analysis: Haemodynamic changes were analysed by ANOVA and unpaired t test. Using chi square test male female ratio ,airway classification were studied. The significance was set at p<0.05. RESULTS : The groups were compared based on gender, age, weight, height and airway classification. There was no difference in intubation duration among the four groups and all were completed in first attempt. The baseline blood pressure was significantly higher in hypertensive group than those in the normotensive group. Remarkable reduction in systolic blood pressure and diastolic blood pressure after anaesthesia induction was seen in all four groups. No change was noticed in heart rate following induction but increased at one minute after intubation. Significant increase over baseline values of systolic blood pressure and diastolic blood pressure was seen at one minute following direct laryngoscopy in both groups, while in the other group no change in blood pressure was recorded within five minutes following intubation when compared with their baseline values. Major finding in this study is that the haemodynamic response when using optical stylet by means of left molar approach was less significant than those by direct laryngoscopy in both normotensive and hypertensive patients.

Islam A.Eliwa et al <sup>34</sup> compared the efficacy and safety of each of levitan and shikani optical stylet used alone or with direct laryngoscopy for tracheal intubation from April 2011 to January 2013. n= 200. This study was carried out on two hundred ASA physical status I and II of both sex adult patients scheduled for elective surgery, under general anaesthesia. They were divided into four groups. Group I: Levitan optical stylet was used alone for tracheal intubation with manual chin lift. Group II:Levitan optical stylet used with Macintosh laryngoscope to retract the base of the tongue. Group III: Shikani optical stylet used alone. Group IV: Shikani optical stylet along with Macintosh laryngoscope. The intubation successs rate, time and complications related to intubation were recorded in each group. Statistically the patients of the four groups were comparable in age ,sex ,weight ,height ,mallampatti grade ,thyromental distance and inter-incisor gap. The overall intubation success rate of the four groups were statistically similar. With Levitan alone the intubation success rate was 90% and which reached 96% with aid of laryngoscope. The shikani optical stylet intubation rate was 86% and 90% with aid of laryngoscope. The intubation time and degree of difficulty in group 1 were

significantly lesser than in group 3. Similarly group 2 were significantly lesser in group 4.group 2 lesser than group 1.group 4 lesser than group 3. The incidence of the various intubation related complications were statistically similar in all groups. Levitan optical stylet with or without the aid of direct laryngoscopy is more effective than Shikani optical stylet for tracheal intubation with similar results of intubation related complication.

**Christopher .F .young et al** <sup>35</sup>compared the Shikani optical stylet to direct laryngoscopy for orotracheal intubation in 1996. 90 consecutive patients requiring general anaesthesia were the study group. A single resident intubated the first 45 patients with Shikani optical stylet next 45 patients with laryngoscope and macintosh blade.Intubations were timed and graded as easy,intermediate or challenging.SOS GROUP :The mean time to intubate was 25.3 seconds(range 10-93 seconds).42 patients were graded as easy to intubate and 3 were intermediate.DL GROUP :The mean time to intubate was 29.5 seconds(range 12 -120 seconds).39 intubations were graded easy,4 intermediate. STATISTICAL ANALYSIS :SOS AND DL GROUPS were not statistically different in age, airway indices, body mass index or time taken to intubate.It was found that first year resident could use the SOS as efficaciously and with as few complications as DL.

**Butcher et al**<sup>36</sup> compared Shikani optical stylet and bougie in difficult intubation .Direct laryngoscopy remains the gold standard method for tracheal intubation.In this study they compared Shikani optical stylet and bougie in a simulated Cormack and Lehane grade 3 laryngoscopy in patients.The study included 25 patients undergoing elective surgery(equal male and females).Anaesthesia was induced with propofol and paralysis achieved with muscle relaxation.To avoid unanticipated airway abnormality direct laryngoscopy was used. The epiglottis in order to simulate a grade 3 view was allowed to fall back. The patients were then intubated with bougie and then followed with shikani optical stylet. Time from layngoscopy to confirmation of position by capnography was recorded in seconds and also any esophageal intubation was recorded. The median time for successful tracheal intubation was analyzed using Wilcoxin signed rank test. Time taken for stylet was significantly longer than bougie ,41 and 37 seconds.p=0.001).6 esophageal intubations occurred with stylet and 2 with bougie .The Shikani optical stylet has the advantage of visualising the vocal cords.Tracheal intubation was achieved quicker using a bougie.

MAziz et al<sup>37</sup> conducted the clinical evaluation of levitan optical stylet in the year 2011. A retrospective study with review of anaesthesia and personal records was done .Review of records of 315 adult patients requiring a tracheal tube for elective or emergency surgical procedures was done. It included all clinical records of tracheal intubation with levitan optical stylet and excluded those that were performed by a trainee. In all patients the tracheal tubes were cut at 27 cm and threaded over the stylus portion of a modified optical stylet. Antifog was applied to the stylet. Of the 315 consecutive intubations reviewed,13 were intubated successfully by trainees with levitan stylet.41 were intubated with rapid sequence induction and cricoid pressure.5 were difficult to intubate, subsequently successfully intubated with levitan stylet after release of cricoid pressure. removal of the pillow or application of two handed jaw lift by an assistant.one failed intubation which was intubated successfully with fibreoptic intubation.49 patients at predictors of difficult laryngoscopy.1 intubated with modified levitan scope.1 patient was immobilised with cervical spine collar.4 had neck movement limitation.remaining 44 had mallampatti class 3 or 4 airway.The mean time for intubation was 23 seconds.Median intubation time was 19 seconds.3 documented traumatic laryngoscopies.No patient suffered from dental damage, there were no oesophageal intubations.

In conclusion this study demonstrated that levitan optical stylet may be used as an effective rapid and safe tool for intubation in an opearation theatre even in patients considered having difficult airway. It may be appropriate as a alternative when direct laryngoscopy fails rather than primary device for intubation.

**D.S .Phua et al**<sup>50</sup> studied the optical stylet as an alternative to the glidescope in simulated difficult intubations by randomised controlled trial in 2012. 60 patients of ASA PS III scheduled for elective surgery requiring tracheal intubation where recruited and randomly assigned to 2 groups of 30.Group 1 had their trachea intubated with glidescope videolaryngoscope whereas 2 nd group intubation was done with optical stylet. Inclusion criteria-age between 21 and 65 yrs, valid informed consent and uncomplicated airway. Exclusion criteria-includes known difficult airway, requirement for rapid sequence induction or emergency surgery. Patient baseline features and airway charecteristics in both the groups were similar.Intubation were seen on first attempt in 29 patients and one requiring 2 nd attempt.In optical stylet group 28 patient was intubated successfully on the first attempt with 2 patients requiring 2 nd attempt. However it appeared subjectively easier to intubate the simulated difficult airway using optical stylet with 27 intubation graded easy compared with 23 in the glidescope group. This was not statistically different.

**In 1951 King et al**<sup>39</sup> studied the effects of laryngoscopy and tracheal intubation on cardiovascular system which is easily over looked during clinical anaesthesia .They concluded that light general anaesthesia ,direct laryngoscopy and tracheal intubation

uncomplicated by coughing ,anoxia or hypercarbia is capable of producing effects characterised by rise in BP and heart rate. They observed that cardiovascular changes were initiated by laryngoscope pressing on base of tongue or lifting of epiglottis and independent of type of laryngoscope blade used .Deeper anaesthesia obtunded the response.

**Stoelting R.K et al** <sup>40</sup>studied the effects on blood pressure and heart rate during short duration of laryngoscopy and showed that duration of laryngoscopy less than 15 secs is extremely important in minimising the magnitude and duration of circulatory stimulation with laryngoscopy.

**P Tsai, B Chen. et al**<sup>41</sup> compared the hemodynamic responses to endotracheal intubation with the Airwayscope, Glidescope and Macintosh Laryngoscopes . Hemodynamic responses to laryngoscopy and tracheal intubation are concerning, as adverse cardiovascular events may result. Two novel video laryngoscopes that may attenuate this stress response in comparison to direct laryngoscopy with the standard Macintosh (MAC) blade are the Airway Scope® (AWS) and the Glidescope® (GS). We performed a randomized prospective study to investigate this hypothesis. 60 normotensive adult ASA I or II patients were enrolled, and randomized to intubation using either AWS (n=20), GS (n=20), or MAC (n=20). A standard induction was performed. All intubations were performed by a single anesthesiologist. Hemodynamic values were recorded at baseline, after induction, at intubation, and at every minute for five minutes after intubation. Intubation time was highly significantly longer in the AWS group and GS group compared to the MAC group (P < 0.01, P < 0.01, respectively). A significant increase was noted in the GS group in both mean arterial pressure (MAP) and heart rate (HR) at 1 minute post-intubation (P < 0.05), although statistical differences became non-significant by 2 minutes post-intubation. Significant decreases in MAP

were observed in the AWS group when compared to the MAC group at 3 minutes postintubation, remaining statistically significant for the duration of the study (P < 0.05). Although intubation times in the AWS and GS groups were prolonged compared to the MAC group, our study suggests that the AWS may be preferable to the GS and MAC when attenuation of the hemodynamic stress response to endotracheal intubation is desired.

**MD Harun**, **Rashid et al**<sup>42</sup> compared the haemodynamic changes between Laryngeal mask airway insertion and Endotracheal intubation.60 patients were included in the study.30 were allocated in each group. They were allotted randomly by lot method. According to the card the patient was grouped as group A and group B. Group A: Airway maintained by LMA. Group B : Airway maintained by endotracheal tube. Haemodynamic parameters such as pulse rate, systolic blood pressure, diastolic blood pressure and presence of dysarrythmia were monitored at 1,3,5 and 10 min after LMA insertion or Endotracheal tube insertion. It was found that there was statistically significant changes as p<0.05 in heart rate, systolic blood pressure and diastolic blood pressure in group intubated by endotracheal tube and less changes in heart rate, systolic blood pressure and diastolic blood pressure in group intubated by Laryngeal mask airway.

**Barak M, Zister A et al**<sup>43</sup> compared the haemodynamic and catecholamine responses to tracheal intubation to direct laryngoscopy compared with fiberoptic intubation. It is a randomised prospective study. 50 patients of ASA PS 1 and 2 scheduled for elective surgery with general anesthesia were selected. Patient was allotted to either direct laryngoscopy group or fiberoptic intubation group. Uniform protocol of anesthetic medications were given. Baseline parameters such as heart rate, blood pressure were

measured .HR,BP measured before endotracheal intubation and 1,2,3 and 5 minutes .Catecholamine(Epinephrine and norepinephrine) blood samples were drawn before induction and 1 and 5 minutes after intubaton. Results concluded that duration of intubation in the direct laryngoscopy (16.9(16.9+/-7.0 sec,range 8 to 40) was shorter compared with the fiberoptic intubation group(55.0 +/-22.5 sec,range 29 to 120),p<0.0001.In both the groups ,blood pressure and heart rate were significantly increased at 1,2 and 3 minutes after intubation.Catecholamine did not raise in both the groups.The results concluded that there was haemodynamic responses in both the groups.

Mehtab A Haidry et al<sup>44</sup> compared the hemodyanamic response to tracheal intubation with Macintosh and McCoy laryngoscope by randomisation controlled observational study.60 patients scheduled for elective surgery were included in this group and divided randomly based on ASA 1 and 2 with patients of both gender and age groups 18 and 60.Exclusion criteria were patients with history of anticipated difficult intubation, ailments such as diabetes, hypertensive patients, ischemic heart disease and chronic obstructive airway disease and body mass index more than 30. The patients were given midazolam 7.5 mg orally as premedication .Preoxygenation with 8 L/min of oxygen via circle system. Fentanyl 2 mcg/kg Thiopentone 5mg/kg Atracurium 0.5 mg/kg were administered to facilitate intubation. Tracheal tube of size 7.5 mm ID and 8.5 mm ID were used for intubation. Non invasive BP, Heart rate, oxygen saturation and end tidal carbon dioxide were monitored. Data analysis using SPSS version 17.0 .Repeated measure using ANOVA was used for comparision of baseline parameters.Significant P values were considered if less than 5 %.Paired t test were done for intergroup comparision. The maximum change in heart rate was 18.7 % in the Macintosh and 7.7 % in McCoy group. The difference was significant (p<0.001). The

change in systolic blood pressure was 22.9 % in the Macintosh group and 10.3 % Mccoy group. Haemodynamic changes were lesser with Mccoy laryngoscopes shorter duration and lesser magnitude.

**S.Singhal et al** <sup>25</sup>compared the hemodynamic response to laryngoscopy and intubation with Mccoy and Macintosh laryngoscope by randomisation method with hundred patients of either sex between 20-50 years and ASA grade I or II. The groups were comparable in mallampatti grading ,laryngoscopy ,intubation time , visualisation grades of layngoscopy and baseline hemodynamic parameters.Spo2 and ECG lead II monitoring was monitored. Chi square test was used for analysis .Paired t test and Unpaired t test was used for analysing laryngoscopy time ,intubation time and hemodynamic parameters. Significance was fixed at p value <0.05.With Macintosh laryngoscope the hemodynamic parameters were increased and statistically significant.The study has its conclusion as less hemodynamic response with Mc coy laryngoscope.

**Takahashi et al**<sup>45</sup> compared the hemodynamic responses to tracheal intubation with laryngoscope versus lightwand intubating device in adults with normal airway by randomisation method. Sixty adult healthy patients were according to intubating procedure into three groups. Sevoflurane /nitrous oxide was used for anaesthesia. The three groups were first lightwand group intubated with Trachlight. The second group received tracheal intubation with direct laryngoscope. Third group with laryngoscope alone .Exclusion criteria are patients with hypertension ,cardiovascular disease ,or arteriosclerosis ,history of gastroesophageal reflux ,previous history of difficult tracheal intubation. Statistical analysis was done with Bonferroni correction and further compared with paired students test .A p value of <0.05 was considered the level of statistical significance. No significant difference was observed in terms of age ,weight ,or height. Heart rate and Blood pressure showed no significant difference before anaesthetic induction and insertion of the device .The three groups responded with significant increase in Heart rate and Blood pressure from baseline values to both laryngoscopy and lightwand insertion. The maximum increase was observed in the LWI and LSI groups with heart rate and blood pressure than in LSA group. The result of the study clearly shows greater cardiovascular responses than stimulation by laryngoscopy.

**Xue et al** "compared the haemodynamic response to orotracheal intubation with glidescope videolaryngoscope and Macintosh direct laryngoscope by randomisation method.57 adult patients of ASA I scheduled for elective surgery were included in the study. Patients were induced with IV fentanyl ,propofol and vecuronium , was maintained with 1% isoflurane and 60 % nitrous oxide in oxygen. During the study the two groups were observed for differences in Blood pressure ,heart rate at any point .The product of HR and Systolic BP was measured. The glidescope group showed maximal diastolic BP ,otherwise the difference in BP did not significantly exceed the baseline values(p >0.05).When heart rate was compared the glidescope group showed an increase which lasted for 4 minutes whereas the Macintosh group showed increase in heart rate lasting for one minute.To conclude the two groups in BP ,HR at any point or in their maximal values.Hence the hemodynamic response to orotracheal intubation were similar in both the groups.

**Kitamura et al**<sup>47</sup> studied the attenuation of hemodynamic responses to tracheal intubation by the styletscope.24 patients after obtaining informed consent were included in this group. Exclusion criteria include age group less than 20 and greater than 85 ,ASA IV and risk of regurgitation. Monitoring was done with Electrocardiography ,capnography,pulse oximetry, and non invasive arterial pressure.Group 1 was intubated with Macintosh laryngoscope and Group 2 intubated using Styletscope.The maximum hemodynamic response and the time for intubation were recorded. Paired and unpaired t test and chi square were used and statistical analysis using StatView was done. P value <0.05 was statistically insignificant. After intubation there was a significant rise in heart rate in group intubated with macintosh laryngoscopy. Heart rate is a major determinant of myocardial oxygen balance. There was no significant difference in the time taken for intubation. Styletscope is highly efficient as the success rate for tracheal intubation is high. In conclusion Styletscope showed less hemodynamic response to tracheal intubation

# MATERIALS AND METHODS

## **CHAPTER 4**

#### **MATERIALS AND METHODS**

Eighty patients of ASA physical status one and two undergoing elective ENT surgeries under general anaesthesia with endotracheal intubation were included in the study.

It is a randomised prospective control study. Patients in the age group of 18-60 years were included in the study. The study was conducted in Stanley medical college in ENT surgery operating room.

The study was approved by our institutional ethical committee. After obtaining informed consent from the patients the study was conducted. This study was done for a period of nine months.

### **INCLUSION CRITERIA** :

- Age: 18-60 yrs
- ASA: one and two
- Weight: 50-80 kgs
- Surgery : elective ENT surgery
- Mallampatti score : one and two
- Thyromental distance : > 6.5 cm
- Inter incisor gap :>4cms

#### **EXCLUSION CRITERIA**

- Coagulopathies
- Difficult airway
- Paediatric population
- Hypertensive population
- Cardiovascular disease patient

## **MATERIALS REQUIRED**

- Laryngoscope blades of various sizes, bougie, oropharyngeal airway
- Levitan optical stylet
- Drugs

-glycopyrrolate,midazolam,fentanyl,thiopentone,atracurium,succinylcholine,neostig mine

- Monitors- ECG/NIBP/pulse oximetry
- 2 cc,5cc and 10 cc syringes
- 18 G iv cannula
- Iv fluids

## SAMPLE SIZE AND RANDOMISATION

The sample size was calculated as 80 based on pilot study and on previous studies statistical analysis.

Sample size: The formula used to compute the sample size is as follows:

$$n = \frac{(z_{\alpha} + z_{\beta})^2 (s_1^2 + s_2^2)}{(m_2 - m_1)^2}$$

Za = Type I error i.e significance level taken as 5% 2-tail test value 1.960

Zb = Type II error i.e Power of the test taken as 90% - value 1.282.

S1 = the standard deviation SBP of the group 1

S2 = the standard deviation SBP of the group 2

m1 = the mean SBP of group1

m2 = the mean SBP of group2

n=the sample size

It is assumed the mean SBP in both the groups are same before the experiment and the effect of the instrument after the application on subjects, the mean and SD of SPB observed in the previous study were  $133 \text{mm/Hg} \pm 11 \text{ mm/Hg}$ . Assuming the significance level of 5% with power of 90% the required sample size for the study is 79. i.e for each group 40 subjects is needed. For 80% power the required sample size for the study is 59. i.e for each group 30 subjects is needed.

They were randomly allocated to 40 in each group and were named as Group A(intubation using levitan optical stylet) and Group B(intubation using Levitan along with Macintosh laryngoscope).Randomisation is done by computerized randomized table.

#### **CONDUCT OF ANAESTHESIA:**

### **GROUPS**:

GROUPA: Intubation carried with Levitan optical stylet

GROUP B:Laryngoscopy done with Macintosh laryngoscope and intubation with Levitan Optical stylet

### **MONITORING:**

A. NIBP(Systolic blood pressure, Diastolic blood pressure, Mean arterial blood pressure)

- B. HEART RATE
- C. SPO2
- D. ECG

## **METHODOLOGY**:

The consented patients of ASA1 and ASA2 of age 18-60 yrs of both genders scheduled for elective surgery in ENT operating theatres were selected.

### **PREANAESTHETIC PREPERATION :**

Patients were admitted in the ward as inpatients and routine investigations such as complete blood count, blood urea ,serum creatinine ,random blood sugar ,coagulation profile ,chest x ray and ECG were done.

## **PREMEDICATION**:

All patients are premedicated with antisialogogue inj glycopyrrolate  $10\mu$ g/kg intramuscularly half an hour before the procedure .On arrival into the operating room patient's baseline parameters such as heart rate, systolic blood pressure, diastolic blood pressure and mean arterial blood pressure and Spo2 are recorded. Patient monitored with pulse oximetry, NIBP and ECG.

I.V Line secured with 18 g venflon cannula.

Inj.Midazolam 0.02 $\mu$ g/kg and Inj.Fentanyl 2 $\mu$ g/kg was given to both the groups.

Patient preoxygenated with 100% oxygen for 3 minutes.

#### **INDUCTION:**

Patient induced with inj.thiopentone sodium 5mg/kg in both the groups A and B

### **MUSCLE RELAXANT:**

Inj.Suxamethonium 2 mg/kg is given to both the groups. Patient ventilated for 60 seconds.

#### POSITIONING

Patient positioned in sniffing position in both the groups

### **INTUBATION IN GROUPA-<sup>30</sup>**

Levitan optical stylet can be used alone for endotracheal intubation without a laryngoscope with its fiberoptic viewing.

#### **STEPS**:

1.Jaw thrust manoeuvre is given by the assistant while doing intubation with Levitan optical stylet

2.In the initial view with Levitan optical stylet, epiglottis and posterior pharyngeal walls are visualized.

3. Stylet is introduced with rocking movements to view the glottic structure.

4. Levitan optical stylet is advanced and the glottic structures are centered with the scope.

5. Tracheal rings are visualized in the fiberoptic viewing superiorly and inferiorly posterior trachea is visualized.

6.After the tracheal rings are visualized clockwise rotation of the tube is done and scope is withdrawn off the feet.

Fig9. ENT Operating Room - patient mask ventilated before intubation



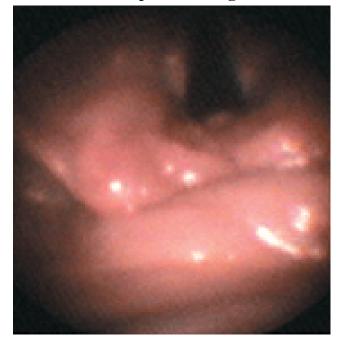
Fig10. Jaw thrust manoeuvre given by the assistant



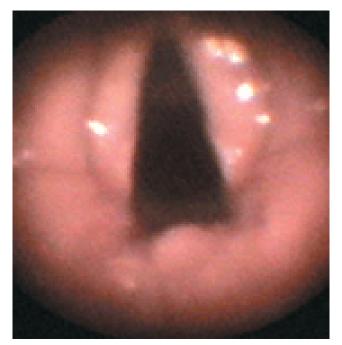
Fig11. Levitan opticals stylet introduction in to the oral cavity



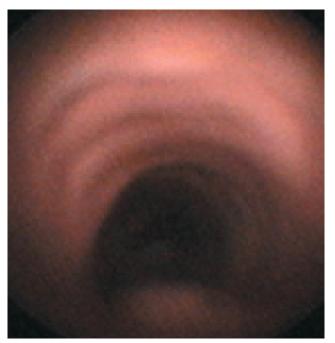



Fig12. Patient intubated with Levitan optical stylet

## Fig13. Fibreoptic viewing with Levitan optical stylet




Epiglottis visualized


Arytenoids and Posterior part of the glottic structure visible







Tracheal rings are visible



## **INTUBATION IN GROUP B<sup>30,28</sup>:**

## **STEPS:**

1. Laryngoscopy done with Macintosh laryngoscope blade.

2. Levitan optical stylet placed in starting position under direct vision and with fiberoptic viewing endotracheal tube is inserted.

3. Navigate the Levitan optical stylet through the cord.

4. Advance the tube off the levitan optical stylet with the left hand.

5. Verify the depth of insertion of endotracheal tube fixed at 21 cm for females and 23 cm for males at incisor level.

After intubation endotracheal tube position checked by bilateral air entry and capnographic waveform. The tube is secured and connected to closed circuit.

### POINTS TO BE NOTED WHILE USING FIBEROPTIC INSTRUMENT

- 1. Always open channel is followed.
- 2. It is preferable to avoid the mucosa.
- 3. Target is focused.
- 4. From the starting position it is proceeded slowly.

# Fig14. Laryngoscopy done with Macintosh Laryngoscope and Intubation carried out with levitan stylet

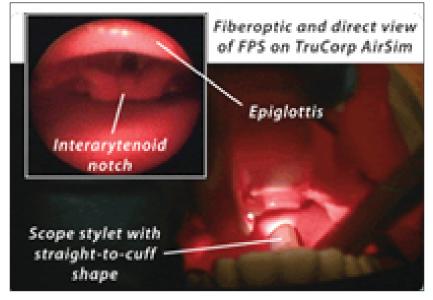





Fig15. Laryngoscopy done with macintosh laryngoscope

Fig16. With Levitan optical stylet patient intubated



In both the groups HR,SBP,DBP,SPO2 are monitored during preintubation, postintubation(0 min),1 min,3 min,5 min and 10 min after intubation.

#### **MAINTANENCE:**

After intubation anaesthesia maintained with nitrous oxide and oxygen in the ratio 4:2, muscle relaxant, inj.atracurium given.Volatile anaesthetic -Sevoflurane is used at a concentration of 1% to all the patients.

Intraoperative HR,SBP,DBP,SPO2 were recorded every 15 min till end of the procedure.

After the procedure is over and after the patient is spontaneously breathing, the patient is reversed with inj.neostigmine  $40\mu g/kg$  and inj.glycopyrrolate  $10\mu g/kg$  and after thorough oropharyngeal suctioning, the patient extubated.

Intubations are done by a single examiner in all the 80 patients to avoid interobserver bias.

**Haemodynamic significance**: When the heart rate, systolic blood pressure ,diastolic blood pressure and mean arterial blood pressure greater than 20% ,it is found to be haemodynamically significant.

#### **I:TIME TAKEN FOR INTUBATION<sup>34</sup>**

**GROUPA**:From the insertion of the Levitan optical stylet into oral cavity till the confirmation of endotracheal intubation by auscultation and conventional capnography.

**GROUP B**: From insertion of Macintosh blade into the oral cavity and till the confirmation of endotracheal intubation by auscultation and conventional capnography.

52

## **II: GRADING OF INTUBATION**<sup>33,34</sup>

ATTEMPT:Inserting Levitan optical stylet/Macintosh laryngoscope into the oral cavity and withdrawing out was considered as one attempt

EASE: able to intubate in one attempt

**DIFFICULT:** Not able to intubate in one attempt but in two attempts is considered as difficult.

#### **FAILURE:**

It was defined as when the patient could not be intubated in more than two attempts by the examiner.

**III:POST OPERATIVE** : Patients were monitored for complications such as sore throat, cough, bleeding and hoarseness of voice in both the groups.

## a)SCORING SYSTEM FOR ASSESSMENT OF SORETHROAT<sup>31</sup>

Grade 0:No sorethroat at any time since operation

Grade 1:The patient answered in the affirmative when asked about sorethroat(minimal sore throat)

Grade 2: The patient complained of sore throat on his/her own(moderate sore throat)

Grade 3: The patient is in obvious distress (severe sore throat)

### b)SCORING SYSTEM FOR ASSESSMENT OF HOARSENESS OF VOICE<sup>31</sup>

Grade 0:No complaints of hoarseness at any time since the operation Grade 1:Minimal change in quality of speech.Patient answers in the affirmative only when enquired about(minimal hoarseness)

Grade 2: Moderate change in quality of speech of which the patient complains on his/her

own(moderate hoarseness)

Grade 3:Gross change in the quality of voice perceived by the observer (severe hoarseness)

## c)ESHAK "S -4 POINT RATING SCALE FOR COUGH<sup>32</sup>

Grade 0-no coughing or straining

Grade 1-moderate coughing

Grade 2-marked coughing on straining

Grade 3-poor extubation and laryngospasm

#### d)SCORING FOR POST OP BLEEDING

Grade 0-no bleeding or streaks of blood on spitting Grade 1-mild streaks of blood on spitting Grade 2-frank blood on spitting All the patients were monitored for these complications 24 hrs postoperatively

# OBSERVATION AND RESULTS

### **CHAPTER 5**

#### **OBSERVATION AND RESULTS**

After collecting the data, all the variables are examined for outliers and nonnormal distributions. The Categorical variables are expressed as Frequency and Percentage. The Quantity variables are expressed as mean and standard deviation. Descriptive statistics are used to evaluate baseline characteristics.

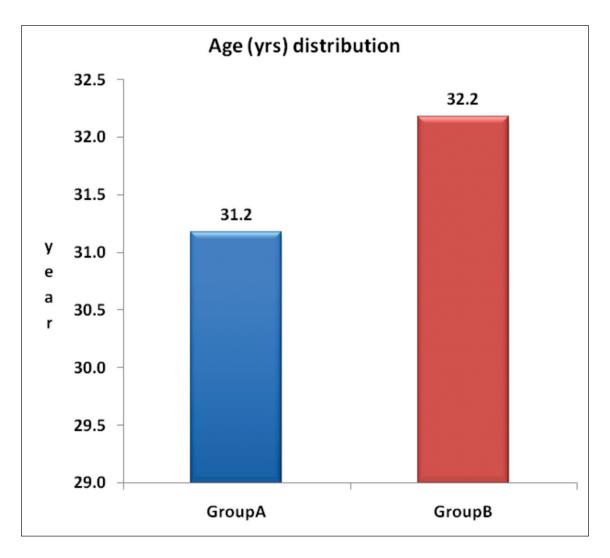
Student's *t*-test was used to analyze the parametric data, and discrete (categorical) variables were analyzed using the chi square test, with a P < 0.05 considered statistically significant.

The statistical analysis was carried out using statistical software package SPSS 22.0.

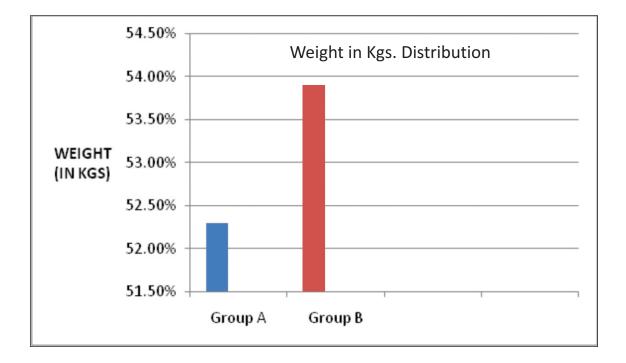
# TABLE 2:COMPARISON OF AGE AND WEIGHT BETWEEN THE GROUPS A AND B

| Group          | N  | Mean  | Standard Deviation | P value |
|----------------|----|-------|--------------------|---------|
| Age GROUP A    | 40 | 31.8  | 7.41               | 0.720   |
| (yrs) GROUP B  | 40 | 32.18 | 14.21              |         |
| Weight GROUP A | 40 | 52.25 | 5.25               | 0.837   |
| (kgs) GROUP B  | 40 | 53.95 | 8.25               |         |

The mean age of patients in Group A and Group B was 31.8


years and 32.18 years respectively.

The mean weight of patients in Group A and Group B was

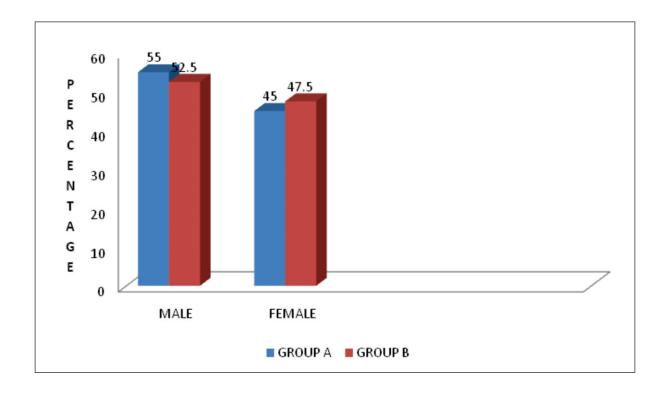

52.25 kg and 53.95 kg respectively.

On analyzing the data statistically p value is found to be 0.72 and 0.83 .All these values were >0.05, hence the difference was statistically insignificant between the two groups in terms of age, and weight and the two groups were therefore comparable.

# BAR DIAGRAM SHOWING AGE DISTRIBUTION BETWEEN THE TWO GROUPS A AND B



## BAR DIAGRAM SHOWING WEIGHT DISTRIBUTION BETWEEN THE TWO GROUPS A AND B




# TABLE 3:COMPARISION OF GENDER DIFFERENCES BETWEEN THE TWO GROUPS A AND B

|           |                   | SE    | EX     |        |
|-----------|-------------------|-------|--------|--------|
|           |                   | Male  | Female | Total  |
| Group Gro | upA Count         | 22    | 18     | 40     |
|           | % within<br>Group | 55.0% | 45.0%  | 100.0% |
| Gro       | upB Count         | 21    | 19     | 40     |
|           | % within<br>Group | 52.5% | 47.5%  | 100.0% |
| Total     | Count             | 43    | 37     | 80     |
|           | % within<br>Group | 53.8% | 46.2%  | 100.0% |

P=1.000.

BAR CHART COMPARING THE GENDER DISTRIBUTION BETWEEN GROUPAAND GROUPB

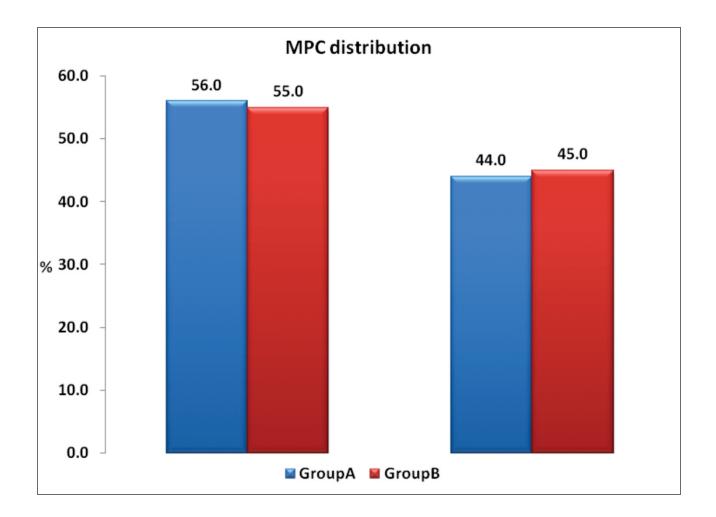


The proportion of males in group A is 55 % and of females % 45%

The proportion of males in group B is 52.5% and of females is 47.5%

On analysing this data statistically the p value was calculated as p=1.000

As the p value is more than 0.05 the data is statistically insignificant in terms of gender


between the two groups. The two groups are therefore comparable.

# TABLE 4:COMPARISION OF THE MALLAMPATTICLASSIFICATION(MPC) BETWEEN THE TWO GROUPS

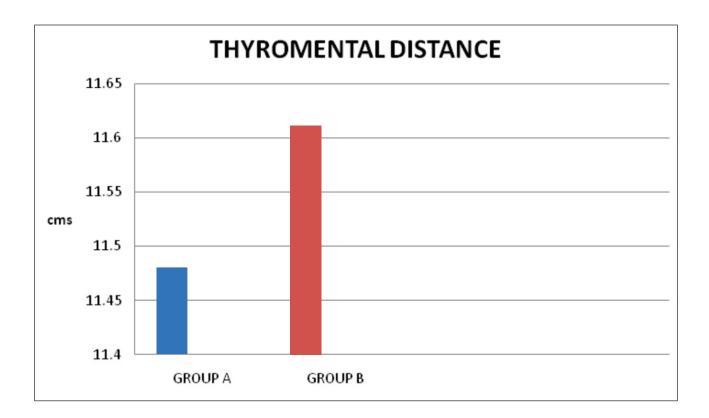
|       |                 | M     |       |        |
|-------|-----------------|-------|-------|--------|
|       |                 | 1     | 2     | Total  |
| Group | GroupA Count    | 20    | 20    | 40     |
|       | % with<br>Group | 50.0% | 50.0% | 100.0% |
|       | GroupB Count    | 22    | 18    | 40     |
|       | % with<br>Group | 55.0% | 45.0% | 100.0% |
| Total | Count           | 42    | 38    | 80     |
|       | % with<br>Group | 52.5% | 47.5% | 100.0% |

The percentage of patients in group A with MPC 1 and 2 are 50%. The percentage of patients in group B with MPC 1 is 55% and MPC 2 is 45%. On analyzing the data statistically p value is found to be 0.9 and hence statistically insignificant, and the two groups are therefore comparable.

### BAR CHART COMPARING MPC BETWEEN TWO GROUPS AAND B



# TABLE 5:COMPARISON OF INTERINCISOR GAP AND THYROMENTALDISTANCEBETWEEN THE TWO GROUPS


| GROUP                 | N  | Mean  | Standard  | P value |
|-----------------------|----|-------|-----------|---------|
|                       |    |       | Deviation |         |
| Thyromental Group A   | 40 | 11.48 | 0.7359    | 0.443   |
| Distance (cm) Group B | 40 | 11.61 | 0.8317    |         |
| Interincisor Group A  | 40 | 4.871 | 0.4299    | 0.140   |
| Gap (cm) Group B      | 40 | 4.945 | 0.3827    |         |

The Mean Thyromental distance for Group A is 11.48 and for Group B is 11.61 cm and the p value for Thyromental distance is 0.443

The Mean for Interincisor gap for Group A is 0.42 and for Group B is 0.38 and the p value for Interincisor gap is 0.140

On analyzing the data statistically p value is found to be >0.05 and the two Groups are found to be comparable.

## BAR CHART COMPARING THE THYROMENTAL DISTANCE IN GROUPS A AND B



# BAR CHART COMPARING THE INTERINCISOR GAP IN GROUPS A AND B

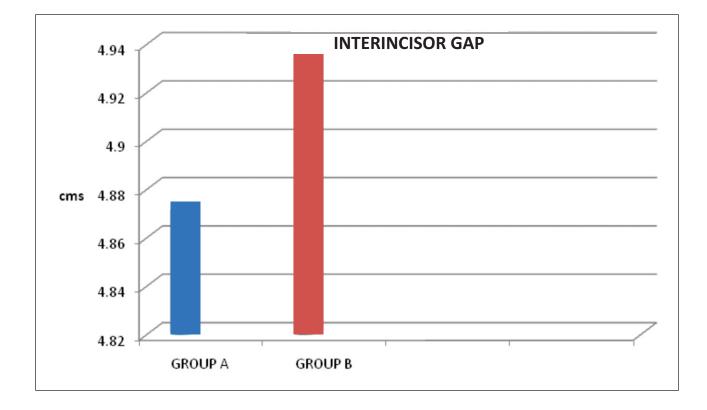
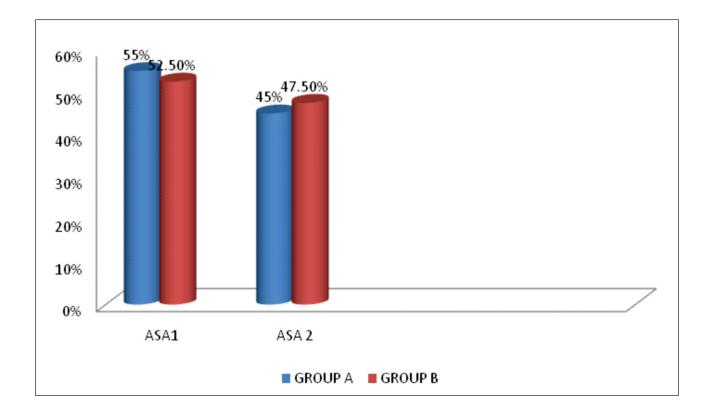



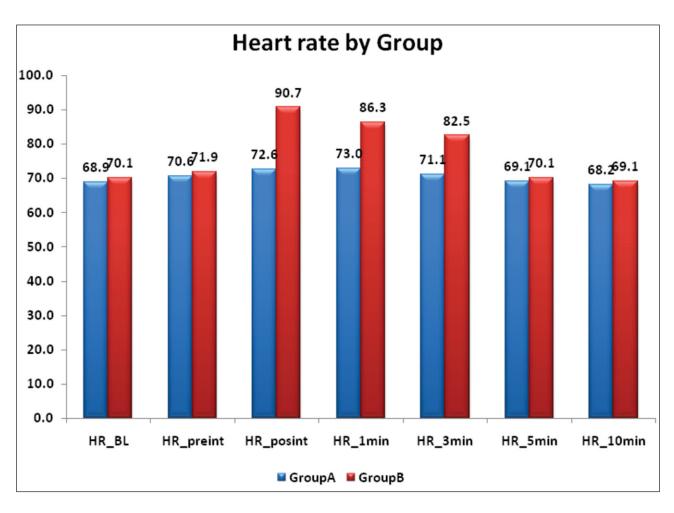

TABLE 6: COMPARISION OF ASA STATUS BETWEEN THE TWO GROUPS

|       |        |                   | A     | ASA   |        |
|-------|--------|-------------------|-------|-------|--------|
|       |        |                   | Ι     | II    | Total  |
| Group | GroupA | Count             | 22    | 18    | 40     |
|       |        | % within<br>Group | 55.0% | 45.0% | 100.0% |
|       | GroupB | Count             | 21    | 19    | 40     |
|       |        | % within<br>Group | 52.5% | 47.5% | 100.0% |
| Total |        | Count             | 43    | 37    | 80     |
|       |        | % within<br>Group | 53.8% | 46.2% | 100.0% |

P=1.000

## BAR CHART COMPARING THE ASA DISTRIBUTION BETWEEN THE TWO GROUPS



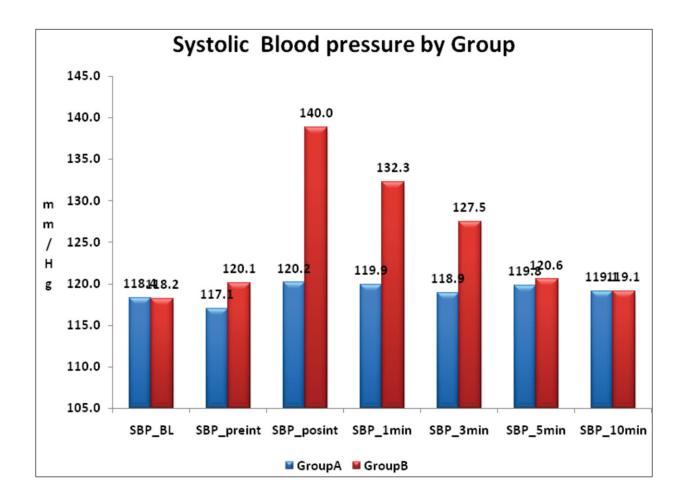

The percentage of patients in group A with ASA I is 55 % and ASA II is 45 %. The percentage of patients in Group B with ASA I is 52.5% and ASA II is 47.5 % The p value is >0.05 and hence the two groups are comparable.

# TABLE 7:COMPARISION OF HEART RATE CHANGES BETWEEN THE TWO GROUPS AT VARIED INTERVALS

|         |         |    |       | Standard  |         | Inteference   |
|---------|---------|----|-------|-----------|---------|---------------|
|         | Group   | Ν  | Mean  | Deviation | P value |               |
| HRBL    | Group A | 40 | 68.92 | 3.526     | 0.232   | Insignificant |
|         | Group B | 40 | 70.08 | 4.896     |         |               |
| HRPI    | Group A | 40 | 70.58 | 3.587     | 0.176   | Insignificant |
|         | Group B | 40 | 71.88 | 4.831     | 0.170   |               |
| HRPT    | Group A | 40 | 72.55 | 3.630     | 0.000   | Significant   |
|         | Group B | 40 | 90.72 | 5.463     |         |               |
| HR1min  | Group A | 40 | 72.95 | 3.121     | 0.000   | Significant   |
|         | Group B | 40 | 86.32 | 4.958     |         |               |
| HR3min  | Group A | 40 | 71.10 | 3.144     | 0.000   | Significant   |
|         | Group B | 40 | 82.48 | 4.176     |         |               |
| HR5min  | Group A | 40 | 69.10 | 2.901     | 0.105   | Insignificant |
|         | Group B | 40 | 70.10 | 3.101     | 0.105   |               |
| HR10min | Group A | 40 | 68.24 | 2.860     | 0.172   | Insignificant |
|         | Group B | 40 | 69.14 | 2.980     |         |               |

### **Group statistics**

# BAR DIAGRAM COMPARING THE HEART RATES AT VARIOUS TIME INTERVALS

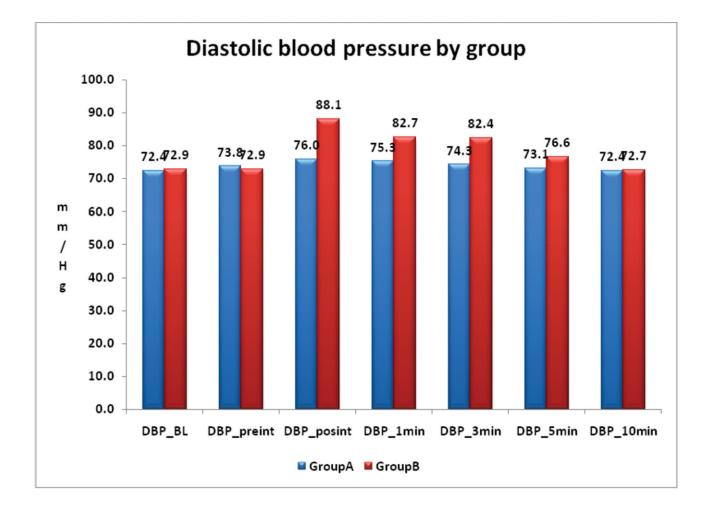



Maximal increase in heart rate in both the groups occurred following laryngoscopy and endotracheal intubation. The increase in mean heart rate in Group A was from 68 to 73 beats per minute while in Group B mean heart rate increased from 69 to 91 beats per minute during endotracheal intubation. In Group B there is a 25 % increase in heart rate in postintubation group from the baseline value. The increase was statistically significant as the p value in postintubation (0 min) ,1 minute and 3 minutes were 0.000 respectively. The heart rate reached the baseline 10 minutes after the intubation.

# TABLE 8:COMPARISION OF SYSTOLIC BLOOD PRESSURE CHANGESBETWEEN TWO GROUPS AT VARIOUS TIME INTERVALS

|          | -       |    |        | Std.      |         | Inference     |
|----------|---------|----|--------|-----------|---------|---------------|
|          | Group   | Ν  | Mean   | Deviation | P-value |               |
| SBPBL    | Group A | 40 | 118.35 | 8.640     | 0.925   | Insignificant |
|          | Group B | 40 | 118.18 | 7.805     | 0.923   |               |
| SBPPI    | Group A | 40 | 117.05 | 7.362     | 0.070   | Insignificant |
|          | Group B | 40 | 120.12 | 7.593     | 0.070   |               |
| SBPPT    | Group A | 40 | 120.15 | 6.867     | 0.000   | Significant   |
|          | Group B | 40 | 140.05 | 6.019     | 0.000   |               |
| SBP1min  | Group A | 40 | 119.88 | 7.314     | 0.000   | Significant   |
|          | Group B | 40 | 132.28 | 5.164     | 0.000   |               |
| SBP3min  | Group A | 40 | 118.88 | 7.380     | 0.000   | Significant   |
|          | Group B | 40 | 127.45 | 4.734     | 0.000   |               |
| SBP5min  | Group A | 40 | 119.82 | 8.108     | 0.681   | Insignificant |
|          | Group B | 40 | 120.55 | 7.585     |         |               |
| SBP10min | Group A | 40 | 119.10 | 8.485     | 0.989   | Insignificant |
|          | Group B | 40 | 119.12 | 7.596     | 0.202   |               |

# BAR DIAGRAM COMPARING THE SYSTOLIC BLOOD PRESSURE AT VARIOUS TIME INTERVALS

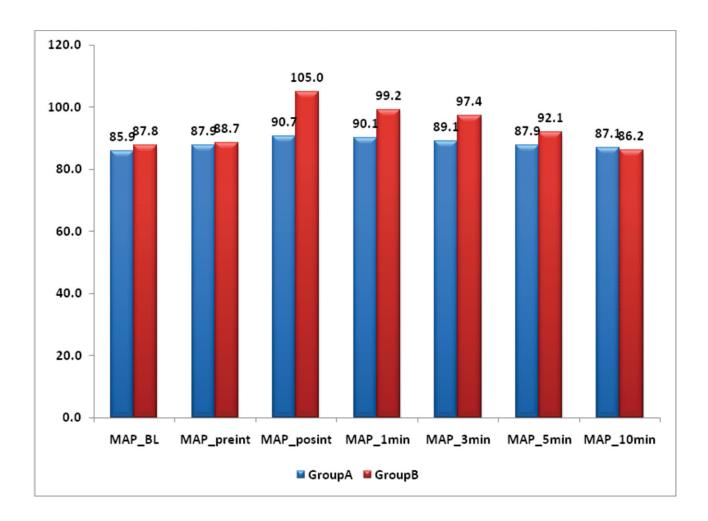



Maximal increase in Mean systolic Blood pressure in Group A was seen from 117 to 119mm of Hg and The Mean systolic Blood Pressure in Group B was seen from 118 to 140 mm of Hg .There is 20 % increase in Mean Systolic blood pressure in Group B from the baseline value which is statistically significant, and in Group A there is a 2 % increase from baseline value .The p value at postintubation (0 min) ,1 minute ,and 3 minutes are 0.000 respectively.Hence the data is statistically significant.

## TABLE 9:COMPARISION OF DIASTOLIC BLOOD PRESSURE CHANGES AT VARIOUS TIME INTERVAL

|         |         |    |       | Std.      |         | Inference     |
|---------|---------|----|-------|-----------|---------|---------------|
|         | Group   | Ν  | Mean  | Deviation | P-value |               |
| DBPBL   | Group A | 40 | 72.35 | 4.881     | 0.677   | Insignificant |
|         | Group B | 40 | 72.88 | 6.268     |         |               |
| DBPPI   | Group A | 40 | 73.75 | 4.482     | 0.471   | Insignificant |
|         | Group B | 40 | 72.92 | 5.636     |         |               |
| DBPPT   | Group A | 40 | 75.95 | 4.523     | 0.000   | Significant   |
|         | Group B | 40 | 88.10 | 4.991     | 0.000   |               |
| DBP1min | Group A | 40 | 75.28 | 4.484     | 0.000   | Significant   |
|         | Group B | 40 | 82.65 | 4.521     | 0.000   |               |
| DBP3min | Group A | 40 | 74.25 | 4.283     | 0.000   | Significant   |
|         | Group B | 40 | 82.40 | 4.337     |         |               |
| DBP5min | Group A | 40 | 73.08 | 4.358     | 0.001   | Significant   |
|         | Group B | 40 | 76.58 | 4.956     |         |               |
| DBP10mi | Group A | 40 | 72.38 | 4.634     | 0.795   | Insignificant |
| n       | Group B | 40 | 72.65 | 4.780     |         |               |

# BAR CHART COMPARING THE DIASTOLIC PRESSURE VARIATION BETWEEN THE GROUPAAND B




The maximal increase in diastolic blood pressure in Group A was from 72 to 76 mmHg and in Group B from 72 to 88mmHg.A difference of 22 % was seen in group B from the baseline value hence it is statistically significant and a increase in 8 % in Group A.The p value at postintubation(0 min),1 minute ,3 minutes and 5 minutes were 0.000,0.000,0.000 and 0.001 respectively hence the data is statistically significant.

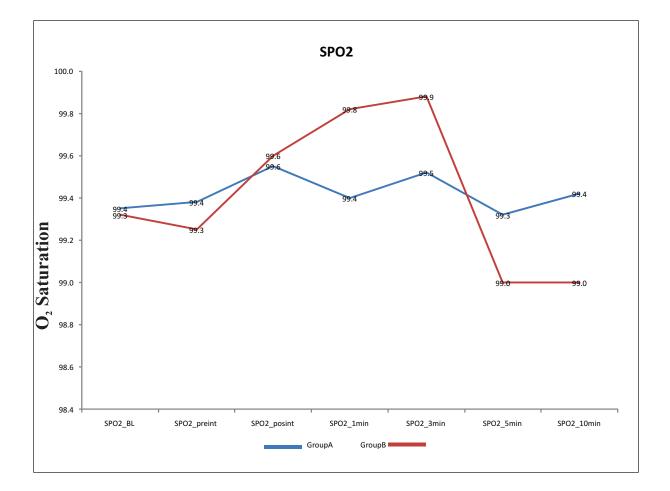
# TABLE 10:COMPARISION OF MEAN ARTERIAL BLOOD PRESSUREBETWEEN TWO GROUPS AT VARIOUS TIME INTERVALS

|          |         |    |        | Std.      |         | Inference     |
|----------|---------|----|--------|-----------|---------|---------------|
|          | Group   | N  | Mean   | Deviation | P-value |               |
| MAPBL    | Group A | 40 | 85.88  | 6.615     | 0.191   | Insignificant |
|          | Group B | 40 | 87.78  | 6.257     |         |               |
| MAPPI    | Group A | 40 | 87.92  | 4.047     | 0.522   | Insignificant |
|          | Group B | 40 | 88.65  | 5.864     |         |               |
| MAPPT    | Group A | 40 | 90.68  | 4.05      | 0.000   | Significant   |
|          | Group B | 40 | 105.02 | 4.28      |         |               |
| MAPIMIN  | Group A | 40 | 90.14  | 4.15      | 0.000   | Significant   |
|          | Group B | 40 | 99.19  | 3.74      |         |               |
| MAP3MIN  | Group A | 40 | 89.12  | 4.15      | 0.000   | Significant   |
|          | Group B | 40 | 97.42  | 3.64      |         |               |
| MAP5MIN  | Group A | 40 | 87.94  | 4.10      | 0.001   | Significant   |
|          | Group B | 40 | 92.11  | 4.63      |         |               |
| MAP10MIN | Group A | 40 | 87.13  | 4.38      | 0.323   | Insignificant |
|          | Group B | 40 | 86.15  | 4.39      |         |               |

## BAR DIAGRAM SHOWING MEAN ARTERIAL PRESSURE AT VARIOUS TIME INTERVALS BETWEEN THE TWO GROUPS



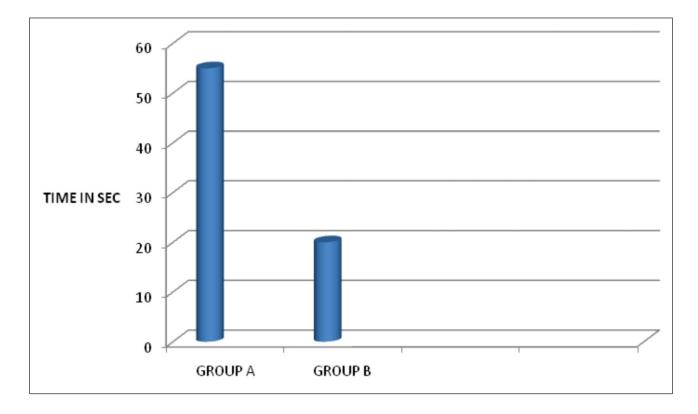
The maximal increase in mean arterial pressure in Group A is from 85 to 90 mmHg and in Group B is from 87 to 105mmHg. There is a 21 % increase in Mean arterial pressure in Group B which is statiscically significant and 7 % increase in Group A . The p value at postintubation(0 min),1 minute ,3 minutes and 5 minutes is 0.000 ,0.000 ,0.000 and 0.001 respectively Hence the data is statistically significant.


# TABLE 11:COMPARISION OF SPO2 BETWEEN THE TWO GROUPS AT VARIOUS TIME INTERVALS

|             | Group    | N  | Mean  | Std.<br>Deviation | P-value |
|-------------|----------|----|-------|-------------------|---------|
| SPO2_BL     | GroupA   | 40 | 99.35 | .533              | 0.005   |
|             | GroupB   | 40 | 99.32 | .474              | 0.825   |
| SPO2_preint | GroupA   | 40 | 99.38 | .586              |         |
|             | GroupB   | 40 | 99.25 | .494              | 0.305   |
| SPO2_posint | t GroupA | 40 | 99.55 | .504              | 0.007   |
|             | GroupB   | 40 | 99.60 | .632              | 0.697   |
| SPO2_1min   | GroupA   | 40 | 99.40 | .496              | 0.070   |
|             | GroupB   | 40 | 99.82 | .385              | 0.070   |
| SPO2_3min   | GroupA   | 40 | 99.52 | .506              | 0.090   |
|             | GroupB   | 40 | 99.88 | .335              |         |
| SPO2_       | GroupA   | 40 | 99.32 | .474              | 0.065   |
| 5min        | GroupB   | 40 | 99.00 | .000              | 0.065   |
| SPO2_10mi   | GroupA   | 40 | 99.42 | .501              | 0.007   |
| n           | GroupB   | 40 | 99.00 | .000              | 0.087   |

The increase in Mean SPO2 was seen from 99.32-99.52 in Group A

and in Group B from 99-99.88 .As the p value is >0.05 at all time intervals the data is statistically insignificant.

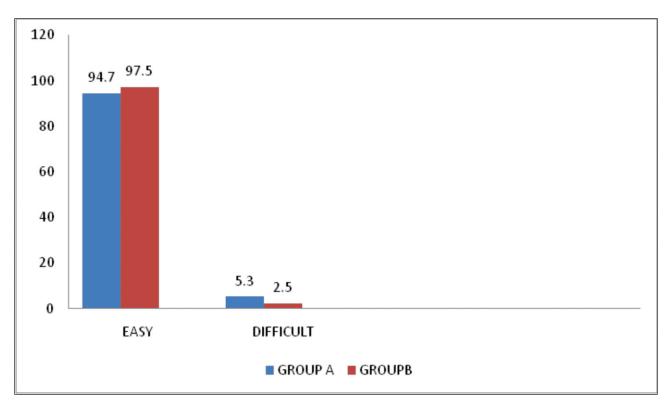

# TABLE 11:COMPARISION OF SPO2 BETWEEN THE TWO GROUPS AT VARIOUS TIME INTERVALS



# TABLE 12:COMPARISION OF TIME TAKEN FOR INTUBATION BETWEEN TWO GROUPS

|                 | Group  | Ν  | Mean  | Std.<br>Deviation | P-value |
|-----------------|--------|----|-------|-------------------|---------|
| Time_taken_intu | GroupA | 40 | 55.2  | 2.866             | 0.001   |
| bation          | GroupB | 40 | 20.25 | 1.676             |         |

# BAR DIAGRAM SHOWING TIME TAKEN FOR INTUBATION BETWEEN TWO GROUPS




The Mean time taken for intubation in group A is 55 sec and in group B is 20 sec. on analyzing statistically p value is<0.05 and it is found to be statistically significant.

TABLE 13:COMPARISION OF EASE OF INTUBATION BETWEEN TWO GROUPS

|       |                   | EAS    | E OF      |        |
|-------|-------------------|--------|-----------|--------|
|       |                   | INTUB  | ATION     |        |
|       |                   | Easy   | difficult | Total  |
| Group | GroupA Count      | 36     | 2         | 38     |
|       | % within<br>Group | 94.7%  | 5.3%      | 100.0% |
|       | GroupB Count      | 39     | 1         | 40     |
|       | % within<br>Group | 97.5%  | 2.5%      | 100.0% |
| Total | Count             | 75     | 3         | 78     |
|       | % within<br>Group | 96.15% | 3.8%      | 100.0% |

## BAR CHART SHOWING EASE AND DIFFICULTY IN INTUBATION IN BOTH THE GROUPS AAND B



The proportion of ease of intubation in group A is 94.7% and difficult intubation is 5.3 % The proportion of ease of intubation in group B is 97.5% and difficulty is 2.5 %

As the p value is more than 0.05 the data is statistically insignificant and the two groups are comparable.

### TABLE 14:COMPARISION OF FAILURE RATE BETWEEN TWO GROUPS

|       |             |             | FAILUR | E RATE |        |  |
|-------|-------------|-------------|--------|--------|--------|--|
|       |             |             | Yes    | No     | Total  |  |
| Group | GroupA Cour |             | 2      | 38     | 40     |  |
|       | % w<br>Grou | ithin<br>p  | 5.0%   | 95.0%  | 100.0% |  |
|       | GroupB Cour |             | 0      | 40     | 40     |  |
|       | % w<br>Grou | ithin<br>1p | 0%     | 100.0% | 100.0% |  |
| Total | Cour        | nt          | 2      | 78     | 80     |  |
|       | % w<br>Grou | ithin<br>1p | 3.8%   | 96.2%  | 100.0% |  |

P=1.000

# YES NO

### COMPARISION OF FAILURE RATE BETWEEN THE TWO GROUPS

The proportion of failure rate in group A is 5.0% and success rate of intubation is 95% The proportion of failure rate in group B is 2.5% and success rate of intubation is 97.5% As the p value is more than 0.05 the data is statistically insignificant and the two groups are comparable.

#### **COMPLICATIONS**

In group A, there was no complications such as sore throat, bleeding and hoarseness of voice.

In group B, one case of hoarseness of voice was noted postoperatively and 2 cases of sore throat were recorded and symptoms resolved spontaneously in 24 hrs.

Hoarseness of voice of score 2 and sore throat of score 1 which was statistically insignificant.

# DISGUSSION

# CHAPTER 6 DISCUSSION

Laryngoscopy and intubation incur haemodynamic responses like increase in heart rate, systolic blood pressure, diastolic blood pressure, via reflex responses and physical presence of endotracheal tube placement, which has been well known for the past 60 yrs since description by Bruce. Stimulation of the mechanoreceptors in the pharyngeal wall, epiglottis and vocal cord was thought to be the cause for these haemodynamic responses. These transitory hypertension and tachycardia were probably of no concern in healthy individuals, but either one or both may be hazardous to those with hypertension, myocardial insufficency or cardiovascular diseases. Hence the need to attenuate the sympathetic response to laryngoscopy and endotracheal intubation was important. Both laryngoscopy and intubation separately result in sympathetic stimulation, but the catecholamine rise with intubation exceeds that with laryngoscopy alone.

Anaesthesiologists were in constant search for the methods to attenuate these haemodynamic responses. Many methods and strategies had been tried by anesthesiologists to blunt these stimulation and stress responses to laryngoscopy and intubation like anesthetic agents, adjuvants and analgesics.Newer airway aids for laryngoscopy and intubation has evolved to avoid these major sympathetic stimulation and in management of difficult airway situations. These airway gadgets were compared with the current standard routine use of direct laryngoscopy and endotracheal intubation.

Levitan optical stylet was in clinical practice since 1996 after its invention by Dr.Richard Levitan. Levitan FPS was the shorter version of shikani optical stylet.It combines the advantage of fiberoptic intubation along with its malleability, semirigidity and simplificity of this equipment to facilitate endotracheal intubation. It requires no imaging screen or power connection. Its length mimics a standard malleable stylet. It is intended for use in every laryngoscopy, replacing a standard stylet for shaping and handling of the tracheal tube. In easy direct laryngoscopy, the fiberoptic view provides immediate visual confirmation of intratracheal placement. In situations of poor glottic exposure, however, it can be used for fiberoptic-guided intubation within the time frame of inserting a standard stylet.

We conducted a prospective randomised study in an attempt to review whether this newer Levitan optical stylets can reduce the haemodynamic responses to laryngoscopy and intubation when compared with the routine Macintosh Laryngoscope.Many previous studies conducted with Shikani optical stylet which was the longer version of Levitan optical stylet for haemodynamic responses showed considerable reduction in stress responses but data concerning with Levitan optical stylet was lacking in Indian population. The fixed curvature and bulk of the tracheal tubescope unit means that it may be difficult to advance the unit towards the glottis even if a relatively clear view of the laryngeal inlet is obtained. In one study using the Shikani Optical stylet, 10% of intubations required reshaping of the scope curvature to achieve successful intubation. The recommendation of a 35° bend angle for the Levitan FPS is based on a previous study which assessed the optimal scope bend angle that allowed tip visualization and manoeuverability without compromising the ability for tracheal tube passage due to impaction on the anterior tracheal rings by the scope tip.

Hence we selected the intubation using Levitan optical stylet in Indian population and compared with routine Macintosh Laryngoscope for intubation stress response.We also compared the ease of intubation with both the techniques.

In our study , there were 40 patients in each group ,all belonging to American society of Anaesthesiologists status 1 and 2.Patients with difficult airway were not included in the study. This study mainly focused on stress response in people with normal airway.

86

#### AGEASAVARIABLE

Age group between 18-60 years were included in the study, since the extremes of ages were more susceptible to haemodynamic changes , responses may be variable and to establish uniformity in the study group. Paediatric population was not included in the study since the Levitan optical stylet can be intubated only with endotracheal tubes greater than 6 mm internal diameter ,the diameter of the optical stylet was around 5mm.Majority of the patients were in the age group of 30-45 yrs and they were found to be statistically comparable

#### WEIGHTASAVARIABLE

In our study patients weighing between 50-80 kgs were included .Obese patients were excluded from the study group. In group A ,the mean weight was 52.2 kgs and in group B 53.3 kgs. We found no significant difference statistically with respect to weight .Majority of the patients weighed between 50-60 kgs.

#### **GENDERASAVARIABLE**

In this study both the genders were included as there is no predliction for gender for haemodynamic responses to intubation. Percentage of males included in the study outnumbered the females by 7%

#### PATIENTS EXCLUDED FROM THE STUDY

Hypertensive and cardiovascular patients were excluded from the study population since they might show erratic changes to intubation using a new optical stylet and values obtained would not be comparable with the normotensives and non cardiac patients .Patients with coagulapathy were also omitted from the study since instrumentation with newer optical stylet can precipitate bleeding episodes.No study proved that the use of optical stylet was safe in these patients and it is still debatable.

#### AIRWAYASSESSMENT

1:Mallampatti Classification as a variable

**87** 

In our study we included the patients with mallampatti classification of 1 and 2 .Higher grades of MPC were excluded from the study since we cannot compare the haemodynamic response to intubation between the newer Levitan optical stylet and Macintosh laryngoscope in difficult airway patients.They might show a bizarre response and standardization cannot be done.The percentage of patients in group A with MPC 1 and 2 were 56% and 55% respectively and the percentage of patients in group B with MPC 1 and 2 were 44% and 45%.The two groups were therefore comparable

2: Thyromental distance and interincisor gap

In our study we included patients with thyromental distance >6.5 cm and interincisor gap greater than 4 cms. Values less that that were excluded from the study population. We found that the mean thyromental distance and interincisor gap in group A were 11.48 cm and 4.8 cm .Mean thyromental distance and interincisor gap in group B were 11.61 cm and 5 cm .They were found to be statistically insignificant and both the groups were comparable

#### AMERICAN SOCIETY OF ANAEST HESIOLOGY STATUS AS A VARIABLE

Patients with ASA 1 and 2 were included in the study .Hypertensive ,obese patients were excluded. Patients in ASA 1 outnumbered ASA 2 by 10 percent.

Thus we conclude in our study that with demography and airway assessment as a tool, there was no significant differences in both the groups with respect to age ,sex, mallampatti classification, American society of anesthesiologists, thyromental distance, interincisor gap. They were found to be statistically insignificant

#### INTRAMUSCULAR GYCOPYRROLATE AS A PREMEDICATION:

Patients were given inj.glycopyrrolate10µg/kg I.M half an hour before the procedure, mainly to reduce the secretions and to enhance better viewing with the fiberoptic stylet. This was supported by a study conduced by **Bernstein CA,Water s JH et al**<sup>58</sup> on perioperative glycopyrrolate use .It concluded that there was dramatic decrease in oral and gastric secretions .

#### HEART RATE CHANGES BETWEEN THE TWO GROUPS

Laryngoscopy and endotracheal intubation impose an increase in heart rate but this was insignificant in many patients. We compared the heart rate variations in both the groups at various time intervals after intubation at 0 min, 1 min,3min,5min and 10 min.In group B ,immediately after intubation at 0 min, the mean heart rate raised to 80bpm from the baseline mean heart rate value of 70bpm which was about 25% increase from the base line value , found to be statistically significant.whereas in group A the mean heart rate in post intubation (0min) was 72 bpm which increased only by 4beats from the base line value.the increase was only 5% and this difference was found to be statistically insignificant

## TABLE SHOWING PERCENTAGE OF INCREASE IN HEART RATE FROM THE BASE LINE VALUE

| GROUP | POST.INTU(0MIN) | IMIN | 3MIN | 5MIN | 10MIN |
|-------|-----------------|------|------|------|-------|
| А     | 5.5%            | 5.3% | 4%   | 4%   | 3%    |
| В     | 25%             | 21%  | 17%  | 11%  | 3%    |

### **IN GROUP B**:

The number of patients in post intubation group who had a raise in heart rate from the baseline value to 20-30% was 28 .Two patients had a raise in heart rate above 30%.Ten percent increase in heart rate was encountered in 10 patients .The increase in heart rate in patients were settled down by using volatile anaesthetics increasing the percentage of sevoflurane by 2% and opioid analgesics fentanyl 1 $\mu$ g/kg was given.

#### **IN GROUPA:**

The number of patients who had an increase in heart rate above 20% was 2.Only 15 patients had an increase in heart rate from 10-20% from baseline.the reason for increase in heart rate above 20% was due to difficulty in intubations,two attempts were made to intubate the patient and the time taken for intubation for these two patients was around 80-90 sec. This was in accordance with the study conducted by **Kimura et al** <sup>47</sup>who studied the hemodynamic responses to intubation using stylet scope and macintosh laryngoscope.Baseline heart rate were similar in both the groups,all hemodynamic measurements decreased in both the styletscope and direct laryngoscope increased above the base line and other variable reached the base line .The increase in heart rate was less in group intubated with styletscope.In also the study conducted by **Yao et al** <sup>33</sup> who

compared the haemodynamic changes to inbutaion with Shikani and Macintosh laryngoscope. In which baseline heart rate were the same in both the groups. Heart rate increased immediately after intubation in both the group but significantly to a greater level in group intubated with Shikani optical stylet and heart rate returned to base line at 3 mins after intubation. Many studies were conducted using different airway gadgets and haemodynamic response to intubation were measured during intubation. One such study was conducted by **Tsai et al** <sup>41</sup>who compared the haemodynamic responses to intubation with three airway gadgets such as glidescope, airwayscopes and Mc Intosh Laryngoscopes.60 normotensive patients of ASA 1 and 2 were selected .20 patients were allotted in each group. Haemodynamic values were noted baseline ,after induction, at intubation and at every 5 mins after intubation. A significant rise in heart rate in Glidescope and Mc Intosh group at 1 minute post intubation.

#### SYSTOLIC BLOOD PRESSURE CHANGES BETWEEN TWO GROUPS

We found in our study that systolic blood pressure increased significantly in group B patients compared with group A patients in postintubation period. In group B, the mean systolic blood pressure increased to 140 mmhg in postintubation(0 min) from the baseline value of 118 mm hg. There was a significant rise of 25% from the baseline valve which was statistically significant. SBP remained at 132 mm Hg at 1 min, 127 mm Hg at 3 min and reached the baseline at 10 minutes post intubation, whereas in group A,SBP raised only 7% postintubation from the baseline value which was found to be haemodynamically insignificant

TABLESHOWING PERCENTAGE OF INCREASE IN SYSTOLIC BLOODPRESSURE FROM THE BASELINE

| GROUP | POST     | 1MIN | 3MIN | 5 MIN | 10 MIN |
|-------|----------|------|------|-------|--------|
|       | INTUB(0) |      |      |       |        |
|       | MIN      |      |      |       |        |
| Α     | 6%       | 5%   | 5%   | 3%    | 5%     |
| В     | 25%      | 20%  | 15%  | 11.5% | 4%     |

#### In group B

At 0 min postintubation, eighteen patients in group B had an increase in systolic blood pressure of 20-25%, 5 patients had a rise of only 10-15% and 4 patients encountered a rise of 25% from the baseline. The rise in SBP above 25% was settled down by inj.fentanyl and increasing the concentration of sevoflurane to2%. Only 3 patients had an increase in systolic blood pressure at 5 min and all the other patient's SBP reached the baseline value at around 10 minutes. This could be attributed to cause of increased stimulation of the mechanoreceptors in the larynx and glottis structures.

#### In group A

Only 2 patients had an increase in systolic blood pressure above 10% and with all the other 38 patients ,the rise was only in the range of 5-10% in the postintubation group which was found to be statistically insignificant. This was comparable to the study conducted by **Yao yun tai et al** <sup>33</sup> which concluded that the systolic blood pressure

increased over baseline at 1 min after intubation in patients intubated with laryngoscopy.there was no increase in blood pressure within five min after intubation when compared with the baseline values and also in a study conducted by **Koyama Y et al**<sup>57</sup> which compared the haemodynamic responses to tracheal intubation using airway scope and Macintosh Laryngoscope in normotensive and hypertensive patients and found that the systolic blood pressure was higher while using Macintosh laryngoscopy when compared to Airway scope post intubation.they were found to be statistically significant.

### DIASTOLIC BLOOD PRESSURE CHANGES BETWEEN THE TWO GROUPS

On comparing the diastolic blood pressure changes between the two groups ,patients intubated with Macintoshlaryngoscope showed a significant increase in diastolic blood pressure than the patient intubated with Levitan optical stylet. In group B after intubation, the mean DBP increased to 88 mm Hg from the baseline value of 72 mm of Hg. There was 21% increase in diastolic blood pressure from the baseline value at 0 min after intubation which was statistically significant. At 10 min post intubation, the DBP reached the baseline value.

### TABLE SHOWING PERCENTAGE OF INCREASE IN DIASTOLIC BLOOD PRESSURE FROM THE BASELINE VALUE

| GROUP | POSTINT | 1 MIN | 3 MIN | 5 MIN | 10 MIN |
|-------|---------|-------|-------|-------|--------|
|       | (0MIN)  |       |       |       |        |
| А     | 5.78%   | 5.02% | 4.02% | 3%    | 3%     |
| В     | 21%     | 19%   | 14%   | 9.6%  | 1%     |

### In group B:

AT 0 min post intubation ,the number of patients with 20-30% raise in DBP was 22 which was found to be statistically significant.only seven patients had an increase in DBP of only 5-10% from the base line value .DBP reached the baseline value at 10 min post intubation.

## In group A:

The raise in diastolic blood pressure at post intubation 0 min,1 min,3 min,5 min and 10 min was found to be around 2-5% from the base line value and not haemodynamically significant. This study was comparable to the study conducted by **P Tsai B Chen et al**<sup>41</sup> where he compared the haemodynamic changes to endotracheal intubation with the airwayscope,glidescope and Macintosh laryngoscopes. All intubations were performed by a single anaesthesiologist. After intubation at 0 min DBP increased significantly to 20 % from the baseline vave and settled to 4% at 5 min after intubation. **Yao yun Tai et al**<sup>33</sup> also compared the response to intubation with shikani optical stylet with the conventional laryngoscope. there was significant rise of diastolic pressure about 22% at one min following direct laryngoscopy whereas with shikani optical stylet the rise was only 8%. This was comparable to our study.

## **MEANARTERIAL BLOOD PRESSURE CHANGES**

On comparing the mean arterial pressure changes between the two groups A and B, there was significant increase in MAP in group B compared to group A.In group B,MAP increased to 22% above the baseline and at 1 min too mean MAP was around 90.14 mm Hg.MAP returned to baseline at 10 minutes after intubation.

# TABLE SHOWING PERCENTAGE OF INCREASE IN MEAN ARTERIALBLOOD PRESSURE FROM THE BASELINE

| GROUP | POSTINU(0MIN) | 1 M1N | 3MIN | 5MIN |
|-------|---------------|-------|------|------|
| Α     | 5.4%          | 4%    | 4.5% | 3%   |
| В     | 22%           | 19%   | 15%  | 7%   |

## IN GROUP B

About 26 patients in group B had a raise of 20-30% increase in heart rate from the baseline .1 patients had a MAP of greater than 30% from the base line.this was attributed to the reason that ,intubation was difficult and scopy time was longer which amounts to 40 sec.This study was comparable to **Barak et al**<sup>43</sup> where they compared the haemodynamic and catecholamine responses to intubation between direct laryngoscopy and fiberoptic intubation.The mean arterial blood pressure raised significantly from the MAP of 78(baseline) to 100 post intubation(0min) and it was found to be statistically significant.

We concluded in our study that MAP increase was more in group B than group A in post intubation time at  $0 \min , 1 \min$  and  $3 \min$  respectively.

## **SP02 CHANGES BETWEEN THE TWO GROUPS**

There was no significant changes in saturation levels in both the groups A and B and they were found to be statistically insignificant

## COMPARISON OF TIME TAKEN FOR INTUBATION BETWEEN TWO GROUPS

The mean time taken for intubation of Levitan optical stylet was 55 secs and for Macintosh laryngoscope was 20 secs.

In group A the time taken for intubation ranges between 40 sec to 100 secs. This wide variation occurred since in two patients, intubation could not be carried out with levitan even after three attempts and there was difficulty in intubation and procedure was carried out with conventional Macintosh Laryngoscope Blade .Edward,Irwin et al found intubation time with Levitan optical stylet was 20.1 sec and with bougie in simulated difficult airway patients was 9 secs.this was in contrast to our study where the time for intubation was longer(55 sec). But in the study conducted by Islam. A. Eliwa et al<sup>34</sup> found that intubation time using levitan alone was 81 s.levitan with Macintosh laryngoscopy was 44 s, which was comparable to our study. Aziz and metz<sup>37</sup> et al showed in their study that the mean intubation time with levitan scope when used alone without direct laryngoscopy was 23 s. This was in contrast to our study ,the problem that we encountered was that during intubation, glottis structures could nt be visualized even after 3 attempts in 2 patients so the time spent for intubation was around 90 to 100 sec..so the mean time taken for intubation was affected by this extremes of data. Supplemental oxygen was given during intubation in these three patients since the intubation time was prolonged.

### **COMPARISION OF EASE OF INTUBATION BETWEEN THE TWO GROUPS**

In group A ,36 persons were intubated in first attempt and 2 patients were intubated in second attempt.Intubation was easier in 95 % of patients and difficult in 5 % in group A.2 patients had difficulty in intubation since the glottic structures could nt be visualized on first attempt.On manipulating the larynx externally they were able to intubate in second attempt.In group B, 39 patients were intubated in first attempt and 1 patient was

intubated in second attempt.97.5 % of intubation was easier in group B and 2.5 % were difficult .In group B one patient was intubated in second attempt because of anteriorly placed larynx. They were found to be statistically insignificant as p valve is> 0.05.**Greenland Lui et al** <sup>48</sup> compared Levitan FPS scope and single use bougie for simulated difficult airway.17 patients were enrolled in each group.prescotts test found that there were no significant difference in the rate of successful insertion between the two groups.Levitan group(31 out of 34) and bougie group(29 out of 34).p valve was found to be 0.71.

### **COMPARISON OF SUCCESS RATE BETWEEN TWO GROUPS**

In our study 95 % of patients in group A were successfully intubated with levitan optical stylet and 5 % of the patients could not be intubated, because of the technical difficulty and secretions which hindered the field inspite of Intramuscular glycopyrrolate injections. In group B all the 40 patients were successfully intubated with macintosh laryngoscope.

In accordance with our results, **Islam.A eliwa et al**<sup>34</sup> concluded in their study that success rate with levitan optical stylet when it was used alone was 90 % and 96 % when used along with macintosh.while the success rate with shikani optical stylet when used alone was 86 % and 90 % with the use of direct laryngoscopy.**Turkstra et al** <sup>49</sup> in their study showed about 91.3% success rate with shikani optical stylet.

**Mihai et al**<sup>56</sup> in their meta analytic study of shikani optical stylet found the over all success percentage of 94.9 %. **Aziz and Metz**<sup>37</sup> showed a over all success rate of 99.7 % with levitan optical stylet when it is used with out a laryngoscopy, whereas **Greenland et al**<sup>48</sup> showed 91 % success rate with levitan optical stylet when used with laryngoscopy.

The high success rate of levitan optical stylet because of its easy learning curve and its rigid design and similarity with the ordinary familiar intubating stylet.

### COMPLICATIONS

In our study group A patients had no complications like sorethroat, bleeding and hoarseness of voice and in group B one patient had hoarseness of voice and two other patients had sore throat which resolved spontaneously in 24 hrs.One patient who had hoarseness of voice had undergone adenotonsillectomy via snaring method. This was in accordance with the study conducted by **Yao et al**<sup>33</sup> where there was one case reported to have hoarseness of voice postoperatively in patients intubated with direct laryngoscope. The incidence and complications with the use of Levitan optical stylet was low when compared with Mc Intosh Laryngoscope as described in the study conducted by **Islam A.Eliwa<sup>34</sup>. Aziz and Metz et al**<sup>37</sup> concluded that the modified Levitan optical stylet can be used effectively ,rapid with the incidence of complications of only 1% of the 300 patient studied who suffered only minimal trauma.

# GONGLUSION

## **CHAPTER 8**

## CONCLUSION

The haemodynamic responses to intubation was lesser with newer Levitan optical stylet when compared with the conventional Macintosh Laryngoscope. The stress response associated with the direct Laryngoscopy was overcome by Levitan optical stylet when used alone. But the concerning factor was the time taken for intubation with Levitan optical stylet, was quite longer than direct laryngoscope which was within limits.

.Hence I conclude that this Levitan optical stylet can serve as an ideal airway gadget for attenuating the stress response to intubation with no serious complications.

## SUMMARY

## **CHAPTER 7**

### **SUMMARY**

Endotracheal intubation and laryngoscopy are very essential tools in the hands of anaesthesiologist in maintaining airway. Airway management is the fundamental aspect of anaesthetic practice, emergency and critical care medicine. Endotracheal intubation incur haemodynamic responses like increase in heart rate, systolic blood pressure, diastolic blood pressure and mean arterial pressure. Since the upper airway is highly innervated, airway instrumentation results in significant haemodynamic responses. Anaesthesiologist found a technique of intubation which minimized the stimulation of the upper airway. Levitan optical stylet gained its importance, since its introduction by Dr. Richard Levitan. The shorter length resembles standard stylet making it useful in every laryngoscopy, handling and shaping of the tracheal tube while offering a fibreoptic intubation and immediate visual confirmation of intratracheal placement. The primary objective of this study was to compare the haemodynamic responses to intubation using Levitan optical stylet alone versus intubation using levitan optical stylet along with Macintosh laryngoscope. Secondary outcome measures the ease of intubation, intubation time with two techniques, complications and failure rate. We recruited 80 patients in this prospective study, after obtaining ethical committee approval. These patients were aged between 18-60 yrs belonging to ASA I and ASA II with MPC I and MPC II and thyromental distance >6.5 cm. Hypertensive patients, difficult airway and cardiovascular patients were excluded from the study. They were divided into two groups .Group A –intubation carried with Levitan optical stylet, Group B- intubation carried out with Levitan optical stylet along with Macintosh laryngoscope. These patients were evaluated for the haemodynamic responses at preintubation, postintubation(0min), 1min, 3 min, 5 min and 10 min respectively. The

time taken for intubation ,ease of intubation in both the groups were also noted down. Postoperatively patients were monitored for complications such as sorethroat ,hoarseness of voice and bleeding. These results were tabulated and analysed using SPSS software version 22. The two groups were comparable in terms of age,weight and sex. Other parameters such as ASA,thyromental distance,interincisor gap were also comparable. The stress response associated with endotracheal intubation was more with group B (patients intubated with Macintosh laryngoscope ) than with group A(intubation with Levitan alone) at post intubation 0min, 1min and 3 min as the p valve was 0.00. The mean time taken for intubation in group A (55 seconds) was longer than group B(20 seconds) and the p value was 0.00 and found to be statistically significant. The success rate of intubation in group B was 100% whereas in group A was 95%. The failure rate of intubation was 5% in group A. No serious complications were encountered in both the groups. Hence we concluded that Levitan optical stylet was more superior than conventional Macintosh laryngoscope in the aspect of haemodynamic responses.

## ANNEXURES

## **BIBLIOGRAPHY**

## **BIBLIOGRAPHY**

- Dr.Divitia J.V, Dr.Bhownick k:Complications of endotracheal intubation and other airway management procedures. Indian Journal of Anaesthesia, August 2005;308.
- Millar Forbes A.Dally FG.Acute hypertension during induction of anaesthesia and endotracheal intubation in normotensive man. British Journal of Anaesthesia 1970;42:618-623.
- 3. Bachofen M.Suppression of blood pressure increases during intubation, Lidocaine/fentanyl?.Anaesthetist 1988;37(3);156-61.
- Weatherill Spence Anaesthesia and disorders of adrenal cortex. British journal of Anaesthesia ;1984;56;741-9.
- 5. Nahid Aghdai, Rasoul Azarfariu, Forouzau Yazdamian and Seyede Zalwa Faritus-Cardiovascular responses to orotracheal intubation in patients undergoing CABG.
- 6. Martin MD,Donal E.Marlin, Low dose of fentanyl blunts the circulatory response to tracheal intubation. Anaesth Analg 1982.
- Barak Lui Direct Laryngoscopy compared with fiberoptic intubation for haemodynamic changes. Indian Journal of Anaesthesia 2005 Vol 12 Page 32-35.
- 8. Clinical trial S.Frolich, E O'Sulluvian.M.Carry. Department of Anaesthesia and intensive care, St James Hospital, Dubai.
- Coleman, Lee, Mark Zkauski, Sulian A.Gold, Ramanathan. Functional anatomy of the airway. Benumof and Hagberg's airway management 2013;page 3-20.edition 2
- 10. Jerry A.Dorsch, Susan E.Dorsch. Understanding Anesthesia Equipment. Laryngoscopes-chapter 18, 5<sup>th</sup> edition;521-524.

- Williams, Warwick; Gray's Anatomy. 36th Edn., Edinburgh: Churchill Livingstone, 1984.
- Nandita S.Desai, Kadodia MM,Geeta Agarwal. Cardiovascular changes during diagnostic laryngoscopy under general anaesthesia. Ind J Anaesth 1988;76(5):270-273.
- Shuji Dohi, Toshiaki Nishikawa, Yashito Ujike, Takashisa Mayumi. Circulatory responses to airway stimulation and cervical epidural blockade. Anaesthesiology 1982;57:359.
- 14. Derbyshire DR,Smith G.Sympathoadrenal response to anaesthesia and surgery.Br J Anaesth 1984;56:725-737.
- 15. Pernerstorfer T, Kraffit P, Fitzgerald RD et al.Stress response to tracheal intubation: direct laryngoscopy compared with blind oral intubation. Anaesthesia 1995;50:17-22
- Smith JE, Mackenzie AA, VCE Scott –Knight :Comparison of two method of fiberscope guided tracheal intubation .Br J Anaesth-1991;66:546-50.
- 17. Donald D.Miller, Anaesthesia, 5<sup>th</sup> Edition Vol 1 and 2, Philadelphia; Churchill Livingstone, 2000.
- Robert K.Stoelting. Blood pressure and heart rate changes during short duration laryngoscopy for tracheal intubation; influence of viscous or intravenous lignocaine. Anesth Analg 1978,57:197-199.
- 19. Vincent J.Collins. Principles of anaesthesiology ,general and regional anaesthesia 3 rd edition,vol 1 and 2.
- Carin A, Hagberg.Benumof 's Airway Management, Principles and Practice. 2<sup>nd</sup> edition Mosby Elsevier;2007, chapter 6.
- 21. Arthur C, Guyton, Textbook Of Medical Physiology. 11<sup>th</sup> edition. Elsevier Saunders Company, 2000, 572-598.

- Aaron M, Joffe, Steven A.Deem –Physiological and pathophysiological response to intubation. Benumof and Hagberg's airway management 2013. edition 4,184-198.
- 23. Patel, Chirag Enigneer, Smith Shah, Bhar and quot. Effect of intravenous infusion of dexmedetomidine on perioperative haemodynamic changes and postoperative and quots:Indian Journal of Anaesthesia, Nov-Dec 2012 ;23: 35-56.
- 24. Attenuation of haemodynamic response to laryngoscopy and intubation following nitroglycerine and esmolol infusion. Internet Journal of Anesthesiology Volume 22
- S.K.Singhal and quot.Haemodynamic response to laryngoscopy and intubation: comparison of McCoy and Macintosh Laryngoscope. Internet journal of anaesthesiology.
- 26. Biography of DrRichard Levitan Airway . Cam
- 27. Richard M. Levitan MD\*. Design rationale and intended use of a short optical stylet for routine fiberoptic augmentation of emergency laryngoscopy. Department of Emergency Medicine, Albert Einstein Medical Center, Philadelphia American Journal of Emergency Medicine (2006) 24, 490–495
- Levitan RM, Pisaturo J, Kinkle WC, Butler K, Levin W. The effect of stylet bend angle on tracheal tube passage using a straight-to-cuff stylet shape. Ann Emerg Med 2005;46(3):S5.
- 29. Agro F, Cataldo R, Carassiti M, Costa F. The seeing stylet: a new device for tracheal intubation. Resuscitation 2000;44:177- 80
- 30. Levitan RM. Passing the tracheal tube. Chapter 8 in: the Airway Cam guide to intubation and practical emergency airway

management. Wayne (PA)7 Airway Cam Technologies Inc; 2005. p. 147- 50

- 31. Mohan Chandra mandal. The efficacy of I.V dexamethasone to reduce the incidence of sore throat: A prospective controlled study, Journal of anaesthesia clinical pharmacology 2012;volume28;issue 4
- Eshak Y,Khalid A,Bhatti TH:small dose of popofol attenuates the cardiovascular response to tracheal extubation. Anesthanalg 1998:86-85.
- 33. Yao yun-tai, JIA Nai –guang, Li Cheng-hui, ZHANG Ya-jun,YIN Yi-qing.Comparison of endotracheal intubation with Shikani Optical Stylet using the left molar approach and direct laryngoscopy. Chinese Medical Journal 2008;121(14):1324-1327.
- 34. IslamA.Eliwa, MD, Akmal Abd Eisamad, MD, Khalid Mustafa, MD. Comparison of the efficacy and safety of each of Levitan and Shikani optical stylets either used alone or with direct laryngoscopy for tracheal intubation.Z.U.M.J.Vol.19;N.5;September ;2013.
- 35. Christopher F, Young, M.D., William H, Rosenblatt, M.D.Comparison of the shikani optical stylet to direct laryngoscopy for orotracheal intubation by a first year anesthesiology resident. Anesthesiology 2004;101:A 605.
- 36. Butcher, J; Scholz, A; Evans, A; Hall, J; Wilkes: Comparison of the shikani optical stylet and the bougie in simulated intubation.june2007-volume24:p 201.
- M.Aziz and S.Metz.Clinical evaluation of the Levitan optical stylet.Journal of the association of anaesthesia of Great Britian and Ireland. Volume 66,issue 7. 579-

- 38. D.S.Phua,C.L.Mah,C.F Wang. The shikani optical stylet as an alternative to the Glidescope videolaryngoscope in simulated difficult intubations-A randomized controlled trail. Journal of the association of Anesthesiologist of great Britain and Ireland. Volume 67;Issue 4;2012;402-406.
- King BD, Harris LC, Jr, Greifenstein Fe, Elder JD Jr, Dripps RD. Reflex circulatory responses to direct laryngoscopy and tracheal intubation performed during general anaesthesia. Anesthesiology 1951 Sep;12(5):556-66.
- Stoelting, Robert K.M.D.Blood pressure and heart rate changes during short duration laryngoscopy for tracheal stimulation. Influence of viscous or intravenous lidocaine. Anaesthesia and analgesia.1978,vol57. issue -2
- Tsai, PhilB.Haemodynamic responses to endotracheal intubation. Comparing the airwayscope, Glidescope and Macintosh laryngoscope. Internet Journal Of Anaesthesiology.
- 42. MD Harun or –Rashid, ASM Meftahuzzaman, Manirul Islam, AKM."Comparitive study of Haemodynamic changes between endotracheal intubations and LMA insertions". Journal of BSA,Vol19,No 1 and 2;2006.
- Barak M, Zister A,Greenberg A, Lischinskys, RosenbergB. Haemodynamic and catecholamine response to tracheal intubation; direct laryngoscopy compared with fiberoptic intubation.J Clin Anesth,2003 Mar;15(2):132-136.
- 44. Mehtab A Haidey-Comparison of Haemodynamic response to tracheal intubation with Macintosh and MacCoy laryngoscope by randomized control observational study. Journal Anaesthesiology Clinical Pharmacology.2013apr-June;29(2):196-199.

- 45. Takahshi, Shinji, Taro Mizutani, Masuyuki Miyabe, and Hidenori Toyooka and quot-Haemodynamic responses to tracheal intubation with laryngoscope versus Light wand intubating device in adults with normal airway: and quot; Anesthesia and analgesia,2002.
- 46. Xue Ffs, Zhang, Li XY, sun et al. Comparison of haemodynamic responses to orotracheal intubation with glidescope and macintoshlaryngoscope.Eur J Anaesthesiol 2006:23:522-526.
- 47. Kiumura A.Yamakage M.Chen X,Kamada Y.Use of the fiberoptic styletscope reduces the haemodynamic response to intubation in normotensive and hypertensive patients. Can J Anaesth 2001;48:919-923
- 48. Greenland K, lui G, Yan H, Edward M Irwin M.Comparison of the levitan FPS scope and the single use bougie for simulated difficult intubation in anaesthetized patients. Anaesthesia 2007;62:509-515.
- 49.Turkstra Y, Peiz D, Shaikh A, Craen R.Cervical spine motion .A fluroscpic comparison of Shikani Optical Stylet vs Macintosh laryngoscope. Canadian jornal of anesthesia 2007;54:441-447
- Phua D, Mah C, Wang C. The Shikani optical stylet as an alternative to the glidescope videolaryngoscpe n simulated difficult intubations-a randomized controlled trail. Anaesthesia 2012;67:402-406.
- Gravenstein D, Liem E, Bjorakar D.Alternative management techniques for the difficult airway optical stylet. Current opinion in Anaesthesiology 2004;17:495-498.
- 52. Young C, Vadivelu N.Does the use of a laryngoscope facilitate orotracheal intubation with a shikani optical stylet.Br J Anaesth 2007;99(2):302-303.

- Halligen M, Charters P.Learning curve for the Bonfils intubation fiberscope.Br J Anaesth 2003;90:826A
- 54. Evan A,Morris S, Petterson J, Hail JE.A comparison of the seeing optical stylet and gum elastic bougie in simulated difficult tracheal intubation: a manikin study. Anaesthesia 2006:61:478-481
- 55. Liem EB, Bjoraker DG, Gravenstein D.New Options for airway management: intubating fiberoptic stylets.Br J ANAESTH 2003;91:408-418.
- 56. Mihai R, Blair E, Kay H, Cook T.A quantitative review and metaanalysis of performance of non standard laryngoscopes and rigid fiberoptic intubation aids. Anaesthesia 2008;63:745-760.
- comparison of 57. Y.Koyama haemodynamic responses to trachealintubation using the airwayscope and Macintosh hypertensive Laryngoscope in normotensive and patients: Haemodynamic intubation". response to tracheal Anaesthesia, 10/2011.
- Bernstein, CA;Waters, J.H;Torjman, M.C; Ritter, D.Preoperative glycopyrrolate:Oral, Intramuscular or Intravenous administration. Journal Of clinical Anaesthesia, Volume 8, Number 6, September 1996, pp 515-518(4)

|       |      |              |     |        |     |        |                            |                          |     |     | THYROM | INTER |      |      |      |     |     |     |
|-------|------|--------------|-----|--------|-----|--------|----------------------------|--------------------------|-----|-----|--------|-------|------|------|------|-----|-----|-----|
| GROUP | S.NO | NAME         | AGE | WEIGHT | SEX | IP NO  | DIAGNOSIS                  | PROCEDURE                | ۵۵۵ | мрс | DIS    | GAP   | HRBL | HRPI | HRPT | HR1 | HR3 | HR5 |
| A     | 1    | JAYAKRISHNAN | 27  | 68     | M   | 210129 | R.CSOM WITH CP             | R.CORTICAL MASTOIDECTOMY | 1   | 1   | 10.8   | 4     | 65   | 67   | 69   | 70  | 68  | 66  |
| В     | 2    | YOGARAJ      | 19  | 57     | М   | 245643 | THYROGLOSSAL CYCT          | EXCISION                 | 1   | 2   | 12     | 5     | 68   | 66   | 72   | 70  | 67  | 69  |
| Α     | 3    | JAYALAKSHMI  | 35  | 70     | F   | 54331  | CHRONIC SINUSITIS WITH DNS | SEPTO FESS               | 1   | 2   | 11     | 4.5   | 68   | 69   | 72   | 74  | 73  | 70  |
| А     | 4    | SAIRAM       | 38  | 69     | F   | 22407  | SINONASAL POLYP            | FESS                     | 2   | 1   | 11.2   | 5     | 70   | 72   | 74   | 76  | 73  | 71  |
| В     | 5    | SANGEETHA    | 25  | 52     | F   | 347823 | L.CSOM WITH CP             | L.CORTICAL MASTOIDECTOMY | 2   | 1   | 12     | 5.5   | 60   | 62   | 68   | 68  | 67  | 90  |
| Α     | 6    | THANGAVEL    | 45  | 66     | М   | 19066  | THYROGLOSSAL CYST          | EXCISION                 | 2   | 2   | 12     | 5.5   | 64   | 66   | 69   | 71  | 69  | 65  |
| В     | 7    | TAMILSELVI   | 34  | 54     | F   | 326757 | CHRONIC SINUSITIS          | FESS                     | 1   | 1   | 13     | 5.7   | 64   | 66   | 72   | 72  | 71  | 69  |
| В     | 8    | VINOTH       | 29  | 49     | М   | 215678 | SINONASAL POLYPOSIS        | POLYPECTOMY              | 2   | 1   | 12.4   | 5.5   | 73   | 75   | 81   | 78  | 77  | 75  |
| Α     | 9    | PAMAVATHY    | 37  | 57     | F   | 220775 | L.CSOM WITH CP             | L.CORTICALMASTOIDECTOMY  | 2   | 2   | 11     | 5     | 67   | 68   | 70   | 71  | 68  | 67  |
| В     | 10   | PAVITHRA     | 19  | 51     | F   | 256743 | CHRONIC ADENOTONSILLITIS   | EXCISION AND CURETTAGE   | 1   | 1   | 11     | 5     | 94   | 96   | 105  | 100 | 97  | 95  |
| Α     | 11   | BALAN        | 30  | 59     | Μ   | 212793 | SINONASAL POLYPOSIS        | POLYPECTOMY              | 2   | 1   | 12     | 5.5   | 70   | 72   | 74   | 76  | 73  | 73  |
| В     | 12   | VENKATESAN   | 34  | 66     | Μ   | 342789 | FACIOMAXILLARY TRAUMA      | RECONSTRUCTION SURGERY   | 2   | 2   | 11     | 5     | 68   | 70   | 76   | 78  | 76  | 72  |
| Α     | 13   | SIBAN        | 19  | 55     | Μ   | 146545 | CHRONIC ADENOTONSILITIS    | EXCISION AND CURRETAGE   | 2   | 1   | 11     | 4     | 72   | 74   | 74   | 77  | 74  | 74  |
| Α     | 14   | PRIYA        | 20  | 54     | F   | 153791 | CHRONIC ADENOTONSILLITIS   | EXCISION AND CURRETAGE   | 2   | 2   | 12     | 5     | 66   | 68   | 69   | 72  | 70  | 70  |
| В     | 15   | RAMESH       | 42  | 63     | Μ   | 258493 | L.CSOM WITH CP             | L.CORTICAL MASTOIDECTOMY | 2   | 1   | 12.2   | 4.5   | 70   | 72   | 78   | 78  | 76  | 73  |
| Α     | 16   | KANCHANA     | 27  | 59     | F   | 165966 | L.CSOM WITH CP             | L.CORTICALMASTOIDECTOMY  | 1   | 1   | 11     | 4     | 65   | 67   | 69   | 70  | 67  | 66  |
| В     | 17   | KAMAKSHI     | 19  | 60     | F   | 264933 | R.CSOM WITH CP             | R.CORTICAL MASTOIDECTOMY | 1   | 1   | 12     | 4.8   | 78   | 80   | 85   | 84  | 82  | 81  |
| В     | 18   | RAJA         | 25  | 63     | М   | 298754 | CHRONIC SINUSITIS          | FESS                     | 2   | 1   | 13     | 5     | 66   | 68   | 75   | 74  | 70  | 68  |
| Α     | 19   | JEEVAN       | 34  | 58     | Μ   | 143542 | FACIOMAXILLARY TRAUMA      | RECONSTRUCTIVE SURGERY   | 2   | 1   | 12.5   | 4.4   | 68   | 69   | 71   | 74  | 73  | 70  |
| Α     | 20   | PREM         | 29  | 53     | Μ   | 238920 | R.CSOM                     | R.CORTICAL MASTOIDECTOMY | 1   | 1   | 10     | 4.8   | 66   | 68   | 70   | 71  | 69  | 66  |
| В     | 21   | LOGANATHAN   | 42  | 68     | F   | 272356 | CHRONIC ADENOTONSILLITIS   | EXCISIONAND CURETTAGE    | 1   | 2   | 11     | 5     | 65   | 67   | 72   | 71  | 70  | 68  |
| Α     | 22   | RAHEEMMABEE  | 30  | 64     | F   | 234444 | FUNGAL SINUSITIS           | REVISION FESS            | 1   | 2   | 11     | 5     | 68   | 70   | 70   | 73  | 71  | 70  |
| В     | 23   | KARTHIK      | 33  | 59     | Μ   | 298743 | FUNGAL SINUSITIS           | REVISION FESS            | 2   | 1   | 11     | 4.5   | 69   | 72   | 76   | 74  | 74  | 70  |
| В     | 24   | MARIYAPPAN   | 45  | 53     | Μ   | 432891 | R.CSOM WITH CP             | R.CORTICAL MASTOIDECTOMY | 1   | 2   | 12     | 5     | 64   | 67   | 72   | 70  | 68  | 66  |
| Α     | 25   | MALLIGA      | 27  | 54     | F   | 165966 | L.CSOM WITH CP             | L.CORTICALMASTOIDECTOMY  | 1   | 2   | 11     | 5.2   | 65   | 67   | 69   | 70  | 68  | 66  |
| В     | 26   | YUVARAJ      | 37  | 65     | Μ   | 254329 | CHRONIC SINUSITIS          | FESS                     | 1   | 2   | 12     | 5.5   | 68   | 71   | 78   | 75  | 73  | 70  |
| Α     | 27   | BRITO        | 20  | 52     | Μ   | 232432 | FACIOMAXILLARY TRAUMA      | RECONSTRUCTIVE SURGERY   | 1   | 1   | 12.5   | 5     | 68   | 69   | 69   | 72  | 69  | 69  |
| Α     | 28   | SUNDARI      | 20  | 50     | Μ   | 166076 | L.CSOM WITH CP             | L.CORTICALMASTOIDECTOMY  | 1   | 1   | 11.5   | 4.7   | 72   | 73   | 75   | 77  | 74  | 74  |
| В     | 29   | VENKATESAN   | 56  | 62     | Μ   | 243786 | SINONASAL POLYPOSIS        | POLYPECTOMY              | 2   | 1   | 13     | 5     | 64   | 66   | 72   | 70  | 69  | 67  |
| В     | 30   | RAHUL GANDHI | 20  | 48     | Μ   | 328765 | L.CSOM WITH CP             | L.CORTICAL MASTOIDECTOMY | 1   | 2   | 11     | 5.5   | 74   | 76   | 82   | 80  | 79  | 77  |
| Α     | 31   | GOWRI        | 23  | 54     | F   | 239043 | CHRONIC SINUSITIS WITH DNS | FESS                     | 1   | 2   | 10     | 4.8   | 66   | 68   | 70   | 72  | 69  | 69  |
| Α     | 32   | VIGNESH      | 25  | 57     | М   | 247076 | R.CSOM WITH CP             | MASTOIDECTOMY            | 1   | 1   | 12     | 5     | 67   | 68   | 70   | 72  | 71  | 69  |
| Α     | 33   | VENNILA      | 19  | 46     | F   | 287967 | RECURRENT NEUROFIBROMA     | EXCISION                 | 2   | 2   | 11     | 5.2   | 71   | 73   | 75   | 73  | 72  | 72  |
| В     | 34   | USHA         | 32  | 51     | F   | 211976 | R.CSOM WITH CP             | R.CORTICAL MASTOIDECTOMY | 2   | 1   | 11     | 5     | 68   | 71   | 79   | 79  | 77  | 74  |
| В     | 35   | SHABINA      | 20  | 49     | F   | 290087 | CHRONIC SINUSITIS          | FESS                     | 1   | 2   | 10     | 5.5   | 78   | 80   | 88   | 86  | 82  | 80  |
| Α     | 36   | KADAL KESAN  | 45  | 66     | М   | 223671 | L.CSOM WITH CP             | L.MASTOIDECTOMY          | 1   | 1   | 12.5   | 5.5   | 74   | 75   | 77   | 76  | 75  | 74  |

|       |      |               |     |        |     |         |                            |                          |     |     | THYROM | INTER |      |      |      |     |     |     |
|-------|------|---------------|-----|--------|-----|---------|----------------------------|--------------------------|-----|-----|--------|-------|------|------|------|-----|-----|-----|
| GROUP | S.NO | NAME          | AGE | WEIGHT | SEX | IP NO   | DIAGNOSIS                  | PROCEDURE                | ASA | мрс | DIS    | GAP   | HRBL | HRPI | HRPT | HR1 | HR3 | HR5 |
| В     | 37   | DHANALAKSHMI  | 36  | 54     | F   | 277543  | FACIOMAXILLARY TRAUMA      | RECONSTRUCTION SURGERY   | 2   | 1   | 11     | 4.5   | 67   | 69   | 75   | 74  | 72  | 70  |
| В     | 38   | THIRUMALAI    | 29  | 53     | М   | 266854  | SINONASAL POLYPOSIS        | POLYPECTOMY              | 1   | 2   | 10     | 4     | 76   | 78   | 84   | 84  | 82  | 80  |
| А     | 39   | PARTHIBAN     | 20  | 54     | М   | 207647  | R.CSOM                     | R.CORTICAL MASTOIDECTOMY | 1   | 2   | 11     | 5     | 68   | 69   | 71   | 73  | 70  | 70  |
| А     | 40   | PANNERSELVAM  | 30  | 55     | Μ   | 209765  | FUNGAL SINUSITIS           | REVISION FESS            | 2   | 2   | 12     | 4.5   | 73   | 75   | 77   | 78  | 74  | 73  |
| В     | 41   | SUMITHRA      | 28  | 60     | F   | 944831  | R.ANTROCHOANAL POLYP       | FESS                     | 1   | 2   | 11     | 4.5   | 74   | 76   | 83   | 81  | 78  | 76  |
| В     | 42   | PANDIYAN      | 55  | 56     | М   | 312116  | CHRONIC ADENOTONSILLITIS   | EXCISION AND CURETTAGE   | 2   | 1   | 11     | 4.5   | 63   | 65   | 74   | 73  | 71  | 68  |
| Α     | 43   | ANITHA        | 40  | 64     | F   | 234871  | THYROGLOSSAL CYST          | EXCISION                 | 1   | 2   | 12.6   | 5     | 65   | 66   | 68   | 67  | 67  | 66  |
| Α     | 44   | KRITHIKA      | 28  | 54     | F   | 285432  | CHRONIC ADENOTONSILLITIS   | EXCISION AND CURRETAGE   | 1   | 2   | 11     | 5     | 74   | 76   | 77   | 76  | 76  | 75  |
| А     | 45   | SAKTHIVEL     | 20  | 54     | Μ   | 261387  | L.CSOM WITH CP             | L.CORTICALMASTOIDECTOMY  | 2   | 1   | 12     | 4.6   | 72   | 74   | 74   | 75  | 74  | 73  |
| В     | 46   | ILAYARAJ      | 20  | 53     | Μ   | 285001  | CHRONIS SINUSITIS          | FESS                     | 1   | 1   | 10     | 5     | 75   | 77   | 82   | 79  | 76  | 76  |
| В     | 47   | MADHAN KUMAR  | 24  | 55     | М   | 1484601 | FACIOMAXILLARY TRAUMA      | RECONSTRUCTION SURGERY   | 2   | 1   | 12     | 5.5   | 78   | 80   | 86   | 84  | 82  | 80  |
| Α     | 48   | SELVAMARY     | 36  | 52     | F   | 276323  | FACIOMAXILLARY TRAUMA      | RECONSTRUCTIVE SURGERY   | 2   | 1   | 12     | 5     | 68   | 69   | 72   | 70  | 70  | 69  |
| Α     | 49   | KANNAN        | 38  | 64     | М   | 218743  | SINONASAL POLYPOSIS        | POLYPECTOMY              | 1   | 2   | 12     | 5     | 65   | 67   | 69   | 68  | 66  | 65  |
| В     | 50   | JANAKIRAM     | 27  | 58     | М   | 1435627 | R.CSOM WITH CP             | R.CORTICAL MASTOIDECTOMY | 1   | 2   | 11     | 5     | 68   | 70   | 76   | 78  | 76  | 72  |
| А     | 51   | VALLI         | 42  | 54     | F   | 294321  | R.CSOM WITH CP             | MASTOIDECTOMY            | 2   | 1   | 12     | 5.5   | 67   | 68   | 71   | 73  | 70  | 69  |
| А     | 52   | CHANDRAKALA   | 29  | 53     | F   | 286521  | FUNGAL SINUSITIS           | REVISION FESS            | 1   | 2   | 12.5   | 5     | 76   | 78   | 80   | 78  | 77  | 77  |
| В     | 53   | KANCHANA      | 27  | 65     | F   | 145966  | L.CSOM WITH CP             | L.CORTICAL MASTOIDECTOMY | 2   | 1   | 11     | 4.5   | 70   | 72   | 79   | 78  | 76  | 72  |
| В     | 54   | HARIKA        | 22  | 65     | F   | 214033  | CHRONIC SINUSITIS          | FESS                     | 2   | 1   | 11     | 5     | 75   | 77   | 83   | 80  | 79  | 79  |
| Α     | 55   | RAMU          | 33  | 54     | М   | 273167  | THYROGLOSSAL CYST          | EXCISION                 | 2   | 1   | 11     | 4.5   | 64   | 66   | 68   | 67  | 66  | 65  |
| В     | 56   | SHAKIRA       | 34  | 59     | F   | 166484  | R.CSOM WITH CP             | R.CORTICAL MASTOIDECTOMY | 2   | 1   | 12     | 5     | 66   | 68   | 75   | 73  | 70  | 68  |
| В     | 57   | SWETHA        | 21  | 53     | F   | 194135  | CHRONIC ADENOTONSILLITIS   | EXCISION AND CURETTAGE   | 1   | 2   | 12.7   | 5     | 70   | 73   | 79   | 76  | 74  | 73  |
| Α     | 58   | SARAVANAN     | 27  | 52     | М   | 295248  | R.CSOM WITH CP             | MASTOIDECTOMY            | 2   | 2   | 11     | 4.6   | 68   | 70   | 73   | 71  | 70  | 70  |
| В     | 59   | HARI          | 43  | 68     | М   | 1430787 | CHRONIC TONSILLITIS        | EXCISION AND CURETTAGE   | 1   | 2   | 12     | 5     | 80   | 82   | 89   | 86  | 84  | 83  |
| Α     | 60   | SUDHA         | 36  | 60     | F   | 211964  | CHRONIC ADENOTONSILLITIS   | EXCISION AND CURRETAGE   | 1   | 1   | 10.5   | 4     | 70   | 72   | 74   | 73  | 72  | 71  |
| Α     | 61   | VIVEKANANDHAN | 41  | 65     | М   | 284189  | RECURRENT NEUROFIBROMA     | EXCISION                 | 1   | 2   | 11     | 4.5   | 66   | 68   | 70   | 69  | 67  | 67  |
| В     | 62   | SUGUNA        | 49  | 63     | F   | 289130  | L.CSOM WITH CP             | L.CORTICAL MASTOIDECTOMY | 2   | 1   | 12.8   | 5     | 63   | 65   | 72   | 68  | 67  | 65  |
| Α     | 63   | LOGESHWARI    | 34  | 60     | F   | 285104  | R.CSOM                     | R.CORTICAL MASTOIDECTOMY | 2   | 1   | 11     | 4.8   | 73   | 75   | 77   | 74  | 73  | 72  |
| В     | 64   | SASIKALA      | 29  | 55     | F   | 160660  | CHRONIC ADENOTONSILLITIS   | EXCISION AND CURETTAGE   | 1   | 2   | 12     | 5     | 76   | 78   | 84   | 80  | 77  | 77  |
| В     | 65   | RAJESH        | 78  | 60     | Μ   | 167663  | FACIOMAXILLARY TRAUMA      | RECONSTRUCTION SURGERY   | 2   | 1   | 12     | 4.5   | 77   | 79   | 86   | 83  | 82  | 79  |
| Α     | 66   | RAJA          | 43  | 62     | Μ   | 286106  | CHRONIC SINUSITIS WITH DNS | FESS                     | 1   | 2   | 11     | 5     | 67   | 68   | 71   | 73  | 70  | 70  |
| А     | 67   | RAJAMOORTHY   | 23  | 53     | Μ   | 283932  | FACIOMAXILLARY TRAUMA      | RECONSTRUCTIVE SURGERY   | 1   | 1   | 12     | 5.5   | 71   | 73   | 75   | 73  | 72  | 72  |
| В     | 68   | JAYACHANDRAN  | 25  | 52     | М   | 185254  | CHRONIC SINUSITIS          | FESS                     | 1   | 2   | 11     | 5.5   | 74   | 76   | 83   | 81  | 78  | 76  |
| А     | 69   | KUMARI        | 38  | 66     | F   | 299528  | FUNGAL SINUSITIS           | REVISION FESS            | 2   | 2   | 13     | 5     | 74   | 75   | 78   | 76  | 75  | 74  |
| В     | 70   | SOUNDARAJAN   | 66  | 62     | М   | 227488  | SINONASAL POLYPOSIS        | FESS                     | 1   | 2   | 11     | 5     | 63   | 65   | 72   | 70  | 68  | 67  |
| А     | 71   | MUTHUKUMAR    | 37  | 63     | М   | 211064  | L.CSOM WITH CP             | L.CORTICALMASTOIDECTOMY  | 1   | 1   | 11     | 5     | 76   | 78   | 81   | 79  | 77  | 77  |
| В     | 72   | DESAMMAL      | 35  | 69     | F   | 1437303 | L.CSOM WITH CP             | L.CORTICAL MASTOIDECTOMY | 1   | 2   | 12.6   | 5     | 79   | 81   | 88   | 85  | 83  | 80  |

|       |      |               |     |        |     |         |                          |                          |     |     | THYROM | INTER |      |      |      |     |     |     |
|-------|------|---------------|-----|--------|-----|---------|--------------------------|--------------------------|-----|-----|--------|-------|------|------|------|-----|-----|-----|
| GROUP | S.NO | NAME          | AGE | WEIGHT | SEX | IP NO   | DIAGNOSIS                | PROCEDURE                | ASA | мрс | _      | GAP   | HRBL | HRPI | HRPT | HR1 | HR3 | HR5 |
| В     | 73   | VIJAYAKUMAR   | 29  | 64     | М   | 672361  | CHRONIS SINUSITIS        | FESS                     | 2   | 1   | 13     | 5     | 77   | 79   | 83   | 81  | 70  | 77  |
| А     | 74   | JAYALAKSHMI   | 28  | 63     | F   | 296543  | R.CSOM                   | R.CORTICAL MASTOIDECTOMY | 2   | 2   | 12     | 5.5   | 65   | 67   | 69   | 68  | 66  | 65  |
| А     | 75   | DHANDAPANI    | 41  | 63     | Μ   | 200631  | SINONASAL POLYPOSIS      | POLYPECTOMY              | 1   | 1   | 11     | 4.5   | 75   | 77   | 80   | 77  | 76  | 76  |
| В     | 76   | SELVAM        | 45  | 64     | Μ   | 1436961 | FACIOMAXILLARY TRAUMA    | RECONSTRUCTION SURGERY   | 2   | 1   | 12     | 4.5   | 69   | 71   | 79   | 77  | 75  | 73  |
| А     | 77   | SUBRAMANI     | 33  | 54     | Μ   | 227688  | THYROGLOSSAL CYST        | EXCISION                 | 2   | 2   | 12     | 4.9   | 68   | 69   | 71   | 73  | 70  | 70  |
| В     | 78   | VIJAYALAKSHMI | 21  | 61     | F   | 140980  | CHRONIC ADENOTONSILLITIS | EXCISION AND CURETTAGE   | 1   | 2   | 11     | 4.5   | 82   | 84   | 90   | 87  | 85  | 83  |
| В     | 79   | SUNDARI       | 35  | 59     | F   | 1666076 | L.CSOM WITH CP           | L.CORTICAL MASTOIDECTOMY | 2   | 1   | 11     | 4.5   | 68   | 70   | 78   | 77  | 75  | 70  |
| В     | 80   | AMALA         | 35  | 63     | F   | 362285  | R.CSOM WITH CP           | R.CORTICAL MASTOIDECTOMY | 1   | 2   | 12     | 5.3   | 74   | 76   | 82   | 79  | 77  | 76  |

| GROUP | S.NO | NAME         | HR10 | SBL | SPI | SBPPT | SBP1 | SBP3 | SBP5 | SBP10 | DPBL | DPPI | DPPT | DP1 | DP3 | DP5 | DP10 | MAPBL | ΜΑΡΡΙ | MAPPT | MAP1 |
|-------|------|--------------|------|-----|-----|-------|------|------|------|-------|------|------|------|-----|-----|-----|------|-------|-------|-------|------|
| А     | 1    | JAYAKRISHNAN | 66   | 118 | 120 | 124   | 124  | 122  | 120  | 117   | 70   | 72   | 74   | 75  | 74  | 73  | 70   | 86    | 88    | 91    | 91   |
| В     | 2    | YOGARAJ      | 65   | 130 | 130 | 156   | 150  | 140  | 136  | 136   | 60   | 62   | 88   | 85  | 85  | 78  | 70   | 83    | 85    | 111   | 107  |
| А     | 3    | JAYALAKSHMI  | 68   | 128 | 126 | 128   | 128  | 127  | 126  | 126   | 68   | 70   | 72   | 73  | 72  | 70  | 69   | 88    | 89    | 91    | 91   |
| А     | 4    | SAIRAM       | 70   | 120 | 118 | 122   | 124  | 124  | 122  | 118   | 72   | 74   | 75   | 73  | 73  | 72  | 73   | 88    | 89    | 91    | 90   |
| В     | 5    | SANGEETHA    | 63   | 126 | 128 | 150   | 145  | 140  | 138  | 126   | 72   | 70   | 88   | 86  | 85  | 80  | 74   | 90    | 89    | 109   | 106  |
| А     | 6    | THANGAVEL    | 65   | 126 | 120 | 122   | 123  | 124  | 122  | 122   | 69   | 71   | 73   | 72  | 72  | 70  | 70   | 88    | 87    | 89    | 89   |
| В     | 7    | TAMILSELVI   | 66   | 100 | 102 | 138   | 136  | 132  | 131  | 129   | 70   | 68   | 82   | 80  | 80  | 74  | 70   | 80    | 79    | 101   | 99   |
| В     | 8    | VINOTH       | 74   | 116 | 118 | 140   | 134  | 132  | 130  | 120   | 74   | 72   | 90   | 85  | 85  | 80  | 73   | 88    | 87    | 107   | 101  |
| А     | 9    | PAMAVATHY    | 67   | 104 | 106 | 110   | 112  | 110  | 108  | 108   | 71   | 73   | 75   | 74  | 72  | 72  | 71   | 82    | 84    | 87    | 87   |
| В     | 10   | PAVITHRA     | 95   | 118 | 120 | 132   | 127  | 124  | 120  | 119   | 65   | 67   | 78   | 75  | 75  | 68  | 66   | 83    | 85    | 96    | 92   |
| А     | 11   | BALAN        | 70   | 128 | 126 | 128   | 130  | 130  | 130  | 128   | 78   | 78   | 80   | 79  | 79  | 78  | 78   | 95    | 94    | 96    | 96   |
| В     | 12   | VENKATESAN   | 70   | 114 | 114 | 140   | 130  | 126  | 126  | 114   | 70   | 72   | 89   | 84  | 84  | 80  | 70   | 85    | 86    | 106   | 99   |
| А     | 13   | SIBAN        | 72   | 120 | 118 | 122   | 124  | 124  | 120  | 118   | 80   | 82   | 84   | 84  | 83  | 81  | 80   | 93    | 94    | 97    | 97   |
| А     | 14   | PRIYA        | 67   | 104 | 106 | 109   | 112  | 110  | 108  | 108   | 82   | 84   | 86   | 85  | 84  | 83  | 82   | 89    | 91    | 94    | 94   |
| В     | 15   | RAMESH       | 72   | 108 | 109 | 132   | 132  | 128  | 120  | 109   | 66   | 69   | 84   | 82  | 82  | 76  | 68   | 80    | 82    | 100   | 99   |
| А     | 16   | KANCHANA     | 65   | 126 | 120 | 123   | 122  | 121  | 122  | 120   | 70   | 72   | 74   | 75  | 74  | 73  | 70   | 89    | 88    | 90    | 91   |
| В     | 17   | KAMAKSHI     | 79   | 100 | 102 | 132   | 132  | 129  | 129  | 116   | 75   | 74   | 92   | 88  | 87  | 82  | 72   | 83    | 83    | 105   | 103  |
| В     | 18   | RAJA         | 67   | 120 | 118 | 136   | 132  | 129  | 126  | 125   | 60   | 64   | 88   | 82  | 82  | 78  | 70   | 80    | 82    | 104   | 99   |
| А     | 19   | JEEVAN       | 68   | 110 | 106 | 109   | 110  | 112  | 113  | 114   | 74   | 76   | 78   | 81  | 78  | 76  | 74   | 86    | 86    | 88    | 91   |
| А     | 20   | PREM         | 66   | 112 | 114 | 116   | 117  | 116  | 117  | 112   | 68   | 70   | 72   | 73  | 72  | 70  | 68   | 83    | 85    | 87    | 88   |
| В     | 21   | LOGANATHAN   | 67   | 110 | 110 | 136   | 134  | 132  | 132  | 120   | 72   | 72   | 89   | 85  | 85  | 84  | 80   | 85    | 85    | 105   | 101  |
| А     | 22   | RAHEEMMABEE  | 69   | 128 | 126 | 128   | 130  | 130  | 126  | 126   | 73   | 75   | 77   | 75  | 74  | 74  | 73   | 91    | 92    | 94    | 93   |
| В     | 23   | KARTHIK      | 70   | 102 | 110 | 134   | 131  | 130  | 124  | 120   | 64   | 65   | 90   | 85  | 85  | 82  | 76   | 77    | 80    | 105   | 100  |
| В     | 24   | MARIYAPPAN   | 65   | 116 | 117 | 132   | 126  | 124  | 120  | 118   | 67   | 65   | 82   | 80  | 80  | 70  | 70   | 83    | 82    | 99    | 95   |
| А     | 25   | MALLIGA      | 66   | 120 | 118 | 122   | 118  | 116  | 116  | 116   | 66   | 68   | 70   | 69  | 69  | 67  | 66   | 84    | 85    | 87    | 85   |
| В     | 26   | YUVARAJ      | 69   | 108 | 110 | 132   | 128  | 127  | 126  | 114   | 72   | 74   | 82   | 80  | 80  | 70  | 82   | 84    | 86    | 104   | 99   |
| А     | 27   | BRITO        | 68   | 104 | 106 | 110   | 110  | 108  | 108  | 106   | 72   | 74   | 76   | 75  | 75  | 74  | 72   | 83    | 85    | 87    | 87   |
| Α     | 28   | SUNDARI      | 73   | 124 | 120 | 120   | 116  | 116  | 114  | 114   | 75   | 77   | 78   | 77  | 76  | 75  | 75   | 91    | 91    | 92    | 90   |
| В     | 29   | VENKATESAN   | 65   | 106 | 110 | 137   | 134  | 130  | 125  | 112   | 72   | 74   | 92   | 86  | 85  | 74  | 71   | 83    | 86    | 107   | 102  |
| В     | 30   | RAHUL GANDHI | 75   | 110 | 112 | 134   | 128  | 128  | 120  | 112   | 67   | 65   | 92   | 86  | 85  | 74  | 68   | 81    | 81    | 105   | 99   |
| А     | 31   | GOWRI        | 67   | 124 | 120 | 124   | 124  | 124  | 122  | 122   | 68   | 69   | 71   | 70  | 69  | 68  | 67   | 87    | 86    | 89    | 88   |
| А     | 32   | VIGNESH      | 68   | 110 | 106 | 112   | 110  | 110  | 108  | 108   | 76   | 78   | 80   | 79  | 78  | 78  | 76   | 87    | 87    | 91    | 89   |
| А     | 33   | VENNILA      | 71   | 122 | 118 | 124   | 124  | 124  | 122  | 120   | 69   | 71   | 73   | 72  | 72  | 70  | 70   | 87    | 87    | 90    | 89   |
| В     | 34   | USHA         | 70   | 108 | 110 | 138   | 126  | 124  | 120  | 109   | 71   | 69   | 96   | 90  | 90  | 86  | 80   | 79    | 81    | 89    | 85   |
| В     | 35   | SHABINA      | 79   | 119 | 121 | 129   | 125  | 124  | 120  | 120   | 70   | 68   | 76   | 78  | 78  | 74  | 72   | 86    | 85    | 94    | 94   |
| Α     | 36   | KADAL KESAN  | 74   | 106 | 108 | 112   | 110  | 110  | 108  | 108   | 79   | 81   | 83   | 82  | 81  | 80  | 80   | 88    | 90    | 93    | 91   |

| GROUP | S.NO | NAME          | HR10 | SBL | SPI | SBPPT | SBP1 | SBP3 | SBP5 | SBP10 | DPBL | DPPI | DPPT | DP1 | DP3 | DP5 | DP10 | MAPBL | ΜΑΡΡΙ | МАРРТ | MAP1 |
|-------|------|---------------|------|-----|-----|-------|------|------|------|-------|------|------|------|-----|-----|-----|------|-------|-------|-------|------|
| B     | 37   | DHANALAKSHMI  | 68   | 107 | 109 | 116   | 114  | 112  | 110  | 108   | 69   | 71   | 78   | 77  | 77  | 74  | 74   | 82    | 84    | 91    | 89   |
| B     | 38   | THIRUMALAI    | 77   | 120 | 103 | 128   | 126  | 124  | 122  | 100   | 75   | 78   | 85   | 80  | 80  | 78  | 78   | 90    | 93    | 100   | 95   |
| A     | 39   | PARTHIBAN     | 69   | 126 | 120 | 126   | 124  | 124  | 124  | 122   | 73   | 75   | 76   | 77  | 75  | 74  | 73   | 91    | 90    | 93    | 93   |
| A     | 40   | PANNERSELVAM  | 74   | 120 | 122 | 124   | 124  | 124  | 120  | 120   | 76   | 78   | 80   | 77  | 75  | 75  | 76   | 91    | 93    | 95    | 93   |
| В     | 41   | SUMITHRA      | 75   | 122 | 124 | 130   | 128  | 126  | 124  | 123   | 74   | 78   | 87   | 82  | 82  | 80  | 80   | 90    | 93    | 101   | 97   |
| В     | 42   | PANDIYAN      | 65   | 108 | 110 | 116   | 114  | 112  | 110  | 109   | 72   | 70   | 81   | 78  | 78  | 74  | 70   | 84    | 83    | 93    | 90   |
| А     | 43   | ANITHA        | 65   | 128 | 126 | 128   | 126  | 126  | 126  | 126   | 73   | 75   | 77   | 75  | 74  | 74  | 73   | 91    | 92    | 94    | 92   |
| Α     | 44   | KRITHIKA      | 75   | 108 | 112 | 116   | 114  | 114  | 112  | 112   | 72   | 70   | 74   | 75  | 72  | 71  | 84   | 84    | 88    | 84    | 86   |
| А     | 45   | SAKTHIVEL     | 73   | 127 | 128 | 130   | 130  | 128  | 130  | 130   | 76   | 78   | 82   | 80  | 79  | 77  | 78   | 76    | 93    | 95    | 98   |
| В     | 46   | ILAYARAJ      | 75   | 124 | 126 | 132   | 130  | 128  | 126  | 125   | 84   | 82   | 90   | 89  | 89  | 85  | 87   | 97    | 97    | 104   | 103  |
| В     | 47   | MADHAN KUMAR  | 79   | 129 | 131 | 138   | 134  | 131  | 132  | 130   | 81   | 80   | 88   | 87  | 87  | 82  | 84   | 94    | 97    | 104   | 103  |
| А     | 48   | SELVAMARY     | 68   | 124 | 122 | 124   | 124  | 122  | 122  | 122   | 72   | 74   | 76   | 74  | 73  | 70  | 70   | 72    | 89    | 90    | 92   |
| А     | 49   | KANNAN        | 64   | 126 | 124 | 126   | 128  | 126  | 126  | 124   | 70   | 72   | 74   | 75  | 74  | 73  | 70   | 89    | 89    | 91    | 93   |
| В     | 50   | JANAKIRAM     | 70   | 105 | 107 | 114   | 112  | 108  | 107  | 106   | 68   | 65   | 74   | 70  | 70  | 68  | 69   | 80    | 79    | 87    | 84   |
| А     | 51   | VALLI         | 68   | 106 | 108 | 112   | 110  | 108  | 108  | 106   | 68   | 70   | 72   | 68  | 72  | 71  | 69   | 81    | 83    | 85    | 82   |
| А     | 52   | CHANDRAKALA   | 76   | 118 | 120 | 116   | 114  | 114  | 112  | 114   | 74   | 76   | 79   | 77  | 76  | 75  | 75   | 89    | 91    | 91    | 89   |
| В     | 53   | KANCHANA      | 70   | 120 | 123 | 129   | 127  | 125  | 124  | 123   | 78   | 76   | 85   | 80  | 80  | 77  | 79   | 92    | 92    | 100   | 95   |
| В     | 54   | HARIKA        | 76   | 123 | 125 | 131   | 129  | 127  | 125  | 124   | 83   | 80   | 86   | 82  | 82  | 81  | 82   | 96    | 95    | 101   | 98   |
| Α     | 55   | RAMU          | 64   | 112 | 116 | 118   | 114  | 114  | 112  | 112   | 66   | 68   | 70   | 71  | 69  | 68  | 67   | 81    | 84    | 86    | 85   |
| В     | 56   | SHAKIRA       | 67   | 117 | 119 | 125   | 124  | 118  | 116  | 117   | 67   | 70   | 78   | 72  | 72  | 70  | 70   | 84    | 86    | 94    | 89   |
| В     | 57   | SWETHA        | 72   | 118 | 120 | 128   | 124  | 120  | 119  | 119   | 69   | 67   | 78   | 73  | 73  | 75  | 72   | 85    | 85    | 95    | 90   |
| Α     | 58   | SARAVANAN     | 69   | 106 | 108 | 110   | 106  | 106  | 104  | 104   | 69   | 70   | 73   | 71  | 70  | 72  | 70   | 81    | 83    | 85    | 83   |
| В     | 59   | HARI          | 81   | 104 | 106 | 112   | 110  | 108  | 106  | 105   | 70   | 72   | 79   | 75  | 75  | 72  | 71   | 81    | 83    | 90    | 87   |
| Α     | 60   | SUDHA         | 71   | 120 | 118 | 122   | 120  | 118  | 118  | 116   | 66   | 68   | 70   | 69  | 69  | 67  | 66   | 84    | 85    | 87    | 86   |
| Α     | 61   | VIVEKANANDHAN | 66   | 120 | 122 | 124   | 122  | 122  | 120  | 118   | 68   | 70   | 72   | 69  | 67  | 66  | 67   | 85    | 87    | 89    | 87   |
| В     | 62   | SUGUNA        | 64   | 112 | 114 | 120   | 118  | 116  | 115  | 114   | 65   | 68   | 76   | 75  | 75  | 74  | 70   | 81    | 83    | 91    | 89   |
| Α     | 63   | LOGESHWARI    | 72   | 108 | 110 | 112   | 114  | 110  | 108  | 108   | 64   | 66   | 69   | 68  | 67  | 66  | 65   | 79    | 81    | 83    | 83   |
| В     | 64   | SASIKALA      | 76   | 108 | 110 | 116   | 114  | 112  | 110  | 109   | 68   | 70   | 82   | 75  | 75  | 72  | 74   | 81    | 83    | 93    | 88   |
| В     | 65   | RAJESH        | 78   | 122 | 124 | 130   | 128  | 126  | 124  | 122   | 84   | 82   | 90   | 83  | 83  | 85  | 82   | 97    | 96    | 103   | 98   |
| Α     | 66   | RAJA          | 69   | 128 | 126 | 128   | 128  | 126  | 126  | 126   | 82   | 80   | 85   | 84  | 81  | 80  | 80   | 97    | 95    | 99    | 99   |
| Α     | 67   | RAJAMOORTHY   | 71   | 118 | 116 | 118   | 118  | 117  | 117  | 116   | 80   | 78   | 76   | 78  | 76  | 75  | 77   | 93    | 91    | 90    | 91   |
| В     | 68   | JAYACHANDRAN  | 75   | 110 | 112 | 119   | 117  | 116  | 114  | 112   | 64   | 66   | 72   | 68  | 68  | 68  | 65   | 79    | 81    | 88    | 84   |
| Α     | 69   | KUMARI        | 73   | 106 | 108 | 110   | 112  | 110  | 108  | 106   | 72   | 70   | 74   | 75  | 72  | 70  | 70   | 83    | 83    | 86    | 87   |
| В     | 70   | SOUNDARAJAN   | 64   | 109 | 111 | 119   | 118  | 116  | 112  | 110   | 66   | 68   | 76   | 72  | 72  | 72  | 70   | 80    | 82    | 90    | 87   |
| А     | 71   | MUTHUKUMAR    | 76   | 132 | 130 | 132   | 134  | 130  | 128  | 126   | 82   | 80   | 82   | 80  | 81  | 80  | 80   | 99    | 97    | 99    | 98   |
| В     | 72   | DESAMMAL      | 79   | 122 | 124 | 133   | 132  | 128  | 126  | 123   | 76   | 74   | 82   | 75  | 75  | 72  | 73   | 91    | 91    | 99    | 94   |

| GROUP | S.NO | NAME          | HR10 | SBL | SPI | SBPPT | SBP1 | SBP3 | SBP5 | SBP10 | DPBL | DPPI | DPPT | DP1 | DP3 | DP5 | DP10 | MAPBL | ΜΑΡΡΙ | MAPPT | MAP1 |
|-------|------|---------------|------|-----|-----|-------|------|------|------|-------|------|------|------|-----|-----|-----|------|-------|-------|-------|------|
| В     | 73   | VIJAYAKUMAR   | 78   | 121 | 123 | 129   | 127  | 126  | 125  | 122   | 73   | 75   | 84   | 76  | 76  | 72  | 73   | 89    | 91    | 99    | 93   |
| А     | 74   | JAYALAKSHMI   | 64   | 112 | 110 | 115   | 113  | 108  | 108  | 106   | 66   | 68   | 71   | 73  | 70  | 68  | 67   | 81    | 82    | 86    | 86   |
| А     | 75   | DHANDAPANI    | 75   | 122 | 118 | 120   | 122  | 122  | 118  | 116   | 69   | 71   | 73   | 72  | 72  | 70  | 70   | 87    | 87    | 89    | 89   |
| В     | 76   | SELVAM        | 70   | 109 | 111 | 119   | 118  | 116  | 114  | 110   | 68   | 66   | 74   | 69  | 69  | 72  | 70   | 82    | 81    | 89    | 85   |
| А     | 77   | SUBRAMANI     | 69   | 126 | 128 | 130   | 130  | 128  | 126  | 124   | 76   | 78   | 82   | 80  | 79  | 77  | 78   | 93    | 95    | 98    | 97   |
| В     | 78   | VIJAYALAKSHMI | 83   | 123 | 125 | 130   | 129  | 128  | 126  | 122   | 78   | 75   | 83   | 78  | 78  | 77  | 75   | 93    | 92    | 97    | 95   |
| В     | 79   | SUNDARI       | 69   | 119 | 121 | 130   | 128  | 127  | 124  | 122   | 70   | 72   | 79   | 72  | 72  | 69  | 67   | 86    | 88    | 96    | 91   |
| В     | 80   | AMALA         | 75   | 130 | 132 | 136   | 134  | 132  | 132  | 130   | 82   | 84   | 89   | 85  | 85  | 84  | 82   | 98    | 100   | 105   | 101  |

|       |      |              |      |      |       |      |      |      |     |     |     |      | TIME TAKEN |            |         |      |        |       |      |
|-------|------|--------------|------|------|-------|------|------|------|-----|-----|-----|------|------------|------------|---------|------|--------|-------|------|
|       |      |              |      |      |       |      |      |      |     |     |     |      | FOR        | EASE OF    | FAILURE | POST | POST   | POSTS | POST |
| GROUP | S.NO | NAME         | MAP3 | MAP5 | MAP10 | SOBL | SOPI | SOPT | SO1 | S03 | S05 | SO10 | INTUBATION | INTUBATION | RATE    | HR   | BP     | P02   | HR 6 |
| Α     | 1    | JAYAKRISHNAN | 90   | 89   | 86    | 99   | 99   | 100  | 99  | 99  | 100 | 99   | 45         | EASY       | NO      | 66   | 120/72 | 100   | 65   |
| В     | 2    | YOGARAJ      | 103  | 97   | 82    | 99   | 99   | 100  | 100 | 99  | 99  | 99   | 19         | EASY       | NO      | 68   | 130/80 | 100   | 66   |
| Α     | 3    | JAYALAKSHMI  | 91   | 90   | 88    | 99   | 99   | 100  | 100 | 99  | 99  | 99   | 48         | EASY       | NO      | 62   | 120/70 | 99    | 64   |
| Α     | 4    | SAIRAM       | 90   | 89   | 88    | 99   | 99   | 99   | 99  | 100 | 100 | 99   | 52         | EASY       | NO      | 70   | 128/76 | 100   | 72   |
| В     | 5    | SANGEETHA    | 103  | 99   | 91    | 99   | 99   | 100  | 100 | 100 | 99  | 99   | 15         | EASY       | NO      | 64   | 120/68 | 99    | 66   |
| Α     | 6    | THANGAVEL    | 89   | 88   | 87    | 98   | 99   | 99   | 100 | 99  | 99  | 99   | 54         | EASY       | NO      | 65   | 120/80 | 100   | 67   |
| В     | 7    | TAMILSELVI   | 97   | 93   | 90    | 99   | 99   | 100  | 100 | 99  | 99  | 99   | 21         | EASY       | NO      | 63   | 118/76 | 100   | 65   |
| В     | 8    | VINOTH       | 101  | 97   | 89    | 99   | 100  | 100  | 100 | 100 | 99  | 99   | 21         | EASY       | NO      | 74   | 130/80 | 99    | 76   |
| Α     | 9    | PAMAVATHY    | 85   | 84   | 83    | 99   | 100  | 100  | 99  | 99  | 100 | 100  | 56         | EASY       | NO      | 72   | 128/76 | 100   | 74   |
| В     | 10   | PAVITHRA     | 91   | 85   | 84    | 99   | 99   | 99   | 100 | 100 | 99  | 99   | 20         | EASY       | NO      | 94   | 110/84 | 99    | 97   |
| Α     | 11   | BALAN        | 96   | 95   | 95    | 100  | 99   | 99   | 99  | 99  | 100 | 99   | 59         | EASY       | NO      | 76   | 110/68 | 100   | 78   |
| В     | 12   | VENKATESAN   | 98   | 95   | 85    | 99   | 100  | 100  | 99  | 100 | 99  | 99   | 18         | EASY       | NO      | 69   | 120/76 | 100   | 72   |
| Α     | 13   | SIBAN        | 97   | 81   | 93    | 100  | 100  | 99   | 99  | 100 | 99  | 99   | 61         | EASY       | NO      | 71   | 128/78 | 99    | 73   |
| Α     | 14   | PRIYA        | 93   | 91   | 91    | 99   | 99   | 100  | 99  | 100 | 99  | 99   | 59         | EASY       | NO      | 66   | 108/70 | 100   | 68   |
| В     | 15   | RAMESH       | 97   | 91   | 82    | 99   | 99   | 100  | 100 | 100 | 99  | 99   | 12         | EASY       | NO      | 70   | 110/76 | 99    | 73   |
| А     | 16   | KANCHANA     | 90   | 89   | 90    | 99   | 98   | 99   | 100 | 100 | 99  | 99   | 51         | EASY       | NO      | 65   | 120/80 | 100   | 67   |
| В     | 17   | KAMAKSHI     | 101  | 98   | 87    | 100  | 99   | 100  | 99  | 100 | 99  | 99   | 14         | EASY       | NO      | 78   | 134/82 | 99    | 79   |
| В     | 18   | RAJA         | 98   | 94   | 88    | 99   | 99   | 99   | 100 | 100 | 99  | 99   | 15         | EASY       | NO      | 66   | 120/72 | 100   | 65   |
| Α     | 19   | JEEVAN       | 89   | 88   | 86    | 99   | 100  | 100  | 99  | 100 | 99  | 99   | 55         | EASY       | NO      | 68   | 118/80 | 99    | 69   |
| Α     | 20   | PREM         | 87   | 86   | 82    | 100  | 99   | 99   | 100 | 99  | 99  | 100  | 45         | EASY       | NO      | 66   | 112/70 | 99    | 68   |
| В     | 21   | LOGANATHAN   | 101  | 100  | 93    | 100  | 99   | 100  | 99  | 100 | 99  | 99   | 22         | EASY       | NO      | 65   | 120/80 | 100   | 67   |
| Α     | 22   | RAHEEMMABEE  | 93   | 91   | 91    | 99   | 100  | 100  | 99  | 100 | 99  | 99   | 53         | EASY       | NO      | 68   | 130/80 | 100   | 66   |
| В     | 23   | KARTHIK      | 100  | 96   | 91    | 99   | 99   | 100  | 100 | 99  | 99  | 99   | 21         | EASY       | NO      | 69   | 120/76 | 100   | 72   |
| В     | 24   | MARIYAPPAN   | 95   | 87   | 86    | 99   | 99   | 100  | 100 | 100 | 99  | 99   | 19         | EASY       | NO      | 64   | 120/68 | 99    | 66   |
| Α     | 25   | MALLIGA      | 85   | 83   | 83    | 100  | 99   | 99   | 99  | 100 | 99  | 99   | 53         | EASY       | NO      | 65   | 120/80 | 100   | 67   |
| В     | 26   | YUVARAJ      | 98   | 97   | 93    | 99   | 100  | 100  | 99  | 100 | 99  | 99   | 20         | EASY       | NO      | 68   | 130/80 | 100   | 66   |
| Α     | 27   | BRITO        | 86   | 85   | 84    | 99   | 100  | 100  | 99  | 100 | 99  | 99   | 62         | EASY       | NO      | 68   | 118/80 | 99    | 69   |
| Α     | 28   | SUNDARI      | 89   | 88   | 93    | 99   | 98   | 99   | 100 | 99  | 99  | 99   | 54         | EASY       | NO      | 72   | 128/76 | 100   | 74   |
| В     | 29   | VENKATESAN   | 100  | 91   | 85    | 100  | 99   | 99   | 100 | 100 | 99  | 99   | 16         | EASY       | NO      | 64   | 120/68 | 99    | 66   |
| В     | 30   | RAHUL GANDHI | 99   | 91   | 83    | 99   | 99   | 98   | 100 | 100 | 99  | 99   | 14         | EASY       | NO      | 74   | 118/78 | 100   | 76   |
| Α     | 31   | GOWRI        | 87   | 86   | 88    | 100  | 100  | 99   | 100 | 99  | 99  | 99   | 51         | EASY       | NO      | 66   | 120/72 | 100   | 65   |
| А     | 32   | VIGNESH      | 89   | 88   | 86    | 99   | 100  | 100  | 99  | 99  | 99  | 99   | 53         | EASY       | NO      | 67   | 118/80 | 99    | 69   |
| А     | 33   | VENNILA      | 89   | 87   | 87    | 100  | 99   | 100  | 99  | 99  | 99  | 100  | 59         | EASY       | NO      | 71   | 128/78 | 99    | 73   |
| В     | 34   | USHA         | 83   | 81   | 78    | 100  | 99   | 100  | 99  | 100 | 99  | 99   | 20         | EASY       | NO      | 68   | 118/80 | 99    | 69   |
| В     | 35   | SHABINA      | 93   | 89   | 88    | 99   | 100  | 100  | 100 | 100 | 99  | 99   | 15         | EASY       | NO      | 78   | 129/78 | 100   | 79   |
| Α     | 36   | KADAL KESAN  | 91   | 89   | 89    | 100  | 99   | 99   | 100 | 100 | 99  | 99   | 56         | EASY       | NO      | 74   | 118/78 | 100   | 76   |

|        |          |                          |           |          |           |           |                   |            |            |            |           |           | TIME TAKEN |            |          |          |                  |            |          |
|--------|----------|--------------------------|-----------|----------|-----------|-----------|-------------------|------------|------------|------------|-----------|-----------|------------|------------|----------|----------|------------------|------------|----------|
|        |          |                          |           |          |           |           |                   |            |            |            |           |           | FOR        | EASE OF    | FAILURE  | POST     | POST             | POSTS      | POST     |
| GROUP  | S.NO     | NAME                     | MAP3      | MAP5     | MAP10     | SOBL      | <b>SOPI</b><br>99 | SOPT       | SO1        | S03        | S05       | SO10      | INTUBATION | INTUBATION | RATE     | HR       | BP               | P02        | HR 6     |
| B      | 37       | DHANALAKSHMI             | 89        | 86       | 85        | 99        | 55                | 100        | 100        | 100        | 99        | 99        | 24         | EASY       | NO       | 67       | 118/80           | 99         | 69       |
| B      | 38       | THIRUMALAI               | 95        | 93       | 92        | 99        | 100               | 99         | 100        | 99         | 99        | 99        | 25         | EASY       | NO       | 76       | 110/68           | 100        | 78       |
| A      | 39       | PARTHIBAN                | 91        | 91       | 89        | 99        | 100               | 100        | 99         | 99         | 100       | 100       | 69         | EASY       | NO       | 68       | 118/80           | 99         | 69       |
| A<br>B | 40<br>41 | PANNERSELVAM<br>SUMITHRA | 91<br>97  | 90<br>95 | 91<br>94  | 99<br>100 | 100<br>99         | 100<br>100 | 99<br>100  | 100<br>100 | 99<br>99  | 100<br>99 | 49<br>20   | EASY       | NO<br>NO | 73<br>74 | 130/80<br>118/78 | 100<br>100 | 75<br>76 |
|        | . –      |                          | 97<br>89  | 95<br>86 | 94<br>83  | 99        | 99<br>100         | 100        | 99         | 100        | 99<br>99  | 99<br>99  | 20         | EASY       | _        |          | 118/78           | 100        | 65       |
| B      | 42<br>43 | PANDIYAN<br>ANITHA       | 89<br>91  | 91       | 83<br>91  | 99<br>99  | 100               | 99         | 100        | 99         | 99<br>100 | 99<br>99  | 57         | EASY       | NO<br>NO | 63<br>65 | 118/76           | 100        | 67       |
| A      | -        |                          | 91<br>84  | 86       | -         | 99        | 100               | 99<br>100  | 99         | 99         | 99        |           | -          | -          | _        | 74       | -,               |            | 76       |
| A      | 44       | KRITHIKA                 | 84<br>97  |          | 85        |           |                   |            |            |            |           | 100       | 50<br>55   | EASY       | NO       |          | 118/78           | 100        | -        |
| A      | 45       | SAKTHIVEL                |           | 95       | 95        | 100       | 100               | 99         | 100        | 99         | 99        | 100       |            | EASY       | NO       | 72       | 128/76           | 100        | 74       |
| B      | 46       | ILAYARAJ                 | 102       | 99<br>99 | 100<br>99 | 99<br>99  | 99<br>98          | 100<br>99  | 100<br>100 | 100        | 99        | 99<br>99  | 21<br>23   | EASY       | NO       | 73<br>78 | 130/80           | 100        | 75<br>79 |
| A      | 47<br>48 | MADHAN KUMAR             | 102<br>91 | 99<br>91 | 99<br>88  | 99        | 98<br>99          |            |            | 100<br>99  | 99<br>99  | 99        | 23<br>51   | EASY       | NO<br>NO | 78<br>68 | 129/78           | 100<br>99  | 79<br>69 |
|        | 48<br>49 | SELVAMARY<br>KANNAN      | 91<br>91  | 91<br>91 | 88        | 99<br>99  | 99                | 100<br>100 | 100<br>100 | 99         | 99<br>99  | 99<br>99  | 51         | EASY       | NO       |          | 118/80<br>120/80 | 100        | 69       |
| A<br>B | -        |                          | -         | -        |           |           | 99                |            |            |            |           |           | -          |            | _        | 65       | - ,              |            | 69       |
| _      | 50       | JANAKIRAM                | 83        | 81       | 81        | 99        |                   | 100        | 100        | 100        | 99        | 99        | 22         | EASY       | NO       | 67       | 118/80           | 99         |          |
| A      | 51       | VALLI                    | 84        | 83       | 81        | 99        | 100               | 100        | 99         | 100        | 100       | 100       | 50         | EASY       | NO       | 68       | 110/70           | 100        | 70       |
| A<br>B | 52<br>53 | CHANDRAKALA<br>KANCHANA  | 89<br>95  | 87<br>93 | 75<br>93  | 100<br>99 | 99<br>100         | 99<br>98   | 100<br>100 | 100<br>100 | 99<br>99  | 99<br>99  | 49<br>19   | EASY       | NO<br>NO | 76<br>70 | 110/68<br>110/76 | 100<br>99  | 78<br>73 |
| B      | 55<br>54 | HARIKA                   | 95<br>97  | 95       | 95        | 100       | 99                | 100        | 99         | 100        | 99<br>99  | 99<br>99  | 19         | EASY       | NO       | 70       | 130/80           | 99         | 75       |
| A      | 55       | RAMU                     | 97<br>84  | 83       | 82        | 99        | 99                | 100        | 99<br>99   | 99         | 100       | 100       | 58         | EASY       | NO       | 65       | 120/80           | 100        | 67       |
| B      | 55       | SHAKIRA                  | 84<br>87  | 85       | 82        | 99        | 99<br>100         | 98         | 100        | 99<br>100  | 99        | 99        | 58<br>15   | EASY       | NO       | 65       | 120/80           | 100        | 68       |
| B      | 50       | SWETHA                   | 89        | 90       | 88        | 100       | 99                | 100        | 100        | 100        | 99        | 99        | 15         | EASY       | NO       | 72       | 108/70           | 100        | 74       |
| A      | 57       | SWETHA                   | 89        | 90<br>83 | 88<br>81  | 100       | 99<br>100         | 99         | 99         | 100        | 99<br>100 | 99<br>100 | 54         | EASY       | NO       | 68       | 128/76           | 100        | 74       |
| B      | 59       | HARI                     | 86        | 83       | 82        | 99        | 100               | 99         | 100        | 100        | 99        | 99        | 92         | DIFFICULT  | NO       | 80       | 110/70           | 99         | 82       |
| A      | 59<br>60 | SUDHA                    | 85        | 84       | 83        | 99        | 99                | 99         | 100        | 100        | 100       | 100       | 52         | EASY       | NO       | 71       | 128/78           | 99         | 73       |
| A      | 61       | VIVEKANANDHAN            | 85        | 84       | 84        | 100       | 100               | 100        | 99         | 100        | 99        | 100       | 52         | EASY       | NO       | 67       | 128/78           | 99         | 69       |
| B      | 62       | SUGUNA                   | 89<br>89  | 88       | 85        | 99        | 99                | 100        | 100        | 100        | 99<br>99  | 99        | 17         | EASY       | NO       | 63       | 118/80           | 100        | 65       |
| A      | 63       | LOGESHWARI               | 89<br>81  | 80       | 79        | 100       | 99                | 99         | 99         | 100        | 100       | 99<br>99  | 58         | EASY       | NO       | 72       | 118/76           | 100        | 74       |
| B      | 64       | SASIKALA                 | 87        | 85       | 86        | 100       | 99                | 100        | 100        | 100        | 99        | 99<br>99  | 18         | EASY       | NO       | 72       | 128/78           | 100        | 74       |
| B      | 65       | RAJESH                   | 97        | 98       | 95        | 99        | 99<br>99          | 99         | 100        | 100        | 99        | 99        | 18         | EASY       | NO       | 70       | 122/78           | 99         | 78       |
| A      | 66       | RAJESH                   | 97        | 98       | 95        | 99        | 99<br>99          | 100        | 99         | 99         | 99        | 100       | 14         | DIFFICULT  | YES      | 68       | 122/78           | 100        | 79       |
| A      | 67       | RAJAMOORTHY              | 96<br>90  | 95<br>89 | 95        | 99<br>99  | 99<br>100         | 100        | 99<br>99   | 99<br>100  | 99<br>100 | 100       | 57         | EASY       | NO       | 70       | 110/70           | 99         | 70       |
| B      | 68       | JAYACHANDRAN             | 90<br>84  | 89       | 90<br>81  | 100       | 99                | 100        | 99<br>100  | 100        | 99        | 99        | 15         | EASY       | NO       | 70       | 110/76           | 99<br>100  | 73       |
| A      | 69       | KUMARI                   | 85        | 83       | 82        | 100       | 100               | 100        | 99         | 100        | 99<br>99  | 99<br>99  | 97         | DIFFICULT  | YES      | 74       | 110/70           | 9          | 76       |
| B      | 70       | SOUNDARAJAN              | 87        | 85       | 83        | 99        | 100               | 99         | 100        | 100        | 99        | 99        | 97<br>13   | EASY       | NO       | 63       | 110/70           | 100        | 65       |
| A      | 70       | MUTHUKUMAR               | 97        | 96       | 95        | 99<br>99  | 99                | 100        | 99         | 100        | 100       | 100       | 55         | EASY       | NO       | 76       | 130/78           | 99         | 77       |
| B      | 71       | DESAMMAL                 | 93        | 90       | 90        | 100       | 99<br>99          | 100        | 100        | 100        | 99        | 99        | 10         | EASY       | NO       | 80       | 110/68           | 99         | 82       |
| D      | 12       | DESAIVIIVIAL             | 73        | 50       | 50        | 100       | 33                | 100        | 100        | 100        | 33        | 33        | 10         | EAST       | NU       | 80       | 110/08           | 22         | 02       |

|       |      |               |      |      |       |      |      |      |     |     |     |      | TIME TAKEN |            |         |      |        |       |      |
|-------|------|---------------|------|------|-------|------|------|------|-----|-----|-----|------|------------|------------|---------|------|--------|-------|------|
|       |      |               |      |      |       |      |      |      |     |     |     |      | FOR        | EASE OF    | FAILURE | POST | POST   | POSTS | POST |
| GROUP | S.NO | NAME          | MAP3 | MAP5 | MAP10 | SOBL | SOPI | SOPT | SO1 | S03 | S05 | SO10 | INTUBATION | INTUBATION | RATE    | HR   | BP     | P02   | HR 6 |
| В     | 73   | VIJAYAKUMAR   | 93   | 90   | 88    | 100  | 99   | 100  | 100 | 100 | 99  | 99   | 12         | EASY       | NO      | 77   | 122/78 | 99    | 79   |
| А     | 74   | JAYALAKSHMI   | 83   | 81   | 80    | 99   | 99   | 99   | 100 | 100 | 99  | 99   | 54         | EASY       | NO      | 65   | 120/80 | 100   | 67   |
| А     | 75   | DHANDAPANI    | 89   | 86   | 85    | 100  | 99   | 99   | 100 | 100 | 99  | 100  | 50         | EASY       | NO      | 75   | 120/70 | 99    | 77   |
| В     | 76   | SELVAM        | 85   | 86   | 83    | 99   | 100  | 99   | 100 | 100 | 99  | 99   | 14         | EASY       | NO      | 69   | 110/70 | 100   | 70   |
| А     | 77   | SUBRAMANI     | 95   | 93   | 93    | 100  | 99   | 100  | 100 | 99  | 99  | 100  | 56         | EASY       | NO      | 68   | 128/70 | 99    | 69   |
| В     | 78   | VIJAYALAKSHMI | 95   | 93   | 91    | 99   | 99   | 99   | 100 | 100 | 99  | 99   | 23         | EASY       | NO      | 80   | 110/68 | 99    | 82   |
| В     | 79   | SUNDARI       | 90   | 87   | 85    | 100  | 99   | 100  | 100 | 100 | 99  | 99   | 20         | EASY       | NO      | 68   | 110/70 | 100   | 70   |
| В     | 80   | AMALA         | 101  | 100  | 98    | 99   | 99   | 100  | 100 | 99  | 99  | 99   | 23         | EASY       | NO      | 74   | 132/78 | 99    | 76   |

|       |      |              | POST   | POST  | POST  | POST   | POST    | POST  | POST   | DOCT            | POST  | POST   | POST    |
|-------|------|--------------|--------|-------|-------|--------|---------|-------|--------|-----------------|-------|--------|---------|
| GROUP | S.NO | NAME         | BP 6   | SPO26 | HR 12 | BP 12  | SPO2 12 | HR 18 | BP 18  | POST<br>SPO2 18 | HR 24 | BP 24  | SPO2 24 |
| A     | 1    | JAYAKRISHNAN | 110/80 | 99    | 63    | 110/70 | 99      | 64    | 120/70 | 99              | 64    | 110/70 | 99      |
| В     | 2    | YOGARAJ      | 128/76 | 99    | 67    | 130/70 | 99      | 65    | 130/78 | 99              | 65    | 130/70 | 99      |
| А     | 3    | JAYALAKSHMI  | 126/76 | 100   | 67    | 120/70 | 99      | 68    | 120/78 | 99              | 69    | 120/76 | 99      |
| А     | 4    | SAIRAM       | 130/80 | 100   | 68    | 128/76 | 99      | 71    | 130/78 | 99              | 70    | 128/70 | 99      |
| В     | 5    | SANGEETHA    | 124/70 | 99    | 66    | 124/76 | 99      | 68    | 126/78 | 100             | 68    | 130/78 | 100     |
| Α     | 6    | THANGAVEL    | 122/76 | 100   | 68    | 126/88 | 100     | 69    | 126/80 | 100             | 70    | 130/70 | 100     |
| В     | 7    | TAMILSELVI   | 122/78 | 99    | 66    | 120/78 | 99      | 67    | 124/80 | 99              | 69    | 126/78 | 99      |
| В     | 8    | VINOTH       | 128/74 | 100   | 72    | 128/78 | 100     | 74    | 126/80 | 100             | 73    | 128/78 | 100     |
| А     | 9    | PAMAVATHY    | 126/78 | 99    | 74    | 130/76 | 99      | 76    | 128/78 | 99              | 77    | 126/74 | 99      |
| В     | 10   | PAVITHRA     | 112/80 | 100   | 94    | 116/78 | 99      | 95    | 120/70 | 100             | 97    | 122/74 | 100     |
| А     | 11   | BALAN        | 110/74 | 99    | 80    | 112/76 | 100     | 81    | 114/80 | 100             | 82    | 118/70 | 100     |
| В     | 12   | VENKATESAN   | 122/80 | 100   | 74    | 124/76 | 99      | 75    | 126/80 | 99              | 77    | 128/82 | 99      |
| А     | 13   | SIBAN        | 126/76 | 99    | 75    | 128/76 | 100     | 77    | 128/76 | 100             | 78    | 126/78 | 99      |
| А     | 14   | PRIYA        | 110/76 | 100   | 67    | 118/78 | 99      | 69    | 118/76 | 99              | 66    | 110/82 | 100     |
| В     | 15   | RAMESH       | 118/78 | 99    | 75    | 120/76 | 100     | 77    | 120/80 | 100             | 76    | 126/82 | 99      |
| А     | 16   | KANCHANA     | 122/76 | 100   | 68    | 126/88 | 100     | 69    | 126/80 | 100             | 70    | 130/70 | 100     |
| В     | 17   | KAMAKSHI     | 130/86 | 100   | 82    | 128/76 | 99      | 84    | 130/78 | 99              | 83    | 130/68 | 100     |
| В     | 18   | RAJA         | 110/80 | 99    | 63    | 110/70 | 99      | 64    | 120/70 | 99              | 64    | 110/70 | 99      |
| Α     | 19   | JEEVAN       | 120/70 | 100   | 70    | 118/86 | 100     | 72    | 122/76 | 100             | 73    | 126/80 | 100     |
| А     | 20   | PREM         | 118/68 | 99    | 70    | 120/76 | 99      | 72    | 122/80 | 99              | 74    | 126/78 | 99      |
| В     | 21   | LOGANATHAN   | 122/76 | 100   | 68    | 126/88 | 100     | 69    | 126/80 | 100             | 70    | 130/70 | 100     |
| Α     | 22   | RAHEEMMABEE  | 128/76 | 99    | 67    | 130/70 | 99      | 65    | 130/78 | 99              | 65    | 130/70 | 99      |
| В     | 23   | KARTHIK      | 122/80 | 100   | 74    | 124/76 | 99      | 75    | 126/80 | 99              | 77    | 128/82 | 99      |
| В     | 24   | MARIYAPPAN   | 124/70 | 99    | 66    | 124/76 | 99      | 68    | 126/78 | 100             | 68    | 130/78 | 100     |
| Α     | 25   | MALLIGA      | 122/76 | 100   | 68    | 126/88 | 100     | 69    | 126/80 | 100             | 70    | 130/70 | 100     |
| В     | 26   | YUVARAJ      | 128/76 | 99    | 67    | 130/70 | 99      | 65    | 130/78 | 99              | 65    | 130/70 | 99      |
| Α     | 27   | BRITO        | 120/70 | 100   | 70    | 118/86 | 100     | 72    | 122/76 | 100             | 73    | 126/80 | 100     |
| Α     | 28   | SUNDARI      | 126/78 | 99    | 74    | 130/76 | 99      | 76    | 128/78 | 99              | 77    | 126/74 | 99      |
| В     | 29   | VENKATESAN   | 124/70 | 99    | 66    | 124/76 | 99      | 68    | 126/78 | 100             | 68    | 130/78 | 100     |
| В     | 30   | RAHUL GANDHI | 120/80 | 99    | 77    | 122/78 | 100     | 79    | 124/80 | 99              | 77    | 122/78 | 99      |
| А     | 31   | GOWRI        | 110/80 | 99    | 63    | 110/70 | 99      | 64    | 120/70 | 99              | 64    | 110/70 | 99      |
| Α     | 32   | VIGNESH      | 120/70 | 100   | 69    | 120/84 | 100     | 71    | 122/78 | 100             | 73    | 120/76 | 100     |
| А     | 33   | VENNILA      | 126/76 | 99    | 75    | 128/76 | 100     | 77    | 128/76 | 100             | 78    | 126/78 | 99      |
| В     | 34   | USHA         | 120/70 | 100   | 70    | 118/86 | 100     | 72    | 122/76 | 100             | 73    | 126/80 | 100     |
| В     | 35   | SHABINA      | 130/80 | 99    | 77    | 128/76 | 99      | 79    | 126/80 | 99              | 76    | 120/70 | 99      |
| Α     | 36   | KADAL KESAN  | 120/80 | 99    | 77    | 122/78 | 100     | 79    | 124/80 | 99              | 77    | 122/78 | 99      |

|       |      |               | POST   | POST  | POST  | POST   | POST    | POST  | POST   | POST    | POST  | POST   | POST    |
|-------|------|---------------|--------|-------|-------|--------|---------|-------|--------|---------|-------|--------|---------|
| GROUP | S.NO | NAME          | BP 6   | SPO26 | HR 12 | BP 12  | SPO2 12 | HR 18 | BP 18  | SPO2 18 | HR 24 | BP 24  | SPO2 24 |
| В     | 37   | DHANALAKSHMI  | 120/70 | 100   | 69    | 120/84 | 100     | 71    | 122/78 | 100     | 73    | 120/76 | 100     |
| В     | 38   | THIRUMALAI    | 110/74 | 99    | 80    | 112/76 | 100     | 81    | 114/80 | 100     | 82    | 118/70 | 100     |
| Α     | 39   | PARTHIBAN     | 120/70 | 100   | 70    | 118/86 | 100     | 72    | 122/76 | 100     | 73    | 126/80 | 100     |
| А     | 40   | PANNERSELVAM  | 128/78 | 99    | 77    | 128/80 | 99      | 79    | 130/78 | 99      | 81    | 128/80 | 99      |
| В     | 41   | SUMITHRA      | 120/80 | 99    | 77    | 122/78 | 100     | 79    | 124/80 | 99      | 77    | 122/78 | 99      |
| В     | 42   | PANDIYAN      | 122/78 | 99    | 66    | 120/78 | 99      | 67    | 124/80 | 99      | 69    | 126/78 | 99      |
| А     | 43   | ANITHA        | 122/76 | 100   | 68    | 126/88 | 100     | 69    | 126/80 | 100     | 70    | 130/70 | 100     |
| А     | 44   | KRITHIKA      | 120/80 | 99    | 77    | 122/78 | 100     | 79    | 124/80 | 99      | 77    | 122/78 | 99      |
| А     | 45   | SAKTHIVEL     | 126/78 | 99    | 74    | 130/76 | 99      | 76    | 128/78 | 99      | 77    | 126/74 | 99      |
| В     | 46   | ILAYARAJ      | 128/78 | 99    | 77    | 128/80 | 99      | 79    | 130/78 | 99      | 81    | 128/80 | 99      |
| В     | 47   | MADHAN KUMAR  | 130/80 | 99    | 77    | 128/76 | 99      | 79    | 126/80 | 99      | 76    | 120/70 | 99      |
| А     | 48   | SELVAMARY     | 120/70 | 100   | 70    | 118/86 | 100     | 72    | 122/76 | 100     | 73    | 126/80 | 100     |
| А     | 49   | KANNAN        | 122/76 | 100   | 68    | 126/88 | 100     | 69    | 126/80 | 100     | 70    | 130/70 | 100     |
| В     | 50   | JANAKIRAM     | 120/70 | 100   | 69    | 120/84 | 100     | 71    | 122/78 | 100     | 73    | 120/76 | 100     |
| Α     | 51   | VALLI         | 116/76 | 99    | 69    | 118/78 | 99      | 68    | 120/76 | 99      | 67    | 118/78 | 99      |
| А     | 52   | CHANDRAKALA   | 110/74 | 99    | 80    | 112/76 | 100     | 81    | 114/80 | 100     | 82    | 118/70 | 100     |
| В     | 53   | KANCHANA      | 118/78 | 99    | 75    | 120/76 | 100     | 77    | 120/80 | 100     | 76    | 126/82 | 99      |
| В     | 54   | HARIKA        | 128/74 | 100   | 72    | 128/78 | 100     | 74    | 126/80 | 100     | 73    | 128/78 | 100     |
| Α     | 55   | RAMU          | 122/76 | 100   | 68    | 126/88 | 100     | 69    | 126/80 | 100     | 70    | 130/70 | 100     |
| В     | 56   | SHAKIRA       | 110/76 | 100   | 67    | 118/78 | 99      | 69    | 118/76 | 99      | 66    | 110/82 | 100     |
| В     | 57   | SWETHA        | 126/78 | 99    | 74    | 130/76 | 99      | 76    | 128/78 | 99      | 77    | 126/74 | 99      |
| Α     | 58   | SARAVANAN     | 116/76 | 99    | 69    | 118/78 | 99      | 68    | 120/76 | 99      | 67    | 118/78 | 99      |
| В     | 59   | HARI          | 112/78 | 100   | 83    | 114/76 | 100     | 84    | 116/78 | 100     | 85    | 118/80 | 100     |
| Α     | 60   | SUDHA         | 126/76 | 99    | 75    | 128/76 | 100     | 77    | 128/76 | 100     | 78    | 126/78 | 99      |
| Α     | 61   | VIVEKANANDHAN | 120/70 | 100   | 69    | 120/84 | 100     | 71    | 122/78 | 100     | 73    | 120/76 | 100     |
| В     | 62   | SUGUNA        | 122/78 | 99    | 66    | 120/78 | 99      | 67    | 124/80 | 99      | 69    | 126/78 | 99      |
| А     | 63   | LOGESHWARI    | 126/78 | 99    | 74    | 130/76 | 99      | 76    | 128/78 | 99      | 77    | 126/74 | 99      |
| В     | 64   | SASIKALA      | 110/74 | 99    | 80    | 112/76 | 100     | 81    | 114/80 | 100     | 82    | 118/70 | 100     |
| В     | 65   | RAJESH        | 120/76 | 100   | 81    | 124/80 | 99      | 81    | 126/82 | 100     | 83    | 120/70 | 99      |
| А     | 66   | RAJA          | 116/76 | 99    | 69    | 118/78 | 99      | 68    | 120/76 | 99      | 67    | 118/78 | 99      |
| А     | 67   | RAJAMOORTHY   | 118/78 | 99    | 75    | 120/76 | 100     | 77    | 120/80 | 100     | 76    | 126/82 | 99      |
| В     | 68   | JAYACHANDRAN  | 120/80 | 99    | 77    | 122/78 | 100     | 79    | 124/80 | 99      | 77    | 122/78 | 99      |
| А     | 69   | KUMARI        | 112/78 | 100   | 76    | 110/76 | 99      | 77    | 110/82 | 100     | 78    | 112/84 | 100     |
| В     | 70   | SOUNDARAJAN   | 122/78 | 99    | 66    | 120/78 | 99      | 67    | 124/80 | 99      | 69    | 126/78 | 99      |
| А     | 71   | MUTHUKUMAR    | 132/80 | 100   | 78    | 132/80 | 100     | 79    | 128/76 | 100     | 80    | 130/80 | 100     |
| В     | 72   | DESAMMAL      | 112/78 | 100   | 83    | 114/76 | 100     | 84    | 116/78 | 100     | 85    | 118/80 | 100     |

|       |      |               | POST   | POST  | POST  | POST   | POST    | POST  | POST   | POST    | POST  | POST   | POST    |
|-------|------|---------------|--------|-------|-------|--------|---------|-------|--------|---------|-------|--------|---------|
| GROUP | S.NO | NAME          | BP 6   | SPO26 | HR 12 | BP 12  | SPO2 12 | HR 18 | BP 18  | SPO2 18 | HR 24 | BP 24  | SPO2 24 |
| В     | 73   | VIJAYAKUMAR   | 120/76 | 100   | 81    | 124/80 | 99      | 81    | 126/82 | 100     | 83    | 120/70 | 99      |
| Α     | 74   | JAYALAKSHMI   | 122/76 | 100   | 68    | 126/88 | 100     | 69    | 126/80 | 100     | 70    | 130/70 | 100     |
| Α     | 75   | DHANDAPANI    | 122/78 | 99    | 76    | 118/78 | 99      | 78    | 128/78 | 99      | 80    | 129/78 | 99      |
| В     | 76   | SELVAM        | 116/76 | 99    | 69    | 118/78 | 99      | 68    | 120/76 | 99      | 67    | 118/78 | 99      |
| Α     | 77   | SUBRAMANI     | 120/78 | 100   | 70    | 122/80 | 100     | 72    | 124/78 | 100     | 70    | 120/76 | 100     |
| В     | 78   | VIJAYALAKSHMI | 112/78 | 100   | 83    | 114/76 | 100     | 84    | 116/78 | 100     | 85    | 118/80 | 100     |
| В     | 79   | SUNDARI       | 116/76 | 99    | 69    | 118/78 | 99      | 68    | 120/76 | 99      | 67    | 118/78 | 99      |
| В     | 80   | AMALA         | 130/68 | 100   | 72    | 128/76 | 100     | 74    | 128/80 | 100     | 76    | 124/76 | 100     |

### **PROFORMA**

NAME OF THE PATIENT:

p.

DATE:

AGE/SEX:

I.P NO:

• GROUP:

WEIGHT:

PREANAESTHETIC ASSESSMENT AND NUMBER: 10

DIAGNOSIS:

PROCEDURE:

#### ANAESTHETIST:

SURGEON:

PARAMETERS:

1.MALLAMPATTI SCORE:

2.THYROMENTAL DISTANCE:

3.INTERINCISOR GAP:

#### BASELINE VITAL PARAMETERS

| SYSTOLIC BLOOD PRESSURE       | •    |
|-------------------------------|------|
| DIASTOLIC BLOOD PRESSURE      |      |
| MEAN ARTERIAL PRESSURE        |      |
| HEART RATE                    |      |
| ARTERIAL SATURATION OF OXYGEN | 2010 |

#### PREINTUBATION VITAL PARAMETERS

11 A.

| SYSTOLIC BLOOD PRESSURE       |  |  |
|-------------------------------|--|--|
| DIASTOLIC BLOOD PRESSURE      |  |  |
| HEART RATE                    |  |  |
| ARTERIAL SATURATION OF OXYGEN |  |  |

#### POST INTUBATION VITAL PARAMETERS

|                                 | 0 min | 1 min | 3 min | 5 min | 10 min |
|---------------------------------|-------|-------|-------|-------|--------|
| SYSTOLIC BLOOD PRESSURE         |       |       |       |       |        |
| DIASTOLIC BLOOD PRESSURE        |       |       |       |       |        |
| MEAN ARTERIAL BLOOD<br>PRESSURE |       |       |       |       |        |
| HEART RATE                      |       |       |       |       |        |
| ARTERIAL SATURATION OF O2       |       |       |       |       |        |

#### ➢ TIME TAKEN FOR INTUBATION

#### ➢ TOTAL NUMBER OF ATTEMPTS:

► EASE OF INTUBATION:

➢ FAILURE RATE:

FOR GROUP A

FOR GROUP B

➢ REMARKS:

## INSTITUTIONAL ETHICAL COMMITTEE, STANLEY MEDICAL COLLEGE, CHENNAI-1

: A randomized control study comparing the Title of the Work Haemodynamic changes to intubation using lavitan Optical stylet alone versus intubation using levitan optical stylet along with Macintosh laryngoscope in Stanley Hospital, Chennai- 01. Principal Investigator : Dr. Preethi.D : PG in MD ( Anaesthesiology) Designation : Department of Anaesthesiology Department

Government Stanley Medical College, Chennai-01

The request for an approval from the Institutional Ethical Committee (IEC) was considered on the IEC meeting held on 02.07.2014 at the Council Hall, Stanley Medical College, Chennai-1 at 2PM

The members of the Committee, the secretary and the Chairman are pleased to approve the proposed work mentioned above, submitted by the principal investigator.

The Principal investigator and their team are directed to adhere to the guidelines given below:

- You should inform the IEC in case of changes in study procedure, site investigator investigation or guide or any other changes. 1.
- You should not deviate from the area of the work for which you applied 2.
- for ethical clearance. You should inform the IEC immediately, in case of any adverse events 3. or serious adverse reaction.
- You should abide to the rules and regulation of the institution(s).
- You should complete the work within the specified period and if any 4.
- extension of time is required, you should apply for permission again 5. and do the work.
- You should submit the summary of the work to the ethical committee 6. on completion of the work.

lasanta MEMBER SECRETARY, IEC, SMC, CHENNAI

#### நோயாளி தகவல் தாள்

ூப்டிகல் ஸ்டில்லட் தனியாகவும் மற்றும் ஆப்டிகல் ஸ்டில்லட் அதனுடன் மெக்ன்டாஷ் குரல்வளைகாட்டி ஆகியவற்றை பயன்படுத்தி செயற்கை சுவாசம் செய்யும்போது வரும் இரத்த அழுத்தம் இதயதுடிப்பு இரத்தத்திலுள்ள ஆக்ஸிஜன் அளவுகளில் வரும் மாற்றங்களை ஒப்பிட்டு பார்த்தல்

#### ஆராய்ச்சியின் நோக்கமும், ஆதாயங்களும்.

பிரச்சனைக்குரிய மூச்சுக்குழலுக்குள் செயற்கை சுவாசத்தீக்காக குழாய் செருகுதல் சவாலான விஷயமாக உள்ளது. இதனால் ஏற்படும் பின்விளைவுகள் சிறிய பாதீப்பு முதல் பெரிய பாதீப்புகள் வரை ஏற்படலாம், மரணம் வரை செல்லலாம். மெக்ன்டாஷ் குரல்வளைகாட்டி சுவாசக்குழாயில் செலுத்துவது ஆரம்பநிலை மயக்கவியல் மருத்துவம் ஆகும்.

இதனால் புதீயமுறையான ஒலி உபகாரணம் கொண்ட லெவிக்டான் கருவியை பிரச்சனைக்குரிய சுவாசக்குழாயில் செலுத்தி அதன் மூலம் காட்சியைக் கொண்டு சுலபமாக குழாயை செலுத்தலாம்.

#### ஆய்வுமுறை :

எனது ஆராய்ச்சியில் நீங்கள் இரண்டு குழுவாக பிரிக்கப்படுவீர்கள். முதலாம் குழுவிற்கு லெவிக்டான் கருவியை செலுத்துதல். இரண்டாம் குழுவிற்கு லெவிக்டான் உடன் இணைத்து மெக்ன்டாஷ் கருவியை செலுத்துதல். இதனால் ஏற்படும் இதயத்துடிப்பு, இரத்த அழுத்தம், இரத்தத்தில் உள்ள ஆக்ஸிஷன் அளவில் ஏற்படும் மாற்றங்களை ஒப்பிட்டு பார்க்கப்படுவீர்கள்.

#### உண்டாகக்கூடிய இடர்கள் :

இந்த ஆய்வில் பயன்படுத்தப்படும் மயக்க முறைகளால் குரல் கரகரப்பு, தொண்டைபுண், இரத்தப்போக்கு ஏற்பட வாய்ப்புகள் உள்ளது.

#### ஆய்வில் உங்கள் உரிமைகள் :

உங்கள் மருத்துவ பதிவேடுகள் அந்தரங்கமாக வைத்துக் கொள்ளப்படும். இந்த ஆய்வின் முடிவுகள் அறிவியல் பத்திரிக்கைகளில் வெளியிடப்படலாம். இதனால் நீங்களோ உங்கள் பெயரோ வெளியிடப்படாது. ஆய்வில் பங்கேற்பது தன்னிச்சையானது மற்றும் காரணங்கள் எதுவும் கூறாமலேயே நீங்கள் எப்போது வேண்டுமென்றாலும் விலகிக் கொள்ளலாம். ஏதேனும் பக்க விளைவுகள் ஏற்பட்டால் முழு சிகிச்சையும் மருத்துவ குழுவினரால் உடனடியாக வழங்கப்படும்.

நாள் :

நோயாளியின் கையொப்பம் (அல்லது) இடது பெருவிரல் ரேகை (மருத்துவரால் படித்து காட்டாப்பட்டது)

· · · · · ·

#### சுய ஒப்புதல் படிவம்

ூப்டிகல் ஸ்டில்லட் தனியாகவும் மற்றும் ஆப்டிகல் ஸ்டில்லட் அதனுடன் மெக்ன்டாஷ் குரல்வளைகாட்டி ஆகியவற்றை பயன்படுத்தி செயற்கை சுவாசம் செய்யும்போது வரும் இரத்த அழுத்தம் இதயதுடிப்பு இரத்தத்திலுள்ள ஆக்ஸிஜன் அளவுகளில் வரும் மாற்றங்களை ஒப்பிட்டு பார்த்தல்

ஆய்வாளர்

: **மரு.தே. பிரீத்தீ** முதுநிலை பட்டமேற்படிப்பு மாணவர் மயக்கவியல் துறை

வழிகாட்டி

: **பேராசிரியர் மரு. கிருஷ்ணன்** மயக்கவியல் துறை அரசு ஸ்டான்லி மருத்துவமனை

பெயர் :

வயது :

உள்ளிருப்பு எண். :

இந்த மருத்துவ ஆய்வின் விவரங்கள் எனக்கு விளக்கப்பட்டது. என்னுடைய சந்தேகங்களை தீர்க்கவும் அதற்கான தகுந்த விளக்கங்களை பெறவும் வாய்ப்பளிக்கப்பட்டது.

நான் இவ்வாய்வில் தன்னிச்சையாகதான் பங்கேற்கீறேன். எந்த காரணத்தினாலும் எந்த கட்டத்திலும் எந்த சட்ட சிக்கலும் இன்றி இந்த ஆய்விலிருந்து விலகிக் கொள்ளலாம் என்று அறிந்து கொண்டேன்.

நான் ஆய்விலிருந்து விலகிக்கொண்டாலும் ஆய்வாளர் என்னுடைய மருத்துவ அறிக்கைளை பார்ப்பதற்கோ அல்லது உபயோகிக்கவோ என் அனுமதி தேவையில்லை எனவும் அறிந்து கொண்டேன். என்னை பற்றிய தகவல்கள் ரகசியமாக பாதுக்காக்கப்படும் என்பதையும் அறிவேன்.

இந்த ஆய்வின் மூலம் கிடைக்கும் தகவல்களையும் பரிசோதனை முடிவுகளையும் ஆய்வாளர் அவர் விருப்பதிற்கேற்ப பயன்படுத்திக் கொள்ளவும் அதனை பிரசுரிக்கவும் முழுமனதுடன் சம்மதிக்கிறேன். இந்த ஆய்வில் பங்கு கொள்ள ஒப்புக்கொள்கிறேன். எனக்கு கொடுக்கப்பட்டுள்ள அறிவுரைகளின்படி நடந்து கொள்வதுடன் ஆய்வாளருக்கு உண்மையுடன் இருப்பேன் என்றும் உறுதி அளிக்கிறேன்.

உடல்நலம் பாதிக்கப்பட்டலோ வழக்கத்திற்கு மாறான நோய்குறி தென்பட்டாலோ அதனை தெரிவிப்பேன் என்று உறுதி கூறுகிறேன்.

இந்த ஆய்வில் எனக்கு எவ்விதமான பரிசோதனைகளையும் சிகீச்சைகளையும் மேற்கொள்ள நான் முழுமனதுடன் சம்மதிக்கிறேன்.

இப்படிக்கு

21 miles

நோயாளியின் கையொப்பம்

ஆய்வாளரின் கையொப்பம்

(பெயர்)

#### Turnitin Document Viewer - Google Chrome

https://www.turnitin.com/dv?o=453666673&u=1030974897&s=&student\_user=1&lang=en\_us

e Tamil Nadu Dr.M.G.R.Medical Uty 2... TNMGRMU EXAMINATIONS - DUE 15-Aug-2015

iginality C GradeMark C Pee

A Randomised control study comparing the haemodynamic responses to intubation BY 201220055.MIO AMAESTHEEDIOLOGY PREETHED

X

----

2%

1%

1%

1%

1%

1%

1%

1%

<1%

<1%

<1%

<1%

<1%

3:48 PM

06-Oct-14

OUT OF O

18%

Tsai, Phil B.. "Hemodyna...

M. Aziz. "Clinical evaluati..

www.authorstream.com

www.timesco-uk.co.uk

Ed George. "The Difficult ...

turnitin ()

2

3

Λ

5

6

7

8

9

10

11

12

13

W

Ps

Match Overview

Publication

www.esahq.org

Internet source

Publication

nternet source

Internet source

Publication

lib.bioinfo.pl

Internet source

bsabd.com

Internet source

Internet source

medind.nic.in

Internet source

Publication

Internet source

Publicatio

anaesthesia.co.in

www.airwavcam.com

D. S. Phua. "The Shikani o...

Coleman, Lee, Mark Zako...

🕪 🕅 📜

#### CHAPTER 1

10 INTRODUCTION

60)

Airway management is the fundamental aspect of anaesthetic practice and emergency and critical care medicine. Endotracheal intubation is a rapid, simple, safe and non surgical technique that achieves all the goals of airway management, maintains airway patency, protects the lungs from aspiration and permits leak free ventilation during mechanical ventilation, and so remains the gold standard procedure for airway management<sup>1</sup>.Since the upper airway is highly innervated by glossopharyngeal and vagus nerves, airway instrumentation results in significant haemodynamic responses.

The circulatory response to laryngeal and tracheal stimulation following intubation manifested as reflex sympathoadrenal stimulation and was described early in 1940 by Reid and Bruce<sup>2</sup>.

Sympathoadrenal responses such as increase in heart rate,blood pressure though short lived ,have detrimental effects in high risk patients especially those with cardiovascular diseases,increased intracranial pressure or anomalies of cerebral vessels<sup>3</sup>.

Laryngoscopy and tracheal intubation induced pressor response have been associated with increase in catecholamine levels such as norepinephrine and pinephrine<sup>4</sup>.Rise of these catecholamines are associated with the elevation of blood pressure and heart rate.

Intubation period is considered as one of the greatest risk in surgical patients with coronary diseases. Although the response may be transient, it is significant and is of great concern<sup>56</sup>.

Ai

# turnitin

## **Digital Receipt**

This receipt acknowledges that Turnitin received your paper. Below you will find the receipt information regarding your submission.

The first page of your submissions is displayed below.

| Submission author: | 201220055.md Anaesthesiology PRE   |
|--------------------|------------------------------------|
| Assignment title:  | TNMGRMU EXAMINATIONS               |
| Submission title:  | A Randomised control study compari |
| File name:         | PREETHI_THESIS.pdf                 |
| File size:         | 1.13M                              |
| Page count:        | 101                                |
| Word count:        | 15,077                             |
| Character count:   | 79,220                             |
| Submission date:   | 04-Oct-2014 11:36AM                |
| Submission ID:     | 453666673                          |

#### CHAPTER 1 INTRODUCTION

Airway management is the fundamental aspect of anaeshetic practice and emergency and critical care medicine. Endotracheal intubation is a rapid, simple, safe and non surgical technique that achieves all the goals of airway management, maintains airway patenzy, protects the lungs from aspiration and permits leak free ventilation during mechanical ventilation, and so remains the god standard procedure for airway management? Since the upper airway is highly innervated by glossopharyngeal and vagus nerves, airway instrumentation results in significant haemodynamic responses. The tecinationy response to laryngeal and tracheal stimulation following intubation

manifested as reflex sympathoadrenal stimulation and was described early in 1940 by Reid and Bruce<sup>2</sup>.

Sympathoadrenal responses such as increase in heart rate/blood pressure though short lived ,have detrimental effects in high risk patients especially those with cardiovascular diseases,increased intracranial pressure or anomalies of cerebral vessels<sup>2</sup>.

Laryngoscopy and tracheal intubation induced pressor response have been associated with increase in catecholamine levels such as norepinephrine and epinephrine/Rise of these catecholamines are associated with the elevation of blood pressure and heart rate.

Intubation period is considered as one of the greatest risk in surgical patients with coronary diseases. Although the response may be transient, it is significant and is of great concern<sup>16</sup>.

Cardiovascular responses to intubation and laryngscopy have been extensively studied over past three decades. Many factors affect these responses such as technique of laryngsseoopy and intubation and use of airway gadgets such as optical styles. Jught wand, fiberoptic brenchoscopy<sup>7</sup>.

Copyright 2014 Turnitin. All rights reserved.