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ABSTRACT 

 

 
Demand for cost-effective aircrafts fabrication has motivated the aerospace industry to use non-
traditional materials and new aircraft structural design. New aircrafts are designed with 
monolithic component to replace large number of assembled component. For manufacturers, 
high-performance cutting tool is essential as more than 80% of the material is removed to 
produce the monolithic component. Most of the monolithic components have thin-wall feature 
with low stiffness and deformation is more likely to occur in its machining process, resulting in 
dimensional surface errors. Most of the existing research on machining thin-wall component 
merely focused on the process planning and there was no scientific study on the effects of cutter 
geometric feature on component failure. Tool geometry has a direct influence on the cutting 
performance and should be taken into consideration. In this research, due to the importance of 
machining efficiency, development of new cutter design specifically for machining thin-wall 
components are studied. This study consists of both experimental and statistic techniques to 
evaluate the machining performance associated with the cutter geometry for different types of 
end mill, namely variable helix constant pitch (VHCP), variable helix variable pitch (VHVP) and 
tabular helix constant pitch (THCP). Based on the established relationship between cutter 
geometry feature and machining performances, the optimal cutter geometry is determined by 
using the non-parametric statistical ranking technique. From the experimental results, tool TD3 
with 31o/33o/35o helix angle and equal pitch angle of 90o between teeth (THCP) is the most 
suitable design to be used for machining thin-wall workpiece. In addition, it shows that careful 
design of the pitch and helix angle combination can increase the machining performances of 
thin-wall part. The outcome from this research has potential benefits in providing new scientific 
knowledge on the selection of effective cutter geometry for machining low rigidity components. 
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ABSTRAK 

 

 

Permintaan untuk pembuatan yang kos efektif telah mendorong industri aeroangkasa untuk 
menggunakan bahan-bahan bukan tradisional dan reka bentuk pesawat baru. Reka bentuk baru 
dengan sekeping komponen monolitik menggantikan dengan bilangan besar komponen 
pemasangan. Bagi pengilang, permintaan bagi alat pemotong yang berprestasi tinggi adalah 
penting kerana lebih daripada 80% daripada bahan dipotong untuk menghasilkan komponen 
monolitik. Oleh kerana dinding nipis tidak kukuh, deformasi lebih kerap berlaku dalam proses 
pemesinan yang menyebabkan kesilapan dimensi permukaan. Kebanyakan penyelidikan yang 
sedia ada pada pemesinan komponen dinding nipis hanya tertumpu kepada perancangan proses 
dan tidak ada kajian saintifik mengenai kesan daripada ciri geometri pemotong. Alat geometri 
mempunyai pengaruh langsung ke atas prestasi pemotongan dan tidak boleh diabaikan dalam 
pemesinan pertimbangan. Setiap satu daripada ciri-ciri geometri mempunyai fungsi tersendiri 
dan perlu dikaji untuk aplikasi pemesinan tertentu. Dalam kajian ini, oleh kerana pentingnya 
kecekapan pemesinan, reka bentuk pemotong baru khusus untuk pemesinan komponen dinding 
nipis telah diberikan perhatian. Didorong oleh keperluan untuk sentiasa meningkatkan 
kecekapan pemesinan dan bahagian ketepatan ini kajian penyelidikan mengenai kesan pemotong 
ciri geometri kegagalan komponen. Berdasarkan hasil kajian yang diperolehi,  
pemotongan optimum geometri ditentukan dengan menggunakan teknik peringkat statistik bukan 
parametrik. Kajian ini mempunyai potensi dalam memberikan manfaat untuk menyediakan 
pengetahuan saintifik baru untuk mengoptimumkan ciri pemotong geometri khusus untuk yang 
efektif untuk proses pembuatan komponen dengan tahap kekukuhan yang rendah. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

Demand for the cost effective and high performance aircrafts has forced the aerospace 

manufacturer to change to a new aircraft structural design (Izamshah et al., 2011). Modern 

aircraft are designed with one piece flow of monolithic component that can replace large 

number of assembled part for the same component. These new monolithic structural 

component contains hundreds of unitized monolithic feature which consists of thinner ribs 

(i.e. walls) and webs (i.e. floors). In addition, from the business perspective, the monolithic 

structural components able to reduce the manufacturing times that are related to inventory 

and Just-In-Time (JIT) manufacturing. Table 1.1 demonstrates some of the advantages of 

monolithic component compared to conventional aircraft component. 

Nevertheless, due to the poor stiffness of thin-wall feature, deformation is more likely 

to occur in the machining process which resulting in dimensional surface errors. The cutting 

forces were the major cause of the part deflection and are directly related to the cutting tool. 

During the milling process of this component, the part suffers from deflection with the risk of 

instability and tolerance violation. The relative vibrations between flexible end mill and 

workpiece are the source of most of the problems that occur during manufacturing of thin 

wall. Intermittent engagement of cutter and workpiece excites a wide range of structural 

natural frequencies that result as unstable chatter vibrations and stable forced vibrations. 

Chatter is caused by variations in the instantaneous chip thickness caused when the vibration 
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of the tooth currently engaged in the cut is out of phase with the vibration of the previous 

tooth.  

For manufacturer, demand for the high-performance cutting tools is pre-requisite as 

more than 80% of the material is cut away to produce the monolithic component. In addition, 

this structure necessitates high quality surface profile that poses some degree of machining 

technique to achieve the tight dimensional tolerance of aerospace component. Tool geometry 

has a direct influence on the cutting performance and should not be neglected in the 

machining consideration. Factors such as cutting forces, vibration, and quality of machined 

surface and shapes accuracy are closely reflected with the tool geometry. The geometric 

parameter of end mills includes the number of flute, edge shape, rake angle, relief angle, 

helix angle, pitch angle and clearance angle. Among the tool geometric features, helix angle 

and pitch angle were the most dominant factors that affect the machining performances i.e. 

surface error, vibration, surface roughness magnitude and therefore should be methodically 

investigated for the case of machining thin-wall part.  

Previous published literatures shows that by manipulating the design of pitch and 

helix angles for each tooth led to the interruption of the dynamic regeneration mechanism in 

which disordered the tooth passing frequency between the adjacent tooth periods as a result 

of different chip loads (Yusoff and Sims, 2011). It demonstrates that, by manipulating the 

cutter design can interrupt the feedback mechanism for the tool vibrations, thus altering the 

stability of the machining condition. However, the boundary between stable and unstable 

machining condition are a function between workpiece condition and the cutter geometry, a 

matter that will be explored in this thesis. 
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Table 1.1: Comparison between monolithic and conventional aircraft component (Tongyue et 

al., 2010). 

Conventional Part Monolithic Part 

 

 

Number of Pieces                         =  44 Number of Pieces  =  6 

Number of Tools                          =  53 Number of Tools  =  5 

Design & Manufacturing Time 

(hrs)           =  965 

Design & Manufacturing Time 

(hrs) =  30 

Machining Time (hrs)                  =  13 Machining Time (hrs)  =  8.6 

Assembly Man-hours  =  50 Assembly Man-hours  =  5.3 

Weight (kg)  =  3.77 Weight (kg) =  3.37 

Overall manufacturing Cost 

(units)  =  100 

Overall manufacturing Cost 

(units) =  37 

 

Driven by the need to constantly increase the machining efficiency and part accuracy, 

this thesis aim to develop an optimum end mill cutter geometry that can effectively reduce 

the surface error, vibration magnitude and producing smooth surface finish on machining thin 

wall low rigidity component. The development involves experimental investigation of 
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different type of cutter geometry namely Constant Helix Constant Pitch (CHCP), Variable 

Helix Constant Pitch (VHCP), Variable Helix Variable Pitch (VHVP) and Tabular Helix 

Constant Pitch (THCP) on milling thin-wall low rigidity part. The workpiece material is 

aerospace grade Aluminum alloy 7075-T6 for all of the components. The expected outcomes 

from this research include the increase in process stability and elimination of finishing 

operations. 

 

1.2 Problem Statement  

The so-called ‘right first time’ machined component is continuously manufactured by 

manufacturers in order to improvise their product quality and remain competitive in 

manufacturing industry. Manufacturers have to encounter a challenging process, especially in 

machining thin-walled component, due to the tight dimensional tolerance of aerospace 

component. Based on the literatures review, it shows that there were three main problems that 

associated with the machining of thin wall component namely dimensional surface errors, 

poor surface quality and low productivity (Izamshah et al., 2011). Figure 1.1 depicts the 

summarization of the problems associated with the machining of thin wall component based 

on my research. 

 

Figure 1.1: Summary of challenges in machining thin wall component (Izamshah et al., 2011)  
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1.2.1 Dimensional Surface Errors  

Deformation can easily happen during machining of thin-wall areas due to the lack of 

stiffness at those areas, in which, causing dimensional surface errors (Arnaud et al., 2011). 

Figure 1.2 shows the dimensional surface errors produce in machining thin-wall feature.  

Materials in the shaded areas MNOP as depicted in Figure 1.2 (b) are to be removed ideally. 

However, due to the milling force the wall is deflected which shifted point M to point M′ as 

well as point N to point N′. As a result of the wall deflection, only material MN′OP is 

removed resulting a dimensional surface errors in NON’ areas (Izamshah et al., 2011).  

 

 

(a)                                                                       (b) 

Figure 1.2: Dimensional surface errors produce in machining thin-wall feature.                           
(a) Deflection of wall resulting from cutting force , (b)  Machining sketch of thin-wall component   

(Izamshah et al., 2011). 

 

1.2.2 Poor Surface Quality 

In addition, according to Bolsunovskiy et al. (2013) the problems that emerge due to 

high flexibility of the cutting tool-workpiece machining condition are the chatter regeneration 

that limits the productivity. The Intermittent engagement of cutter and workpiece excites a 

wide range of structural natural frequencies that result as unstable chatter vibrations and 

stable forced vibrations. Powell, (2008) said chatter is caused by variations in the 
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instantaneous chip thickness caused when the vibration of the tooth currently engaged in the 

cut is out of phase with the vibration of the previous tooth. Chatter can produce large cutting 

force amplitudes that lead to increased tool wear, and degradation of the machined surface or 

regeneration of waviness. Regeneration of waviness refers to the variation in chip thickness 

which results from the interference between the wavy surface left by the vibrating tool and 

workpiece on the previous pass and the vibrating tool and workpiece on the current pass. If 

the vibrations of the current pass are in phase with the vibrations from the previous pass, the 

chip thickness remains fairly constant, as does the cutting force resulting in a stable cut. If the 

vibrations of the current pass are out-of-phase with the vibrations from the previous pass, the 

chip thickness can vary greatly; the variation in chip thickness leads to variation in cutting 

force which can result in rough machined surface (Lacerda et al., 2004). 

 

 

                            (a)                                                             (b) 

Figure 1.3: Occurrence of chatter in machining thin wall component.                                     
(a) Chattered surface. (b) Non chattered surface. (Lacerda et al., 2004). 

 

 

 

 


