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ABSTRACT 

 

 

Demands for accuracy and precision in machine tools have generated great interests for 
development of high performance drive control system with excellent characteristics in 
reference tracking, chattering, and robustness against input disturbance and load variation. 
Recently, a nonlinear control approach named super twisting sliding mode controller (ST-
SMC) becomes attractive for its ability to meet complex demands on system performance 
where classical controllers have failed to meet. ST-SMC provides good tracking quality 
and effectively proven disturbance rejection property. However, chattering still exist as an 
issue in application of ST-SMC. To-date, there exists a knowledge gap in in-depth analyses 
on optimal design of gains parameters in control laws of ST-SMC constituting trade-off 
between tracking accuracy and effect of chattering. This thesis presents optimal design of 
ST-SMC with enhanced smoothening functions for precise tracking performances and 
reduced chattering; validated on a single axis sliding unit with direct driven linear motor. 
In addition, a Kalman-Bucy filter (KBF) was designed and applied to estimate velocity 
signal for the control system thus eliminating effect of noise amplification normally 
associated with numerical differentiation of position signal. A Taguchi optimization 
method was applied to optimize the control laws gain parameters of ST-SMC based on 
three performance indexes, namely; root mean square of tracking error (RMSE), chattering 
amplitude reduction in frequency domain, and variations in RMSE values from exposure to 
input disturbance. The optimal values of the gain parameters L and W were 0.7 and 10 
10-5 respectively; with a confidence level of 95%. Two variants of ST-SMC were 
formulated based on modifications of the control laws of original ST-SMC; where the 
signum function was replaced by either a hyperbolic tangent function or an arc-tangent 
smoothening function to a form hyperbolic ST-SMC (HST-SMC) and an arc-tangent ST-
SMC (Arc-ST-SMC) respectively. Five controllers were designed and validated 
experimentally, namely; cascade P/PI controller, pseudo-SMC, optimized ST-SMC, HST-
SMC, and Arc-ST-SMC. The control performances of each controller were analyzed with 
respect to tracking accuracy, chattering suppression, and robustness against input 
disturbance and system dynamics variation. The optimized ST-SMC produced the best 
overall control performance with 9.6% (RMSE), 3.9% (disturbance rejection), and 13.4% 
(robustness) superior results compared to the other variants of SMC-based controllers. On 
the other hand, HST-SMC produced a comparable tracking performance to optimized ST-
SMC with minimal difference of 7.3% (RMSE), 0.4% (disturbance rejection), and 0.7% 
(robustness). HST-SMC offers a fair trade-off in control performance between tracking 
accuracy, disturbance rejection and chattering attenuation. Arc-ST-SMC showed its 
strength with a significant 71.4% reduction in chattering effect. Finally, this thesis has 
demonstrated outstanding control performances of ST-SMC-based controllers that 
produced tracking accuracy that was 96.0% better than classical cascade P/PI controller.  
 



ii 
 

 

 

ABSTRAK 

 

 

Permintaan terhadap ketepatan dan kejituan pada perkakasan mesin telah menjana minat 
yang besar terhadap sistem kawalan pemacu berprestasi tinggi dengan ciri cemerlang 
berkaitan penjejakan rujukan, gelantuk, dan keteguhan terhadap gangguan input dan 
variasi beban. Kebelakangan ini, kaedah kawalan tidak lelurus dikenali sebagai pengawal 
mod gelongsor pemusingan super (ST-SMC) menjadi tarikan kerana keupayaannya 
memenuhi permintaan kompleks pada prestasi sistem yang gagal dicapai oleh pengawal 
klasik. ST-SMC menawarkan kualiti pengesanan yang baik di samping keupayaan 
penolakan gangguan yang terbukti berkesan. Walau bagaimanapun, gelantuk masih wujud 
sebagai satu isu dalam aplikasi ST-SMC. Hingga kini wujud jurang pengetahuan terhadap 
analisa  mendalam pada reka bentuk optima parameter peraturan kawalan ST-SMC 
melibatkan keseimbangan antara ketepatan pengesanan dan kesan gelantuk. Tesis ini 
membentangkan reka bentuk optimum ST-SMC dengan fungsi pelicin yang dipertingkatkan 
untuk prestasi pengesanan yang jitu dan pengurangan kesan gelantuk; disahkan pada 
paksi tunggal unit gelangsar pemacu terus motor lelurus. Di samping itu, penapis Kalman-
Bucy (KBF) direka dan digunakan untuk menganggarkan isyarat halaju pada sistem 
kawalan bagi mengelakkan kesan amplifikasi bunyi yang biasanya wujud melalui 
pembezaan berangka isyarat kedudukan. Kaedah pengoptimuman Taguchi digunakan 
untuk mengoptimumkan parameter-parameter kawalan ST-SMC berpandukan kepada tiga 
indeks prestasi, iaitu; ralat purata punca kuasa dua (RMSE), pengurangan amplitud 
gelantuk dalam domain frekuensi, dan variasi dalam nilai RMSE daripada pendedahan 
kepada gangguan input. Nilai optimum yang dikenalpasti bagi parameter L dan W adalah 
0.7 dan 10  10-5 berdasarkan tahap keyakinan 95%. Dua variasi ST-SMC telah 
dirumuskan berdasarkan pengubahsuaian terhadap peraturan kawalan ST-SMC; di mana 
fungsi signum digantikan oleh fungsi tangen hiperbolik atau fungsi arc-tangen untuk 
membentuk hiperbolik ST-SMC (HST-SMC) dan arc-tangen ST-SMC (Arc-ST-SMC). Lima 
pengawal telah direka dan disahkan secara ujikaji, iaitu; pengawal lata P/PI, pseudo-
SMC, ST-SMC optimum, HST-SMC, dan Arc-ST-SMC. Prestasi kawalan setiap pengawal 
dianalisa berdasarkan ketepatan pengesanan, pengurangan gelantuk, dan keteguhan 
terhadap gangguan input dan variasi sistem dinamik. ST-SMC optimum menghasilkan 
prestasi kawalan keseluruhan yang terbaik iaitu 9.6% (RMSE), 3.9% (penolakan 
gangguan), dan 13.4% (keteguhan) lebih baik berbanding dengan varian-varian pengawal 
berasaskan SMC yang lain. Sebaliknya, HST-SMC menghasilkan prestasi pengesanan 
yang setanding dengan ST-SMC optimum dengan perbezaan minimum sebanyak 7.3% 
(RMSE), 0.4% (penolakan gangguan), dan 0.7% (keteguhan). HST-SMC menawarkan 
keseimbangan antara ketepatan pengesanan, penolakan gangguan dan pengurangan 
gelatuk. Arc-ST-SMC pula menunjukkan kekuatannya dengan penurunan ketara sebanyak 
71.4% kesan gelantuk. Akhirnya, tesis ini juga telah menunjukkan kecemerlangan prestasi 
kawalan pengawal-pengawal berasaskan ST-SMC yang menghasilkan ketepatan 
pengesanan sebanyak 96.0% lebih baik daripada pengawal klasik lata P/PI. 
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