

Faculty of Manufacturing Engineering

A NEW EQUIPMENT EFFECTIVENESS AND SUSTAINABILITY PERFORMANCE MODEL FOR PALM OIL MILL

Ilyana binti Abdullah

Doctor of Philosophy

2018

C Universiti Teknikal Malaysia Melaka

A NEW EQUIPMENT EFFECTIVENESS AND SUSTAINABILITY PERFORMANCE MODEL FOR PALM OIL MILL

ILYANA BINTI ABDULLAH

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

DECLARATION

I declare that this thesis entitled "A New Equipment Effectiveness and Sustainability Performance Model for Palm Oil Mill" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Ilyana binti Abdullah
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature	:	
Supervisor Name	:	Assoc. Prof. Ts. Dr. Wan Hasrulnizzam bin Wan Mahmood
Date	:	

C Universiti Teknikal Malaysia Melaka

DEDICATION

To my beloved mother and father, I am nothing without them. My brothers and sisters, who indulge me with every comfort and kindness. My nephews and nieces, for your loves and laughs light up my universe. And my teachers, who inspire me to dream, to work, and to reach.

ABSTRACT

The worldwide demands for sustainable palm oil products are in the increasing trend due to rising awareness of the palm oil industry impact on environment. Hence, the urgency to develop a sustainability strategy to overcome these issues is imminent. The objectives of this research are to investigate the current practices and performance of manufacturing sustainability in the Malaysian Palm Oil Mill (POM), identify factors affecting equipment effectiveness in the Malaysian POM, develop a model for equipment effectiveness and sustainability performance, and validate the model using data from the Malaysian POM. The research opted for an exploratory study using the survey instrument on Malaysian POM against the 20 elements of sustainability programs and practices, 18 elements of regulatory compliance, 32 elements of factors affecting equipment effectiveness, and 36 elements of manufacturing sustainability opportunity from equipment effectiveness. Out of 250 questionnaires randomly sent to 426 registered POM in Malaysia, a total of 55 were completed and returned by the surveyed mills. After screening, 51 of those completed with useful information were further analysed, representing 11.97% of the population with a response rate of 20.4%. The research developed a new model for measuring equipment effectiveness and sustainability performance. This model hybrid the concept of Overall Equipment Effectiveness (OEE), equipment reliability and Failure Mode and Effect Analysis (FMEA). In appraising the criticality in terms of sustainability impact of equipment failure occurrence, the model ranks the sustainability performance of the failure mode by using the Sustainability Priority Number (SPN), formulated using Analytical Hierarchy Process (AHP) approach. The performance level of the OEE, reliability and SPN resulting scores translated into a five-point rating system. The model has been tested on a POM as the validation approach to demonstrate the feasibility of the model for equipment effectiveness and sustainability performance analysis. The findings emphasis on the fluctuation in the OEE performance depending on the month, suggest that waiting time, breakdown, and preventive maintenance as the key factors affecting equipment effectiveness. Further, reliability performance of the model exhibits an increasing failure rate indicating that the probability of failure occurrence increases over time for the critical equipment (loading ramp, steriliser, thresher, and boiler). The model determines the performance level of 20 functional failure modes of the critical equipment and the results show that the highest SPN ranking for steriliser, signify as the most critical functional failure mode for sustainability impact in the POM. The model is able to analyse equipment effectiveness and sustainability performance in the POM and provide empirical evidence to support the decision making for POM sustainability. This research can be used as an advantage in POM as well as other organisation from different industries to recognise the opportunities of equipment effectiveness in the efforts to enhance the business profile and corporate reputation, and market growth without disregarding the environmental and social impact.

ABSTRAK

Permintaan untuk produk kelapa sawit yang lestari di seluruh dunia semakin meningkat akibat peningkatan kesedaran mengenai kesan buruk daripada industri kelapa sawit terhadap alam sekitar. Oleh itu, pembangunkan strategi kelestarian bagi mengatasi isu-isu ini adalah penting. Objektif penyelidikan ini adalah untuk mengkaji amalan semasa dan prestasi kelestarian pembuatan di Kilang Kelapa Sawit (POM) di Malaysia, mengenal pasti faktor-faktor yang mempengaruhi keberkesanan peralatan di POM Malaysia, membangunkan model keberkesanan peralatan dan prestasi kelestarian, dan mengesahkan model yang dibangunkan dengan menggunakan data daripada POM Malaysia. Daripada 250 soal selidik yang dihantar secara rawak kepada 426 POM berdaftar di Malaysia, sebanyak 55 daripadanya telah di isi dan dikembalikan oleh kilang yang disoal selidik. Selepas pemeriksaan, 51 daripada soal selidik yang siap dengan maklumat berguna telah dijalankan untuk analisis lanjut, mewakili 11.97% populasi dengan kadar tindak balas 20.4%. Kajian ini membangunkan sebuah model baru untuk mengukur keberkesanan peralatan dan prestasi kelestarian. Model ini hibrid konsep Keberkesanan Peralatan Secara Keseluruhan (OEE), kebolehpercayaan peralatan dan Analisis Kegagalan dan Kesan (FMEA). Dalam menilai kritikal dari segi kesan kelestarian kegagalan peralatan, model ini memaparkan prestasi kelestarian mod kegagalan dengan menggunakan Nombor Kelestarian Kelestarian (SPN) yang dirumuskan menggunakan pendekatan Proses Hierarki Analitikal (AHP). Tahap prestasi skor OEE, kebolehpercayaan dan SPN diterjemahkan ke dalam sistem penarafan lima mata. Model ini telah diuji pada POM sebagai pendekatan pengesahan untuk menunjukkan kemungkinan model untuk keberkesanan peralatan dan analisis prestasi kelestarian. Penemuan menekankan terhadap turun naik dalam prestasi OEE bergantung pada bulan, menunjukkan masa menunggu, kerosakan, dan penyelenggaraan pencegahan sebagai faktor utama yang mempengaruhi keberkesanan peralatan. Tambahan pula, prestasi kebolehpercayaan model mempamerkan peningkatan kadar kegagalan yang menunjukkan kebarangkalian kegagalan kejadian meningkat dari masa ke masa untuk peralatan kritikal (ramp memuat, steriliser, thresher dan dandang). Model ini menentukan tahap prestasi 20 kegagalan fungsi peralatan peralatan kritikal dan keputusan menunjukkan bahawa kedudukan SPN tertinggi untuk steriliser, menandakan sebagai mod kegagalan fungsian yang paling kritikal bagi kesan kelestarian di dalam POM. Model ini dapat menganalisis keberkesanan peralatan dan prestasi kelestarian dalam POM dan memberikan bukti empirikal untuk menyokong pihak pengurusan dalam membuat keputusan untuk mencapai kelestarian di POM. Kajian ini boleh digunakan sebagai kelebihan kepada kilang kelapa sawit serta organisasi lain dari industri yang berbeza untuk mengenali peluang keberkesanan peralatan dalam usaha untuk meningkatkan profil perniagaan dan reputasi korporat, dan pertumbuhan pasaran tanpa mengabaikan impak terhadap alam sekitar dan sosial.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Beneficent, the Most Merciful. All the praises and thanks to Allah, the Lord of the 'Alamin. It was hardly possible for me to thrive in this doctoral journey without tremendous amount of support from these professionals and individuals.

First and foremost, I would like to express my sincere gratitude to my principal supervisor Associate Professor Ts. Dr. Wan Hasrulnizzam Wan Mahmood and both of my cosupervisors Dr. Muhammad Hafidz Fazli Md Fauadi (UTeM), and Associate Professor Dr. Mohd Nizam Ab Rahman (Universiti Kebangsaan Malaysia, UKM), for their guidance, intellectual ideas, moral supports, and the time dedicated for this research. My gratitude to UTeM for co-funding the research under an ERGS Grant (ERGS/1/2013/TK01/UTEM/02/ 08/E00029) and Ministry of Higher Education for scholarship (MyBrain15).

I would also express my deepest gratitude to the palm oil mills' management for the support and took part in the survey and case study. My appreciation extends to my close friends and colleagues of the Sustainable and Responsive Manufacturing Research (SUSREM) research group who offers many great insights for the research. Above ground, I am indebted to my family. Appreciations to my beloved father, Abdullah Omar, and mother, Che Mah Che Noh, cherished brothers and affectionate sisters, for unceasing love, prayers, financial aids, and moral supports in completing this doctorate.

iii

TABLE OF CONTENTS

PAGE

DEC API DEI ABS ACI TAI LIS LIS LIS LIS LIS LIS	CLAI PROV DICA STRA STRA KNO BLE (T OF T OF T OF T OF T OF T OF	RATIO /AL TION CT K WLED OF CO TABL TABL APPE ABBR SYMB	N GEMENTS NTENTS ES RES NDICES EVIATIO SOLS ICATION	S NS S	PAGE ii iii iv viii xi xiii xiii xiv xvi xvi
СН	APTI	ER			
1.		RODU	CTION		1
	1.1	Backg	,rouna em Stateme	ppt	1
	1.2	Ohiec	tives	iit	5 7
	1.4	Scope	of Work		8
	1.5	Resea	rch Contrib	oution	8
	1.6	Thesis	s Organisat	ion	9
2.	LIT	ERAT	URE REV	IEW	10
	2.1	Introd	uction		10
	2.2	Manu	facturing S	ustainability	10
		2.2.1	Manufact	uring Sustainability Definition and Scope	11
		2.2.2	Manufact	Turing Sustainability Programs and Practices	13
			2.2.2.1	Environmental Sustainability	14
			2.2.2.2	Social Sustainability	22
	23	Manu	facturing Si	ustainability in Malaysian Palm Oil Mills	20
	2.3	2.3.1	Adverse 1	Environmental Impacts and Concerns in Palm Oil	32
			Mills		
		2.3.2	Regulatio	ons for Palm Oil Mills Sustainability	35
			2.3.2.1	Malaysian Laws and Regulations for	35
			2222	Environmental Performance	27
			2.3.2.2	Malaysian Laws and Regulations for Social	31
			2222	renormalice Malaysian Laws and Regulations for Economic	20
			2.3.2.3	Performance	39
			2.3.2.4	Voluntary Standards for sustainable palm oil mill in Malaysia	40

			2.3.2.6	Social Criteria of Sustainability Voluntary	45
			2227	Standards Economic Porformance Criteria of Sustainability	17
			2.3.2.1	Voluntary Standard	4/
		233	To-date F	Research on Manufacturing Sustainability in the	49
		2.3.3	Palm Oil	Mills	17
			2.3.3.1	Environmental Aspect	50
			2.3.3.2	Economic Aspect	52
			2.3.3.3	Social Aspect	54
	2.4	Manu	facturing St	ustainability at the Operational Level	56
		2.4.1	Equipmen	nt Effectiveness toward Achieving Manufacturing	56
			Sustainab	bility	
			2.4.1.1	Environmental Conservation	58
			2.4.1.2	Social Efficiency	59
			2.4.1.3	Economic Enhancement	60
		2.4.2	Factors A	Affecting Equipment Effectiveness	61
	2.5	Equip	ment Effec	tiveness and Sustainability Model	64
	2.6	Resea	rch Approa	ich	71
		2.6.1	Adaption	of Failure Modes Effects Analysis in	71
			Manufact	turing Sustainability	
		2.6.2	Integratin	ng Analytical Hierarchy Process and Failure Modes	77
			Effects A	nalysis	
		2.6.3	Survey P	opulation and Sampling	80
		2.6.4	Question	naire Survey Analysis	81
	2.7	Critic	al Review		82
		2.7.1	Sustainab	bility Programs and Practices	82
		2.7.2	Factors A	Affecting Equipment Effectiveness	83
		2.7.3	Sustainab	oility Model based on FMEA	84
3.	RES	SEARC	CH METHO	DDOLOGY	86
	3.1	Introd	luction		86
	3.2	Resea	rch Design		86
	3.3	Quest	ionnaire Su	irvey	89
		3.3.1	Question	naires Structure	90
		3.3.2	Pilot Surv	vey and Content Validity	91
		3.3.3	Sample P	opulation	91
		3.3.4	Question	naire Administration	93
		3.3.5	Populatio	on and Sampling	94
	3.4	Mode	l developm	ent and formulation	95
		3.4.1	Process L	Description	96
		3.4.2	Equipmen	nt Effectiveness Model Formulation	96
	~ -	3.4.3	Sustainab	pility Performance Model Construction	97
	3.5	Initial	Model Val	lidation	99
	3.6	Mode	I Validation	n through Case Study	99
		3.6.1	Field Obs	servations	100
		3.6.2	Company	's Documents Review	100
	2 7	3.6.3	Semi Stri	actured Interview	101
	3.7	Sumn	nary		102

4.	SURVEY RESULT AND DISCUSSION						
	4.1	Introd	uction	103			
	4.2	Objec	tives of the Survey	103			
	4.3	Analy	sis of Sample Demographic	104			
	4.4	Sustai	nability Programs and Practices in Malaysian Palm Oil Mills	108			
		4.4.1	Normality and Binomial Test for Sustainability Programs and Practices	108			
		4.4.2	Comparison of Mean Score for Sustainability Programs and Practices	111			
		4.4.3	Correlation Analysis of Sustainability Programs and Practices	116			
		4.4.4	Factor Analysis for Sustainability Programs and Practices	121			
	4.5	Sustai	nability Regulatory Compliance in Malaysian Palm Oil Mills	127			
		4.5.1	Normality Test and Mean Score of Sustainability Regulatory Compliance	128			
		4.5.2	Correlation Analysis for Sustainability Regulatory Compliance	135			
		4.5.3	Binomial Test for Sustainability Regulatory Compliance	139			
		4.5.4	Factor Analysis for Sustainability Voluntary Standards Compliance	140			
	4.6	Factor	rs Affecting Equipment Effectiveness in the Malaysian Palm	145			
		Oil M	ills				
		4.6.1	Normality and Binomial Test for Equipment Effectiveness Components	145			
		4.6.2	Mean score for Factors Affecting Equipment Effectiveness	147			
		4.6.3	Correlation Analysis for Factors Affecting Equipment Effectiveness	149			
		4.6.4	Factor Analysis for Factors Affecting Equipment Effectiveness	152			
	4.7	Manu	facturing Sustainability Opportunity from Equipment	158			
		Effect	iveness				
		4.7.1	Normality and Binomial Test for Manufacturing Sustainability Opportunity from Equipment Effectiveness	158			
		4.7.2	Mean Score for Manufacturing Sustainability Opportunity from Equipment Effectiveness	161			
		4.7.3	Correlation Analysis of Manufacturing Sustainability Opportunity	166			
		4.7.4	Factor Analysis for Manufacturing Sustainability Opportunity from Equipment Effectiveness	171			
	4.8	Summ	hary	176			
5.	MO	MODEL DEVELOPMENT AND VALIDATION					
	J.I	Introd		1/8			
	5.2	Mode	Development	178			
		5.2.1	Initial Model Framework	179			
	5.3	Equip 5.3.1	ment Effectiveness and Sustainability Performance Model Model Phase 1: Process Description	186 188			

		5.3.2	Model P	hase 2: Assessment of Equipment Effectiveness	189
			Performa	ance	
			5.3.2.1	Measurement of OEE Performance	189
			5.3.2.2	Estimation of Reliability Performance	192
		5.3.3	Model P	hase 3: Assessment of Sustainability Performance	195
		5.3.4	Performa	ance Level of Sustainability and Equipment	202
			Effective	eness	
	5.4	Mode	l Validatio	n	204
		5.4.1	Process 1	Description in the POM	204
		5.4.2	Equipme	ent Effectiveness Performance in the POM	207
		5.4.3	Reliabili System	ty Analysis of Critical Equipment Machinery in the	215
		5.4.4	Sustaina	bility Performance Assessment in the POM	223
			5.4.4.1	Pair-Wise Comparison Consistency of Decision Judgement	226
			5.4.4.2	Computational of Global Weights of Each Element and Sub-Element	227
			5.4.4.3	Evaluation of Sustainability Performance of Critical Equipment	231
	5.5	Summ	nary		240
6.	CON	ICLUS	ION AND	RECOMMENDATIONS	241
	6.1	Introd	uction		241
	6.2	Summ	nary of Res	search Findings	241
	6.3	Resea	rch Contri	butions and Implications	245
		6.3.1	Theoreti	cal Contributions	245
		6.3.2	Practical	Implications	246
	6.4	Resea	rch Limita	tions and Recommendation for Future Research	247
RE	FERE	NCES			249
AP	PEND	ICES			299

6.

LIST OF TABLES

TITLE

TABLE

PAGE

2.1	Environmental Elements of Manufacturing Sustainability	15
22	F F Conomic and Social Flements of Manufacturing Sustainability	24
2.2	Practices in the POM	27
2.3	Overview of Sustainability Voluntary Standards for POM	41
2.4	Environmental Criteria of Voluntary Standards for POM	43
	Sustainability	
2.5	Social Performance Criteria of Voluntary Standards for POM	46
	Sustainability	
2.6	Economic Performance Criteria of Voluntary Standard for POM	48
	Sustainability	
2.7	Interruption Events of Equipment Effectiveness	63
2.8	Equipment Effectiveness and Sustainability Model	65
2.9	Sustainability Elements Addressed in the FMEA Model	73
2.10	Population and sampling of previous research on manufacturing sustainability	80
3.1	Design of the Questionnaire Survey	89
3.2	Structure of Questionnaire Survey	90
3.3	List of Information Required from Case Study	101
4.1	Mills Main Product and By-Products	105
4.2	Result of Reliability Analysis	108
4.3	Hypotheses for the Normality Test for Sustainable	108
	Manufacturing Practices	
4.4	Hypotheses for Binomial Test of Sustainable Manufacturing	109
15	Practices Summary of Normality and Dinamial Tast for Systematility	110
4.3	Programs and Practices in Malaysian POM	110
4.6	Correlation for Priority of Sustainability Practices in Malaysian	118
ч. 0	POM	110
4.7	Correlation for Achievement of Sustainability Practices in	118
,	Malaysian POM	
4.8	Comparison of Correlation of Sustainability Programs and	119
	Practices	
4.9	Results of KMO and Bartlett's Test for Sustainability Practices in POM	122

4.10	Factor Analysis of Sustainability Practices in Malaysian POM	125
4.11	Hypotheses for Normality Test of Sustainability Regulatory Compliance	128
4.12	Summary of Normality Test, Mean and Standard Deviation for Sustainability Regulatory Compliance in Malaysian POM	130
4.13	Correlation for Priority of Sustainability Regulatory Compliance	136
4.14	Correlation for Achievement of Sustainability Regulatory Compliance	137
4.15	Comparison of Correlation for Priority and Achievement of Sustainability Regulatory Compliance in Malaysian POM	138
4.16	Hypotheses for Binomial Test of Sustainability Regulatory Compliance	139
4.17	Summary Results of Binomial Test for Sustainability Regulatory Compliance in Malaysian POM	140
4.18	Results of KMO and Bartlett's Test for Sustainability Voluntary Standards Compliance	141
4.19	Factor Analysis of Sustainability Voluntary Standards Compliance in Malaysian POM	142
4.20	Normality Test Hypotheses for Factors Affecting Equipment Effectiveness	145
4.21	Binomial Test Hypotheses for Factors Affecting Equipment Effectiveness	145
4.22	Normality and Binomial Test for Factors Affecting Equipment Effectiveness	146
4.23	Correlation of Factors Affecting Equipment Effectiveness in Malaysian POM	150
4.24	Correlation Strength Comparison	151
4.25	KMO and Bartlett's Test for Factors Affecting Equipment Effectiveness	152
4.26	Results of Factor Analysis for Equipment Effectiveness in the POM	154
4.27	Hypotheses for Normality Test for Manufacturing Sustainability Opportunity	158
4.28	Hypotheses for the Binomial test for Manufacturing Sustainability Opportunity	158
4.29	Malaysian POMs' Priority and Current Achievement of Performance of Manufacturing Sustainability Opportunity	159
4.30	Correlation for Priority of Manufacturing Sustainability Opportunity from Equipment Effectiveness	167
4.31	Correlation for Achievement of Manufacturing Sustainability Opportunity from Equipment Effectiveness	168
4.32	Comparison of Correlation for Priority and Achievement of Manufacturing Sustainability Opportunity from Equipment Effectiveness	169
4.33	Results of KMO and Bartlett's Test for Sustainability Opportunity from Equipment Effectiveness	171
4.34	Factor Analysis of Manufacturing Sustainability Opportunity from Equipment Effectiveness for Malaysian POM	173

5.1	Description of Codes in the Hierarchy Model	196
5.2	Corresponding Score of Technical, Environmental, Economic,	199
	and Social Factors of Failure Occurrence, Os	
5.3	Corresponding Score of Technical, Environmental, Economic,	200
	and Social Factors of Failure Severity, Ss	
5.4	Corresponding Score of Technical, Environmental, Economic,	201
	and Social Factors for Failure Detection, Ds	202
5.5	The Benchmark of the OEE Performance Level	202
5.6	Shape Parameter (β) Constitutes Failure Behaviour	203
5.7	Reliability Performance Level	203
5.8	RPN and SPN Performance Level	203
5.9	Company Profile for Model Validation	204
5.10	Overall Equipment Effectiveness from POM for 2014	208
5.11	Overall Equipment Effectiveness from POM for 2015	209
5.12	Overall Equipment Effectiveness from POM for 2016	210
5.13	Summary of Reliability Analysis of Critical Equipment in the POM	222
5.14	Pairwise Comparison Scale (Ocampo and Clark, 2015)	224
5.15	Pair-Wise Comparison of the Occurrence, Severity, and	225
	Detection	
5.16	Priority Weights of the Occurrence, Severity, and Detection	225
5.17	Average Random Consistency Index (RI) Based on Matrix Size (Saaty, 1994)	226
5.18	Rank of the Matrix of Level 1	227
5.19	Pair-Wise Comparison Matrix for Sub-Elements of Probability of Os	227
5.20	Standardised Matrix for Sub-Elements of Probability of Os	228
5.21	Synthesis of Priorities for Sub-Elements of Probability of Os	228
5.22	Pair-Wise Comparison Matrix for Sub-Elements of Ss	228
5.23	Standardised Matrix for Sub-Elements of Ss	228
5.24	Synthesis of Priorities for Sub-Elements of Ss	229
5.25	Pair-Wise Comparison Matrix for Sub-Elements of Probability	229
5.26	Standardised Matrix for Sub-Elements of Probability of Ds	229
5 27	Synthesis of Priorities for Sub-Elements of Probability of Ds	229
5.28	Weightage of Sustainability Factor	230
5 29	Failure Mode, Cause and Effect of Loading Ramp	232
5 30	Failure Mode, Cause and Effect of Steriliser	232
5 31	Failure Mode, Cause and Effect of Thresher	233
5 32	Failure Mode, Cause and Effect of Boiler	235
5 33	Sustainability Performance of the Critical Equipment in the	233
5.55	POM	231
3.34	Proposed SPN	238

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Performance Scope of the Manufacturing Sustainability (Liyanage et al., 2009)	12
2.2	Annual Production Capacity of Certified Sustainable Palm Oil (RSPO, 2016)	30
2.3	Examples of POM Wastes and Environmental Effects	33
2.4	Regulatory Principles for POM Sustainability	36
2.5	Translating OEE Measure into Manufacturing Sustainability	58
2.6	Basic AHP Model (Subramanian and Ramanathan, 2012)	78
3.1	Flowchart of Research Methodology	87
3.2	Phases of the Model Developed	95
3.3	Flowchart of FMEA-AHP Approach for the Model	98
4.1	Demographic Analysis of the Survey	106
4.2	Comparison of Mean Score for Sustainability Programs and Practices	112
4.3	Normality Test for Mean Sustainability Programs and Practices Priority	114
4.4	Normality Test for Mean Sustainability Programs and Practices Achievement	114
4.5	Results of Two-Sample T Test for Sustainability Programs and Practices	115
4.6	Box plot of Mean Comparison Sustainability Programs and Practices	116
4.7	Scree Plot of Factor Analysis of Sustainability Practices in Malaysian POM	124
4.8	Mean Score Difference between Priority and Achievement	129
4.9	Normality Test for Mean Sustainability Regulation Compliance Priority	132
4.10	Normality Test for Mean Sustainability Regulation Compliance Achievement	133
4.11	Results of Mann-Whitney Test for Sustainability Regulation Compliance	134
4.12	Box plot of Median Comparison Sustainability Regulation Compliance	134
4.13	Scree Plot of Sustainability Voluntary Standards Factor Analysis	142

4.14	Mean score of Factors Affecting Equipment Effectiveness in Malaysian POM	148
4.15	Scree Plot of Equipment Effectiveness Factor Analysis	154
4.16	Comparison of Mean Score Manufacturing Sustainability	162
	Opportunity from Equipment Effectiveness	
4.17	Normality Test for Mean Sustainability Benefits Priority	163
4.18	Normality Test for Mean Sustainability Benefits Achievement	164
4.19	Results of Mann-Whitney Test for Sustainability Benefits	165
4.20	Box plot of Median Comparison for Sustainability Benefits	165
4.21	Scree Plot of Manufacturing Sustainability Opportunity from	173
	Equipment Effectiveness for Malaysian POM	
5.1	Organisational Model for Asset Sustainability (Ossai et al., 2014)	180
5.2	Initial Framework for Equipment Effectiveness and Sustainability at	182
	Plant Department	
5.3	The Model Structure Constructed as in IPO	185
5.4	Equipment Effectiveness and Sustainability Performance Model	187
5.5	Bathtub Curve for Failure Rate (Wang et al. 2002)	192
5.6	Hierarchy Model for Weightage of Sustainability Criteria Based on	196
	FMEA Criteria	
5.7	Material and Process Flow of the POM	206
5.8	Availability Rate, Performance Rate and Quality Rate of POM	211
5.9	Overall Equipment Effectiveness Performance of POM Compared	212
	to the World Class OEE	
5.10	Frequency of Equipment Failure in the POM	216
5.11	Graphical summary of Loading Ramp TBF	217
5.12	Graphical Analysis of Steriliser TBF	218
5.13	Graphical Analysis of Thresher TBF	218
5.14	Graphical Analysis of Boiler TBF	219
5.15	PDF, Goodness-Of-Fit, Survival, and Hazard Rate Plot of Loading	220
	Ramp	
5.16	PDF, Goodness-Of-Fit, Survival, and Hazard Rate Plot of Steriliser	220
5.17	PDF, Goodness-Of-Fit, Survival, and Hazard Rate Plot of Thresher	221
5.18	PDF, Goodness-Of-Fit, Survival, and Hazard Rate Plot of Boiler	221
5.19	Functional Block Diagram of Loading Ramp	232
5.20	Functional Block Diagram of Steriliser	233
5.21	Functional Block Diagram of Thresher	234
5.22	Functional Block Diagram of Boiler	235

LIST OF APPENDICES

TITLE

PAGE

A	Survey Questionnaire	299
В	Assessment of Questionnaire (Pre-Test)	311
С	Survey Respondents	315
D	Assessment of Proposed Model (Initial Model Validation)	318
E	Background of Panels for Semi-Structured Interview	322
F	Semi-Structured Interview Questions for Assessment of Sustainability-FMEA	323
G	Factor Analysis	330
Н	Experts' Judgement of AHP Pairwise	361

xiii

LIST OF ABBREVIATIONS

AHP	-	Analytical Hierachy Process
BOD	-	Biochemical Oxygen Demand
CDF	-	Cumulative Density Function
CDM	-	Clean Development Mechanism
CI	-	Consistency Index
COD	-	Chemical Oxygen Demand
СРКО	-	Palm Kernel Oil
CPO	-	Crude Palm Oil
CR	-	Consistency Ratio
CSR	-	Corporate Social Responsibility
D	-	Detection
DJSI	-	Dow Jones Sustainability Index
EFB	-	Empty Fruit Bunches
EPF	-	Equity Corporation and The Employees Provident Fund
EQA	-	Environmental Quality Act
ERPN	-	Extended Risk Priority Number
EU-RED	-	European Union's Renewable Energy Directive
FBD	-	Functional Block Diagram
FELDA	-	Federal Land Development Authority
FFA	-	Free Fatty Acid
FFB	-	Fresh Fruit Bunches
FMA	-	Factory And Machinery Act
GHG	-	Greenhouse Gasses
НАССР	-	Hazard Analysis Critical Control Point
IPO	-	Input-Process-Output
ISCC	-	International Sustainability And Carbon Certification
ISO	-	International Organization For Standardization
KeTTHA	-	Ministry of Energy, Green Technology And Water
КМО	-	Kaiser-Meyer-Olkin
K-S	-	Kolmogorov-Smirnov
LCA	-	Life Cycle Assessment
LCC	-	Life Cycle Costing
LCIA	-	Life Cycle Impact Assessment
MCDM	-	Multi-Criteria Decision-Making

xiv

MEOMA	-	Malayan Edible Oil Manufacturers' Association
MLE	-	Maximum Likelihood Estimation
MOHR	-	Ministry of Human Resource
MPOB	-	Malaysian Palm Oil Board
MSPO	-	Malaysian Sustainable Palm Oil
MTBF	-	Mean Time Between Failure
MYR	-	Malaysian Ringgit
0	-	Occurrence
OEE	-	Overall Equipment Effectiveness
OER	-	Oil Extraction Rate
OSHA	-	Occupational Safety And Health Administration
PDF	-	Probability Density Function
РК	-	Palm Kernel
PME	-	Palm Oil Methyl Ester
POM	-	Palm Oil Mill
POME	-	Palm Oil Mill Effluent
PORAM	-	Palm Oil Refiners Association of Malaysia
PROMETHEE	-	Preference Ranking Organization Method for Enrichment Evaluation
RI	-	Random Consistency Index
RPN	-	Risk Priority Number
RSB	-	Roundtable On Sustainable Biofuels
RSPO	-	Roundtable On Sustainable Palm Oil
S	-	Severity
SIRIM	-	Standards and Industrial Research Institute of Malaysia
SOCSO	-	Social Security Organization
SPN	-	Sustainability Priority Number
SPSS	-	Statistical Package for the Social Sciences
TBF	-	Time Between Failure
TBL	-	Triple Bottom Line
TOPSIS	-	Similarity to Ideal Solution
TPM	-	Total Productive Maintenance
UFOP	-	Union for The Promotion of Oil and Protein Plants
UKM	-	Universiti Kebangsaan Malaysia
UNFCC	-	United Nations Framework Convention on Climate Change
USD	-	United States Dollar
USDA	-	United States Department of Agriculture
UTeM	-	Universiti Teknikal Malaysia Melaka
WBCSD	-	United Nations Global Compact, and World Business Council For Sustainable Development
WCED	-	World Commission on Environment and Development
WIP	-	Work In Progress
WWF	-	World Wildlife Fund

XV

LIST OF SYMBOLS

CO ₂ eq	-	Carbon Dioxida Equivalents
(Decf) _j	-	Failure Detection for Economic Element for Equipment j
(Denf) _j	-	Failure Detection for Environmental Element for Equipment <i>j</i>
$(Dsf)_i$	-	Failure Detection for Social Element for Equipment <i>j</i>
(Dtec) _i	-	Failure Detection for Technical Element for Equipment <i>j</i>
$(0ecf)_i$	-	Failure Occurrence for Economic Element for Equipment <i>j</i>
$(0enf)_i$	-	Failure Occurrence for Environmental Element for Equipment <i>j</i>
$(Osf)_i$	-	Failure Occurrence for Social Element for Equipment <i>j</i>
$(Otec)_i$	-	Failure Occurrence for Technical Element for Equipment <i>j</i>
$(Secf)_{i}$	-	Failure Severity for Economic Element for Equipment <i>j</i>
(Senf) _i	-	Failure Severity for Environmental Element for Equipment <i>j</i>
$(Ssf)_i$		Failure Severity for Social Element for Equipment <i>j</i>
(Stec) _i	-	Failure Severity for Technical Element for Equipment <i>j</i>
DW_T	-	Downtime
Ds _i	-	Failure Detection of Sustainability Perspective for Equipment <i>j</i>
OER _A	-	Actual OER Achieved by the Mill
OER _I	-	Ideal OER
OP_T	-	Net Operating Time
OUT_A	-	Actual Production Output Per Hour
OUT_S	-	Scheduled Production Output Per Hour
Os _j	-	Failure Occurrence of Sustainability Perspective for Equipment <i>j</i>
PM_T	-	Scheduled Preventive Maintenance
PS_T	-	Planned Shutdown
SPN _i	-	Sustainability Priority Number for Equipment j
ScO_T	-	Scheduled Operating Time
Ss _i	-	Severity rating of sustainability perspective for equipment <i>j</i>
Â	-	Positive Reciprocal Square Matrix
exp	-	Exponential
f(t)	-	Probability Density Function
F(t)	-	Cumulative Distribution Function
H(t)	-	Hazard Rate Function
kWh/ton	-	Kilowatt Hours per Ton
MJ/ton	-	Mega Joule per Ton
R(t)	-	Reliability Function

xvi

wl	-	Weightage Probability of Failure Occurrence for Technical Factor
w2	-	Weightage Probability of Failure Occurrence for Environmental Factor
w3	-	Weightage Probability of Failure Occurrence for Economic Factor
w4	-	Weightage Probability of Failure Occurrence for Social Factor
w5	-	Weightage Probability of Failure Severity for Technical Factor
w6	-	Weightage Probability of Failure Severity for Environmental Factor
w7	-	Weightage Probability of Failure Severity for Economic Factor
w8	-	Weightage Probability of Failure Severity for Social Factor
w9	-	Weightage Probability of Failure Detection for Technical Factor
w10	-	Weightage Probability of Failure Detection for Environmental Factor
w11	-	Weightage Probability of Failure Detection for Economic Factor
w12	-	Weightage Probability of Failure Detection for Social Factor
W_i	-	Priority Weight
λmax	-	Largest Eigenvector
t	-	Time
β	-	Shape Parameter
η	-	Scale Parameter
n_0	-	Sample Size
m	-	Value of Selected Alpha Level of 0.05
S	-	Estimate of Standard Deviation of the Population
d	-	Acceptable Margin of Error
n_1	-	Required Return Sample Size Because Sample > 5% of Population

xvii

LIST OF PUBLICATIONS

- Abdullah, I., Mahmood, W., Hasrulnizzam, W., Md Fauadi, H.F., Ab Rahman, M.N., and Mohamed, S.B., 2017. Sustainable manufacturing practices in Malaysian palm oil mills: Priority and current performance. *Journal of Manufacturing Technology Management*, 28(3), pp. 278-298.
- Abdullah, I., Mahmood, W., Hasrulnizzam, W., Md Fauadi, H.F., Ab Rahman, M.N., and Fathiyah, A.J., 2015. Sustainability in Malaysian palm oil: A review on manufacturing perspective. *Polish Journal of Environmental Studies*, 24(4), pp. 1463-1475.
- Mahmood, W., Hasrulnizzam, W., Abdullah, I., Md Fauadi, H.F., 2015. Translating OEE Measure into Manufacturing Sustainability. *Applied Mechanics and Materials*, vol. 761, pp. 555-559.
- Abdullah, I., Mahmood, W., Hasrulnizzam, W., Md Fauadi, H.F., Ab Rahman, M.N., 2015. Benefits of Regulatory and Voluntary Standards Compliance on Malaysian Palm Oil Mill Sustainability. *Journal of Advance Manufacturing Technology*, 9(1), pp. 1-12.

xviii

- Mahmood, W., Hasrulnizzam, W., Abdullah, I., Md Fauadi, H.F., and Ab Rahman, M.N., 2014. OEE measure for sustainable environment in palm oil mill: A Review, *Lahore Science International*, 26(5), pp. 1855-1859.
- Abdullah, I., Mahmood, W., Hasrulnizzam, W., Md Fauadi, H.F., Ab Rahman, M.N., Ab Halim, M.F.M., and Nor Shah, M.B. Malaysian Palm Oil Mill Sustainability Regulations: From Organisation Priority to Compliance Operation. (Accepted: *Journal of Advance Manufacturing Technology*).
- Mahmood, W., Hasrulnizzam, W., Abdullah, I., Md Fauadi, H.F., Ab Rahman, M.N., Ab Halim, M.F.M., Said, M.A., Sabri, M.S.M. Prioritising Sustainability Risk of Failure Mode and Effect Analysis using Analytical Hierarchy Process for Palm Oil Mill. (Accepted: *Journal of Advance Manufacturing Technology*).