

Faculty of Information and Communication Technology

ENHANCEMENT OF MEDICAL IMAGE COMPRESSION ALGORITHM IN NOISY WLANS TRANSMISSION

Mustafa Almahdi Algaet

Doctor of Philosophy

2018

C Universiti Teknikal Malaysia Melaka

ENHANCEMENT OF MEDICAL IMAGE COMPRESSION ALGORITHM IN NOISY WLANS TRANSMISSION

Mustafa Almahdi Algaet

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Faculty of Information and Communication Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

DECLARATION

I declare that this thesis entitled –Enhancement of Medical Image Compression Algorithm in Noisy WLANS Transmission" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Mustafa Almahdi Algaet
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Doctor of Philosophy.

Signature	:
Supervisor Name	: Prof. Madya Dr. Abd. Samad Bin Hasan Basari
Date	:

DEDICATION

To Allah S.W.T that always provides miracles and guidance in my life.

To my family, for their love, caring, sacrifice, and support during the process of achieving this milestone in my life.

To my teachers who never stop teach and directing to this achievement.

C Universiti Teknikal Malaysia Melaka

ABSTRACT

Advances in telemedicine technology enable rapid medical diagnoses with visualization and quantitative assessment by medical practitioners. In healthcare and hospital networks, medical data exchange-based wireless local area network (WLAN) transceivers remain challenging because of their growing data size, real-time contact with compressed images, and range of bandwidths requiring transmission support. Prior to transmission, medical data are compressed to minimize transmission bandwidth and save transmitting power. Researchers address many challenges in improving performance of compression approaches. Such challenges include energy compaction, computational complexity, high entropy value, drive low compression ratio (CR) and high computational complexity in real-time implementation. Thus, a new approach called Enhanced Independent Component Analysis (EICA) for medical image compression has been developed to boost compression techniques; which transform the image data by block-based Independent Component Analysis (ICA). The proposed method uses Fast Independent Component Analysis (FastICA) algorithm followed by developed quantization architecture based zero quantized coefficients percentage (ZQCP) prediction model using artificial neural network. For image reconstruction, decoding steps based the developed quantization architecture are examined. The EICA is particularly useful where the size of the transmitted data needs to be reduced to minimize the image transmission time. For data compression with suitable and effective performance, enhanced independent components analysis (EICA) is proposed as an algorithm for compression and decompression of medical data. A comparative analysis is performed based on existing data compression techniques: discrete cosine transform (DCT), set partitioning in hierarchical trees (SPIHT), and Joint Photographic Experts Group (JPEG 2000). Three main modules, namely, compression segment (CS), transceiver segment (TRS), and outcome segment (OTS) modules, are developed to realize a fully computerized simulation tool for medical data compression with suitable and effective performance. To compress medical data using algorithms, CS module involves four different approaches which are DCT, SPIHT, JPEG 2000 and EICA. TRS module is processed by low-cost WLANs with low-bandwidth transmission. Finally, OTS is used for data decompression and visualization result. In terms of compression module, results show the benefits of applying EICA in medical data compression and transmission. While for system design, the developed system displays favorable outcomes in compressing and transmitting medical data. In conclusion, all three modules (CS, TRS, and OTS) are integrated to yield a computerized prototype named as Medical Data Simulation System (Medata-SIM) computerized system that includes medical data compression and transceiver for visualization to aid medical practitioners in carrying out rapid diagnoses.

ABSTRAK

Kemajuan dalam teknologi teleperubatan membolehkan pakar perubatan membuat diagnosis perubatan dengan lebih pantas menggunakan visualisasi dan penaksiran kuantitatif. Dalam rangkaian penjagaan kesihatan dan perubatan, pemancar-terima rangkaian tanpa wayar kawasan setempat (WLAN) berasaskan pertukaran data perubatan masih kekal sebagai suatu cabaran disebabkan saiz data yang semakin besar, sentuhan masa nyata dengan imej mampat, dan julat jalur lebar yang memerlukan sokongan penghantaran. Sebelum dihantar, data perubatan dimampatkan untuk meminimumkan jalur lebar penghantaran dan menjimatkan kuasa penghantaran. Para penyelidik mengenalpasti pelbagai cabaran dalam menambah baik pendekatan pemampatan. Antara cabaran yang dihadapi termasuk pemadatan tenaga, pengkomputeran kompleks, nilai entropi tinggi, pacuan nisbah mampatan (CR) rendah serta kekompleksan pengkomputeran tinggi dalam pelaksanaan masa nyata. Oleh itu, pendekatan baharu yang dinamakan Analisis Komponen Tak Bersandar Dipertingkat (EICA) bagi pemampatan imej perubatan telah dibangunkan untuk mempertingkatkan teknik pemampatan dengan menukar data imej melalui ICA berasaskan blok. Kaedah yang dicadangkan menggunakan algoritma Analisis Komponen Tak Bersandar Pantas (FastICA) diikuti oleh pembangunan model ramalan peratus pekali terkuantum sifar (ZQCP) berasaskan seni bina pengkuantuman lanjut dengan menggunakan rangkaian neural buatan. Bagi pembinaan semula imej, langkah penyahkodan berdasarkan seni bina pengkuantuman lanjut diteliti. EICA adalah khususnya berguna apabila saiz data yang dihantar perlu dikurangkan untuk meminimumkan masa penghantaran imej. Bagi pemampatan data dengan prestasi berkesan dan sesuai, analisis komponen tak bersandar dipertingkat (EICA) adalah disyorkan sebagai algoritma untuk memampat dan menyahmampat data perubatan. Analisis perbandingan dilakukan berdasarkan teknik pemampatan data sedia ada: jelmaan kosinus diskret (DCT), pemetakan set dalam pepohon berhierarki (SPIHT), dan Kumpulan Pakar Fotografi Bersama (JPEG 2000). Tiga modul utama, iaitu modul segmen pemampatan (CS), segmen pemancar-terima (TRS), dan segmen hasil (OTS), dibangunkan untuk memperoleh alat simulasi komputer sepenuhnya bagi pemampatan data perubatan dengan prestasi berkesan dan sesuai. Bagi memampatkan data perubatan dengan menggunakan algoritma, modul CS melibatkan empat pendekatan berlainan iaitu DCT, SPIHT, JPEG 2000 dan EICA. Modul TRS diproses oleh WLAN kos rendah dengan penghantaran jalur lebar rendah. Akhir sekali, OTS digunakan untuk pemampatan data dan keputusan secara visual. Dari segi modul pemampatan, keputusan menunjukkan manfaat menggunakan EICA dalam pemampatan dan penghantaran data perubatan. Sementara dari segi reka bentuk sistem, sistem yang dibangunkan menunjukkan hasil menggalakkan dalam pemampatan dan penghantaran data Kesimpulannya, semua tiga modul (CS, TRS dan OCS) digabungkan untuk perubatan. menghasilkan prototaip sistem komputer iaitu Sistem Simulasi Data Perubatan (Metadata-SIM) yang merangkumi pemampatan data perubatan dan pemancar-terima untuk visualisasi bagi membantu pengamal perubatan membuat diagnosis dengan pantas.

ACKNOWLEDGEMENTS

In the name of Allah, Most Gracious, Most Merciful. All praises belong to Allah, the Rabb (Only God, Cherisher and Sustainer) of the Worlds: Most Gracious, Most Merciful; Master of the Day of Judgment. May Allah send His blessing and peace to Muhammad, his companions, family and all those who call to his way till the Day of Judgement.

First of all, I would like to thank Allah Almighty, who made me capable to complete this thesis throughout those difficult years. I am owe great thanks to my supervisors (Prof Madya Dr. Abd Samad Bin Hasan Basari and Prof Madya Dr. Abdul Samad Shibghatullah), Soul my father (Almahdi), Soul my mother (Fatima) and Soul my brother (Ali), my mother in-law (Maryam), my wife (Njat), my sons (Yasin & Ali Almahdi & Asem) my daughter (Yasmeen), and my siblings (Milad , Abd salam , Ashor , Gomoa, yousef , Ateqa and Zahra) and My brothers in-law (Milad and Bashir) for their patience, inspiration, continuous encouragement and thoughtful advice throughout my years as a PhD student.

I would like to extend my thanks to Universiti Teknikal Malaysia Melaka (UTeM) and all the staff. Last, but not least, I am very much grateful to my friends and colleagues for their time, understanding, advice, and continues moral support.

iii

TABLE OF CONTENTS

DECLAR	ATION	
APPROV	AL	
DEDICA	ΓΙΟΝ	
ABSTRA	СТ	i
ABSTRAK		
ACKNOV	VLEDGEMENTS	iii
TABLE (DF CONTENTS	iv
LIST OF	TABLES	vii
LIST OF	FIGURES	ix
LIST OF	APPENDICES	xvi
LIST OF	ABBREVIATIONS	xvii
LIST OF	PUBLICATIONS	XX
СНАРТ	ER	
1. IN	TRODUCTION	1
1.1	Overview	1
1.2	Problem Statement	3
1.3	Research Objectives	5
1.4	Research Questions	6
1.5	Research Scope	6
1.6	Research Significance	7
1.7	Thesis Organization	8
2. LI	TERATURE REVIEW	9
2.1	Introduction	9
2.2	Communication Networks and Services	9
	2.2.1 Wireless Communications Basics	10
	2.2.2 Wired Versus Wireless	11
	2.2.3 Data Transmission Speed	13
	2.2.4 Electromagnetic Interference (EMI)	14
	2.2.5 Modulation	14
2.3	Transmission Technology	15
	2.3.1 Data Transmission	15
	2.3.2 Type of Wireless Networks	16
	2.3.3 Overview of IEEE 802.11 WLAN	17
2.4	Hospital Network Topology	21
	2.4.1 WLAN in Hospital	22
0.5	2.4.2 Hospital Networking	23
2.5	Compression Approach	25
	2.5.1 DUI Compression	27
	2.5.2 SPIH1 Compression	32
20	2.5.5 JPEG2000 Compression	36 41
2.0	2.6.1 Medical Data Format	41 1
	2.0.1 Wituital Data Foimal	41

		2.6.2 Medical Imaging	42
		2.6.3 Image Compression	42
	2.7	Wireless Telemedicine System	60
	2.8	Summary	66
3.	ME	THODOLOGY	67
	3.1	Introduction	67
	3.2	Proposed Research Framework	67
	3.3	Type of Medical Image	69
		3.3.1 X-ray Images	70
		3.3.2 Fundus Images	71
		3.3.3 Cardiac Ultrasound Images	71
		3.3.4 Entire Database	72
	3.4	Traditional Independent Component Analysis (ICA)	72
		3.4.1 Enhanced Independent Component Analysis (EICA)	77
	3.5	Transmission Simulation	89
		3.5.1 Simulation Schema	90
		3.5.2 Data Bits Stream Converter	91
		3.5.3 DBPSK Modulation	92
	20	3.5.4 Gaussian Noise	92
	3.0	2 (1 Emer Dite	93
		2.6.2 MSE and DSND	93
	27	Summery	94
	5.7	Summary	93
4.	RES	SULTS AND DISCUSSIONS	96
4.	RE 4.1	SULTS AND DISCUSSIONS Introduction	96 96
4.	RES 4.1 4.2	SULTS AND DISCUSSIONS Introduction Interpretation of DCT Compression Results	96 96 96
4.	RE 4.1 4.2	SULTS AND DISCUSSIONS Introduction Interpretation of DCT Compression Results 4.2.1 Optimization of DCT Block Size	96 96 97
4.	RE 4.1 4.2	SULTS AND DISCUSSIONS Introduction Interpretation of DCT Compression Results 4.2.1 Optimization of DCT Block Size 4.2.2 Visual Inspection of DCT on 8 by 8 Block	96 96 97 99
4.	RE 4.1 4.2	SULTS AND DISCUSSIONS Introduction Interpretation of DCT Compression Results 4.2.1 Optimization of DCT Block Size 4.2.2 Visual Inspection of DCT on 8 by 8 Block 4.2.3 Visual Inspection of DCT on 16 by 16 Block	96 96 97 99 104
4.	RE 4.1 4.2	SULTS AND DISCUSSIONS Introduction Interpretation of DCT Compression Results 4.2.1 Optimization of DCT Block Size 4.2.2 Visual Inspection of DCT on 8 by 8 Block 4.2.3 Visual Inspection of DCT on 16 by 16 Block 4.2.4 Visual Inspection of DCT on 32 by 32 Block	96 96 97 99 104 109
4.	RES 4.1 4.2	SULTS AND DISCUSSIONSIntroductionInterpretation of DCT Compression Results4.2.1Optimization of DCT Block Size4.2.2Visual Inspection of DCT on 8 by 8 Block4.2.3Visual Inspection of DCT on 16 by 16 Block4.2.4Visual Inspection of DCT on 32 by 32 Block4.2.5Optimization of Maintained DCT Coefficient	96 96 97 99 104 109 114
4.	RES 4.1 4.2	SULTS AND DISCUSSIONS Introduction Interpretation of DCT Compression Results 4.2.1 Optimization of DCT Block Size 4.2.2 Visual Inspection of DCT on 8 by 8 Block 4.2.3 Visual Inspection of DCT on 16 by 16 Block 4.2.4 Visual Inspection of DCT on 32 by 32 Block 4.2.5 Optimization of Maintained DCT Coefficient Interpretation of SPIHT Compression Result	96 96 97 99 104 109 114
4.	RES 4.1 4.2	SULTS AND DISCUSSIONSIntroductionInterpretation of DCT Compression Results4.2.1Optimization of DCT Block Size4.2.2Visual Inspection of DCT on 8 by 8 Block4.2.3Visual Inspection of DCT on 16 by 16 Block4.2.4Visual Inspection of DCT on 32 by 32 Block4.2.5Optimization of Maintained DCT CoefficientInterpretation of SPIHT Compression Result4.3.1Optimization of SPIHT Wavelet Functions4.3.2Visual Impaction of SPIHT Wavelet Functions	96 96 97 99 104 109 114 115 115
4.	RE 4.1 4.2 4.3	SULTS AND DISCUSSIONSIntroductionInterpretation of DCT Compression Results4.2.1Optimization of DCT Block Size4.2.2Visual Inspection of DCT on 8 by 8 Block4.2.3Visual Inspection of DCT on 16 by 16 Block4.2.4Visual Inspection of DCT on 32 by 32 Block4.2.5Optimization of Maintained DCT CoefficientInterpretation of SPIHT Compression Result4.3.1Optimization of SPIHT Wavelet Functions4.3.2Visual Inspection of SPIHT Pate Effect	96 96 97 99 104 109 114 115 115 118
4.	RES 4.1 4.2	SULTS AND DISCUSSIONSIntroductionInterpretation of DCT Compression Results4.2.1Optimization of DCT Block Size4.2.2Visual Inspection of DCT on 8 by 8 Block4.2.3Visual Inspection of DCT on 16 by 16 Block4.2.4Visual Inspection of DCT on 32 by 32 Block4.2.5Optimization of Maintained DCT CoefficientInterpretation of SPIHT Compression Result4.3.1Optimization of SPIHT Wavelet Functions4.3.2Visual Inspection of SPIHT Rate Effect4.3.3Optimization of SPIHT Rate Effect	96 96 97 99 104 109 114 115 115 118 124
4.	RES 4.1 4.2 4.3	SULTS AND DISCUSSIONSIntroductionInterpretation of DCT Compression Results4.2.1Optimization of DCT Block Size4.2.2Visual Inspection of DCT on 8 by 8 Block4.2.3Visual Inspection of DCT on 16 by 16 Block4.2.4Visual Inspection of DCT on 32 by 32 Block4.2.5Optimization of Maintained DCT CoefficientInterpretation of SPIHT Compression Result4.3.1Optimization of SPIHT Wavelet Functions4.3.2Visual Inspection of SPIHT Wavelets Effect4.3.3Optimization of SPIHT Rate Effect4.3.4Visual Inspection of SPIHT Ratio Effect4.3.4Visual Inspection of SPIHT Ratio Effect	96 96 97 99 104 109 114 115 115 115 118 124 126 128
4.	RE 4.1 4.2 4.3	SULTS AND DISCUSSIONSIntroductionInterpretation of DCT Compression Results4.2.1Optimization of DCT Block Size4.2.2Visual Inspection of DCT on 8 by 8 Block4.2.3Visual Inspection of DCT on 16 by 16 Block4.2.4Visual Inspection of DCT on 32 by 32 Block4.2.5Optimization of Maintained DCT CoefficientInterpretation of SPIHT Compression Result4.3.1Optimization of SPIHT Wavelet Functions4.3.2Visual Inspection of SPIHT Wavelets Effect4.3.3Optimization of SPIHT Rate Effect4.3.4Visual Inspection of SPIHT Ratio EffectInterpretation of JPEG2000 Compression Results4.4.1Optimization of Sampling Format	96 96 97 99 104 109 114 115 115 115 118 124 126 128 130
4.	RES 4.1 4.2 4.3	SULTS AND DISCUSSIONSIntroductionInterpretation of DCT Compression Results4.2.1Optimization of DCT Block Size4.2.2Visual Inspection of DCT on 8 by 8 Block4.2.3Visual Inspection of DCT on 16 by 16 Block4.2.4Visual Inspection of DCT on 32 by 32 Block4.2.5Optimization of Maintained DCT CoefficientInterpretation of SPIHT Compression Result4.3.1Optimization of SPIHT Wavelet Functions4.3.2Visual Inspection of SPIHT Wavelets Effect4.3.3Optimization of SPIHT Rate Effect4.3.4Visual Inspection of SPIHT Ratio EffectInterpretation of JPEG2000 Compression Results4.4.1Optimization of Sampling Format4.4.2Visual Inspection of IPEG2000 Based SE	96 96 97 99 104 109 114 115 115 118 124 126 128 130
4.	RES 4.1 4.2 4.3 4.4	SULTS AND DISCUSSIONSIntroductionInterpretation of DCT Compression Results4.2.1Optimization of DCT Block Size4.2.2Visual Inspection of DCT on 8 by 8 Block4.2.3Visual Inspection of DCT on 16 by 16 Block4.2.4Visual Inspection of DCT on 32 by 32 Block4.2.5Optimization of Maintained DCT CoefficientInterpretation of SPIHT Compression Result4.3.1Optimization of SPIHT Wavelet Functions4.3.2Visual Inspection of SPIHT Wavelets Effect4.3.3Optimization of SPIHT Rate Effect4.3.4Visual Inspection of SPIHT Ratio EffectInterpretation of JPEG2000 Compression Results4.4.1Optimization of Sampling Format4.4.2Visual Inspection of JPEG2000 Based SFInterpretation of EICA Compression Results	96 96 97 99 104 109 114 115 115 115 118 124 126 128 130 132
4.	RE 4.1 4.2 4.3 4.3 4.4	SULTS AND DISCUSSIONSIntroductionInterpretation of DCT Compression Results4.2.1Optimization of DCT Block Size4.2.2Visual Inspection of DCT on 8 by 8 Block4.2.3Visual Inspection of DCT on 16 by 16 Block4.2.4Visual Inspection of DCT on 32 by 32 Block4.2.5Optimization of Maintained DCT CoefficientInterpretation of SPIHT Compression Result4.3.1Optimization of SPIHT Wavelet Functions4.3.2Visual Inspection of SPIHT Wavelets Effect4.3.3Optimization of SPIHT Rate Effect4.3.4Visual Inspection of SPIHT Ratio EffectInterpretation of JPEG2000 Compression Results4.4.1Optimization of Sampling Format4.4.2Visual Inspection of JPEG2000 Based SFInterpretation of EICA Compression Results4.5.1Optimization of FICA Independent Component (ICs)	96 96 97 99 104 109 114 115 115 115 118 124 126 128 130 132 136 138
4.	RES 4.1 4.2 4.3 4.4 4.4	SULTS AND DISCUSSIONSIntroductionInterpretation of DCT Compression Results4.2.1Optimization of DCT Block Size4.2.2Visual Inspection of DCT on 8 by 8 Block4.2.3Visual Inspection of DCT on 16 by 16 Block4.2.4Visual Inspection of DCT on 32 by 32 Block4.2.5Optimization of Maintained DCT CoefficientInterpretation of SPIHT Compression Result4.3.1Optimization of SPIHT Wavelet Functions4.3.2Visual Inspection of SPIHT Wavelets Effect4.3.3Optimization of SPIHT Rate Effect4.3.4Visual Inspection of SPIHT Ratio EffectInterpretation of JPEG2000 Compression Results4.4.1Optimization of Sampling Format4.4.2Visual Inspection of JPEG2000 Based SFInterpretation of EICA Compression Results4.5.1Optimization of EICA Independent Component (ICs)4.5.2Visual Inspection of EICA on ICs Variations	96 96 97 99 104 109 114 115 115 115 118 124 126 128 130 132 136 138 139
4.	RES 4.1 4.2 4.3 4.4 4.5	SULTS AND DISCUSSIONSIntroductionInterpretation of DCT Compression Results4.2.1Optimization of DCT Block Size4.2.2Visual Inspection of DCT on 8 by 8 Block4.2.3Visual Inspection of DCT on 16 by 16 Block4.2.4Visual Inspection of DCT on 32 by 32 Block4.2.5Optimization of Maintained DCT CoefficientInterpretation of SPIHT Compression Result4.3.1Optimization of SPIHT Wavelet Functions4.3.2Visual Inspection of SPIHT Wavelets Effect4.3.3Optimization of SPIHT Rate Effect4.3.4Visual Inspection of SPIHT Ratio EffectInterpretation of JPEG2000 Compression Results4.4.1Optimization of Sampling Format4.4.2Visual Inspection of JPEG2000 Based SFInterpretation of EICA Compression Results4.5.1Optimization of EICA Independent Component (ICs)4.5.2Visual Inspection of EICA on ICs Variations4.5.3Optimization of EICA Threshold Value	96 96 97 99 104 109 114 115 115 115 118 124 126 128 130 132 136 138 139 143
4.	RES 4.1 4.2 4.3 4.4 4.5	SULTS AND DISCUSSIONSIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionInterpretation of DCT on 8 by 8 Block4.2.2 Visual Inspection of DCT on 16 by 16 Block4.2.3 Visual Inspection of DCT on 32 by 32 Block4.2.4 Visual Inspection of DCT on 32 by 32 Block4.2.5 Optimization of Maintained DCT CoefficientInterpretation of SPIHT Compression Result4.3.1 Optimization of SPIHT Wavelet Functions4.3.2 Visual Inspection of SPIHT Rate Effect4.3.3 Optimization of SPIHT Rate Effect4.3.4 Visual Inspection of SPIHT Ratio EffectInterpretation of JPEG2000 Compression Results4.4.1 Optimization of Sampling Format4.4.2 Visual Inspection of JPEG2000 Based SFInterpretation of EICA Compression Results4.5.1 Optimization of EICA Independent Component (ICs)4.5.2 Visual Inspection of EICA on ICs Variations4.5.3 Optimization of EICA on Threshold Value4.5.4 Visual Inspection of EICA on Threshold Value	96 96 97 99 104 109 114 115 115 118 124 126 128 130 132 136 138 139 143 144
4.	RES 4.1 4.2 4.3 4.4 4.5 4.6	SULTS AND DISCUSSIONSIntroductionInterpretation of DCT Compression Results4.2.1Optimization of DCT Block Size4.2.2Visual Inspection of DCT on 8 by 8 Block4.2.3Visual Inspection of DCT on 16 by 16 Block4.2.4Visual Inspection of DCT on 32 by 32 Block4.2.5Optimization of Maintained DCT CoefficientInterpretation of SPIHT Compression Result4.3.1Optimization of SPIHT Wavelet Functions4.3.2Visual Inspection of SPIHT Wavelets Effect4.3.3Optimization of SPIHT Rate Effect4.3.4Visual Inspection of SPIHT Ratio EffectInterpretation of JPEG2000 Compression Results4.4.1Optimization of Sampling Format4.4.2Visual Inspection of JPEG2000 Based SFInterpretation of EICA Compression Results4.5.1Optimization of EICA Independent Component (ICs)4.5.2Visual Inspection of EICA on ICs Variations4.5.3Optimization of EICA Threshold Value4.5.4Visual Inspection of EICA on Threshold Variations	96 96 97 99 104 109 114 115 115 118 124 126 128 130 132 136 138 139 143 144
4.	RES 4.1 4.2 4.3 4.3 4.4 4.5 4.6 4.7	SULTS AND DISCUSSIONSIntroductionInterpretation of DCT Compression Results4.2.1Optimization of DCT Block Size4.2.2Visual Inspection of DCT on 8 by 8 Block4.2.3Visual Inspection of DCT on 16 by 16 Block4.2.4Visual Inspection of DCT on 32 by 32 Block4.2.5Optimization of Maintained DCT CoefficientInterpretation of SPIHT Compression Result4.3.1Optimization of SPIHT Wavelet Functions4.3.2Visual Inspection of SPIHT Wavelets Effect4.3.3Optimization of SPIHT Rate Effect4.3.4Visual Inspection of SPIHT Ratio EffectInterpretation of JPEG2000 Compression Results4.4.1Optimization of Sampling Format4.4.2Visual Inspection of JPEG2000 Based SFInterpretation of EICA Compression Results4.5.1Optimization of EICA Independent Component (ICs)4.5.2Visual Inspection of EICA on ICs Variations4.5.3Optimization of EICA Threshold Value4.5.4Visual Inspection of EICA on Threshold VariationsCompression Approach DiscussionWLANs Simulation and Examination	96 96 97 99 104 109 114 115 115 118 124 126 128 130 132 136 138 139 143 144 154

		4.7.2 WLANs Simulation Based Medical Data	160
		4.7.3 Visual Inspection of Es/No Effect	163
	4.8	WLANs Results Interpretation Based on Compression Approach	167
		4.8.1 WLANs Simulation Transceiver Based DCT Compression	167
		4.8.2 Visual Inspection of WLANs Transceiver Based DCT	169
		4.8.3 WLANs Simulation Transceiver Based SPIHT	171
		4.8.4 Visual Inspection of WLANs Transceiver Simulation Based on SPIHT	172
		4.8.5 WLANs Transceiver Simulation Based on JPEG 2000	174
		4.8.6 Visual Inspection of WLANs Transceiver Simulation Based on JPEG2000	176
		4.8.7 WLAN Transceiver Simulation Based on EICA	178
		4.8.8 Visual Inspection of WLAN Transceiver Simulation Based on EICA	180
	4.9	WLAN Transceiver Simulation Based on Compression Approach	182
	4 10	Comparative Study	190
	4.11	Summary	190
5.	VAI	LIDATION OF THE PROTOTYPE	194
	5.1	Introduction	194
	5.2	Medata-SIM System Overview	194
		5.2.1 Block Diagram	194
		5.2.2 Medical Data	195
		5.2.3 Description of the Design	196
	5.3	System Functionality	198
		5.3.1 Source Menu	199
		5.3.2 Compression Menu	200
		5.3.3 Transceiver Menu	202
		5.3.4 Outcome Menu	203
	5.4	Demo of Functionality	203
	5.5	Validation of Prototype System	205
		5.5.1 Integrated Test	206
		5.5.2 System Testing by Professional Medical Expert	207
		5.5.3 Using one-wat ANOVA Test	210
		5.5.4 Evaluation of the System	210
	5.6	Summary	211
6.	CON	NCLUSION AND FUTURE WORK	213
	6.1	Conclusion	213
	6.2	Conclusion based on compression approaches	214
	6.3	Conclusion based on compression and WALNs approaches	215
	6.4	Research Contributions	217
	6.5	Research Limitations for Improvement	218
	6.6	Recommendations for Future Work	218
RE	FERE	NCES	220
APPENDICES		247	

LIST OF TABLES

TITLE

PAGE

TABLE

2.1	Properties of Some Common Wireless Systems	16
2.2	IEEE 802.11 Standards Overview	18
2.3	Analysis of Daubechies' 97 lowpass and highpass filters	40
2.4	Synthesis of Daubechies' 97 lowpass and highpass filters	40
2.5	Synthesis Analysis of the Previous Work	55
2.6	Summary of Various Medical Image Comparison Algorithms	62
4.1 4 2	Statistical measurement of medical data compression using DCT algorithm based 8 by 8 block statistical measurement of medical data compression using DCT	99 104
1.2	algorithm based 16x16 blocks	101
4.3	Statistical measurement of medical data compression using DCT algorithm based 32 by 32 block	109
4.4	Statistical measurement of medical data compression using SPIHT algorithm based on different BWD functions	117
4.5	Statistical measurement of medical data compression using SPIHT algorithm based on selected BWD functions	123
4.6	Statistical measurement of medical data compression using SPIHT algorithm based selected BWD functions and different rates values	125
4.7	Average bit rate and SNR for the images using JPEG2000 compression	130
4.8	Statistical measurement of medical data compression using the JPEG2000 algorithm based on SF	132
4.9	Statistical measurement of EICA compression based on the 8×8 sliding window with different IC values	137
4.10	Statistical measurement of EICA compression selected IC values and 8×8 blocks with different threshold values	143
4.11	Comparative statistical measurement obtained using DCT, SPIHT, JPEG2000, and EICA compression algorithms	156

4.12	Measured BER and PSNR versus Es/No values during WLAN transceiver simulation based on original medical data	162
4.13	Mean measured values of BER and PSNR versus Es/No during WLAN transceiver simulation based on DCT compressed medical data	168
4.14	Mean measured values of BER and PSNR during WLAN transceiver simulation based on SPIHT compressed medical data	172
4.15	Mean PSNR and BER versus Es/No results during transceiver simulation of medical data with JPEG2000 compression for 802.11b DBPKS over AWGN; data rate = 1 Mbps	176
4.16	Measured BER and PSNR versus Es/No values during WLAN transceiver simulation based on EICA compressed medical data	180
4.17	Comparative statistical measurement obtained using WLAN transceiver simulation based on DCT, SPIHT, JPEG2000, and EICA compression algorithms	185
5.1	Items, names, and description functionality of the developed Medata- SIM	197
5.2	Details of system testing by Radiology Department	207
5.3	Testing and Evaluation of Prototype System by Medical Imaging experts	208

LIST OF FIGURES

FIGURE

TITLE

PAGE

2.1	Communication system under noise presence	10
2.2	Guided versus unguided transmission medium	13
2.3	Hospital network connecting all infrastructure including medical	22
	apparatus, administration and clinical doctors	
2.4	Example of WLAN implementing in hospital network that	23
	facilitating either healthcare staff or inpatients	
2.5	Basic Steps in DCT Image Compression	28
2.6	Basic Steps in DWT	34
2.7	Overall encoding procedure adopted by JPEG2000	37
2.8	Division of image components into tiles: tiles in a sequential raster scanning order	39
3.1	Proposed research frameworks	68
3.2	Samples of X-ray images	70
3.3	Samples of fundus images	71
3.4	Samples of cardiac ultrasound image under different diagnosis conditions	72
3.5	Example of The ICA Matrices, Before and After Quantization Process	75
36	The Zig-Zag Encoder	76
3.7	Example of The ICA Matrices, Before and After Encoding Process	76
20	Plack Discrement of Drongsond Image Communication	70
3.8 2.0	Block Diagram of Proposed Image Compression	/ð 70
5.9 2.10	Eventional flow of the proposed zero quantized coefficients	19
5.10	percentage (ZOCP) perdition model	83
3 1 1	ANN design and architecture	87
3.12	Graphs of sensibility versus threshold and specificity versus	88
5.12	threshold and ROC curve with a hypothetical example	00
3.13	Simulation schema of medical data transmission over Wi-Fi protocol	90
3.14	Example of bits stream conversion on medical image with RGB	91
	channel	
3.15	Example of Gaussian noise	93
4.1	Statistical Measurement PSNR and CR Versus Ratio of DCT Coefficients Kept of Medical data Compression Using DCT Based 8 by 8 Block	98
4.2	Visual inspection of (a) original fundus sample, (b) image reconstructed and their (d) error image using DCT compression based 8 by 8 block and (c) DCT coefficient kept of 10%, 25%, 50%	100

ix

and 75%

- 4.3 Visual Inspection of (a) Original X-ray Image, (b) Image 101 Reconstructed and their (d) Error Image Using DCT Compression Based 8 by 8 Block and (c) DCT Coefficient Kept of 10%, 25%, 50% and 75%
- 4.4 Visual Inspection of (a) Original Cardiac Frame, (b) Image 102 Reconstructed and their (d) Error Image Using DCT Compression Based 8 by 8 Block and (c) DCT Coefficient Kept of 10%, 25%, 50% and 75%
- 4.5 Statistical measurement (a) PSNR and (b) CR versus ratio of DCT 103 coefficients kept of medical data compression using DCT based 16 by 16 block
- 4.6 Visual inspection of (a) original fundus sample, (b) image 105 reconstructed and their (d) error image using DCT compression based 16 by 16 block and (c) DCT coefficient kept of 10%, 25%, 50% and 75%
- 4.7 Visual inspection of (a) original x-ray sample, (b) image 106 reconstructed and their (d) error image using DCT compression based 16 by 16 block and (c) DCT coefficient kept of 10%, 25%, 50% and 75%
- Visual Inspection of (a) Original Cardiac Ultrsound Image, (b) 107
 Image Reconstructed and their (d) Error Image Using DCT
 Compression Based 16 by 16 Block and (c) DCT Coefficient Kept of 10%, 25%, 50% and 75%
- 4.9 Statistical measurement (a) PSNR and (b) CR versus ratio of DCT 108 coefficients kept of medical data compression using DCT based 32 by 32 block
- 4.10 Visual inspection of (a) original fundus sample, (b) image 110 reconstructed and their (d) error image using DCT compression based 16 by 16 block and (c) DCT coefficient kept of 10%, 25%, 50% and 75%
- 4.11 Visual inspection of (a) original fundus sample, (b) image 111 reconstructed and their (d) error image using DCT compression based 32 by 32 block (c) DCT coefficient kept of 10%, 25%, 50% and 75%
- 4.12 Visual inspection of (a) original cardiac ultrsound image, (b) image 112 reconstructed and their (d) error image using DCT compression based 32 by 32 block and (c) DCT coefficient kept of 10%, 25%, 50% and 75%
- 4.13 Mean PSNR Mean CR achieved versus compression ratios of DCT 113 coefficient kept for optimizing the DCT block sizes (8 by 8, 16 by 16 and 32 by 32) effects on different medical data.
- 4.14 Achieved results of mean PSNR values and mean CR values versus 114 DCT compression based block size 8 by 8 with different DCT

Х

coefficient kept of 10%, 25%, 50% and 75%

- 4.15 Achieved results of mean PSNR values versus different biorthogonal 116 wavelets decomposition using SPIHT compression
- 4.16 Achieved results of mean CR values versus different biorthogonal 117 wavelets decomposition using SPIHT compression
- 4.17 Visual inspection of fundus image sample compressed using SPIHT 119 based different biorthogonal wavelet decomposition functions
- 4.18 Visual inspection of x-ray image sample compressed using SPIHT 120 based different biorthogonal wavelet decomposition functions
- 4.19 Visual inspection of cardiac ultrsound image sample compressed 121 using SPIHT based different biorthogonal wavelet decomposition functions
- 4.20 Normalized PSNR versus CR achieved results from SPIHT 122 compression based different biorthogonal wavelets decomposition functions
- 4.21 Visual inspection of medical data compressed using SPIHT based the 124 selected biorthogonal wavelet decomposition
- 4.22 Achieved results of mean PSNR and mean CR versus SPIHT 125 compression based different rates (0.1, 0.25, 0.5 and 0.75) with the Selected BWD functions
- 4.23 Visual inspection of fundus image sample compressed using SPIHT 126 based wavelet decomposition function (bior2.2) and different compression ratios of 0.10, 0.25, 0.50 and 0.75
- 4.24 Visual inspection of X-ray image sample compressed using SPIHT 127 based wavelet decomposition function (bior4.4) and different compression ratio of 0.10, 0.25, 0.50 and 0.75
- 4.25 Visual inspection of cardiac ultrsound image sample compressed 128 using SPIHT based wavelet decomposition function (bior2.2) and different compression ratio of 0.10, 0.25, 0.50 and 0.75
- 4.26 Mean CR and PSNR of medical data compression using JPEG2000 131 algorithm based SF
- 4.27 Visual inspection of fundus image samples compressed using 133 JPEG2000 based different chroma sampling format
- 4.28 Visual inspection of x-ray image samples compressed using 134 JPEG2000 based different chroma sampling format
- 4.29 Visual inspection of cardiac ultrsound images sample compressed 135 using JPEG2000 based different chroma sampling format
- 4.30 Statistical measurement of image compression using EICA based 8x8 137 sliding window (a) PSNR and (b) CR versus number variations of ICS
- 4.31 Visual inspection of fundus image sample compressed using EICA 149

	based 8 by 8 sliding window and different of ICs number variations	
4.32	Visual inspection of X-ray image sample compressed using EICA based 8 by 8 sliding window and different of ICs number variations	140
4.33	Visual inspection of cardiac ultrsound image compressed using EICA based 8 by 8 sliding window and different of ICs number variations	141
4.34	Normalized mean PSNR and mean CR achieved results from EICA compression based different ICS values	142
4.35	Mean PSNR and mean CR achieved results versus EICA compression based different threshold values (0.1, 0.3, 0.5, 0.7 and 0.9) and ICs=8.	144
4.36	Visual inspection of fundus image sample compressed using EICA based 8 by 8 sliding window, ICs=8 and different threshold values	145
4.37	Visual inspection of X-ray image sample compressed using EICA based 8 by 8 sliding window, ICs=8 and different threshold values	146
4.38	Visual inspection of cardiac ultrsound image sample compressed using EICA based 8 by 8 sliding window, ICs=8 and different threshold values	147
4.39	ROC of ANN-MLP performance with hidden neurons $HN = 3$ and 5	149
4.40	EICA compression of mode 1 versus mode 2 in term of PSNR and CR	150
4.41	Visual inspection of Fundus image samples compressed using EICA based 8 by 8 sliding window, ICs=8 and adaptive ZQCP predictor model	151
4.42	Visual inspection of X-ray image samples compressed using EICA based 8 by 8 sliding window, ICs=8 and adaptive ZQCP predictor model	152
4.43	Visual inspection of Cardiac ultrsound image samples compressed using EICA based 8 by 8 sliding window, ICs=8 and adaptive ZQCP	153
4.44	Comparative analyses of (a) mean CR and (b) mean PSNR versus different compression algorithms	155
4.45	Visual inspection of medical image samples compressed using DCT based best bloking size (8 by 8) and selected DCT coefficient kept	157
4.46	Visual inspection of medical image samples compressed using SPIHT based selected BWD function and selected rate values	157
4.47	Visual inspection of medical image samples compressed using JPEG2000 based selected sampling format	158
4.48	Visual inspection of medical image samples compressed using EICA based selected ICs and adaptive ZQCP predictor model	159
4.49	BER versus Es/No simulation result for DBPKS over AWGN channel of random bit stream with different data rates 1, 2 and 3 Mbps of 801.11b	160

- 4.50 Simulation results during original data transceiver for 802.11b 162 DBPKS over AWGN channel with data rate of 1Mbps (a) BER versus Es/No, and (b) PSNR versus Es/No
- 4.51 Visual inspection of original fundus image and resulting images 164 during transceiver simulation via different Es/No values from 0 dB to 22 dB
- 4.52 Visual inspection of original X-ray image and resulting images 165 during transceiver simulation via different Es/No values from 0 dB to 22 dB
- 4.53 Visual inspection of original cardiac ultrsound image and resulting 166 images during transceiver simulation via different Es/No values from 0 dB to 22 dB
- 4.54 Mean PSNR and mean BER versus Es/No simulation results during 168 transceiver of medical data with DCT compression for 802.11b DBPKS over AWGN channel, data Rate=1Mbps
- 4.55 Visual inspection of WLANs transceiver simulation based DCT 169 compression (a) original fundus image and resulting compressed images via selected Es/No values (b) 10 dB, (c) 12 dB, (d) 14 dB (e) 16 dB (f) 18 dB and (g) 20 dB
- 4.56 Visual inspection of WLANs transceiver simulation based DCT 170 compression (a) original X-ray image and resulting compressed images via selected Es/No values (b) 10 dB, (c) 12 dB, (d) 14 dB (e) 16 dB (f) 18 dB and (g) 20 dB
- 4.57 Visual inspection of WLANs transceiver simulation based DCT 170 compression (a) original cardiac ultrsound image and resulting compressed images via selected Es/No values (b) 10 dB, (c) 12 dB, (d) 14 dB (e) 16 dB (f) 18 dB and (g) 20 dB
- 4.58 Mean PSNR and mean BER versus Es/No simulation results during 171 transceiver of medical data with SPIHT compression for 802.11b DBPKS over AWGN channel, data rate=1Mbps
- 4.59 Visual inspection of WLANs transceiver simulation based SPIHT 173 compression (a) original fundus image and resulting compressed images via selected Es/No values (b) 10 dB, (c) 12 dB, (d) 14 dB (e) 16 dB (f) 18 dB and (g) 20 dB
- 4.60 Visual inspection of WLANs transceiver simulation based SPIHT 173 compression (a) original X-ray image and resulting compressed images via selected Es/No values (b) 10 dB, (c) 12 dB, (d) 14 dB (e) 16 dB (f) 18 dB and (g) 20 dB
- 4.61 Visual inspection of WLANs transceiver simulation based SPIHT 174 compression (a) original cardiac ultrsound image and resulting compressed images via Selected Es/No values (b) 10 dB, (c) 12 dB, (d) 14 dB (e) 16 dB (f) 18 dB and (g) 20 dB
- 4.62 Mean PSNR and mean BER versus Es/No simulation results during 175 transceiver of medical data with JPEG2000 compression for 802.11b

xiii

DBPKS over AWGN channel, data rate=1Mbps

- 4.63 Visual inspection of wlans transceiver simulation based on 177 JPEG2000 compression (a) original fundus image and resulting compressed images via selected Es/No values (b) 10 dB, (c) 12 dB, (d) 14 dB (e) 16 dB (f) 18 dB and (g) 20 dB
- 4.64 Visual inspection of WLANs transceiver simulation based on 177 JPEG2000 compression (a) original X-ray image and resulting compressed images Via selected Es/No values (b) 10 dB, (c) 12 dB, (d) 14 dB (e) 16 dB (f) 18 dB and (g) 20 dB
- 4.65 Visual inspection of WLANs transceiver simulation based on 178 JPEG2000 compression (a) Original cardiac ultrsound image and resulting compressed images via selected Es/No values (b) 10 dB, (c) 12 dB, (d) 14 dB (e) 16 dB (f) 18 dB and (g) 20 dB
- 4.66 Mean PSNR and mean BER versus Es/No simulation results during 179 transceiver of medical data with EICA compression for 802.11b DBPKS over AWGN channel, data rate=1Mbps
- 4.67 Visual inspection of WLANs transceiver simulation based on EICA 180 compression of (a) original fundus image and resulting compressed images via selected Es/No values (b) 10 dB, (c) 12 dB, (d) 14 dB (e) 16 dB (f) 18 dB and (g) 20 dB
- 4.68 Visual inspection of WLANs transceiver simulation based on EICA 181 compression of (a) original X-ray image and resulting compressed images via selected Es/No values (b) 10 dB, (c) 12 dB, (d) 14 dB (e) 16 dB (f) 18 dB and (g) 20 dB
- 4.69 Visual inspection of WLANs transceiver simulation based on EICA 181 compression of (a) original cardiac ultrsound image and resulting compressed images via selected Es/No values (b) 10 dB, (c) 12 dB, (d) 14 dB (e) 16 dB (f) 18 dB and (g) 20 dB
- 4.70 Comparative analyses of (a) PSNR and (b) BER versus differents 183 WLANs transceiver based on compression algorithms
- 4.71 Time processing comparative analysis of the WLANs transceiver 186 based on compression algorithms
- 4.72 Visual inspection of medical image samples compressed and WLAN 187 transceiver using DCT based best blocking size (8 by 8) and selected DCT coefficient kept
- 4.73 Visual inspection of medical image samples compressed and WLAN 188 transceiver using SPIHT based selected BWD function and selected rate values
- 4.74 Visual inspection of medical image samples compressed and WLAN 189 transceiver using JPEG2000 based selected sampling format
- 4.75 Visual inspection of medical image samples compressed using EICA 190 based selected ICs and adaptive ZQCP predictor model

xiv

5.1	Block diagram and overview of Medata-SIM proposed system	195
5.2	Samples of medical data (a) X-Ray image, (b) fundus image and (C) cardiac ultrasound image	196
5.3	Screen shot and main interface of developed Medata-Sim prototype	197
5.4	Block diagram of Medata-SIM proposed system functionality	198
5.5	The main interface screen shot of source menu with (a) fundus, (b, c) X-ray images, (d) dicom images and (e) dicom video	200
5.6	The main interface screen shot of compression menu using (a) DCT, (b) SPIHT (c) JPEG 2000 and (d) EICA algorithms	202
5.7	Interface screen shot of (a) transmission configuration (b) status of simulation process and (c) receiver interface	202
5.8 5.9	Interface screen shot of (a) open source (b) decompression results Medata-SIM demo functionally of (a) fundus image (b) X-ray images and (c) cardiac using WLAN transceiver based EICA compression	203 204
5.10 5.11	Interactions between End-user and prototype system Result of prototype system evaluatio	206 211

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	DCT, SPIHT, JPEG2000 and EICA Compression Based Selected	247
	Parameters	
В	WLANs Transceiver Based on DCT, SPIHT, JPEG2000 and EICA	267
	Compression	
С	Prototype Evaluation Form healthcare personnel and experts	285

LIST OF ABBREVIATIONS

AES	-	Advanced Encryption Standard
AMPS	-	Advanced Mobile Phone Service
AP	-	Access Point
AWGN	-	Additive White Gaussian Noise
BDF	-	Bio Semi Data Format
BER	-	Bit Error Rate
CR	-	Compression Ratio
CS	-	Compression Segment
CSMA/CA	-	Carrier Sense Multiple Access/Collision Avoidance
СТ	-	Computed Tomography
DBPSK	-	Differential Binary Phase-Shift Keying
DCT	-	Discrete Cosine Transform
DFT	-	Discrete Fourier Transform
DICOM	-	Digital Imaging and Communications in Medicine
DQPSK	-	Differential Quadrature Phase-Shift Keying
DSSS	-	Direct Sequence Spread Spectrum
E _b /N _o	-	Energy Per Bit To Noise Power Spectral Density Ratio
EDF	-	European Data Format
EICA	-	Enhanced Independent Components Analysis

xvii

EMI	- Electromagnetic Interference	
E_{s}/N_{o}	- Energy Per Symbol To Noise Power Spectral	Density Ratio
ETSI	- European Telecommunications Standards Ins	titute
EZW	- Embedded Zero Tree Wavelet	
FCC	- Federal Communications Commission	
FHSS	- Frequency Hopping Spread Spectrum	
FM	- Frequency Modulation	
GSM	- Global System for Mobile communications	
HDTV	- High Definition Television	
ICA	- Independent Component Analysis	
IEEE	- Institute of Electrical and Electronics Enginee	ers
ISM	- Industrial Scientific And Medical	
JPEC	- Joint Photographic Experts Group Committee	e in 2000
LLC	- Logical Link Control	
LMDS	- Local Multipoint Distribution System	
MAC	- Medium Access Control	
MC	- Mobile Client	
MDCT	- Modified Discrete Cosine Transforms	
MDS	- Medical Data Simulation	
MIMO	- Multiple Inputs, Multiple Outputs	
MMS	- Multimedia Messaging Service	
MRI	- Magnetic Resonance Imaging	

xviii

MSE	-	Mean Square Error
NHANES	-	National Health And Nutrition Examination Survey
NIH	-	National Institutes Of Health
NLM	-	National Library Of Medicine
OFDM	-	Orthogonal Frequency Division Multiplexing
OFDM	-	Orthogonal Frequency-Division Multiplexing
OTS	-	Outcome Segment
PACS	-	Picture Archiving and Communication System
PDA	-	Personal Digital Assistants
PET	-	Positron Emission Tomography
РНҮ	-	Physical Layer
PLCP24	-	Physical Layer Convergence Procedure
PMD	-	Physical Medium Dependent
PSNR	-	Peak Signal Noise Ratio (PSNR)
QoS	-	Quality of Service
RGB	-	Red, Green, Blue
SNR	-	Signal-To-Noise Ratio
SPI	-	Synchronous Peripheral Interface
SPIHT	-	Set Partitioning in Hierarchical Tree
SPP/IPP/ISP	-	Significant Pixel Pass/ Insignificant Pixel Pass/ Insignificant Set Pass
TRS	-	Transmission & Receiver Segment
WECA	-	Wireless Ethernet Compatibility Alliance