

Faculty of Electrical Engineering

DYNAMIC STABILITY STUDIES OF GENERATORS IN POWER SYSTEM USING FUZZY LOGIC CONTROLLER BASED POWER SYSTEM STABILIZER

Hayfaa Mohammed Hussein Hasan

Doctor of Philosophy

2018

DYNAMIC STABILITY STUDIES OF GENERATORS IN POWER SYSTEM USING FUZZY LOGIC CONTROLLER BASED POWER SYSTEM STABILIZER

HAYFAA MOHAMMED HUSSEINHASAN

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Dynamic Stability Studies of Generators in Power System Using Fuzzy Logic Controller Based Power System Stabilizer" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	: Hayfaa Mohammed Hussein Hasan
Date	:

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature		:	
Supervisor	Name	:	Prof. Dr. Marizan Bin Sulaiman
Date	:		

DEDICATION

I dedicate this project to God Almighty my creator, my strong pillar, my source of inspiration, wisdom, knowledge and understanding. He has been the source of my strength throughout this program and on His wings only have I soared. Tomy supervisor Prof. Dr. Marizan Bin Sulaiman.

ABSTRACT

Excitation systems are affected by low frequency oscillation (LFO) when they are subjected to small perturbations. Damping during the LFOis enhanced via the addition of power system stabilizer (PSS) to the excitation system. This research entails a study on fuzzy logic controller power system stabilizer (FLCPSS) for the purpose of enhancing the stability of a single machine power system. In order to accomplish the stability enhancement, two approaches were used to design fuzzy logic controller (FLC). The first approach includes the use ofgenetic algorithm (GA) to design the PSS. The second approach entails the use of particle swarm optimization (PSO) to design the PSS. The performance of these two approaches is compared with the systemand without PSS. The stabilizing signals were computed using the fuzzy membership functions depending on these variables. The simulations were tested under different operating conditions and also tested with different membership functions. The simulation is implemented using Matlab /Simulink and the results have been found to be quite good and satisfactory. Electromechanical oscillations were created in the event of trouble or when there was high power transfer through weak tie-line in the machines of an interrelated power network. This research presents an analysis on the change of speed ($\Delta\omega$), change of angle position ($\Delta\delta$) and tie-line power flow (Δp). FLC which includes two areas of symmetrical systems are connected via tie-line to identify the performance of the controllers. Simulation results of the fuzzy logic based controller indicate dual inputs of rotor speed deviation and generator's accelerating power. Two generators have been used to control the arrangement in the tie-line system. The single fuzzy logic controller (S-FLC) has been used as a primary controller and the double fuzzy logic controller(D-FLC) has been used as a secondary controller. Additionally, the system shows a comparison between the two controllers, namely the S-FLC and D-FLC which have been used to achieve the best results. Notably, the double fuzzy controller has been found to have a greater effect on the multi- machine system and it is smoother than the single fuzzy controller as it increased the damping of the speed $\Delta \omega$ and rotorangle (degree) $\Delta \delta$. Its simplicity has made it to be a good controller. In conclusion, much better response can be attained from the S-FLC) if there is careful timing of the scaling factors.

ABSTRAK

Sistem pengujaan dipengaruhi oleh ayunan kekerapan yang rendah apabila mereka mengalami gangguan kecil. Mengurangkan semasa ayunan kekerapan rendah dipertingkatkan melalui penambahan sistem penstabil kuasa ke sistem pengujaan. Kajian ini melibatkan kajian mengenai penstabil sistem kuasa pengawal logik fuzzy bagi tujuan meningkatkan kestabilan sistem kuasa mesin tunggal. Untuk mencapai peningkatan kestabilan, dua pendekatan digunakan untuk merancang pengawal logik fuzzy.Pendekatan pertama termasuk penggunaan algoritma genetik untuk mereka bentukpenstabil sistem kuasa. Pendekatan kedua melibatkan pengoptimuman swarm partikel untuk merekabentuk penstabil sistem kuasa. Prestasi dua pendekatan ini dibandingkan dengan sistemdan tanpapenstabil sistem kuasa. Isyarat penstabil dikira menggunakan fungsi keahlian fuzzy bergantung pada pembolehubah ini. Simulasi telah diuji di bawah keadaan operasi yang berbeza dan juga diuji dengan fungsi keahlian yang berlainan. Simulasi dilaksanakan menggunakan Matlab / Simulink dan keputusannya didapati agak baik dan memuaskan. Ayunan elektro-mekanik telah dicipta dalam keadaan masalah atau apabila terdapat pemindahan kuasa tinggi melalui garis tali lemah dalam mesin rangkaian kuasa yang saling berkaitan.Kajian ini membentangkan analisis mengenai perubahan kelajuan $(\Delta \omega)$, perubahan kedudukan sudut ($\Delta\delta$) dan aliran kuasa tali talian (Δp). Pengawal logik fuzzy vang merangkumi dua bidang sistem simetri yang dihubungkan melalui talian ikat untuk mengenal pasti prestasi pengawal. Keputusan simulasi pengawal berasaskan logik fuzzy menunjukkan input dua sisihan kelajuan pemutar dan kuasa mempercepatkan penjana. Dua penjana telah digunakan untuk mengawal perkiraan dalam sistem talian ikat. Pengawal logik fuzzy tunggal telah digunakan sebagai pengawal utama dan telah digunakan sebagai pengawal menengah.Di samping itu, sistem menunjukkan perbandingan antara kedua-dua pengawal, iaitu dan yang telah digunakan untuk mencapai hasil yang terbaik. Terutamanya, pengawal kabus berganda telah didapati mempunyai kesan yang lebih besar pada sistem multi-mesin dan ia lebih lancar daripada pengawal fuzzy tunggal kerana ia meningkatkan redaman kelajuan $\Delta \omega$ sudut rotor $\Delta \delta$. Kesederhanaannya menjadikannya pengawal yang baik. Sebagai kesimpulan, tindak balas yang lebih baik dapat diperolehi dari jika ada masa yang berhati-hati terhadap faktor skala.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisor Professor Dr. Marizan Bin Sulaiman from the Faculty of Electrical Engineering Universiti Teknikal Malaysia Melaka (UTeM) for his essential supervision, support and encouragement towards the completion of this thesis.

I would also like to express my greatest gratitude to Associate Professor Dr. Rosli Bin Omar from the Faculty of Electrical Engineering Universiti Teknikal Malaysia Melaka (UTeM), co-supervisor of this project.

Lastly thank you to everyone who had played a crucial rolein the realization of this project.

TABLE OF CONTENTS

DEC	LAR	ATION	
APPI	ROVA	AL	
DED	ICAT	ION	
	ΓRAC		i
	ГRAK		ii
		LEDGEMENTS	iii
		F CONTENTS	iv
		ΓABLES	vii
		FIGURES	viii
		APPENDICS	xiv
		ABBREVIATIONS	XV
		SYMBOLS	xvi
		PUBLICATIONS	xvii
	011		
СНА	РТЕН	RCHCCAPTER 1	
1.	INTR	RODUCTION	1
	1.1	Introduction	1
	1.2	Background	2
		1.2.1 Power System Stability	2
		1.2.2 Stability Problem	2
		1.2.3 Control of Dynamic Stability	4
		1.2.4 Types of Power System Stabilizer (PSS)	5
	1.3	Motivation for Research	6
	1.4	Problem Statement	7
	1.5	Objectives of the Research	8
	1.6	Contributions of the Research	9
	1.7	Scope of Research	10
	1.8	Organization of Thesis	11
CHA	PTEF	R 2	2.
LITE	ERAT	URE REVIEW	
	2.1	Introduction	12
	2.2	Transient Stability Analyses of Power System	13
	2.3	Power System Stabilizer (PSS)	13
	2.3.1	Types of Power System Stabilizer (PSS)	13
	2.4	Genetic Algorithm Methods (GA) (Stabilizer Based on Shaft Speed Sign	nal
		(Delta-Omega $\Delta \omega$) Type One	19
	2.5	Particle Swarm Optimization (PSO)	25
	2.6	PSS in Single Machine Connected to Infinite Bus	30
	2.7	Expert System	37
		2.7.1 Fuzzy Logic Controller (FLC) in Single Machine Infinite Bus (SI (1-G) 37	MIB)
		2.7.2 Fuzzy Logic Controller (FLC) of A 2-Generators Connected via Line 45	Tie-
	2.8	Critical Review of Literature Studies	51
	2.9	Summary	75

3.	SYS	TEM I	DESIGN AND METHODOLOGYCHAPTER 3	76
	3.1	Introd	luction	76
	3.2	Resea	rch Methodology	76
	3.3	Flow	Chart of System Design and Methodology	77
		3.3.1	Inertia Constant and Swing Equation	78
			Generator Represented by the Classical Model	84
			Effect of Synchronous Machine Field Circuit Dynamics	87
			Excitation System	94
		3.3.5	Types of Excitation System	95
		3.3.6	Modelling of Excitation System in Power System	95
		3.3.7	Dynamic Performance Measures	96
		3.3.8	Effect of Excitation System	97
		3.3.9	Effect of AVR on Synchronizing and Damping Torque Comp	onents100
		3.3.10) Effect of K_5 on the Operating Power System	101
		3.3.11	l Stabilizing Signal	102
		3.3.12	2 Power System Stabilizer Design	103
		3.3.13	B Power System Stabilizer	105
	3.4		n of Controllers	106
		3.4.1	Genetic Algorithm (GA)	107
		3.4.2	Design of Fuzzy Logic Control (FLC)	108
		3.4.3	Particle Swarm Optimization (PSO)	111
		3.4.4	Fuzzy Logic Controller (FLC)	115
		3.4.5	Reasons for Choosing Fuzzy Logic	116
		3.4.6	Fuzzy Inference System (FIS)	117
		3.4.7	Scaling Factors (SFs)	120
		3.4.8	Reduce Rule of Membership Function	121
	3.5	Simul	lation of System	126
		3.5.1	Infinite Bus to Single Machine Connection	126
		3.5.2	Fuzzy Logic Controller Based Power System Stabilizer	127
	3.6	A Tw	o Generators System Connected Via Tie-Line	130
		3.6.1	Single Fuzzy Logic Controller (S-FLC) Based Power System	Stabilizer
			(PSS) 130	
		3.6.2	Double Fuzzy Logic Controller (D-FLC) Based Power System	ı
			Stabilizer (PSS)	132
	3.7	Sumn	nary	134
4.	RES	TILTS	AND DISCUSSIONCHAPTER 4	136
	4.1		luction	136
		4.1.1	Single Machine Connected to Infinite Bus without Power Syst	
			Stabilizer (PSS)	137
		4.1.2	Single Machine Connected to Infinite Bus with PSS, GA and	
			Single Machine Connected to Infinite Bus with 16 Rules Fuzz	
			Controller (FLC) Based Power System Stabilizer (PSS)	140
		4.1.4		-
			of A Two Generators Connected Via Tie-Line System	147
		4.1.5	Double Fuzzy Logic Controller (D-FLC) Based Power System	
		. =		

Stabilizer of A Two Generators Connected Via Tie-Line System 154

		4.1.6 Reduce Reduction for Double Fuzzy Logic Controller (D- Power System Stabilizer of A Two Generators Connected System 167	/
	4.2	Interpretation of Results	178
	4.3	Summary	180
5.	CON 5.1	CLUSION AND RECOMMENDATION CHAPTER 5 Introduction	181 181
	5.2	Conclusion	181
	5.3	Recommendations for Future Research	184
	EREN ENDI	NCES ICES	185

LIST OF TABLES

TABLETITLEPAGE

2.1 Critical Review of Literature Studies	52
3.1 Truth tables 109	
3.2 16 Rules base for fuzzy logic controller	118
3.3 Rule base for fuzzy logic controller 16 to 8 rules	123
3.4 Rule base for fuzzy logic controller 8 to 7 rules	124
3.5 Machine data126	
3.6 Machine data130	
3.7 Machine data132	
3.8 Change of input torque (ΔT_{mech})	132
3.9Change of input torque (ΔT_{mech})	134
4.1Change of input torque (ΔT_{mech})	168
4.2 Change of input torque (ΔT_{mech})	168
4.3Properties of PSS and FLC	179

LIST OF FIGURES

FIGURE	TITLE	PAGE			
1.1 Angular speed va	riation				4
1.2 Block diagram rep	presentation	AVR and PSS			5
2.1 Block diagram rea	alization of	delta -P- omega	$(\Delta$ -P- $\omega)$ stat	oilizer	17
3.1 Flow chart of syst	tem design a	and methodology	7		78
3.2 Mechanical and e	lectrical tor	ques in a generat	ing unit		79
3.3 Block diagram rej	presentation	of swing equation	ons		83
3.4 Synchronous mac	hine connec	cted to infinite bu	ıs bar		84
3.5 Block diagram	n of a	single-machine	infinite b	us system	with classical
generator	model87				
3.6 d-q axis vector di	agram				87
3.7 Equivalent circuit	t relating flu	x linkage in d-q	axis		89
3.8Block diagram rep	presentation	with constant E_f	d , i.e. $E_{fd} =$	0	94
3.9Functional b	lock d	liagram of	a	synchronous	generator
excitation		control system	n95		
3.10 Block diagram o	of an exciter	model			96
3.11 Excitation control	ol system in	the classical fee	dback contro	ol form	97
3.12Block diagram re	epresentation	n with exciter and	d AVR		99
3.13 Speed input PSS					103
3.14 Block diagram r	epresentatio	on with AVR and	PSS		106
3.15 Three functions,	fuzzy sets a	and fuzzy logical	operation A	ND, ORand	NOT 110

3.16 Main components of a FIS 11	1	
3.17 Implementation of PSO to select K_1 , K_2 and K_3 for fuzzy logiccontroller (FLC) 11	3	
3.18 Relationship between speed and position for K_1 , K_2 and K_3 114	4	
3.19 Principle design of fuzzy logic controller 11	6	
3.20Fuzzy logic controller based PSS 11	6	
3.21 Fuzzy inference system 11	8	
3.22 (a) Membership functions for speed deviation (b	5)	
membership functions for. acceleration (c) membership functions for	or	
voltage 119		
3.23 Rule viewer of fuzzy logic controller 12	0	
3.24 Zones in a rule table 12	1	
3.25 Output variable 12	3	
3.26 Rule viewer of fuzzy logic controller 12	3	
3.27 Output variable 12-	4	
3.28 Rule viewer of fuzzy logic controller 12.	5	
3.29 Firing rules shifting rout12.	5	
3.30 Implementation of PSS in simulink 12	7	
3.31 Block diagram representation with AVR, FLC and PSSdesigned by PSO 12	8	
3.32 Block diagram representation with AVR, PSS and FLC		
3.33 Block diagram representation of a 2- generators single fuzzy logiccontroller		
(S-FLC) connected via tie-line 13	1	
3.34 Block diagram representation of a 2- generators double fuzzy logiccontroller (D)-	
FLC) connected via tie-line	_	

4.1 Simulation result of angular speed, angular position (rotor angle (degree)) and
variation of electrical torque for the system without PSS for 10%
change in step input (ΔT_{mech}) 137
4.2 Simulation result angular speed for 10% change in step input (ΔT_{mech}) 138
4.3 Simulation result angular position (rotor angle (degree)) for 10 %
change in step input (ΔT_{mech}) 138
4.4Simulation result variation of electrical torque for 10% change in step
input (ΔT_{mech}) 139
4.5 Simulation result variation of voltage for 10% change in stepinput (ΔT_{mech}) 140
4.6 Angular speed in three cases (1) with AVR (2) FLC based PSS and (3)with
PSS designed by PSO with $K_5 = -0.1103$ 141
4.7 Angular position (rotor angle (degree)) in three cases (1) with AVR
(2) FLC based PSS and (3) with PSS designed by PSOwith $K_5 = -0.1103$ 141
4.8 Variation of electrical torque in three cases (1) with AVR (2) FLCbased PSS and
(3) with PSS designed by PSO with $K_5 = -0.1103$ 142
4.9 Variation of voltage in three cases (1) with AVR (2) FLC based
PSS and (3) with PSS designed by PSO with $K_5 = -0.1103$ 142
4.10 Angular speed in three cases (1) with AVR (2) PSS and (3)FLC with $K_5 = 0.1462143$
4.11 Angular position (rotor angle (degree)) in three cases (1) with AVR
(2) PSS and (3) FLC with $K_5 = 0.1462$ 144
4.12 Variation of electrical torque in three cases (1) with AVR (2)
PSS and (3) FLC with $K_5 = 0.1462$ 144
4.13 Variation of voltage in three cases (1) with AVR (2) PSS and (3) FLC
with $K_5 = 0.1462$ 145

Х

4.14 Aligural speed in three cases (1) with $A \vee R(2) = 55$ and (5)	
FLC with $K_5 = -0.1462145$	
4.15 Angular position (rotor angle (degree)) in three cases (1) with AVR	(2)
PSS and (3) FLC with $K_5 = -0.1462$	146
4.16 Variation of electrical torque in three cases (1) with AVR (2)PSS and	(3)
FLC with $K_5 = -0.1462$	146
4.17 Variation of voltage in three cases (1) with AVR (2) PSS and	(3)
FLC with $K_5 = -0.1462$	147
4.18 Angular speed variation	148
4.19 Angular position (rotor angle (degree)) variation	148
4.20 Tie - line power flow variation	149
4.21 Angular speed variation	149
4.22 Angular position (rotor angle (degree)) variation	150
4.23 Tie - line power flow variation	150
4.24 Angular speed variation	151
4.25 Angular position (rotor angle (degree)) variation	151
4.26Tie - line power flow variation	152
4.27 Angular speed variation	153
4.28 Angular position (rotor angle (degree)) variation	153
4.29 Tie - line power flow variation	154
4.30 Angular speed variation	155
4.31 Angular position (rotor angle (degree)) variation	155
4.32 Tie - line power flow variation	156
4.33 Angular speed variation	157

4.14 Angular speed in three cases (1) with AVR (2) PSS and (3)

4.34 Angular position (rotor angle (degree)) variation	157
4.35 Tie - line power flow variation	158
4.36 Angular speed variation	158
4.37 Angular position (rotor angle (degree)) variation	159
4.38 Tie - line power flow variation	159
4.39 Angular speed variation	160
4.40 Angular position (rotor angle (degree)) variation	161
4.41 Tie - line power flow variation	161
4.42 Angular speed variation 162	
4.43 Angular position (rotor angle (degree)) variation	162
4.44 Tie - line power flow variation	163
4.45 Angular speed variation	164
4.46 Angular position (rotor angle (degree)) variation	164
4.47 Tie - line power flow variation	165
4.48 Angular speed variation	166
4.49 Angular position (rotor angle (degree)) variation	166
4.50 Tie - line power flow variation	167
4.51 Angular speed variation	169
4.52 Angular position (rotor angle (degree)) variation	169
4.53 Tie - line power flow variation	170
4.54 Angular speed variation	170
4.55 Angular position (rotor angle (degree)) variation	171
4.56 Tie - line power flow variation	171
4.57 Angular speed variation	172

4.58 Angular position(rotorangle (degree)) variation	172
4.59 Tie - line power flow variation	173
4.60 Angular speed variation	174
4.61 Angular position (rotor angle (degree)) variation	174
4.62 Tie - line power flow variation	175
4.63 Angular speed variation	175
4.64 Angular position (rotor angle (degree)) variation	176
4.65 Tie - line power flow variation	176
4.66Angular speed variation	177
4.67Angular position (rotor angle (degree)) variation	177
4.68Tie - line power flow variation	178

LIST OF APPENDICS

APPENDIX TITLE

PAGE

ATime Response	215		
B.1	Parameters FLC		217
B.2	Simulation of Systems	217	

xiv

LIST OF ABBREVIATIONS

- PSS Power System Stabilizer
- AVR Automatic Voltage Regulator
- GA Genetic Algorithm
- PSO Particle Swarm Optimization
- LFOs Low Frequency Oscillations
- FLCPSS Fuzzy Logic Controller Power System Stabilizer
- SFLC Single Fuzzy Logic Controller

DFLC-Double Fuzzy Logic Controller DFLC

- FIS Fuzzy Inference System
- SMIB Single Machine Infinite Bus
- SF Scaling Factor
- M F Membership Function
- E Generator Voltage
- K_D- Damping Torque Coefficient Deviation
- K_S- Synchronizing Torque Coefficient

H - Inertia Constant

- V_R _ OutputVoltage of the Regulator
- M Inertia Coefficient = 2H
- FLS- Fuzzy Logic System

LIST OF SYMBOLS

- T_a- Accelerating Torque
 - T_m. Mechanical Torque
- Te -Electromagnetic Torque
- *P*_{*a*}-Accelerating Power
- P_m-Mechanical power
- P_e Electromagnetic Power
- E_B Infinite Bus Voltage
- ω_0 Rotor Electrical Speed
- ω_{r} Angular Speed of the Rotor
- ψ_{fd} Field Circuit Flux Linkage

Efd-Field Voltage

- K_E Excitation Gain
- T_E Time Constant
- δ 0- Initial Rotor Angle
- ΔP_m Change in Mechanical Power Input
- ΔP_e Change in Electric Power Output
- $\Delta \omega_{eq}$ Derived or Equivalent Speed Deviation
- $\Delta \omega$ Speed Deviation
- $G_{ex}(s)$ Transfer Function of the AVR and Exciter

xvi

LIST OF PUBLICATIONS

1. Sulaiman, M., Hussein, H.M., Omar, R. and Salleh, Z., 2016. Dynamic Stability Analysis of Generator with Power System Stabilizers Using Matlab Simulink. *Indonesian Journal of Electrical Engineering and Computer Science*, 2(3), pp.501–509.

2. Mohammed, H. et al., 2016. Comparative Studies of Fuzzy Logic Base Power System Stabilizers in Enhancing Dynamic Stability of a Generator Connected to Infinite Bus. *World Applied Sciences Journal 34 (10): 1370-1379, 2016 ISSN 1818-4952* © *IDOSI Publications, 2016 DOI: 10.5829/idosi.wasj.2016.*, 34(10), pp.1370–1379.

3. Mohammed, H. et al., 2017. Stability Studiesof Fuzzy Logic Based Power System Stabilizer in Enhancing Dynamic Stability of A Two Generators Tie-Line system. *VOL. 12, NO. 5, MARCH 2017 ISSN 1819-6608 ARPN Journal of Engineering and Applied Sciences* ©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved., *12*(5), pp.1–8.

4. Hussein, H.M. et al., 2017. Effect of Double Fuzzy Logic Controller (DFLC) Based on Power System Stabilizer (PSS) on A Tie – Line Two Generators System.*ARPN Journal of Engineering and Applied Sciences* ©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved., 12(21), pp.1–10.

xvii

CHAPTER 1

INTRODUCTION

1.1 Introduction

Power systems have the potentials to remain synchronized when small disturbances occur and its ability to remain synchronized is known as dynamic stability. Disturbances occur continuously on power systemsdue to small differences that occur in loads and generation. These disturbances are small enough to allow the linearization of system equations when it is intended foranalysis. When there is loss of synchronism, instability occurs. There are two types of instability. The first type of instability involves rotor angle increase as a result of insufficient synchronizing torque, and the second type includes rotor oscillations with increased amplitude as a result of insufficient damping torque. Simultaneously, several factors influence the nature of how the system responds to small disturbances. These factors include the initial operating, the strength of the transmission system as well as the kindof generator excitation control that isdeployed. As for generators connected to large power systems that are not controlled by "automatic voltage regulators" but with constant field voltage, instability results due to insufficient synchronizing torque. A power system stability is ultimately concerned with the quality of electricity supply, it is one of the main research topics in power system studies(P.Kundur, 1994). Stability refers to the ability of the power system to develop restoring forces that are either similar or greater than the disturbing forces for the purpose of keeping the state of equilibrium intact. The system maintains its stability or synchronism when the forces that

control the machines are able to handle the disturbing forces besides being able to be in synchrony with each other. Studies on power system stability are often administered while planningnewfacilities to generate and transmit power. The aforesaid studies are contributive towards determining several aspects such as the type of relaying system required, critical time needed to clear circuit breakers, voltage level as well as the transfer capability of one system with another(Sadat, 1999).

1.2 Background

1.2.1 Power System Stability

Power system stability is the ability of the power system to operate with stable equilibrium in normal conditions besides ensuring that the state of equilibrium is acceptable even when it is affected by disturbances. (P.Kundur, 1994).

1.2.2 Stability Problem

All synchronous machines that are interconnected should maintain synchronism and operate concurrently at the same speed and time(Anderson *et al.*, 2003).Conversely, problems in its stability arises when the behavior of the machineis perturbed. If the perturbation does not cause any total change in power, the synchronous machine is supposed to return to its original state. In the event of an unbalance between the supply and demand as a result of difference in load, generation or network conditions, a new operating state would be essential. A lackofstudies have been conducted to overcome problems related to the stability of power systems. In analytical studies, power system stability has been classified into three categories(P.Kundur, 1994).

2