

Faculty of Information and Communication Technology

THREE-DIMENSIONAL EXACT LEGENDRE MOMENT INVARIANTS FOR AMPHETAMINE-TYPE STIMULANTS MOLECULAR STRUCTURE REPRESENTATION

Satrya Fajri Pratama

Doctor of Philosophy

2017

🔘 Universiti Teknikal Malaysia Melaka

THREE-DIMENSIONAL EXACT LEGENDRE MOMENT INVARIANTS FOR AMPHETAMINE-TYPE STIMULANTS MOLECULAR STRUCTURE REPRESENTATION

SATRYA FAJRI PRATAMA

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Information and Communication Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

DECLARATION

I declare that this thesis entitled "Three-Dimensional Exact Legendre Moment Invariants for Amphetamine-Type Stimulants Molecular Structure Representation" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Satrya Fajri Pratama
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature	:
Supervisor Name	: Assoc. Prof. Dr. Azah Kamilah Muda
Date	:

DEDICATION

For the glory of Islam, and to my family.

ABSTRACT

The abuse of amphetamine-type stimulants (ATS) drugs has become a global, harrowing social problem. The technical limitations of the current test kits to detect new brand of ATS drugs present a challenge to national law enforcement authorities and scientific staff of forensic laboratories. Meanwhile, new molecular imaging devices which allowed mankind to characterize the physical three-dimensional (3D) molecular structure have been recently introduced, and it can be used to remedy the limitations of existing drug test kits. Thus, a new type of 3D molecular structure representation technique, or molecular descriptors, should be developed to cater the 3D molecular structure acquired physically using these molecular imaging devices. One of the image processing methods to represent a 3D image is 3D moments and moment invariants. However, there are problems exhibited by the existing 3D moments and moment invariants. Therefore, it is necessary to propose a new 3D moment invariants which is free from these problems. This study compares various 3D moments and identified 3D Legendre moments as the best moments to construct 3D moment invariants, namely 3D exact Legendre moment invariants (3D ELMI), which is used to represent the 3D molecular structure of ATS drugs. Since the 3D molecular structure of ATS drugs dataset obtained using molecular imaging devices are currently unavailable, this study acquired the 3D molecular structure of ATS drugs data from United Nations Office of Drug and Crime (UNODC) and pihkal.info database instead. The proposed technique was compared to the existing 3D moment invariants and molecular descriptors techniques in terms of processing time, memory consumption, single instance invariance, intra- and inter-class variance, and classification accuracy. The comparative study conducted found that 3D ELMI performs better than the existing 3D moment invariants, such as 3D geometric moment invariants (3D GMI), 3D Gaussian-Hermite moment invariants (3D GHMI), and 3D Zernike descriptors (3D ZD). The satisfactory performance of 3D ELMI is attributed to numerous factors, such as the quality of the 3D Legendre, exact computation of the 3D Legendre, and the novelty of the proposed invariants techniques. The proposed technique was also compared to existing 3D molecular descriptors, for example weighted holistic invariants molecular (WHIM), geometry, topology, and atom weights assembly (GETAWAY), radial distribution function (RDF), and 3D molecule representation of structure based on electron diffraction (3D-MoRSE) descriptors. Despite 3D ELMI is capable to overcome the limitations of existing 3D molecular descriptors which depends on 3D molecular structure model instead of physical molecular structure obtained from molecular imaging devices, the test reveals 3D ELMI is not as good as these techniques, primarily due to the substantial number of features produced by the proposed technique. Nevertheless, the promising applicability and the unique approach of the proposed technique to represent the 3D molecular structure of ATS drugs has been demonstrated and worth to receive further exploration in the future works.

ABSTRAK

Penyalahgunaan dadah perangsang jenis amfetamin (ATS) telah menjadi masalah sosial antarabangsa yang menakutkan. Batasan teknikal kit ujian semasa untuk mengesan jenama baru dadah ATS memberi cabaran kepada pihak penguat kuasa undang-undang dan kakitangan saintifik makmal forensik. Sementara itu, peranti pengimejan molekul yang membenarkan umat manusia untuk melihat struktur molekul tiga dimensi (3D) baru saja diperkenalkan, dan ianya dapat digunakan untuk mengatasi batasan kit ujian semasa. Oleh itu, teknik perwakilan struktur molekul 3D, atau deskriptor molekul 3D, berjenis baru yang dapat mewakili bentuk molekul 3D yang dikesan melalui peranti pengimejan molekul perlu dibangunkan. Salah satu kaedah pemprosesan imej untuk mewakili imej 3D ialah momen dan momen kekal 3D. Walau bagaimanapun, terdapat pelbagai masalah yang ditunjukkan oleh teknik momen dan momen kekal 3D sedia ada. Oleh itu, ianya penting untuk mencadangkan momen kekal 3D baru yang bebas dari masalah-masalah teknik sedia ada. Kajian ini membandingkan pelbagai teknik momen 3D dan berjaya mengenalpasti momen Legendre 3D sebagai teknik terbaik untuk dijadikan asas untuk membangunkan momen kekal 3D baru bernama momen kekal Legendre tepat 3D (3D ELMI), yang dapat digunakan untuk mewakili struktur molekul 3D dadah ATS. Disebabkan struktur molekul 3D dadah yang diperolehi dengan menggunakan peranti pengimejan molekul belum lagi tersedia, kajian ini mendapatkan struktur molekul 3D dadah ATS dari pangkalan dataPejabat Dadah dan Jenayah Pertubuhan Bangsa-bangsa Bersatu (UNODC) dan pihkal.info sebagai gantinya. Teknik yang dicadangkan dibandingkan dengan teknik momen kekal dan deskriptor molekul 3D sedia ada dari segi masa pemrosesan, penggunakan memori, kekekalan sebuah sampel, variasi dalam dan antar kelas, serta ketepatan pengelasan. Perbandingan yang dijalankan mendapati 3D ELMI berprestasi lebih baik berbanding momen kekal 3D sedia ada, seperti momen kekal geometrik 3D (3D GMI), momen kekal Gaussian–Hermite 3D (3D GHMI), dan deskriptor Zernike 3D (3D ZD). Hasil 3D ELMI yang memuaskan disebabkan oleh banyak faktor, antaranya kualiti asal Legendre 3D, pengiraan tepat Legendre 3D, dan juga kebaharuan teknik pengekalan yang dicadangkan. Teknik yang dicadangkan juga dibandingkan dengan deskriptor molekul 3D sedia ada, seperti deskriptor molekul holistik kekal berwajaran (WHIM), perhimpunan geometri, topologi, dan berat atom (GETAWAY), fungsi distribusi radial (RDF), dan perwakilan struktur molekul 3D berdasarkan pembelahan elektron (3D-MoRSE). Walaupun 3D ELMI mampu mengatasi batasan deskriptor molekul 3D sedia ada yang bergantung kepada model struktur molekul 3D, ujian yang dijalankan mendedahkan bahawa 3D ELMI tidak sebaik deskriptor molekul 3D sedia ada, terutamanya disebabkan bilangan ciri-ciri yang banyak dari teknik yang dicadangkan. Walau bagaimanapun, kebolehgunaan yang cerah dan pendekatan yang khas daripada teknik yang dicadangkan untuk mewakili struktur molekul 3D dadah ATS telah pun ditunjukkan dan berbaloi untuk diteroka secara lebih lanjut dalam kerja-kerja masa depan.

ACKNOWLEDGEMENTS

بِسْمِ ٱللَّـهِ ٱلرَّحْـمَننِ ٱلرَّحِـيمِ

In the name of Allah, the Most Gracious and the Most Merciful, for without Him, I would never be where I am today.Not to forget, greetings and eulogyto our beloved, The Great Prophet Muhammad SAW, for without him, we'll still be living the age of darkness.

I am deeply indebted to lecturers of UTeM, especially those in FTMK, and to my supervisors:Assoc. Prof. Drs. Azah Kamilah Muda and Choo Yun Huoy for all their helps, supports, interests, valuable hints and patience, and to Prof. Dr. Ajith Abraham for his insightful wisdom and expertise.I'd also express gratitude to Prof. Ing. Dr. Jan Flusser and colleagues in UTIA, Czech Republic, Stephen Chapman and peers in Isomer Design Ltd., Canada, for assisting me in conducting this study.I'd also like to thank ICGEB, Italy, and UTeM for providing me financial support for my study, via CRP – ICGEB Research Grant (CRP/MYS13-03) and UTeM Postgraduate Fellowship (Zamalah) Scheme, respectively.

I am truly and forever obliged to Lustiana Pratiwi, for without her endearing support and loving company I wouldn't make this far, and with whom I have the greatest blessing from Him and the joy of my life, Mus'ab Khyrissiddiq Pratama.Especially, I would like to forever give my deepest and most special thanks to my parents, Dahrina and Fitrizal Raini, whose patient love and life-long teaching enabled me to complete this work and have pushed me to go this far. I'd also like to thank my parents-in-law, Sugianto and Lustiawati, for making me part of their family.

TABLE OF CONTENTS

	LARA		_
	ROVA		
	ICATI		
	FRAC		i
	FRAK		ii
		LEDGEMENTS F CONTENTS	iii
		ABLES	iv vii
		ADLES IGURES	vii xi
		BBREVIATIONS	xxiv
		YMBOLS	xxvii
		PPENDICES	xxix
		UBLICATIONS	XXX
СНА	PTER		
1		RODUCTION	1
	1.1	Overview	1
		Research Background	2
		Problem Statements	6
		Research Questions	8
		Objectives	9
		Hypothesis Statement	10
	1.7	1	10
		Research Significance	11
		Thesis Organization	13
	1.10	Summary	14
2		ERATURE REVIEW	16
		Introduction	16
	2.2	Amphetamine-Type Stimulants (ATS)	16
	2.3	ATS Drugs Identification and Analysis	23
	2.4	Molecular Descriptors	34
		2.4.1 Weighted Holistic Invariant Molecular Descriptors	38
		2.4.2 Geometry, Topology, and Atom Weights Assembly Descriptors	41
		2.4.3 Radial Distribution Function Descriptors2.4.4 3D Molecule Representation of Structure Based on Electron	48 49
		Diffraction Descriptors	47
		2.4.5 3D Zernike Descriptors	51
		2.4.6 Review of 3D Molecular Descriptors	53
	2.5	Moments and Moment Invariants Shape Descriptors	55
	2.0	2.5.1 Geometric Moments and Moment Invariants	64
		2.5.2 Complex Moments and Moment Invariants	70
		2.5.3 Legendre Moments and Moment Invariants	74
		2.5.4 Gegenbauer Moments and Moment Invariants	79
		2.5.5 Gaussian–Hermite Moments and Moment Invariants	84

		2.5.6 Discrete Chebyshev Moments and Moment Invariants	89
		2.5.7 Weighted Krawtchouk Moments and Moment Invariants	97
		2.5.8 Hahn Moments and Moment Invariants	101
		2.5.9 Zernike Moments and Moment Invariants	107
		2.5.10 Orthogonal Fourier–Mellin Moments and Moment Invariants	117
		2.5.11 Chebyshev–Fourier Moments and Moment Invariants	121
		2.5.12 Assessment of the Moments and Moment Invariants	124
	2.6	Summary	126
3	RES	SEARCH METHODOLOGY	130
	3.1	Introduction	130
	3.2	Problem Situation and Solution Concept	131
		3.2.1 Problem Situation	131
		3.2.2 Solution Concept	133
	3.3	Research Design	135
		3.3.1 Investigation Phase	136
		3.3.2 Implementation Phase	138
		3.3.2.1 Research Development Process	138
		3.3.2.2 Performance Measurement Process	139
	3.4	Detailed Research Development Process	151
		3.4.1 Dataset Preparation	151
		3.4.2 Feature Extraction	166
		3.4.3 Classification	172
	3.5	Development Tools and Environmental Setup	178
	3.6	Summary	178
4		OMPARATIVE STUDY ON THE PERFORMANCES OF 3D	179
		MENTS TECHNIQUES	
	4.1	Introduction	179
	4.2	Modification of Existing 2D to 3D Orthogonal Moments	180
		4.2.1 3D Hahn Moments	180
		4.2.2 3D Orthogonal Fourier–Mellin Moments	181
		4.2.3 3D Chebyshev–Fourier Moments	181
	4.3	Standardization of Moments	182
	4.4	Results and Discussion	188
	4.5	Summary	214
5		EXACT LEGENDRE MOMENT INVARIANTS	215
	5.1	Introduction	215
	5.2	Technique Formulations	215
		5.2.1 3D Exact Legendre Moments	216
		5.2.2 3D Exact Geometric Moment Invariants	221
		5.2.3 3D Exact Legendre Moment Invariants	227
	5.3	Performance Measurements	231
		5.3.1 Comparison with 3D Approximated Legendre Moments	233
		5.3.2 Comparison of Two Versions of 3D Exact Legendre Moment Invariants	241

		5.3.3	Comparison with Existing 3D Moment Invariants	246
		5.3.4	Comparison with Existing 3D Molecular Descriptors	266
	5.4	Summ		293
6	CO	NCLUS	SION	295
	6.1	Introd	uction	295
	6.2	Resea	rch Summary	295
	6.3		rch Findings	298
		6.3.1	3D Exact Legendre Moments and Moment Invariants	298
		6.3.2	3D Exact Geometric Moments and Moment Invariants	301
		6.3.3	3D Hahn Moments	302
		6.3.4	3D Orthogonal Fourier-Mellin Moments	302
			3D Chebyshev–Fourier Moments	303
			2D Molecular Structure to 3D Binary Voxel Converter	303
		6.3.7	3D Moments and Moment Invariants Calculator and Viewer	305
		6.3.8	Complex Number Representation	307
		6.3.9	Database of ATS Drugs Molecular Structure in Various Format	307
	6.4	Resea	rch Contributions	309
	6.5	Resea	rch Limitations	311
	6.6	Recon	nmendations for Future Works	312
		6.6.1	Feature Selection	312
		6.6.2	Generation of Moment Invariants from Higher Order Moments	313
			Validation of 3D Exact Geometric Moment Invariants	313
		6.6.4	Exploration on the Other 3D Moments	314
		6.6.5	Application of Exact Computation and Proposed Invariants to	315
			Other 3D Moments	
		6.6.6	Classification Technique for the 3D Moment Invariants for 3D	315
			Molecular Structure Representation	
	6.7	Summ	1	316
REFE	EREN	CES		317
APPE	ENDI	CES		358

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	WHIM descriptors	39
2.2	GETAWAY descriptors based on matrix operators and information indices	44
2.3	GETAWAY descriptors based on autocorrelation functions	46
3.1	Summary of the investigation phase	137
3.2	Sample of first 5 extracted features of ecstasy using existing molecular	172
	descriptors	
3.3	Summary of classifiers parameters	174
3.4	Overview of frequently used molecular similarity coefficients	176
4.1	Polar Cantor, polar Szudzik, polar bit-interleaved, and Cartesian bit-	- 187
	interleaved pairing functions values of zeroth-order moments for each 3D)
	moments of ecstasy	
4.2	Average of processing time, memory consumption, and intra-class variance	e 189
	ratio of 3D moments	
4.3	Average of classification accuracies of 3D moments represented using polar	: 191
	Cantor pairing function	
4.4	Average of classification accuracies of 3D moments represented using polar	192
	Szudzik pairing function	
4.5	Average of classification accuracies of 3D moments represented using polar	192
	bit-interleaved pairing function	
4.6	Average of classification accuracies of 3D moments represented using	g 193

viii

Cartesian bit-interleaved pairing function

	ı C	
4.7	Sum of ranks of 3D moments	197
4.8	Tests of normality for random forests classification accuracy of 3D moments	199
4.9	Tests of normality for RIPPER classification accuracy of 3D moments	200
4.10	Ranks for random forests classification accuracy	204
4.11	Kruskal–Wallis H test results for random forests classification accuracy	205
4.12	Post-hoc test results using multiple Mann–Whitney U tests for random forests	205
	classification accuracy of 3D Legendre moments	
4.13	Ranks for RIPPER classification accuracy of polar Cantor and polar bit-	207
	interleaved	
4.14	Kruskal-Wallis H test results for RIPPER classification accuracy of polar	207
	Cantor and polar bit-interleaved	
4.15	Post-hoc test results using multiple Mann-Whitney U tests for RIPPER	208
	classification accuracy of polar Cantor and polar bit-interleaved for 3D	
	Legendre moments	
4.16	Test of homogeneity of variances results for RIPPER classification accuracy	209
	of polar Szudzik and Cartesian bit-interleaved	
4.17	ANOVA results for RIPPER classification accuracy of polar Szudzik and	209
	Cartesian bit-interleaved	
4.18	Robust tests of equality of means results for RIPPER classification accuracy	209
	of polar Szudzik and Cartesian bit-interleaved	
4.19	Post-hoc test results using Tukey HSD and Games-Howell tests for RIPPER	210
	classification accuracy of polar Szudzik and Cartesian bit-interleaved for 3D	
	Legendre moments	
5.1	Average of processing time, memory consumption, and intra-class variance	234
	ratio of 3D approximated and exact Legendre moments	

5.2	Average of classification accuracies of 3D approximated and exact Legendre	234
	moments represented using proposed pairing functions	
5.3	Tests of normality for random forests classification accuracy of 3D	238
	approximated and exact Legendre moments	
5.4	Tests of normality for RIPPER classification accuracy of 3D approximated	238
	and exact Legendre moments	
5.5	Levene's equality of variances tests of 3D approximated and exact Legendre	239
	moments	
5.6	Independent samples <i>t</i> -test for equality of means for 3D approximated and	240
	exact Legendre moments	
5.7	Average of processing time, memory consumption, and single instance	242
	invariance ratio of 3D exact Legendre moment invariants	
5.8	Average of classification accuracies of 3D exact Legendre moment invariants	243
5.9	Percentage of single instance invariance of 3D moment invariants	248
5.10	Percentage of intra- and inter-class variance of 3D moment invariants	248
5.11	Average of classification accuracies of 3D moment invariants	249
5.12	Difference of two scenarios classification accuracies of 3D moment	256
	invariants	
5.13	Tests of normality for classification accuracy of 3D moment invariants	258
5.14	Ranks for classification accuracy of 3D moment invariants	261
5.15	Kruskal–Wallis H test results for classification accuracy of 3D moment	262
	invariants	
5.16	Post-hoc test results using multiple Mann–Whitney U tests for classification	263
	accuracy of 3D ELMI against existing 3D moment invariants	
5.17	Percentage of single instance invariance of 3D molecular descriptors	267
5.18	Percentage of intra- and inter-class variance of 3D molecular descriptors	267

5.19	Average of classification accuracies of 3D molecular descriptors	268
5.20	Difference of two scenarios classification accuracies of 3D molecular	278
	descriptors	
5.21	Tests of normality for classification accuracy of 3D molecular descriptors	280
5.22	Ranks for classification accuracy of 3D molecular descriptors	283
5.23	Kruskal–Wallis H test results for classification accuracy of 3D molecular	285
	descriptors	
5.24	Post-hoc test results using multiple Mann–Whitney U tests for classification	286
	accuracy of 3D ELMI against existing 3D molecular descriptors	
A.1	Sample of drugs molecular information	358

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Thesis organization	14
2.1	2D molecular structure of β -phenethylamine (United Nations Office of Drugs	17
	and Crime, 2006b)	
2.2	Basic 2D molecular structure of ATS	19
2.3	Sub-groups of ATS per substitution patterns: (a) no substitution, (b)	20
	methylenedioxy-substitution, and (c) other substitution patterns	
2.4	Samples of ATS drug molecular structure: (a) amphetamine,	21
	(b) methamphetamine, (c) 2C-B, (d) MDMA, and (e) fenethylline	
2.5	Categories of drug identification and analysis methods (Spectra Analysis,	26
	2009)	
2.6	2D molecular structure of (a) <i>d</i> -methamphetamine and (b)	29
	<i>l</i> -methamphetamine	
2.7	3D molecular structure of (a) <i>d</i> -methamphetamine and (b)	30
	<i>l</i> -methamphetamine	
2.8	2D molecular structure of structurally similar ATS, (a) 2C-Band (b)	30
	2C-C	
2.9	Comparison of STM images, nc-AFM images, and 3D molecular structures	33
	model (de Oteyza et al., 2013)	
2.10	Taxonomy of moments	61
2.11	Orthogonal moments	62

xii

2.12	Summary of the flow and coverage of the literature review	129
3.1	Research design	136
3.2	Summary of performance measurement phase	150
3.3	Summary of the	151
3.4	MarvinSketch used to draw 2D molecular structure	153
3.5	MarvinSketch used for 3D conversion	154
3.6	Jmol used for verifying conversion process and converting to VRML file	155
3.7	Rotation transformation results of one molecular structure	156
3.8	binvox used to convert VRML to BINVOX format	158
3.9	Output of the voxelization process visualized using viewvox	158
3.10	Voxelization results of the same molecular structure from training dataset	159
	(blue) and testing datasets (red)	
3.11	Open Babel used to convert MDL SDF to (a) MOP and (b) PDB format	161
3.12	MOPAC2016 used to convert MOP to OUT format	163
3.13	Summary of dataset preparation phase	165
3.14	E-Dragon software to calculate molecular descriptors (a) by uploading SDF	167
	format and (b) view the result	
3.15	3dmorse used to calculate 3D-MoRSE descriptors from OUT format	169
3.16	3D-SURFER used to calculate 3D Zernike descriptors (a) by uploading PDB	170
	format and (b) view the result	
3.17	Summary of feature extraction phase	172
3.18	Procedures taken during the classification phase during (a) preliminary and	177
	(b) benchmark studies	
4.1	Average of processing time of 3D moments (nanoseconds/voxel)	189
4.2	Average of memory consumption of 3D moments (bytes/voxel)	190
4.3	Average of intra- and inter-class variance ratio of 3D moments	191

xiii

4.4	Average of classification accuracies of 3D moments represented using polar	193
	Cantor pairing function	
4.5	Average of classification accuracies of 3D moments represented using polar	194
	Szudzik pairing function	
4.6	Average of classification accuracies of 3D moments represented using polar	195
	bit-interleaved pairing function	
4.7	Average of classification accuracies of 3D moments represented using	196
	Cartesian bit-interleaved pairing function	
5.1	The proposed translation invariant is applied to three different original	223
	images and produces same image projection	
5.2	Average of classification accuracies of 3D approximated and exact Legendre	235
	moments represented using polar Cantor pairing function	
5.3	Average of classification accuracies of 3D approximated and exact Legendre	235
	moments represented using polar Szudzik pairing function	
5.4	Average of classification accuracies of 3D approximated and exact Legendre	236
	moments represented using polar bit-interleaved pairing function	
5.5	Average of classification accuracies of 3D approximated and exact Legendre	236
	moments represented using Cartesian bit-interleaved pairing function	
5.6	Average of classification accuracies of 3D exact Legendre moment invariants	244
	for classification of known drugs molecular structure	
5.7	Average of classification accuracies of 3D exact Legendre moment invariants	245
	for classification of unknown drugs molecular structure	
5.8	Percentage of single instance invariance of 3D moment invariants	248
5.9	Percentage of intra- and inter-class variance of 3D moment invariants	248
5.10	Average of random forests classification accuracies of 3D moment invariants	250
5.11	Average of naïve Bayes classification accuracies of 3D moment invariants	250

5.12	Average of SVM classification accuracies of 3D moment invariants	251
5.13	Average of C4.5 classification accuracies of 3D moment invariants	251
5.14	Average of RIPPER classification accuracies of 3D moment invariants	251
5.15	Average of k-NN-Tanimoto coefficient classification accuracies of 3D	252
	moment invariants	
5.16	Average of k-NN-Hodgkin coefficient classification accuracies of 3D	252
	moment invariants	
5.17	Average of k-NN–Cosine coefficient classification accuracies of 3D moment	253
	invariants	
5.18	Average of k-NN–Pearson coefficient classification accuracies of 3D moment	253
	invariants	
5.19	Average of k-NN–Euclidian distance classification accuracies of 3D moment	254
	invariants	
5.20	Average of k-NN–Hamming distance classification accuracies of 3D moment	254
	invariants	
5.21	Average of k-NN-Soergel distance classification accuracies of 3D moment	255
	invariants	
5.22	Percentage of single instance invariance of 3D molecular descriptors	267
5.23	Percentage of intra- and inter-class variance of 3D molecular descriptors	268
5.24	Average of random forests classification accuracies of 3D molecular	270
	descriptors	
5.25	Average of naïve Bayes classification accuracies of 3D molecular descriptors	271
5.26	Average of SVM classification accuracies of 3D molecular descriptors	271
5.27	Average of C4.5 classification accuracies of 3D molecular descriptors	272
5.28	Average of RIPPER classification accuracies of 3D molecular descriptors	272
5.29	Average of k-NN-Tanimoto coefficient classification accuracies of 3D	273

molecular descriptors

- 5.30 Average of *k*-NN–Hodgkin coefficient classification accuracies of 3D 273 molecular descriptors
- 5.31 Average of *k*-NN–Cosine coefficient classification accuracies of 3D 274 molecular descriptors
- 5.32 Average of *k*-NN–Pearson coefficient classification accuracies of 3D 274 molecular descriptors
- 5.33 Average of *k*-NN–Euclidian distance classification accuracies of 3D 275 molecular descriptors
- 5.34 Average of *k*-NN–Hamming distance classification accuracies of 3D 275 molecular descriptors
- 5.35 Average of *k*-NN–Soergel distance classification accuracies of 3D molecular 276 descriptors
- 5.42 3D molecular structure ecstasy with (a) original atom coordinates and (b) 292 randomized atom coordinates
- 6.1 Proposed software to convert 2D molecular structure o 3D binary voxel grid 304
- 6.2 Proposed software to calculate the 3D moments and moment invariants by (a) 306 setting the parameters and (b) executing the calculation
- 6.3 Proposed software to view the 3D moments and moment invariants results 307
- B.1 Normal Q-Q plot of random forests classification accuracy for 3D geometric 362 moments
- B.2 Normal Q-Q plot of random forests classification accuracy for 3D complex 363 moments
- B.3 Normal Q-Q plot of random forests classification accuracy for 3D Legendre 363 moments
- B.4 Normal Q-Q plot of random forests classification accuracy for 3D 364

xvi

Gegenbauer moments

- B.5 Normal Q-Q plot of random forests classification accuracy for 3D Gaussian– 364
 Hermite moments
- B.6 Normal Q-Q plot of random forests classification accuracy for 3D discrete 365
 Chebyshev moments
- B.7 Normal Q-Q plot of random forests classification accuracy for 3D weighted 365
 Krawtchouk moments
- B.8 Normal Q-Q plot of random forests classification accuracy for 3D Hahn 366 moments
- B.9 Normal Q-Q plot of random forests classification accuracy for 3D Zernike 366 moments
- B.10 Normal Q-Q plot of random forests classification accuracy for 3D orthogonal 367
 Fourier–Mellin moments
- B.11 Normal Q-Q plot of random forests classification accuracy for 3D 367
 Chebyshev–Fourier moments
- B.12 Normal Q-Q plot of RIPPER classification accuracy for 3D geometric 368 moments
- B.13 Normal Q-Q plot of RIPPER classification accuracy for 3D complex 368 moments
- B.14 Normal Q-Q plot of RIPPER classification accuracy for 3D Legendre 369 moments
- B.15 Normal Q-Q plot of RIPPER classification accuracy for 3D Gegenbauer 369 moments
- B.16 Normal Q-Q plot of RIPPER classification accuracy for 3D Gaussian– 370 Hermite moments
- B.17 Normal Q-Q plot of RIPPER classification accuracy for 3D discrete 370

xvii

Chebyshev moments

- B.18 Normal Q-Q plot of RIPPER classification accuracy for 3D weighted 371
 Krawtchouk moments
- B.19 Normal Q-Q plot of RIPPER classification accuracy for 3D Hahn moments 371
- B.20 Normal Q-Q plot of RIPPER classification accuracy for 3D Zernike moments 372
- B.21 Normal Q-Q plot of RIPPER classification accuracy for 3D orthogonal 372 Fourier–Mellin moments
- B.22 Normal Q-Q plot of RIPPER classification accuracy for 3D Chebyshev- 373 Fourier moments
- C.1 Average of processing time of 3D approximated and exact Legendre 374 moments (nanoseconds/voxel)
- C.2 Average of memory consumption of 3D approximated and exact Legendre 374 moments (bytes/voxel)
- C.3 Average of intra- and inter-class variance ratio of 3D approximated and exact 375 Legendre moments
- C.4 Processing time of 3D exact Legendre moment invariants 375 (nanoseconds/voxel)
- C.5 Memory consumption of 3D exact Legendre moment invariants (bytes/voxel) 375
- C.6 Percentage of single instance invariance of 3D exact Legendre moment 376 invariants
- D.1 Normal Q-Q plot of random forests classification accuracy for 3D exact 377 Legendre moments
- D.2 Normal Q-Q plot of RIPPER classification accuracy for 3D exact Legendre 378 moments
- D.3 Normal Q-Q plot of random forests classification accuracy of 3D moments 379 invariants for classification of known drugs molecular structure

xviii

- D.4 Normal Q-Q plot of random forests classification accuracy of 3D moments 379 invariants for classification of unknown drugs molecular structure
- D.5 Normal Q-Q plot of naïve Bayes classification accuracy of 3D moments 380 invariants for classification of known drugs molecular structure
- D.6 Normal Q-Q plot of naïve Bayes classification accuracy of 3D moments 380 invariants for classification of unknown drugs molecular structure
- D.7 Normal Q-Q plot of SVM classification accuracy of 3D moments invariants 381 for classification of known drugs molecular structure
- D.8 Normal Q-Q plot of SVM classification accuracy of 3D moments invariants 381 for classification of unknown drugs molecular structure
- D.9 Normal Q-Q plot of C4.5 classification accuracy of 3D moments invariants 382 for classification of known drugs molecular structure
- D.10 Normal Q-Q plot of C4.5 classification accuracy of 3D moments invariants 382 for classification of unknown drugs molecular structure
- D.11 Normal Q-Q plot of RIPPER classification accuracy of 3D moments 383 invariants for classification of known drugs molecular structure
- D.12 Normal Q-Q plot of RIPPER classification accuracy of 3D moments 383 invariants for classification of unknown drugs molecular structure
- D.13 Normal Q-Q plot of *k*-NN–Tanimoto coefficient classification accuracy of 384
 3D moments invariants for classification of known drugs molecular structure
- D.14 Normal Q-Q plot of *k*-NN–Tanimoto coefficient classification accuracy of 384
 3D moments invariants for classification of unknown drugs molecular structure
- D.15 Normal Q-Q plot of *k*-NN–Cosine coefficient classification accuracy of 3D 385 moments invariants for classification of known drugs molecular structure
- D.16 Normal Q-Q plot of k-NN–Cosine coefficient classification accuracy of 3D 385

xix