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ABSTRACT 

 

 

The abuse of amphetamine-type stimulants (ATS) drugs has become a global, harrowing 
social problem. The technical limitations of the current test kits to detect new brand of 
ATS drugs present a challenge to national law enforcement authorities and scientific staff 
of forensic laboratories. Meanwhile, new molecular imaging devices which allowed 
mankind to characterize the physical three-dimensional (3D) molecular structure have been 
recently introduced, and it can be used to remedy the limitations of existing drug test kits. 
Thus, a new type of 3D molecular structure representation technique, or molecular 
descriptors, should be developed to cater the 3D molecular structure acquired physically 
using these molecular imaging devices. One of the image processing methods to represent 
a 3D image is 3D moments and moment invariants. However, there are problems exhibited 
by the existing 3D moments and moment invariants. Therefore, it is necessary to propose a 
new 3D moment invariants which is free from these problems. This study compares 
various 3D moments and identified 3D Legendre moments as the best moments to 
construct 3D moment invariants, namely 3D exact Legendre moment invariants (3D 
ELMI), which is used to represent the 3D molecular structure of ATS drugs. Since the 3D 
molecular structure of ATS drugs dataset obtained using molecular imaging devices are 
currently unavailable, this study acquired the 3D molecular structure of ATS drugs data 
from United Nations Office of Drug and Crime (UNODC) and pihkal.info database 
instead. The proposed technique was compared to the existing 3D moment invariants and 
molecular descriptors techniques in terms of processing time, memory consumption, single 
instance invariance, intra- and inter-class variance, and classification accuracy. The 
comparative study conducted found that 3D ELMI performs better than the existing 3D 
moment invariants, such as 3D geometric moment invariants (3D GMI), 3D Gaussian–
Hermite moment invariants (3D GHMI), and 3D Zernike descriptors (3D ZD). The 
satisfactory performance of 3D ELMI is attributed to numerous factors, such as the quality 
of the 3D Legendre, exact computation of the 3D Legendre, and the novelty of the 
proposed invariants techniques. The proposed technique was also compared to existing 3D 
molecular descriptors, for example weighted holistic invariants molecular (WHIM), 
geometry, topology, and atom weights assembly (GETAWAY), radial distribution function 
(RDF), and 3D molecule representation of structure based on electron diffraction (3D-
MoRSE) descriptors. Despite 3D ELMI is capable to overcome the limitations of existing 
3D molecular descriptors which depends on 3D molecular structure model instead of 
physical molecular structure obtained from molecular imaging devices, the test reveals 3D 
ELMI is not as good as these techniques, primarily due to the substantial number of 
features produced by the proposed technique. Nevertheless, the promising applicability and 
the unique approach of the proposed technique to represent the 3D molecular structure of 
ATS drugs has been demonstrated and worth to receive further exploration in the future 
works. 

i 



 

  

ii 



 

 

 

ABSTRAK 

 

 

Penyalahgunaan dadah perangsang jenis amfetamin (ATS) telah menjadi masalah sosial 
antarabangsa yang menakutkan. Batasan teknikal kit ujian semasa untuk mengesan 
jenama baru dadah ATS memberi cabaran kepada pihak penguat kuasa undang-undang 
dan kakitangan saintifik makmal forensik. Sementara itu, peranti pengimejan molekul yang 
membenarkan umat manusia untuk melihat struktur molekul tiga dimensi (3D) baru saja 
diperkenalkan, dan ianya dapat digunakan untuk mengatasi batasan kit ujian semasa. 
Oleh itu, teknik perwakilan struktur molekul 3D, atau deskriptor molekul 3D, berjenis baru 
yang dapat mewakili bentuk molekul 3D yang dikesan melalui peranti pengimejan molekul 
perlu dibangunkan. Salah satu kaedah pemprosesan imej untuk mewakili imej 3D ialah 
momen dan momen kekal 3D. Walau bagaimanapun, terdapat pelbagai masalah yang 
ditunjukkan oleh teknik momen dan momen kekal 3D sedia ada. Oleh itu, ianya penting 
untuk mencadangkan momen kekal 3D baru yang bebas dari masalah-masalah teknik 
sedia ada. Kajian ini membandingkan pelbagai teknik momen 3D dan berjaya 
mengenalpasti momen Legendre 3D sebagai teknik terbaik untuk dijadikan asas untuk 
membangunkan momen kekal 3D baru bernama momen kekal Legendre tepat 3D (3D 
ELMI), yang dapat digunakan untuk mewakili struktur molekul 3D dadah ATS. 
Disebabkan struktur molekul 3D dadah yang diperolehi dengan menggunakan peranti 
pengimejan molekul belum lagi tersedia, kajian ini mendapatkan struktur molekul 3D 
dadah ATS dari pangkalan dataPejabat Dadah dan Jenayah Pertubuhan Bangsa-bangsa 
Bersatu (UNODC) dan pihkal.info sebagai gantinya. Teknik yang dicadangkan 
dibandingkan dengan teknik momen kekal dan deskriptor molekul 3D sedia ada dari segi 
masa pemrosesan, penggunakan memori, kekekalan sebuah sampel, variasi dalam dan 
antar kelas, serta ketepatan pengelasan. Perbandingan yang dijalankan mendapati 3D 
ELMI berprestasi lebih baik berbanding momen kekal 3D sedia ada, seperti momen kekal 
geometrik 3D (3D GMI), momen kekal Gaussian–Hermite 3D (3D GHMI), dan deskriptor 
Zernike 3D (3D ZD). Hasil 3D ELMI yang memuaskan disebabkan oleh banyak faktor, 
antaranya kualiti asal Legendre 3D, pengiraan tepat Legendre 3D, dan juga kebaharuan 
teknik pengekalan yang dicadangkan. Teknik yang dicadangkan juga dibandingkan dengan 
deskriptor molekul 3D sedia ada, seperti deskriptor molekul holistik kekal berwajaran 
(WHIM), perhimpunan geometri, topologi, dan berat atom (GETAWAY), fungsi distribusi 
radial (RDF), dan perwakilan struktur molekul 3D berdasarkan pembelahan elektron (3D-
MoRSE). Walaupun 3D ELMI mampu mengatasi batasan deskriptor molekul 3D sedia ada 
yang bergantung kepada model struktur molekul 3D, ujian yang dijalankan mendedahkan 
bahawa 3D ELMI tidak sebaik deskriptor molekul 3D sedia ada, terutamanya disebabkan 
bilangan ciri-ciri yang banyak dari teknik yang dicadangkan. Walau bagaimanapun, 
kebolehgunaan yang cerah dan pendekatan yang khas daripada teknik yang dicadangkan 
untuk mewakili struktur molekul 3D dadah ATS telah pun ditunjukkan dan berbaloi untuk 
diteroka secara lebih lanjut dalam kerja-kerja masa depan.  
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