

VALIDATION OF QUALITY REQUIREMENTS THROUGH REQUIREMENTS-BASED TESTING WITH SEMI-FORMALISED MODEL

NOR AIZA BINTI MOKETAR

DOCTOR OF PHILOSOPHY

2018

C Universiti Teknikal Malaysia Melaka

Faculty of Information and Communication Technology

VALIDATION OF QUALITY REQUIREMENTS THROUGH REQUIREMENTS-BASED TESTING WITH SEMI-FORMALISED MODEL

Nor Aiza binti Moketar

Doctor of Philosophy

2018

C Universiti Teknikal Malaysia Melaka

VALIDATION OF QUALITY REQUIREMENTS THROUGH REQUIREMENTS-BASED TESTING WITH SEMI-FORMALISED MODEL

NOR AIZA BINTI MOKETAR

A thesis submitted in fulfillment of the requirements for the degree ofDoctor of Philosophy

Faculty of Information and Communication Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Validation of Quality Requirements through Requirements-Based Testing with Semi-formalised Model" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Nor Aiza Binti Moketar
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in term of scope and quality for the award of Doctor of Philosophy.

Signature	:	
Supervisor Name	:	Assoc. Prof. Dr. Massila Binti Kamalrudin
Date	:	

DEDICATION

I dedicate this thesis to

My husbandMuhamad Hafiz, my children Nur Hani Sufia and Umar Hariz, my beloved

parent, my parent-in-law, my brothers, and sisters.

C Universiti Teknikal Malaysia Melaka

ABSTRACT

The usage of software system and applications has increased massively to fulfill various kind of purpose for organization, business and individual. In this case, high quality software system and application are required to ensure it provides the intended functionalities. To achieve quality software system and application, a good quality of requirements needs to be defined and validated. However, it is difficult to accomplish due to the flexibility of natural language requirements that can be confusing and easily misinterpreted. This can lead to requirements-related problems such as incorrectness, incompleteness and inconsistency. These errors in requirements will produce defective software that can lead to undesirable and non-acceptance by stakeholders. Therefore, it is crucial for the software requirements to fulfill basic quality attributes such as correctness, completeness, and consistency (3Cs). Motivated from these problems, the main objective of this studyis to develop an automated approach to validate the quality of requirements through Requirements-Based Testing methodology with semi-formalized model. This studyproposes a new automated approach to assist the requirements engineer and clientstakeholders to validate the quality of requirements. For this, we generate abstract tests by integratingRequirements-based Testing (RBT) methodology and rapid prototyping with semi-formalized models:Essential Use Cases (EUCs) and Essential User Interface (EUI).Next, we have developed pattern libraries to support the automatic extraction of abstract tests from the EUC model. They are test requirements pattern library and testcase pattern library. Here, an automated tool support called TestMEReq is also developed to realize the approach. The test-authoring template to assist requirements engineer to write accurate tests is also developed. Then, a real-time collaborative approachis also integrated with the tool to encourage users' involvement in the validation process as well as to support better communication and collaboration among stakeholders. Finally, a comprehensive evaluation of the approach, comprising experiments of correctness test and usability test were conducted. In summary, the findings of the evaluations show that our approach can contribute to the body of knowledge of requirements engineering especially in enhancing the quality of requirements at the earliest stage. It is found that the approach is able to enhance the correctness level of the elicited requirements compared to the manual approach and produce correct generation of test. The results of the usability tests show that the approach is useful and helpful in validating the quality of requirements at the early stage of software development and able to ease the requirements validation process.

ABSTRAK

Penggunaan perisian sistem dan aplikasi telah meningkat secara besar-besaran untuk memenuhi pelbagai keperluan organisasi, perniagaan dan individu. Maka, perisian sistem dan aplikasi yang berkualiti tinggi amat diperlukan untuk memastikan ia menyediakan fungsi yang dikehendaki. Bagi mencapai perisian sistem dan aplikasi yang berkualiti, keperluan perisian yang berkualiti tinggi perlu dikenalpasti dan divalidasikan. Walau bagaimanapun, ia sukar untuk dicapai disebabkan oleh fleksibiliti keperluan bahasa semulajadi yang mengelirukan dan mudah disalah tafsir. Ini akan menyebabkan masalah berkaitan-keperluan seperti kesilapan, ketidaksempurnaan, dan tidak konsisten. Kesilapan di dalam keperluan ini akan menghasilkan perisian yang rosak dimana ianya tidak diingini and diterima oleh pemegang kepentingan. Oleh itu, ia amat penting untuk keperluan perisian memenuhi atribut berkualiti seperti ketepatan, lengkap dan konsisten (3Cs). Motivasi kepada masalah ini,objektif penyelidikan ini adalah untuk membina satu pendekatan automatic untuk menvalidasikan kualiti keperluan melalui Ujian berasaskan Keperluan (RBT) bersama model separa formal. Penvelidikan ini mencadangkan satu pendekatan automatik baharu untuk membantu Jurutera Keperluan dan pelangganpemegang kepentingan untuk menyalidasikan kualiti keperluan perisian. Untuk ini, kami menjana ujian abstrak dengan mengintegrasikan metodologi Ujian berasaskan Keperluan (RBT) dan prototaip pantas bersama model separa formal:Kes Berguna Penting (EUC) dan Antara-muka Penting (EUI). Kami kemudiannya telah membangunkan pangkalan data untuk menyokong pengekstakan ujian abstrak daripada EUC model secara automatik. Pangkalan data tersebut terdiri daripada ujian keperluan dan kes ujian. Disini, satu alatan sokongan automatik dipanggil TestMEReq juga dibangunkan untuk merealisasikan pendekatan tersebut. Templat pengarang-ujian untuk membantu Jurutera Keperluan menulis ujian yang tepat juga dibangunkan. Kemudian, satu pendekatan kolaborasi masasebenar juga diintegrasikan bersama alatan tersebut untuk menggalakkan penglibatan pengguna dalam proses validasi serta menyokong komunikasi dan kolaborasi yang lebih baik diantara pemegang kepentingan. Akhir sekali, penilaian menyeluruh pendekatan terdiri daripada eksperimen ujian ketepatan dan kebolehgunaan telah dijalankan.Kesimpulannya, dapatan daripada penilaian menunjukkan pendekatan kami mampu menyumbang kepada badan pengetahuan kejuruteraan keperluan terutamanya dalam meningkatkan kualiti keperluan perisian di peringkat awal. Ianya dikenalpasti bahawa pendekatan ini boleh meningkatkan ketepatan keperluan yang dicungkil berbanding manual dan menghasilkan ketepatan ujian penjanaan. Kemudiannya, keputusan ujian kebolehgunaan menunjukkan pendekatan ini berguna dan membantu dalam menvalidasikan kualiti keperluan perisian pada peringkat awal pembangunan aplikasi dan memudahkan proses validasi keperluan perisian.

ACKNOWLEDGEMENTS

All praise and thanks belong to Allah the Most Gracious, the Most Mercifulfor choosing me to experience this wonderfuljourney. I was blessed withgood health, strength, and ability to complete this study.

I would like to thank all who contributed in the completion of this thesis. My sincere thanks go to my supervisors, Associate Professor Dr. Massila Kamalrudin and Professor Dr. Mokhtar Mohd Yusoffor the patience guidance, encouragement and advices toward the completion of this thesis. I am extremely lucky to have committed supervisors who willing to spare their precious time to help me with my study; for many fruitful discussions and constructive suggestion for improvement.

In addition, I would like to thank everyone from my research group for their continuous assistance and support. A veryspecial thanks to Associate Professor Dr. Safiah Sidekfor valuable proofreading and numerous advice on the organisation of this thesis.

My deepest thanks go to my family who always be with me through thick and thin, especially to my husband and my children for their incomparable patience, support and understanding.

Thanks for all your encouragement.

iii

TABLE OF CONTENTS

DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii

LIST OF FIGURES	ix
LIST OF APPENDICES	xii
LIST OF ABBREVIATIONS	xiii
LIST OF PUBLICATIONS	xiv

CHAPTER

1.	INT	RODUCTION	1
	1.1	Introduction	1
	1.2	Research Background	1
	1.3	Problem Statement	3
	1.4	Research Questions	5
	1.5	Research Objectives	6
	1.6	Research Contributions	7
	1.7	Thesis Organization	8
	1.8	Summary	10
2.	LIT	ERATURE REVIEW	12
	2.1	Introduction	12
	2.2	Software Requirements and Quality Attributes	12
		2.2.1 Quality Criteria of Requirements	15
		2.2.2 Analysis on Quality Criteria of Requirements	16
	2.3	Requirements Validation	19
		2.3.1 Requirements Validation Techniques	22
		2.3.1.1 Requirements Review	22
		2.3.1.2 Requirements Prototyping	23
		2.3.1.3 Requirements Testing	24
		2.3.1.4 Viewpoint-Oriented Requirements Validation	25
		2.3.1.5 Summary of Requirements Validation Techniques	27
		2.3.2 Related Work on Requirements Validation	28
	2.4	Preliminary Studies	35
		2.4.1 User Study of Generating Abstract Tests for Requirements	
		Validation	36
		2.4.2 Interview	39
		2.4.3 Discussion and Summary of Preliminary Studies	41
	2.5	Research Gap Analysis	43
		2.5.1 Essential Use Case (EUCs) and Essential User Interface (EUI)	
		Models	46

		2.5.2	Requirements-based Testing	48	
		2.5.3	Template-based Approach	5	0
	2.6	Summ	ary	5	1
3.	RES		H METHODOLOGY	5	
	3.1	Introdu			2
	3.2		rch Design	5	
	3.3		1: The Analysis	5	
			Literature Review	5	4
		3.3.2	Preliminary Study	58	
			3.3.2.1 User Study	58	
			3.3.2.2 Interview	6	
	3.4		2: The Design and Development	6	3
	3.5		3: Testing and Evaluation	65	
		3.5.1	Correctness Test	6	
			3.5.1.1 Comparison between Manual and Automated Approa		
			3.5.1.2 Correctness Ratio	6	
		3.5.2	Usability Test		6
			3.5.2.1 Usability Test I: Survey Questionnaire	6	7
			3.5.2.2 Usability Test II: Interview	82	
	3.6	Summ	ary	8	2
4.			TED REQUIREMENTS VALIDATION APPROACH	8	
	4.1			8	
	4.2		nated Approach for Requirements Validation	8	
		4.2.1	1	8	5
			4.2.1.1 Development of Test Requirements and Test Cases		
			Pattern Libraries	88	
		4.2.2 4.2.3	Template-based Tests Authoring to Write Quality Abstract Test Real-Time Collaborative Requirements Validation for Effective	ve	6
			Communication and Collaboration	97	
	4.3	-	rements Dependency and Quality Checking	97	
	4.4		Support		02
	4.5	•	Example		03
	4.6		Architecture		06
	4.7	Summ	ary	1	10
5.			ND DISCUSSION		12
	5.1	Introdu			12
	5.2		ctness Test		12
		5.2.1	Correctness Test I: Comparison Study between Manual Task a TestMEReq Tool		13
		5.2.2	Correctness Test II: Correctness Ratio	1	13
	5.3	Usabil	ity Test	1	15
		5.3.1	Usability Test I: Survey Questionnaire	1	15
		5.3.2	Usability Test II: Interview	1	45
	5.4	Threat	to Validity	1	46
	5.5	Summ	ary	1	48

6.	CO	NCLUSION AND FUTURE WORK	150
	6.1	Introduction	150
	6.2	Summary of Research Objectives	150
		6.2.1 Summary of Research Objective 1	150
		6.2.2 Summary of Research Objective 2	151
		6.2.3 Summary of Research Objective 3	152
	6.3	Limitations	152
	6.4	Conclusion and Recommendation for Future work	153
		NCES	155
API	PEND	ICES	173

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Common Quality Criteria Validated in Related Studies	17
2.2	Frequency Table With Heat Map Representation	18
2.3	Comparison of Requirements Validation Techniques	27
2.4	The synthesis Results on Requirements Validation	29
2.5	The Distribution of Common Requirements Validation Techniques	32
2.6	The Requirements Sample (left-hand side) and EUC Model (right-hand side)	37
2.7	Correctness Measurement	38
2.8	The Correctness Results From the Participants	38
2.9	Background Information of the Experts	39
2.10	Requirements Validation Techniques Used by the Experts	40
2.11	Medium of Communication Used to Validate Requirements	41
2.12	Relation between the Problems and Research Contribution	46
3.1	Quality Assessment Checklist	57
3.2	Requirements Sample and Associated EUC Model	60
3.3	Background Information of the Respondents	62
3.4	Summary of Usability Tests	67
3.5	The Demography Details of the Survey Participants	69
3.6	CD Dimension and Meaning by Blackwell	71
3.7	CD Notations Used and Question Evaluating Them	72

vii

4.1	The Detail Description of the EUI Pattern Category	90
4.2	The EUI Pattern and Test Case Category of the EUC Model	91
4.3	Decision Table for Login Function	94
4.4	Final Test Case Derives from Decision Table	95
4.5	The Main Component of Our Test Case Pattern Library	95
4.6	The Dependency Relationship Between EUC Model, Test Requirements and	98
	Test Cases	
5.1	Results from Comparison of Manual and Automated Approach	113
5.2	CD Study Result – Generate Abstract Tests	118
5.3	Frequency Table for the Result of Open-ended Question	121
5.4	CD Study Result - Template-based Test Authoring	125
5.5	CD Study Result – Real-Time Collaborative Approach	131
5.6	Coding Scheme for Communication Pattern	136
5.7	Statements Extracted from the Discussion	137

LIST OF FIGURES

FIGUR	E TITLE	PAGE
1.1	Waterfall Model	2
1.2	The Structure of the Thesis	8
2.1	Requirements Engineering Process	20
2.2	The Concept of Viewpoint-oriented Requirements Validation (Kotonya and	1
	Sommerville, 1998)	26
2.3	Type of Contribution by the Related Studies in Requirements Validation	31
2.4	Modes of Approaches in Requirements Validation	31
2.5	Heat Map Representation: Categorisation of Type of Contribution, Mode of	f
	Approach, Requirements Type and Requirements Validation Techniques	
	Heat Map Representation: Classification of the Model Used as a Semi-formal	1 34
2.6	Requirements Validation Approach	
	Findings from Preliminary Studies	35
2.7	Theoretical Framework of Our Research	42
2.8	Example Natural Language Requirement (Left Hand Side) and Example of	f 45
2.9	EUC	
	Example of EUI Prototype Iterates from EUC Model	47
2.10	The 12 Step Process of RBT Methodology (Skoković et al., 2010)	48
2.11	Research Design	49
3.1	The Systematic Literature Review Protocol	53
3.2	The Flowchart of the Procedure for Usability Test	55

3.3	The Flowchart of the Task List for Part 1 of the Evaluation	75
3.4	The Flowchart of the Task List for Part 2 of the Evaluation	77
3.5	The Flowchart of the Task List for Part 3 of the Evaluation	78
3.6	The 12 Step Process of RBT Methodology (Skoković et al., 2010)	80
4.1	The Overview of Our Automated Approach for Requirements Validation	86
4.2	The Development Flow of Abstract Tests Pattern Libraries	86
4.3	The Phrase Structure Tree for Our Test Requirements Pattern Library	89
4.4	The Dependency Relationship between EUC Model, Test Requirements, Test	93
4.5	Cases and Test Scripts	
	Outline of our Requirements Quality Checking Process	98
4.6	Our Conceptual Model to Define the Consistency, Completeness and	99
4.7	Correctness of the Requirements Representation and Abstract Tests	
	User Interface of TestMEReq in Used	101
4.8	The Real-Time Collaborative Platform Embedded in TestMEReq	104
4.9	Test-Authoring Template of TestMEReq	106
4.10	The MVC Design Pattern	106
4.11	Basic Layout of Three-tier Architecture	107
4.12	The High-Level Architecture of TestMEReq	107
4.13	The Results of Tool Correctness	108
5.1	Usability Study Result – Generate Abstract Tests	114
5.2	Usability Study Result - Template-based Test Authoring	118
5.3	Usability Study Result – Real-Time Collaborative Support	125
5.4	Requirements Errors Found by Each Group	131
5.5	Communication Interaction Pattern of Each Group	135
5.6	Comparison Result of Usability Study	137
5.7	Comparison Results of CD Study for the Three Parts of the Evaluation	139
5.8	Comparison Results of Undecidability of Responses in CD Studies	141

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Consent form (Survey Questionnaire)	173
В	Preliminary Study	174
С	Interview Protocol	178
D	Generate Abstract Tests	180
E	Template-based Test Authoring	186
F	Real-Time Collaborative Validation	193
G	Observational Checklist	201
Н	Consent form (Interview)	202
Ι	Sample Requirements Scenario	203

LIST OF ABBREVIATIONS

TestMEReq	-	Test Malay English Requirements
3C	-	Correctness, Completeness and Consistency
RBT	-	Requirements-Based Testing
EUC	-	Essential Use Case
EUI	-	Essential User Interface
UTeM	-	Universiti Teknikal Malaysia Melaka
TR	-	Test Requirements
TC	-	Test Case
IT	-	Information Technology
CD	-	Cognitive Dimensions
GUI	-	Graphical User Interface

xiii

LIST OF PUBLICATIONS

- Moketar, N., Kamalrudin, M., Mohd Yusof, M., & Sidek, S., "A Review on Requirements Validation for Software Development", Journal of Theoretical and Applied Information Technology, vol.96(11), pp. 3182-3193,2018.
- Moketar, N., Kamalrudin, M. "Extraction of Essential Requirements from Natural Language Requirements", Journal of Telecommunication, Electronic and Computer Engineering, vol.10(2-2), pp. 35-38, 2018.
- Moketar, N., Kamalrudin, M., Mohd Yusof, M., & Sidek, S., "A Study of Generating Abstract Test for Requirements Validation among Requirements Engineers", Journal of Theoretical and Applied Information Technology, vol.95(7), pp. 1381–1388, 2016.
- Moketar, N., Kamalrudin, M., Sidek, S., Robinson, M., & Grundy, J., "An Automated Collaborative Requirements Engineering Tool for Better Validation of Requirements", 31st IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 864-869, 2016.
- Moketar, N., Kamalrudin, M., Sidek, S., Robinson, M., & Grundy, J. (2016).
 "TestMEReq: Generating Abstract Tests for Requirements Validation",3rd International

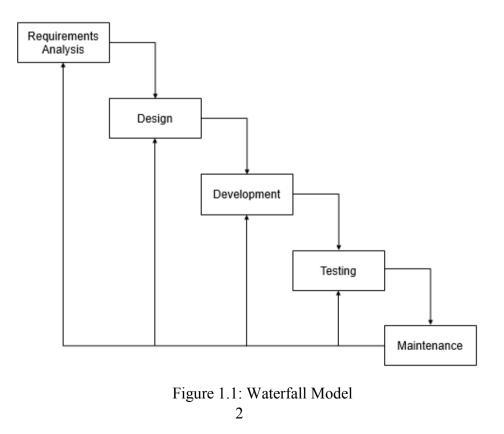
xiv

Workshop on Software Engineering Research and Industrial Practice (SER&IP), pp. 39-45, 2016.

 Moketar, N., Kamalrudin, M., Sidek, S., Akmal, S., and Robinson, M., "A Templatebased Test-Authoring Tool to Write Quality Tests for Requirements Validation", Communication in Computer and Information Science 671, pp. 113-120, 2016.

CHAPTER 1

INTRODUCTION


1.1 Introduction

This chapter presents an overview of this thesis. First, it describes the backgroundof the research and introduces the motivation of the research. The next section presents the research questions as well as the objectives of the research, followed by the description of the contribution of the study in relation to the field of Requirements Engineering. Finally, the chapter concludes with the outline of the thesis structure.

1.2 Research Background

In-line with the massive growth of technology, the usage of software systems and applications has increased accordingly. The demand for the software has risen in the early 1960s and expanded greatly with the emerging of personal computers (PC) in the middle of 1970s. It has continued to grow in the recent years with the rapid evolution of mobile devices such as laptops, tablets, and smartphone. Software systems have been used for various kinds of purpose and have delivered many positive impacts to the way howan (a) organization, business and individual works and coordinates. They are designed and developed to automatically handle complex functionality in various domains of application to ease the manual tasks and processes as well as to increase the productivity. Accordingly, the demand for high quality of software system has also increased to ensure it provides the intended functionality as required by the users. High quality software system is extremely important for the safety-critical domains such as healthcare, infrastructure, and transportation to avoid any risks such as failure or malfunction in the software that may result in serious injury or death, as well as lost or severe damage to equipment/property. However, developing an effective and high-quality software system is not an easy task. It involves a few critical phases and activities that require full commitment and collaboration from all client-stakeholders to ensure its success.

There were many Software Development Life Cycle (SDLC) models proposed such as waterfall, spiral, V-model, and agile model. Regardless of these various models and methodologies, a software development process generally involves five main phases, which include the requirements analysis, design, development, testing, and maintenance. Figure 1.1 shows the traditional SDLC model: the Waterfall model(Sommerville, 2001). Among these phases, the requirements analysis is claimed to be the most essential phase in a software development process since it gives critical impact to the quality of end product (Hsia et al., 1993)(Lamsweerde, 2000)(Vieira et al., 2012).

