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ABSTRACT 

 

 

Optimization is a crucial process to select the best parameters in single and multi-objective 
problems for manufacturing process. However, it is difficult to find an optimization 
algorithm that obtain the global optimum for every optimization problem. Artificial Bees 
Colony (ABC) is a well-known swarm intelligence algorithm in solving optimization 
problems. It has noticeably shown better performance compared to the state-of-art 
algorithms. This study proposes a novel hybrid ABC algorithm with β-Hill Climbing (βHC) 
technique (ABC-βHC) in order to enhance the exploitation and exploration process of the 
ABC in optimizing carbon nanotubes (CNTs) characteristics. CNTs are widely used in 
electronic and mechanical products due to its fascinating material with extraordinary 
mechanical, thermal, physical and electrical properties. Chemical Vapor Deposition (CVD) 
is the most efficient method for CNTs production. However, using CVD method encounters 
crucial issues such as customization, time and cost. Therefore, Response Surface 
Methodology (RSM) is proposed for modeling and the ABC-βHC is proposed for 
optimization purpose to address such issues. The selected CNTs characteristics are CNTs 
yield and quality represented by the ratio of the relative intensity of the D and G-bands 
(ID/IG). Six case studies are generated from collected dataset including four cases of CNTs 
yield and one case of ID/IG as single objective optimization problems, while the sixth case 
represents multi-objective problem. The input parameters of each case are a subset from the 
set of input parameters including reaction temperature, duration, carbon dioxide flow rate, 
methane partial pressure, catalyst loading, polymer weight and catalyst weight. The models 
for the first three case studies were mentioned in the original work. RSM is proposed to 
develop polynomial models for the output responses in the other three cases and to identify 
significant process parameters and interactions that could affect the CNTs output responses. 
The developed models are validated using t-test, correlation and pattern matching. The 
predictive results have a good agreement with the actual experimental data. The models are 
used as objective functions in optimization techniques. For multi-objective optimization, this 
study proposes Desirability Function Approach (DFA) to be integrated with other proposed 
algorithms to form hybrid techniques namely RSM-DFA, ABC-DFA and ABC-βHC-DFA. 
The proposed algorithms and other selected well-known algorithms are evaluated and 
compared on their CNTs yield and quality. The optimization results reveal that ABC-βHC 
and ABC-βHC-DFA obtained significant results in terms of success rate, required time, 
iterations, and function evaluations number compared to other well-known algorithms. 
Significantly, the optimization results from this study are better than the results from the 
original work of the collected dataset. 
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ABSTRAK 

 

 

Pengoptimuman adalah suatu proses yang penting bagi memilih parameter yang terbaik 
dalam masalah satu dan berbilang-objektif untuk proses pembuatan. Walau bagaimanapun, 
ia adalah sukar bagi menjumpai satu algoritma pengoptimuman yang mendapat optimum 
keseluruhan untuk setiap masalah pengoptimuman. Koloni Lebah Buatan (ABC) adalah 
algoritma kepintaran kawanan yang dikenali dalam menyelesaikan masalah 
pengoptimuman. Ia telah menunjukkan prestasi yang lebih baik berbanding dengan 
algoritma-algoritma terkini. Kajian ini mencadangkan algoritma baru hibrid ABC dengan 
teknik Pemanjatan Bukit-β (βHC) (ABC-βHC) untuk meningkatkan proses eksploitasi dan 
penerokaan ABC dalam pengoptimuman ciri-ciri Karbon nanotiub (CNTs). CNTs 
digunakan secara meluas pada produk elektronik dan mekanikal disebabkan oleh bahannya 
yang menarik dengan ciri-ciri mekanik, haba, fizikal dan elektrik yang luar biasa. 
Pemendapan Wap Kimia (CVD) adalah kaedah yang paling berkesan untuk penghasilan 
CNTs. Walau bagaimanapun, dengan menggunakan kaedah CVD, terdapat masalah penting 
seperti penyesuaian, masa, dan kos. Oleh sebab itu, Metodologi Respons Permukaan (RSM) 
dicadangkan untuk permodelan dan ABC-βHC dicadangkan untuk tujuan pengoptimuman 
bagi menangani isu-isu tersebut. Respon output yang dipilih adalah %hasil karbon dan 
kualiti CNT yang diwakili oleh nisbah keamatan relatif D dan G-band (ID / IG). Enam kajian 
kes dihasilkan daripada set data yang dikumpul termasuk empat kes %hasil karbon dan satu 
kes ID / IG sebagai masalah pengoptimuman tujuan tunggal, manakala kes keenam mewakili 
masalah berbilang-objektif. Parameter input setiap kes adalah subset dari set parameter 
input termasuk suhu tindak balas, tempoh, kadar aliran karbon dioksida, tekanan separa 
metana, pemuatan pemangkin, berat polimer dan berat pemangkin. Model ramalan bagi 
tiga kajian kes pertama disebut dalam karya asal. RSM dicadangkan untuk membangunkan 
model ramalan polinomial untuk respon output dalam tiga kes yang lain. Kemudian, 
parameter proses yang penting dan interaksi yang boleh menjejaskan tindak balas output 
CNT telah dikenalpasti. Model yang dibangunkan telah disahkan menggunakan ujian t, 
korelasi dan corak yang sepadan, dan keputusan ramalan mempunyai persetujuan yang baik 
dengan data eksperimen sebenar. Model tersebut digunakan sebagai fungsi objektif dalam 
teknik pengoptimuman. Untuk pengoptimuman berbilang-objektif, kajian ini mencadangkan 
Pendekatan Fungsi Keinginan (DFA) diintegrasi dengan algoritma lain yang dicadangkan 
bagi membentuk teknik hibrid iaitu RSM-DFA, ABC-DFA dan ABC-βHC-DFA. Algoritma 
yang dicadangkan dan algoritma terkenal lain yang dipilih telah dinilai dan dibandingkan 
dengan hasil dan kualiti CNT mereka. Hasil pengoptimuman menunjukkan bahawa ABC-
βHC dan ABC-βHC-DFA memperoleh hasil yang signifikan dari segi kadar kejayaan, masa 
yang diperlukan, lelaran dan nombor penilaian fungsi berbanding dengan algoritma lain 
yang diketahui. Secara signifikan, keputusan-keputusan pengoptimuman dari kajian ini 
adalah lebih baik daripada keputusan-keputusan hasil kerja asal terhadap set data yang 
dikumpulkan.  
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