

Faculty of Information and Communication Technology

HYBRID ARTIFICIAL BEES COLONY ALGORITHMS FOR OPTIMIZING CARBON NANOTUBES CHARACTERISTICS

Mu'ath Ibrahim Mohammad Jarrah

Doctor of Philosophy

2018

🔘 Universiti Teknikal Malaysia Melaka

HYBRID ARTIFICIAL BEES COLONY ALGORITHMS FOR OPTIMIZING CARBON NANOTUBES CHARACTERISTICS

MU'ATH IBRAHIM MOHAMMAD JARRAH

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Faculty of Information and Communication Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

DECLARATION

I declare that this thesis entitled "Hybrid Artificial Bees Colony Algorithms for Optimizing Carbon Nanotubes Characteristics" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	MUATH IBRAHIM MOHAMMAD JARRAH
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature	:	
Supervisor Name	:	Dr. ABDUL SYUKOR BIN MOHAMMAD JAYA
Date	:	

DEDICATION

To my beloved mother and father, may Allah's mercy and forgiveness be upon him, I miss him so much.

ABSTRACT

Optimization is a crucial process to select the best parameters in single and multi-objective problems for manufacturing process. However, it is difficult to find an optimization algorithm that obtain the global optimum for every optimization problem. Artificial Bees Colony (ABC) is a well-known swarm intelligence algorithm in solving optimization problems. It has noticeably shown better performance compared to the state-of-art algorithms. This study proposes a novel hybrid ABC algorithm with β -Hill Climbing (β HC) technique (ABC-βHC) in order to enhance the exploitation and exploration process of the ABC in optimizing carbon nanotubes (CNTs) characteristics. CNTs are widely used in electronic and mechanical products due to its fascinating material with extraordinary mechanical, thermal, physical and electrical properties. Chemical Vapor Deposition (CVD) is the most efficient method for CNTs production. However, using CVD method encounters crucial issues such as customization, time and cost. Therefore, Response Surface Methodology (RSM) is proposed for modeling and the ABC-BHC is proposed for optimization purpose to address such issues. The selected CNTs characteristics are CNTs yield and quality represented by the ratio of the relative intensity of the D and G-bands (ID/IG). Six case studies are generated from collected dataset including four cases of CNTs yield and one case of ID/IG as single objective optimization problems, while the sixth case represents multi-objective problem. The input parameters of each case are a subset from the set of input parameters including reaction temperature, duration, carbon dioxide flow rate, methane partial pressure, catalyst loading, polymer weight and catalyst weight. The models for the first three case studies were mentioned in the original work. RSM is proposed to develop polynomial models for the output responses in the other three cases and to identify significant process parameters and interactions that could affect the CNTs output responses. The developed models are validated using *t*-test, correlation and pattern matching. The predictive results have a good agreement with the actual experimental data. The models are used as objective functions in optimization techniques. For multi-objective optimization, this study proposes Desirability Function Approach (DFA) to be integrated with other proposed algorithms to form hybrid techniques namely RSM-DFA, ABC-DFA and ABC-BHC-DFA. The proposed algorithms and other selected well-known algorithms are evaluated and compared on their CNTs yield and quality. The optimization results reveal that ABC-BHC and ABC-BHC-DFA obtained significant results in terms of success rate, required time, iterations, and function evaluations number compared to other well-known algorithms. Significantly, the optimization results from this study are better than the results from the original work of the collected dataset.

ABSTRAK

Pengoptimuman adalah suatu proses yang penting bagi memilih parameter yang terbaik dalam masalah satu dan berbilang-objektif untuk proses pembuatan. Walau bagaimanapun, ia adalah sukar bagi menjumpai satu algoritma pengoptimuman yang mendapat optimum keseluruhan untuk setiap masalah pengoptimuman. Koloni Lebah Buatan (ABC) adalah algoritma kepintaran kawanan yang dikenali dalam menyelesaikan masalah pengoptimuman. Ia telah menunjukkan prestasi yang lebih baik berbanding dengan algoritma-algoritma terkini. Kajian ini mencadangkan algoritma baru hibrid ABC dengan teknik Pemanjatan Bukit-β (βHC) (ABC-βHC) untuk meningkatkan proses eksploitasi dan penerokaan ABC dalam pengoptimuman ciri-ciri Karbon nanotiub (CNTs). CNTs digunakan secara meluas pada produk elektronik dan mekanikal disebabkan oleh bahannya yang menarik dengan ciri-ciri mekanik, haba, fizikal dan elektrik yang luar biasa. Pemendapan Wap Kimia (CVD) adalah kaedah yang paling berkesan untuk penghasilan CNTs. Walau bagaimanapun, dengan menggunakan kaedah CVD, terdapat masalah penting seperti penyesuaian, masa, dan kos. Oleh sebab itu, Metodologi Respons Permukaan (RSM) dicadangkan untuk permodelan dan ABC-βHC dicadangkan untuk tujuan pengoptimuman bagi menangani isu-isu tersebut. Respon output yang dipilih adalah %hasil karbon dan kualiti CNT yang diwakili oleh nisbah keamatan relatif D dan G-band (ID / IG). Enam kajian kes dihasilkan daripada set data yang dikumpul termasuk empat kes %hasil karbon dan satu kes ID / IG sebagai masalah pengoptimuman tujuan tunggal, manakala kes keenam mewakili masalah berbilang-objektif. Parameter input setiap kes adalah subset dari set parameter input termasuk suhu tindak balas, tempoh, kadar aliran karbon dioksida, tekanan separa metana, pemuatan pemangkin, berat polimer dan berat pemangkin. Model ramalan bagi tiga kajian kes pertama disebut dalam karya asal. RSM dicadangkan untuk membangunkan model ramalan polinomial untuk respon output dalam tiga kes yang lain. Kemudian, parameter proses yang penting dan interaksi yang boleh menjejaskan tindak balas output CNT telah dikenalpasti. Model yang dibangunkan telah disahkan menggunakan ujian t, korelasi dan corak yang sepadan, dan keputusan ramalan mempunyai persetujuan yang baik dengan data eksperimen sebenar. Model tersebut digunakan sebagai fungsi objektif dalam teknik pengoptimuman. Untuk pengoptimuman berbilang-objektif, kajian ini mencadangkan Pendekatan Fungsi Keinginan (DFA) diintegrasi dengan algoritma lain yang dicadangkan bagi membentuk teknik hibrid iaitu RSM-DFA, ABC-DFA dan ABC-βHC-DFA. Algoritma yang dicadangkan dan algoritma terkenal lain yang dipilih telah dinilai dan dibandingkan dengan hasil dan kualiti CNT mereka. Hasil pengoptimuman menunjukkan bahawa ABCβHC dan ABC-βHC-DFA memperoleh hasil yang signifikan dari segi kadar kejayaan, masa yang diperlukan, lelaran dan nombor penilaian fungsi berbanding dengan algoritma lain yang diketahui. Secara signifikan, keputusan-keputusan pengoptimuman dari kajian ini adalah lebih baik daripada keputusan-keputusan hasil kerja asal terhadap set data yang dikumpulkan.

ACKNOWLEDGEMENTS

Firstly and foremost, all thanks and gratitude to Allah Almighty, the Most Gracious, and the Most Merciful who gave me the strength and the ability to complete my study.

Indeed, I would like to express my sincere gratitude to my supervisor Dr. Abdul Syukor Mohamad Jaya for the continuous support of my PhD study and related research, for his motivation, patience, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. A special thanks go to my co-supervisor, Associated Prof. Ir. Dr. Mohd Asyadi 'Azam bin Mohd Abid from Faculty of Manufacturing Engineering, UTeM for his great support. I am also indebted to Prof. Datuk Ts. Dr. Mohd Razali Bin Muhamad for his great guidance especially at the beginning of my research. And special thanks go to Dr. Zeratul Izzah Binti Mohd Yusoh for her knowledge support.

I would like to thank my friend, Muhtade Mustafa Aqil Alzu'abi from FKEKK, UTeM and all colleagues in FKP, UTeM, especially Nor Najihah Zulkapli, Raja Noor Amalina Raja Seman, and Norasimah Dorah. I deeply appreciate their support in many aspects of this research.

My sincere thanks also go to my brothers, Mutasim, Abdullah, and Abdulrahman, and not to forget also my uncle, Ali Al-Shorman for their financial support. I also appreciate UTeM for Zamalah fellowship as well.

Last but not the least, I would like to especially thank my beloved family: my parents, brothers and sister for concerning and supporting me among all my life and study. They always make me happy. Thanks for your (du'aa') that I feel every time and everywhere.

TABLE OF CONTENTS

58

DE ⁴ AP DE AB AB AC TA LIS LIS LIS LIS	CLAR PROV DICAT STRAT STRAT KNOV BLE C ST OF ST OF ST OF	ATION AL FION CT K VLEDGEMENTS DF CONTENTS DF CONTENTS TABLES FIGURES APPENDICES ABBREVIATIONS	i ii iii iv x xiv xviii xix
	A DTE		**
СН 1.	APTE INT	к RODUCTION	1
	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Introduction Problem Background Problem Statement Research Goals and Objectives Research Scope Significance of Study Thesis Structure	1 14 16 17 19 20
2.	LIT	ERATURE REVIEW	22
	2.1	Introduction	22
	2.2	Surface Engineering	22
	2.3	Chemical vapor Deposition (CVD) Significant Parameters of CVD for CNTs Growing	27
	2.4 2.5	An Overview of CNTs	28
	2.5	Properties of CNTs	32
	2.0	2 6 1 Electrical Properties	34
		2.6.2 Mechanical Properties	35
		2.6.3 Thermal Properties	35
	2.7	CNTs Applications	36
	2.8	Significant CNTs Characteristics	37
		2.8.1 CNTs Yield	37
	•	2.8.2 CNTs Quality	38
	2.9	Modeling of CVD Process	42
		2.9.1 Theory-Based Approach 2.9.2 Design of Experiment Approach (DOE)	43
		2.3.2 Design of Experiment Approach (DOE)	44 76
	2 10	Selected Modeling Methods in This Study	40 47
	2.10	Response Surface Methodology and its Application	49
	2.12	RSM Steps and Flow	51
	2.13	Optimization	55

- 2.13 Optimization2.14 Metaheuristic Algorithms

iv

		2.14.1 Local Search Based Metaheuristic	60
		2.14.2 Population Based Metaheuristic Algorithms	68
	2.15	Bees in Nature	79
	2.16	Honey Bees Based Optimization Methods	80
	2.17	Artificial Bees Colony Algorithm (ABC)	81
	2.18	ABC Procedure	83
	2.19	Intelligent Swarms and ABC	87
	2.20	ABC Applications and Variants	89
		2.20.1 Modified ABC Algorithm	90
		2 20 2 Hybrid ABC Algorithms	95
	2.21	Multi-Objective Optimization	97
	2.22	Selected Multi-Objective Optimization Method for this Study	100
	2.22	Desirability Function Approach (DFA)	102
	2.25 2.25	DEA Applications in CNTs and Optimization Problems in other	102
	2.27	Similar Fields	108
	2 25	Critical Summary	110
	2.25	Summary	112
	2.20	Summary	112
3	RES	EARCH METHODOLOGY	113
5.	3 1	Introduction	113
	3.1	Research Flow	113
	33	Problem Definition	116
	3.4	Data Definition	117
	3.5	BSM Modeling Work	110
	3.5	Solution Representation	12/
	3.0	Single Objective Optimization	124
	5.7	2.7.1 Applying Optimization Process for CA DSO and DAT ADC	124
		Algorithms	125
		Algorithms	123
		5.7.2 Presenting the Optimization Constraints of Single Optimization	126
		2.7.2 Presenting the Optimization Constraints of Cose Studies	120
	20	5.7.5 Presenting the Optimization Constraints of Case Studies	120
	3.8	2.8.1 Descalarment of Hadwid ADC 011C	129
	2.0	3.8.1 Development of Hybrid ABC-pHC	129
	3.9	Multi-Objective Optimization	131
		3.9.1 Development of Integrated RSM-DFA	131
		3.9.2 Development of Integrated ABC-DFA	132
	2 10	3.9.3 Development of Integrated ABC-BHC-DFA	134
	3.10	Validation	135
		3.10.1 The <i>t</i> -test and Correlation	136
		3.10.2 Performance Measure and Metrics	138
	3.11	Summary	140
4			
4.		A-DKIVEN K5WI WUDELS IN PKEDICHING CN18 YIELD AND . i itv	1 / 1
		LIII Introduction	141 1/1
	4.1 1 0	Innouncilon Modeling of CNTs Vield and Quelity with Despect to CVD Desses	141
	4.2	Parameters	1 / 1
	12	ratallitics Modeling of CNTs Vield with Despect to CVD Dresses Despect to	141
	4.3	would be a constructed with Respect to CVD Process Parameters	142

	4.3.1	Determination of Polynomial Equation to Represent RSM	145
	432	Model of CN1s Yield Analysis of Variance (ANOVA) of the Quadratic Model for	145
	т.Ј.2	CNTs Yield	147
	4.3.3	Model Improvement for CNTs Yield	147
4.4	Deterr	nination of Significant Parameters that Influence CNTs Yield	149
4.5	Interac	ction Between Temperature (A) and Metal Loading (C) at	
	Reacti	on Time of 2.5 hours.	149
4.6	Interac Tempo	ction Between Reaction Time and Metal Loading (BC) at erature of 750°C.	153
4.7	Effect	of Duration time (B) Term on CNTs Yield	153
4.8	Effect	of Metal Loading (C) and its Quadratic Term (C ²) on CNTs	
	Yield		153
4.9	Model	ling of ID/IG Ratio for CNTs with Respect to CVD Process	155
1 10	Param	eters	155
4.10		mination of Polynomial Equation to Represent RSM Model of	158
4 11		VA Analysis of the Quadratic Model for ID/IG	150
4 12	Intera	ction between Reaction Temperature and Duration (AB) at 25%	157
7.14	of Me	tal Loading (C)	161
4.13	Intera	ction Between Reaction Duration and Metal Loading (BC) at	101
	750°C		163
4.14	Effect	of Reaction Duration (B) and Metal Loading (C and C ²) Terms	
	on ID/	/IG	165
4.15	Valida	ation of CNTs Growing Characteristics for RSM Models	167
4.16	RSM	Result Effect in Real Application of CNTs Growing Using CVD	
	Proces	SS	171
4.17	Model	ling Summary	173
4.18	Summ	lary	175
ОРТ	'IMIZA	ATION OF CNTs CHARACTERISTICS	176
5.1	Introd	uction	176
5.2	Select	ing Case Studies Datasets for Optimizing CNTs Yield and	
	Qualit	y	176
5.3	Exper	imental Design	177
	5.3.1	A Brief Description of Case Studies	178
	5.3.2	Case Study1: Yield Optimization of Nanocarbons Prepared Via	
		Chemical Vapor Decomposition of Carbon Dioxide Using	
		Surface Methodology	178
	5.3.3	Case Study2: Synthesis and Characterization of CNTs Using	170
	524	Polypropylene Waste as Precursor	179
	5.5.4	Case Studys: Synthesis of UNIS by Methane Decomposition	100
	525	Case Study 4: Optimization of CNTs Synthesis via Methana	180
	5.5.5	Decomposition over Alumina Based Catalyst	101
	536	Case Study5: Ontimization of CNTs Synthesis via Methane	101
	0.0.0	Decomposition over Alumina Based Catalyst	182
		Decomposition over Alumina Based Catalyst	182

5.

	5.3.7	The Optimal Results of CNTs Yield and Quality from Referred	
		Case Studies	183
	5.3.8	Metaheuristic Algorithms Default Parameters	183
	5.3.9	Parameters Setting and Tuning	185
5.4	Exper	imental Results	187
	5.4.1	Case Study1: Yield Optimization of Nanocarbons Prepared Via	
		Chemical Vapor Decomposition of Carbon Dioxide Using	
		Surface Methodology	187
	5.4.2	Case Study2: Synthesis and Characterization of CNTs Using	
		Polypropylene Waste as Precursor	200
	5.4.3	Case Study3: Synthesis of CNTs by Methane Decomposition	
		Over Co-MoAl ₂ O ₃ Process Study and Optimization Using	
		RSM	201
	5.4.4	Case Study4: Optimization of CNTs Synthesis via Methane	
		Decomposition over Alumina Based Catalyst	202
	5.4.5	Case Study5: Optimization of CNTs Synthesis via Methane	
		Decomposition over Alumina Based Catalyst.	203
5.5	Result	ts Analysis and Validation	204
	5.5.1	Comparisons between Algorithms Performance for CNTs	
		Yield in Case Study1	204
	5.5.2	Behavior of Constraint Parameters in Optimal Result for CNTs	
		Yield in Case Study1	205
	5.5.3	Comparisons between Algorithms Performance for CNTs	
		Yield in Case Study2	207
	5.5.4	Behavior of Constraint Parameters in Optimal Result for CNTs	
		Yield in Case Study2	209
	5.5.5	Comparisons between Algorithms Performance for CNTs	
		Yield in Case Study3	211
	5.5.6	Behavior of Constraint Parameters in Optimal Result for CNTs	
		Yield in Case Study3	212
	5.5.7	Comparisons between Algorithms Performance for CNTs	
		Yield in Case Study4	213
	5.5.8	Behavior of Constraint Parameters in Optimal Result for CNTs	
		Yield in Case Study4	214
	5.5.9	Comparisons between Algorithms Performance for CNTs	
		Quality in Case Study5	216
	5.5.10	Behavior of Constraint Parameters in Optimal Result for CNTs	
		Yield in Case Study5	217
5.6	Optim	nization Summary of CNTs Yield and Quality	219
5.7	The E	Effectiveness of Optimization Result on the Real Synthesis of	
	CNTs		222
5.8	Summ	nary	226
TH	E PRO	POSED HYBRID ALGORITHM OF ABC AND βHC FOR	_
OPT	IMIZI	ING CNTs CHARACTERISTICS	227
6.1	Introd		227
6.2	Hybri	d ABC-βHC for Optimizing CVD Process Parameters for CNTs	<i></i>
	Growi	ing	228

6.

6.3	The Proposed ABC-BHC Hybridizing Process	228
6.4	ABC-βHC Evaluation	235
6.5	ABC-βHC Experimental Tests and Result for Optimizing CNTs Yield	.
	and Quality	235
	6.5.1 Case Study1: Yield Optimization of Nanocarbons Prepared Via	
	Chemical Vapor Decomposition of Carbon Dioxide Using	
	Surface Methodology	237
	6.5.2 Case Study2: Synthesis and Characterization of CNTs Using	0 4 1
	Polypropylene Waste as Precursor	241
	6.5.3 Case Study3: Synthesis of CN1s by Methane Decomposition	
	over Co–MoAl ₂ O ₃ Process Study and Optimization Using RSM	242
	(5.4. Constitution of CNITs Constitution of Mathematication	242
	6.5.4 Case Study4: Optimization of CN1s Synthesis via Methane	242
	6.5.5 Case Study5: Optimization of CNTs Synthesis via Mathema	243
	0.5.5 Case Study5. Optimization of CNTs Synthesis via Methane Decomposition over Alumina Pased Catalyst	244
6.6	Results Analysis and Validations for Case Studies	244
0.0	6.6.1 Comparisons between ABC-BHC and BA Performance for	244
	Case Study1	245
	6.6.2 Comparisons between ABC-BHC and ABC Performance for	273
	Case Study?	246
	6.6.3 Comparisons between ABC-BHC and ABC Performance for	2.0
	Case Study3	247
	6.6.4 Comparisons between ABC-BHC and ABC Performance for	,
	Case Study4	247
	6.6.5 Comparisons between ABC-βHC and ABC Performance for	
	CNTs Quality in Case Study5	248
6.7	Summary	249
INT	EGRATED ABC-βHC-DFA FOR MULTI-OBJECTIVE	
OPT	TIMIZATION OF CNTs GROWING PROCESS	250
7.1	Introduction	250
7.2	Overview of Multi-Objective Optimization Problem	251
7.3	Integrated RSM-DFA	252
7.4	Integrated ABC-DFA	254
7.5	Integrated ABC-BHC-DFA	257
7.6	Multi-Objective Optimization of Carbon Yield and Quality in CN1s	259
1.1	RSM-DFA for Multi-Objective Optimization of Carbon Yield and	200
	ID/IG	260
	7.7.2 Experimental Design	260
7.0	1.1.2 Experimental Result Analysis and Validation	260
1.8	Integrated ABC-DFA and ABC-pHC-DFA for Multi-Objective	265
	Optimization of Carbon Yield and Quality	205
	7.0.1 EXperimental Design 7.8.2 Integrated ADC DEA Experimental Desults and Analysis	203
	7.8.2 Integrated ABC BHC DEA Experimental Desult and Analysis	200 260
70	Results Analysis and Validation	∠08 272
7.7 710	Constraint Parameters Rehavior in the Ontimal Solution	272
7.10	Constraint i arameters Denavior in the Optimal Solution	215

7.

	7.11	1 Multi-Objective Optimization Summary	276
	7.12	2 Summary	277
8.	CO 2	NCLUSION	278
	8.1	Research Conclusion	278
	8.2	Research Contributions	280
	8.3	Recommendation for Future Work	282
REF	FERE	INCES	284
APF	PEND	DICES	333

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Examples of Different Carbon Based Nanomaterials with Different	nt
	Dimensions	33
2.2	Properties of CNTs	36
2.3	Examples of Commercially CNTs-Based Applications	36
2.4	Modeling Works for CNTs Growing Process Using CVD	42
2.5	Application of Modeling Work in CNTs and Similar Domains	54
2.6	Application of Population Based Algorithms in Similar Domains	79
2.7	Summary of Modification Examples of ABC	91
2.8	Summary of Hybridized Methods with ABC	95
2.9	Summary of MOP Techniques Applied in the CNTs and Similar File	d 109
3.1	Solution Representation	124
4.1	Experimental Run and Results of CNTs Yield (Lee et al., 2010)	143
4.2	SMSS Analysis for CNTs Yield	146
4.3	Model Summary Statistics Analysis for CNTs Yield	146
4.4	ANOVA for Response Surface Quadratic Model for CNTs Yield	147
4.5	ANOVA for Reduced Quadratic Model of CNTs Yield	148
4.6	Model Summary Statistics Analysis for CNTs Yield	149
4.7	Experimental Run and Results of CNTs ID/IG	156

4.8	SMSS Analysis for ID/IG	159
4.9	Model Summary Statistics Analysis for ID/IG	159
4.10	ANOVA for Reduced Quadratic Model of ID/IG	160
4.11	Statistic and Correlation of the CNTs Yield Response	169
4.12	Paired Sample Test of the CNTs Yield Response	169
4.13	Statistic and Correlation of the ID/IG Response	169
4.14	Paired Sample Test of the ID/IG Response	169
4.15	Polynomial Mathematical Equation for the Developed Models	174
4.16	The Significant Factors of the Modeling Works	174
5.1	Optimal Values for CNTs Responses in the Original Published Studies	183
5.2	Algorithms and Their Tuned Parameters	184
5.3	Parameters Tuning Values for GA	184
5.4	Parameters Tuning Values for PSO	185
5.5	Parameters Tuning Values for BA	185
5.6	Parameters Tuning Values for ABC	185
5.7	Result of Selection Rate Tuning Process in GA for the Case Study1	188
5.8	Result of Mutation Rate Tuning Process in GA for the Case Study1	189
5.9	Result of Population Size Tuning Process in GA for the Case Study1	189
5.10	Result of Iterations Number Tuning Process in GA for Case Study1	190
5.11	Result of w Tuning Process in PSO for the Case Study1	191
5.12	Result of c1 Tuning Process in PSO for the Case Study1	192
5.13	Result of c2 Tuning Process in PSO for the Case Study1	192
5.14	Result of Population Size Tuning Process in PSO for the Case Study1	193
5.15	Result of Iterations Number Tuning Process in PSO for Case Study1	194

5.16	Result of ri0 Tuning Process in BA for the Case Study1	195
5.17	Result of γ constant Tuning Process in BA for the Case Study1	195
5.18	Result of α Constant Tuning Process in BA for the Case Study1	196
5.19	Result of Population Size Tuning Process in BA for the Case Study1	196
5.20	Result of Iterations Number Tuning Process in BA for Case Study1	197
5.21	Result of Population Size Tuning Process in ABC for the Case Study1	198
5.22	Result of limit Tuning Process in ABC for the Case Study1	198
5.23	Result of cycles Tuning Process in ABC for the Case Study1	199
5.24	Performance Enhancement for All Tested Algorithms for Case Study1	200
5.25	Performance Enhancement for all Tested Algorithms for Case Study2	201
5.26	Performance Enhancement for all Tested Algorithms for Case Study3	202
5.27	Optimal Results in Optimizing Yield in Case Study4	203
5.28	Optimal Results in Optimizing ID/IG in Case Study5	204
5.29	The Optimum Results of Best Parameters Tuning for Case Study1	204
5.30	The Optimum Results of Best Parameters Tuning for Case Study2	207
5.31	The Optimum Results of Best Parameters Tuning For Case Study3	211
5.32	The Optimum Results of Best Parameters Tuning for Case Study4	213
5.33	The Optimum Results of Best Parameters Tuning for Case Study5	216
6.1	Result of bw Tuning Process in ABC- β HC for the Case Study1	238
6.2	Result of β Tuning Process in ABC- β HC for the Case Study1	238
6.3	Result of NI Tuning Process in ABC-BHC for the Case Study1	239
6.4	Result of NP Tuning Process in ABC- β HC for the Case Study1	240
6.5	Result of cycles Tuning Process in ABC- β HC for the Case Study1	240
6.6	Performance Enhancement of ABC-βHC for Case Study1	241

6.7	Performance Enhancement of ABC-βHC for Case Study2	242
6.8	Performance Enhancement of ABC-βHC for Case Study3	243
6.9	Optimal Results of ABC-BHC in Optimizing Yield in Case Study4	243
6.10	Optimal Results of ABC-BHC for CNTs Quality in Case Study5	244
6.11	The Optimum Results of Best Parameters Tuning for Case Study1	245
6.12	The Optimum Results of Best Parameters Tuning for Case Study2	246
6.13	The Optimum Results of Best Parameters Tuning for Case Study3	247
6.14	The Optimum Results of Best Parameters Tuning for Case Study4	247
6.15	The Optimum Results of Best Parameters Tuning for Case Study5	248
7.1	Responses and Parameters Setting for RSM-DFA	260
7.2	Experimental Result Obtained by the Best Run	261
7.3	Optimal Parameters and Confirmation	262
7.4	Desirability Value Result of Population Size Tuning in ABC-DFA	266
7.5	Desirability Value Result of limit Tuning in ABC-DFA	267
7.6	Desirability Value Result of cycles Tuning in ABC-DFA	267
7.7	Desirability Value Result of bw Tuning in ABC-BHC-DFA	268
7.8	Desirability Value Result of β Tuning in ABC- β HC-DFA	269
7.9	Desirability Value Result of NI Tuning in ABC-BHC-DFA	270
7.10	Desirability Value Result of NP Tuning in ABC-BHC-DFA	271
7.11	Desirability Value Result of cycles Tuning in ABC-BHC-DFA	271
7.12	The Optimum Tuning Result in ABC-DFA and ABC- β HC-DFA	272
7.13	The Optimum Desirability Results Obtained by Different Methods	273
7.14	Optimal Parameters and Desirability in Tested Methods	275

xiii

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Trends in CNTs Researches Between 2008 - 2017	9
1.2	Issues Encountered in Nanoproducts and Nanomanufacturing Process	s 10
2.1	Surface Engineering Process and Common CNT Synthesis Processes	26
2.2	Schematic Diagram of CVD	28
2.3	RSM Flowchart for This Study	53
2.4	Overview of Optimization Algorithms	59
2.5	HC Algorithm	62
2.6	βHC Flowchart (Al-Betar, 2017)	65
2.7	βHC Pseudocode (Al-Betar, 2017)	66
2.8	Searching Flow for Optimal Solutions in GA	70
2.9	A Pseudocode for Simple GA	70
2.10	A Pseudocode of PSO	73
2.11	The Flowchart of PSO	74
2.12	The Pseudocode of BA (Yang, 2010)	75
2.13	BA Flowchart	78
2.14	Pseudocode of ABC Algorithm	86
2.15	ABC Flowchart	87
2.16	Classification of Multi-Objective Optimization Algorithms	100

xiv

2.17	Flowchart of Nelder-Mead Downhill Simplex Algorithm	104	
2.18	DFA Steps 10		
2.19	The Curves of Desirability Goals		
3.1	Research Flow	115	
3.2	Data Analysis Flow Using RSM Method	120	
3.3	Process Flow of Single Optimization Algorithms	125	
3.4	Flow of the Optimization Steps of the Proposed Integrated ABC- β HC	130	
3.5	Flow of the Optimization Steps of the Proposed Integrated RSM-DFA	132	
3.6	Flow of the optimization steps of the proposed integrated ABC-DFA	133	
3.7	Flow of Optimization Steps of The Proposed ABC-βHC-DFA	135	
4.1	Normal Probability Plot of Residual for CNTs Yield	144	
4.2	Plot of Studentized Residual Versus Predicted Response for Yield	145	
4.3	Plot of Residual Versus Run Number for CNTs Yield	145	
4.4	Behaviour of Yield Relative to Interaction Between AC	150	
4.5	3D Surface Graph for CNTs Yield of AC Term with Constant B	151	
4.6	CNTs Yield Contour in AC Term at B of 2.5 hours	151	
4.7	(a): Carbon Yield at Different Metal Loadings and (b): TEM Image of		
	Grown CNTs	152	
4.8	Behaviour of CNTs Yield in Response of B at Optimal CNTs Yield	153	
4.9	Behaviour of CNTs Yield in Response of C at Optimal CNTs Yield	154	
4.10	Behaviour of CNTs Yield Relative to Interaction of ABC	155	
4.11	Normal probability plot of residual for ID/IG	157	
4.12	Plot of studentized residual versus predicted response for ID/IG	157	
4.13	Plot of residual versus run number for ID/IG	158	

4.14	Behaviour of ID/IG Relative to Interaction Between AB at 25% of C	162
4.15	3D Surface Graph for ID/IG of AB Term with 25% of Metal Loading	162
4.16	ID/IG Contour in Reaction Temperature-Duration with 25% of Metal	
	Loading	163
4.17	Behaviour of ID/IG Relative to Interaction Between (BC) at 750oC	163
4.18	3D Surface Graph for ID/IG of Interaction Between (BC) at 750oC	164
4.19	ID/IG Contour in (BC) at 750oC	
4.20	Raman Spectrum of the CNTs Synthesized by Lee et al. (2010)	165
4.21	Behavior of ID/IG in Response of Reaction Time and Metal Loading	166
4.22	Behaviour of ID/IG Relative to Interaction of ABC	167
4.23	Plot of RSM Model versus Experiment of CNTs Yield, (a) the Output	
	Distribution and (b) line pattern matching	170
4.24	Plot of RSM Model versus Experiment of ID/IG, (a) the Output	
	Distribution and (b) line pattern matching	171
5.1	Optimum Algorithms Result in 30 Runs In Case Study1	205
5.2	Parameters Behaviors in the Optimal Solution in BA in Case Study1	206
5.3	The Best Yield for 30 Runs by BA, PSO and ABC for Case Study2	208
5.4	The Maximum Values of Yield for 30 Runs by GA Case Study2	209
5.5	Parameters Behavior in the Optimal Solution in ABC for Case Study2	209
5.6	The Best Yield in 30 Runs for All algorithms for Case Study3	211
5.7	Parameters Behaviors in the Optimal Solution of ABC in Case Study3	212
5.8	Yield Best Values in 30 Runs for All Algorithms in Case Study4	214
5.9	Parameters Behaviors in the Optimal Solution of ABC in Case Study4	215
5.10	Best Values ID/IG in 30 Runs for All Algorithms for Case Study5	217

xvi

5.11	Parameters Behaviors in the Optimal Solution of ABC in Case Study5	
6.1	The pseudocode of the proposed ABC-βHC	
6.2	The Flowchart of ABC-βHC Framework	234
7.1	Flowchart of the Integrated ABC-DFA	
7.2	The Flowchart of the ABC-βHC-DFA	258
7.3	Single and Combined Desirability Value for Both Responses	262
7.4	Interaction Effect Between Reaction Temperature and Duration	262
7.5	Interaction Effect Between Reaction Temperature and Metal Loading	263
7.6	3D Surface Graph for of Reaction Temperature-Duration	263
7.7	3D Surface Graph of Reaction Temperature and Metal Loading	264
7.8	Desirability Contour of Reaction Temperature-Duration	264
7.9	Behaviour of Desirability Relative to Interaction of ABC Term	265
7.10	Convergence Behavior of the Optimal Run Relative to Desirability	274

LIST OF APPENDICES

APPENDIX	TITLE	
А	Experimental Data Of The Case Studies	333
В	Experimental Results and Parameters Tuning Using Selected Algorithms	343
С	Experimental Results and Parameters Tuning Using ABC-BHC	366

xviii

LIST OF ABBREVIATIONS

ABC	-	Artificial Bee Colony Algorithm
BA	-	Bat Algorithm
CNTs	-	Carbon Nanotubes
CVD	-	Chemical Vapor Deposition
dBA	-	direct BA
DFA	-	Desirability Function Approach
EAs	-	Evolutionary Algorithms
FEN	-	Function Evaluation Number
GAs	-	Genetic Algorithms
GRASP	-	Greedy Randomized Adaptive Search Procedure
НС	-	Hill Climbing
HS	-	Harmony Search
M_ET	-	Mean Execution Time
M_RI	-	Mean Required Iterations
PSO	-	Particle Swarm Optimization
PVD	-	Physical Vapor Deposition
RSM	-	Response Surface Methodology
SR	-	Success Rate
TS	-	Tabu Search

xix