

Faculty of Electronic and Computer Engineering

LOSSY RESONATOR WITH HIGH Q FOR SWITCHABLE ABSORPTIVE BANDSTOP TO BANDPASS FILTER

Mohd Khairy bin Zahari

Doctor of Philosophy

2018

C Universiti Teknikal Malaysia Melaka

LOSSY RESONATOR WITH HIGH Q FOR SWITCHABLE ABSORPTIVE BANDSTOP TO BANDPASS FILTER

MOHD KHAIRY BIN ZAHARI

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Lossy Resonator with High Q for Switchable Absorptive Bandstop to Bandpass Filter" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature	·
Name	:Mohd Khairy bin Zahari
Date	·

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy

Signature:....Supervisor Name :Prof. Dr. Badrul Hisham bin AhmadDate:....

DEDICATION

To my beloved mother and father

ABSTRACT

New developments in the design of the switchable microwave filters in some cognitive radio system are essential to meet the ever increasing demands to discriminate between wanted and unwanted signals. There also has a demand for miniaturization of microwave communications systems. A compact design can be achieved through the implementation of planar microstrip technology. However, conventional electronically tunable bandstop filters suffer performance degradation due to the finite unloaded Q of the resonators and also the loss associated with the switching elements. Therefore, two low Q lossy resonator filter topology has been implemented where the topology can be used to partially compensate for the loss where a high Q absorptive bandstop filter can be achieved. The filter consists of $\lambda/2$ resonator with K-inverter, parallel with an Allpass nominally-90°phase-shift element. A frequency agile bandstop filter based on this topology has been developed, but such filters as well as conventional switchable bandstop filters encounter performance degradation in terms of tuning bandwidth and stopband bandwidth due to the frequency dependant losses and couplings. Through this thesis a new switchable microwave filter is investigated and developed, where this filter is able to switch from high O absorptive bandstop response (ON state) to bandpass response (OFF state). This switchable filter is designed using four different types of resonator which are parallel coupled, dual mode ring, stepped impedance dual mode and T-shape. The parallel coupled resonator consisted of two low-Q lossy resonator connected with 90° wavelength and with correct k-inverter to produce high Q absorptive bandstop response. T-shape resonator consisted of T resonator coupled with 90° wavelength. While for the dual mode ring resonator structure is composed by two degenerate modes or splitting resonant frequencies, where the ring can be excited by perturbing stub. For stepped impedance resonator, the structure is consisted of the stepped impedance resonator with mid-plane of via hole and connected with 90° wavelength to achieve the high Q absorptive bandstop response. The filters are integrated with switching element, such as PIN and a varactor diode to switch the filter response and biasing circuit is needed to make the PIN or the varactor diode working properly. The absorptive bandstop filter operates at 2.4 GHz where S_{11} is below than 15 dB and S₂₁ has high selectivity with the narrow bandstop response with high Q factor. The unloaded Q factor of the absorptive bandstop filter is more than 60 for measuring and 150 for simulation. For a bandpass response, the response depends on the filter structure. Where, each resonator produced different character of a bandpass filter. The dual mode bandpass response for stepped impedance, was achieved by switched 'OFF' the PIN diodes, where the insertion loss, S_{21} 4.9 dB, return loss, S_{11} is below 15 dB, and passband bandwidth is 200 MHz at centre frequency of 2.35 GHz. A good agreement is observed between simulated and measured results. The benefits of this filter is not only can produce a bandpass response, but also high quality factor in bandstop response which offer a better performance and high selectivity. The outcomes of the proposed switchable filters may facilitate improvements and the solution in cognitive radio.

ABSTRAK

Perkembangan baru dalam reka bentuk penapis gelombang mikro boleh ubah dalam sistem radio kognitif adalah penting untuk memenuhi permintaan yang semakin meningkat digunakan untuk mengasingkan antara isyarat yang diingini dan yang tidak diingini. Permintaan yang tinggi untuk saiz yang kecil. Walau bagaimanapun, penapis jalur batas elektronik boleh-laras konvensional mengalami kemerosotan prestasi Q kerana tanpa beban terhingga daripada peresonan dan juga kehilangan yang berkaitan dengan unsurunsur pensuisan. Oleh itu, dengan menggunakan topologi dua kehilangan rendah Q peresonan digunakan untuk mengimbangi sebahagian kehilangan untuk menghasilkan penapis jalur batas yang mempunyai faktor Q yang tinggi. Rangkaian kehilangan semua lepas menunjukkan konsep dan reka bentuk tindak balas jalur batas padanan sempurna pada semua frekuensi. Penapis ini berdasarkan kepada $\lambda/2$ peresonan dengan gandingan jurang, selari dengan semua lepas ukuran-90° elemen peralihan fasa, yang boleh dioptimumkan untuk mencapai faktor-Q yang tinggi. Frekuensi tangkas penapis semua lepas berdasarkan topologi ini telah dibangunkan, tetapi penapis yang sama digunakan pada penapis semua lepas suis konvensional menghadapi kemerosotan prestasi dari segi penalaan lebar jalur dan batas jalur keluasan-jalur disebabkan oleh kekerapan kebergantungan-kehilangan dan gandingan. Didalam thesis ini, penapis gelombang mikro boleh ubah dikaji dan dibangunkan, di mana penapis ini dapat menukar dari penapis penyerap jalur batas kepada lulus jalur. Penapis boleh ubah ini direka menggunakan empat jenis peresonan, yang pertama ialah gandingan selari, dwi mod cincin, impedans langkah dwi mod dan bentuk T. Peresonan gandingan selari terdiri daripada dua peresonan kehilangan Q rendah yang disambungkan dengan 90° panjang gelombang dan faktor k-penyongsang yang betul untuk menghasilkan faktor Q tinggi jalur batas. Peresonan cincin dwi mod terdiri daripada dua mod merosot atau frekuensi salunan membelah. Peresonan impedans langkah terdiri dari impedans langkah pertengahan satah melalui lubang dan disambungkan kepada 90° panjang gelombang untuk mencapai sambutan menyerap. Penapis yang diintegrasikan dengan PIN dan varactor diod yang sesuai akan digunakan. Penapis gelombang mikro jalur batas menyerap beroperasi pada 2.4 GHz mana S_{11} adalah di bawah 15 dB dan S_{21} mempunyai pemilihan tinggi dengan tindakbalas jalur batas sempit dengan faktor Q yang tinggi. Faktor Q untuk batas jalur serapan pada ukuran ialah diatas 60 manakala simulasi ialah atas 150. Untuk respon lulus jalur, ia bergantung kepada struktur penapis gelombang mikro itu sendiri. Dua mod lulus jalur untuk impedans langkah dihasilkan apabila PIN diod dimatikan. Dimana S_{11} dibawah 15 dB dan S_{21} 4.9 dB dengan jalur lulus lebar jalur ialah 200 MHz pada frekuensi 2.35 GHz. Persetujuan yang baik dipatuhi antara keputusan simulasi dan diukur. Manfaat penapis ini bukan sahaja dapat menghasilkan respon lulus jalur, tetapi juga faktor Q tinggi dalam respon jalur batas yang menawarkan prestasi yang lebih baik dan pemilihan tinggi. Hasil daripada penapis yang boleh ditukar boleh dicadangkan bagi memudahkan penambahbaikan dan penyelesaian dalam radio kognitif.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful. Alhamdulillah, all praise be to Allah, without his blessing I will not come to achieve this.

In preparing this thesis, I've been contacted with many people. They have contributed towards my understanding and thought. I would like to express my gratitude my beloved father Mr. Zahari bin Ibrahim and my family members, who always supported me and advised me for most of the time.

In particular, special appreciation and sincerest gratitude to my supervisor, Professor Dr Badrul Hisham bin Ahmad for his invaluable supervision, guidance, kindness, encouragement, and financial support throughout my study. Without his continued support and interest, this thesis would not have been same as presented here. I am also very thankful to my co-supervisor Associate Professor Dr Wong Peng Wen from Universiti Teknologi Petronas (UTP) for his guidance, advices and conduct a proper research. I would like to acknowledge the Ministry of Higher Education (MOHE), MyBrain15, and Universiti Teknikal Malaysia Melaka for the scholarships and the research grants.

Special thanks to Dr Noor Azwan bin Shairi for helping me during my project and also to fellow postgraduate students should also be recognized for their support and provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. Last but not least, I would like to extend my gratitude to everyone who have been directly and indirectly involved in the successful completion of this thesis. Thank you so much.

TABLE OF CONTENTS

DECI	LARA	TION	
APPF	ROVA	L	
DEDI	[CAT]	ION	
ABST	RAC	Т	i
ABST	FRAK		ii
ACK	NOW	LEDGEMENTS	iii
TABI	LE OF	FCONTENTS	iv
LIST OF TABLES		vii	
LIST	OF F	IGURES	viii
LIST	OF A	BBREVIATIONS	xi
LIST	OF A	PPENDICES	xii
LIST	OF P	UBLICATIONS	xiii
СЦА	DTFD		
1.		RODUCTION	1
	11	Research Background	1
	1.1	Problem Statement	3
	13	Research Objectives	6
	14	Scope of Research	7
	1.5	Significance of Study	7
	1.6	Thesis Organization	9
•			11
2.		EKAIUKE REVIEW	11
	$\frac{2.1}{2.2}$	Introduction Switcheble Microwaya Eilter in Cognitive Dadie (CD)	11
	2.2	Switchable Microwave Filter in Cognitive Radio (CR)	14
	2.5	PE Switch	20
	2.4	2/1 Diode	22
		2.4.1 1 Forward Biased	22
		2.4.1.1 Torward Diased	23
		2.4.1.2 Reverse Blased 2.4.1.3 PIN Diode as a Switch	24
		2.4.1.5 The Diode as a Switch 2.4.2 Varactor Diode	23
	25	O Factor	28
	2.6	Even and Odd Mode Analysis	31
	2.0 2.7	Dual Mode Filter	34
	2.8	Lossy Filter (Low <i>Q</i> Resonator)	36
	2.0	2 8 1 Filters in Communication Systems	38
		2 8 2 Classical Predistortion Techniques	41
		2.8.3 Predistorted Reflection Mode Filters	43
		2.8.4 Transmission Filters	45
		2.8.5 High O Absorptive Bandstop Filter	47
	29	Absorptive Bandstop Filter using Dual Mode Ring Resonator	53
	,	2.9.1 Fundamentals of Ring Resonator	53
		2.9.2 Coupling Gap Equivalent Circuit	54
		2.9.3 Transmission Line Equivalent Circuit	55
		T	

		2.9.4 Absorptive Bandstop Filter using Dual Mode Ring Resonator	56
	2.10	Absorptive Bandstop Filter using Stepped Impedance	
		Dual Mode Resonator	57
		2.10.1 Design of Bandpass Filter	58
		2.10.2 Design of Absorptive Bandstop Filter	61
	2.11	T-shape Resonator	63
	2.12	Current Progress on Absorptive Bandstop Filter	67
		2.12.1 Fixed Absorptive Bandstop Filter (FABF)	68
		2.12.2 Tunable Absorptive Bandstop Filter TABF)	69
		2.12.3 Switchable Absorptive Bandstop Filter (SABF)	72
		2.12.4 Design Challenge	79
	2 1 3	Applications	79
	2 14	Current Progress on Various Switchable Bandpass to Bandstop Filter	82
	2.15	Summary	103
3.	RES	EARCH METHODOLOGY	104
	3.1	Introduction	104
		3.1.1 Mathematical Modeling	104
		3.1.2 Advanced Design System (ADS)	105
		3.1.3 The measurement for methodology	105
	3.2	Flowchart	105
	33	Design of the Resonator	110
	34	Perfectly Matched (Absorptive Bandstop) Concept	111
	3.5	Design Specification	112
	36	Simulation Tools	112
	37	Hardware Design	114
	5.7	3.7.1 Generate Mask on Transparency	114
		3 72 Photo Exposure Process	114
		3.7.3 Etching in Developer Solution	115
		3.7.4 Etching in Eerric Chloride	115
		3.7.5 Measurement Setun	116
	3.8	Summary	117
4.	DES	IGN AND SIMULATION: SWITCHABLE HIGH O ABSORP	TIVE
	BAN	DSTOP TO BANDPASS FILTER	118
	4.1	Introduction	118
	4.2	Filter Design	119
	4.3	An Investigation of Switchable Absorptive Bandstop to Bandpass	119
		Filter using Parallel Coupled Resonator	
	4.4	Switchable Filter using Parallel Coupled Resonator	126
	4 5	An Investigation of Switchable Absorptive Bandstop to Bandpass	133
		Filter using T-shape Resonator	100
	4.6	An Investigation of Switchable Absorptive Bandstop to Bandpass Filter using Dual Mode Ring Resonator	136
	Δ7	An Investigation of Stepped Impedance Dual Mode Resonator	1/12
	т./ Л Q	Miniaturised Absorptive Bandston Filter using Stopped Impedance	1/12
	4.0	Dual Mode Resonator	143
	40	The Effect of Via Hole for Bandnass Response	1/15
	т.) Д 10	An Investigation of Switchable Absorptive Bandston to	1/7
	ч .10	An investigation of Switchable Ausorprive Dallustop to	14/

	4.11	Bandpass Filter using Stepped Impedance Dual Mode Resonator Summary	151
5.	MEA	ASUREMENT AND VALIDATION: SWITCHABLE	
	HIG	H Q ABSORPTIVE BANDSTOP TO BANDPASS FILTER	152
	5.1	Introduction	152
	5.2	Switchable Absorptive Bandstop to Bandpass Filter	153
		Using Parallel Coupled Resonator	
	5.3	Switchable Absorptive Bandstop to Bandpass Filter Using T-shape Resonator	156
	5.4	Switchable Absorptive Bandstop to Bandpass Filter	159
	5.5	Switchable Absorptive Bandstop to Bandpass Filter using Stepped Impedance Dual Mode Resonator	163
	5.6	Comparison of Results	167
	5.7	Comparison Previous Work with High Q Absorptive Bandstop to Bandpass Filter	170
	5.8	Summary	171
6.	CON	CLUSION AND FUTURE WORKS	172
	6.1	Conclusion	172
	6.2	Suggestion for Future Work	174
REF APP	TEREN PENDIC	CES CES	175 186

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Dimension for tunable bandpass to bandstop filter (mm)	95
2.2	Physical Dimension of the Resonators (mm)	99
2.3	Summary of Switchable Bandpass to Bandstop Filter	102
3.1	Design specification of absorptive bandstop filter	112
3.2	Rogers RT Duroid 5880 Specification	113
4.1	Effect of via hole	146
5.1	Comparison of switchable high Q absorptive bandstop to bandpass filter	169
5.2	Comparison previous work with high Q absorptive bandstop filter	170

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Typical Wireless Communication System for UAVs	2
1.2	(a) Conventional bandstop resonator (b) Effect of infinite Q	4
2.1	A cellular base station for RF front end	12
2.2	Conventional Radios	15
2.3	Utilization of unused spectrum in CR	16
2.4	Comparison of conventional radios and cognitive radios	16
2.5	Block diagram of cognitive radio with switchable or tunable filter	17
2.6	Spectrum utilization measurement at Berkeley Wireless Research	19
	Centre	
2.7	Filters Type	21
2.8	Layer of a PIN diode	23
2.9	Forward bias equivalent circuit	24
2.10	Reverse bias equivalent circuit	24
2.11	Series SPST switches	26
2.12	Shunt SPST switch	26
2.13	The reverse biased varactor diode acts as a variable capacitor	26
2.14	(a) reverse bias increase, capacitance decrease (b) reverse bias	27
	decrease, capacitance increase	

2.15	Varactor diode capacitance varies with reverse voltage	28
2.16	Q factor from the simulation result	29
2.17	Various resonating Q factors	29
2.18	Bandpass resonator with finite Q_u	30
2.19	Symmetrical two-port network	31
2.20	Model of dual mode filter nodes	35
2.21	Dual mode filter routing structure	36
2.22	Transmission and reflection responses plotted	36
2.23	Conventional and predistorted for bandpass and bandstop filters and also its	37
	effect of finite Q _u	
2.24	(a) illustration of a transceiver front-end (b) Typical diplexer response. The	38
	receive and transmit bands required a highly selective filters to offer the	
	essential isolation	
2.25	(a) An LNA directly preceded by a low-loss, highly selective filter	39
	(Conventional architecture). (b) An LNA split into two gain blocks, separated	
	by a lossy but highly selective filter (Alternative architecture)	
2.26	Simulated result of the alternative architecture in-band inter-modulation	40
	products and noise figure versus gain of the first stage amplifier	
2.27	The pass-band loss is increased and the band edge of the losses is most	41
	affected on filter response	
2.28	Classical predistortion technique. Comparison predistorted filter with loss	42
	and without loss	
2.29	(a) Lossy resonator. (b) Lossy bandstop response of a conventional bandstop	43
	filter that reduce the attenuation of stopband and the band edges	
2.30	A reflection-mode bandstop resonator	44
2.31	Circuit design by using synthesis technique for estimation of the low-Q	46

network

2.32	Prototype design of folded half-wavelength microstrip resonators. (a) Circuit	47
	diagram of third-order Chebychev lowpass prototype. (b) Physical Layout of	
	folded half-wavelenght simulated using ADS Momentum	
2.33	Simulated result	47
2.34	Distributed-element enhancement-Qu notch filter	48
2.35	Absorptive bandstop filter circuit implementation	49
2.36	Even-mode admittance of a lossy resonant circuit	50
2.37	High Q absorptive bandstop response	52
2.38	A coupled resonator model of absorptive bandstop filter	52
2.39	Ring Resonator	53
2.40	End-to-side coupling	54
2.41	(a) End-to-end coupling (b) the equivalent circuit for the end-to-end coupling	54
2.42	(a) transmission line of length l and (b) the T-network equivalent	55
2.43	Absorptive bandstop filter using dual mode ring resonator	56
2.44	The illustration of traveling wave for absorptive bandstop dual mode ring	57
	resonator	
2.45	Circuit diagram of bandpass filter using stepped impedance dual mode	59
	resonator	
2.46	(a) even mode (b) odd mode	59
2.47	Layout and parameter of stepped impedance dual mode bandpass filter	60
2.48	Simulated dual mode bandpass filter response	60
2.49	Circuit diagram of the absorptive bandstop filter	61
2.50	Layout of stepped impedance dual mode resonator for the absorptive	61
	bandstop filter	

2.51	Simulated of the absorptive bandstop response	62
2.52	Microstrip T-junction structure	63
2.53	Microstrip T-junction equivalent circuit	63
2.54	A uniform microstrip transmission lines section of electrical length Φ with	64
	embedded shunt capacitance elements	
2.55	T-Shunt stub impedance inverter with coupled $\lambda/4$ resonator (a) layout (b)	66
	equivalent circuit	
2.56	The equivalent circuit of coupled $\lambda/4$ resonators with T-shunt	66
	stub impedance inverter transformation.	
2.57	The illustration of traveling wave for absorptive bandstop dual mode	67
	ring resonator	
2.58	L-shape absorptive bandstop filter	68
2.59	First experimental realizations of the absorptive bandstop filter using lossy	69
	resonators in microstrip technology (a) L-shape (parallel coupled) resonator	
	(b) Dual mode ring resonator (c) Folded ring resonator	
2.60	Intrinsically switched tunable absorptive bandstop filter	70
2.61	Intrinsically switched tunable notch filter prototype simulated and measured	70
	results with Bandwidth tuning	
2.62	Prototype of tunable impedance inverter of matched notch filter	71
2.63	Tunable k-inverter of coupled $\lambda/4$ resonators	71
2.64	Measured result of notch filter with bias (V_b) tuning from 2.2V to 4.2V for	72
	(a) transmission (b) reflection responses	
2.65	Prototype of reconfigurable bandstop to all pass filter	73
2.66	Simulated (m2) and measured (m1) result (a) absorptive bandstop response	73
	(b) all-pass response	
2.67	The schematic of conventional switched bandstop filter and the response	74

between ON and OFF states

2.68	Schematic of constant group delay switched bandstop filter and response. For	74
	both ON and Off states of the group delay is identical	
2.69	Prototype of constant group delay switchable bandstop to Allpass filter	75
2.70	Insertion loss from measured responses	75
2.71	Group delay	76
2.72	Block diagram of Allpass network with switchable bandstop filter	76
2.73	Prototype of 4-pole self-switched bandstop filter	77
2.74	The measured result of 4-pole bandstop filter (a) Allpass (b) bandstop	78
	responses	
2.75	Group delay comparison between Allpass and bandstop mode	78
2.76	Variation type of switchable bandpass-to-bandstop filter have been reported	83
2.77	Schematic diagram of the reconfigurable bandpass-to-bandstop filter. D1 and	84
	D2 series-resonated	
2.78	Prototype of reconfigurable bandpass to bandstop filter	84
2.79	Simulated and Measured results of the reconfigurable bandpass-to-bandstop	85
	filter at 2.45 GHz, (a) Bandpass state, (b) Bandstop state	
2.80	(a) Ring resonator bandstop filter (b) Simulated response of bandstop filter	87
2.81	Layout of reconfigurable bandpass to bandstop filter	87
2.82	Bandpass filter (ON state)	89
2.83	Bandstop filter (OFF state)	89
2.84	Fabricated bandpass filter	89
2.85	Simulated and measured results of the bandpass filter	89
2.86	Fabricated bandstop filter	89
2.87	Simulated and measured results of the bandstop filter	89

2.88	Prototype of switchable bandpass to bandstop filter	91
2.89	The response S_{11} when (a) ON state (b) OFF state	92
2.90	The response S_{21} when (a) ON state (b) OFF state	92
2.91	On and OFF states of PIN diodes for the group delay measured response	93
2.92	Schematic diagram of bandpass-to-bandstop filter	94
2.93	Simulated result of bandpass response (a) S_{11} (b) S_{21}	96
2.94	Simulated result of bandstop response (a) S_{11} (b) S_{21}	97
2.95	Schematic diagram of a second-order bandpass to bandstop filter (a) top 3-D	98
	view (b) vertical 3-D view SIR (c) Cross section view	
2.96	Prototype of second-order bandpass to bandstop reconfigurable filter	98
2.97	Second-order bandpass to bandstop reconfigurable filter for simulated and	99
	measured results in bandpass modes (a) S_{21} (b) S_{11}	
2.98	Second-order bandpass to bandstop reconfigurable filter for simulated and	101
	measured results in bandstop modes (a) S_{21} (b) S_{11}	
2.99	Bandwidth tuning of S_{21} of measured second-order bandpass to bandstop	101
	reconfigurable filter (a) Bandpass response (b) Bandstop response	
3.1	Flow chart of development of switchable absorptive bandstop to	106
	bandpass filter.	
3.2	Block diagram of measurement setup	109
3.3	Generalized coupled-resonator model of an absorptive notch filter	111
3.4	Coupled resonator design with the desired parameter for the matching	111
	bandstop filter	
3.5	Line calculation tools in ADS software	114
3.6	UV exposure	115
3.7	Etching process	115

xiii

3.8	Experiment setup	116
4.1	Circuit diagram of parallel coupled resonator	120
4.2	Simulated result of absorptive bandstop filter	120
4.3	Disconnecting $\lambda/4$ wavelength	121
4.4	Lossy bandpass filter	122
4.5	Filter circuit integrated with single PIN diode	122
4.6	High Q absorptive bandstop with the insertion loss, S_{21} 73.2dB	123
4.7	Response when the single PIN diode turned OFF	124
4.8	Circuit diagram of integrated with 2 PIN diodes	124
4.9	Absorptive bandstop with insertion loss S_{21} 50.2 dB	125
4.10	Lossy bandpass filter	126
4.11	Enhancement of bandpass response	126
4.12	Switchable generalized coupled resonator structure topology	127
4.13	(a) Circuit diagram of switchable parallel coupled line resonator. Circuit	128
	operation: (b) OFF state (bandpass response) and (c) ON state (bandstop	
	response)	
4.14	Realization of parallel coupled resonator and the parameter of switchable	130
	high-Q bandstop to bandpass filter. $W = 2.35$ mm, $L1 = 29.85$ mm, $L2 =$	
	13.7mm, L3 = 10.5mm, L4 = 9.5mm, S1 = 9.5mm, S2 = 0.55mm, C = 10pF,	
	$D = Bap64-03$, $R = 110\Omega$, $I = 47nH$, $GND = Ground$	
4.15	Switchable absorptive bandstop to bandpass filter topology	130
4.16	Realization of switchable and tunable absorptive bandstop to bandpass filter	131
4.17	Momentum simulated absorptive bandstop filter	132
4.18	Enhancement of dual mode bandpass filter	133
4.19	Layout design of absorptive bandstop T-shape resonator. $a = 22.5$ mm, $b =$	134

21mm, c = 32.5mm ($\lambda/4$), s = 0.4mm

4.20	Simulated absorptive bandstop filter	134
4.21	Switchable absorptive bandstop to bandpass filter parameter. a = 22.6mm, b =	135
	32.5mm, c = 21.2mm, d = bap64-03 (PIN diode).	
4.22	(a) Circuit diagram of switchable T-shape resonator. Circuit operation: (b)	136
	OFF state (bandpass response) and (c) ON state (bandstop response)	
4.23	Equivalent circuit of switchable dual mode ring resonator absorptive	137
	bandstop to bandpass filter	
4.24	The realization of switchable absorptive bandstop to bandpass filter	138
4.25	(a) Circuit diagram of switchable ring resonator. Circuit operation: (b) OFF	139
	State (bandstop response) and (c) ON state (bandpass response).	
4.26	EM simulation of switchable absorptive bandstop to bandpass filter	140
4.27	Bandpass response	140
4.28	Enhancement of dual mode bandpass filter	141
4.29	Parametric value of switchable dual mode absorptive bandstop to bandpass	142
	filter. a = 22.8mm, b = 19.8mm, c = 4.2mm, d = 8mm, e = 14mm, f = 9mm, s	
	= 0.3mm, w = 2.4mm, r = 110 Ω , c = 10pF, Pd = Bap64-03, Vd = bb145b	
4.30	Stepped impedance dual mode resonator	142
4.31	Circuit implementation of the miniaturised absorptive bandstop filter based	144
	on stepped impedance dual mode resonator	
4.32	Simulated miniaturised stepped impedance dual mode bandpass filter	144
4.33	Simulated dual mode bandpass filter response	145
4.34	Switchable absorptive bandstop to bandpass filter topology	147
4.35	(a) Circuit diagram of switchable stepped impedance dual mode filter. Circuit	148
	operation: (b) OFF state (dual mode bandpass response) and (c) ON state	
	(absorptive bandstop response).	

4.36	Layout design of switchable absorptive bandstop to dual mode bandpass filter	149	
	using stepped impedance dual mode resonator		
4.37	Parameter of switchable bandpass to absorptive bandstop topology;	149	
	<i>Cap=10pF</i> , <i>L=10nH</i> , <i>p=bap64-03</i> , <i>R=110Q</i> , <i>V1 = V2 = Via hole</i>		
4.38	Simulated dual mode bandpass response	150	
4.39	Group delay OFF state	150	
5.1	Prototype of switchable high-Q bandstop to bandpass filter		
5.2	High-Q bandstop response simulated and measured		
5.3	Group delay ON state	154	
5.4	Lossy bandpass filter	155	
5.5	Group delay OFF state	156	
5.6	The prototype design of switchable absorptive bandstop to bandpass filter	157	
5.7	Absorptive bandstop filter	158	
5.8	Group delay ON state	158	
5.9	Bandpass filter	159	
5.10	Group delay OFF state	159	
5.11	Prototype of switchable absorptive bandstop to bandpass filter using dual	160	
	mode ring resonator		
5.12	The absorptive bandstop response, high Q factor	161	
5.13	Group delay OFF state	161	
5.14	Simulated and measured result of bandpass response	162	
5.15	Dual mode bandpass response simulated and measured results	162	
5.16	Group delay dual mode bandpass filter	163	
5.17	Realization of switchable absorptive bandstop to bandpass filter using	164	
	stepped impedance dual mode resonator		
5.18	Bandpass response	165	
5.19	Measured result of the dual mode bandpass response when PIN diodes are	165	

turned 'OFF'

Group delay ON state.

5.22

5.20	Simulated and measured results of S_{21} for absorptive bandstop response when	
	PIN diodes are turned 'ON'	
5.21	Simulated and measured result of S_{11} .	167

167

xvii

LIST OF ABBREVIATIONS

RF	-	Radio Frequency
UAV	-	Unmanned Aerial Vehicle
CR	-	Cognitive Radio
TL	-	Transmission Line
YIG	-	Yttrium Ioran Garnet
DBS	-	Direct broadcast satellite
PCS	-	personal communication systems
SC	-	Switched Capacitor
LTD	-	Charge Transfer Device
PDA	-	Personal Digital Assistant
QoS	-	Quality of Service
dB	-	Decibel
VSWR	-	Voltage Standing Wave Ratio

xviii

C Universiti Teknikal Malaysia Melaka

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	Roger RT/Duroid 5880 Data Sheet	185
В	General calculation of transmission line	187
С	BAP64-03	190
D	BB145B	192

xix