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ABSTRACT 

 

 

New developments in the design of the switchable microwave filters in some cognitive 
radio system are essential to meet the ever increasing demands to discriminate between 
wanted and unwanted signals. There also has a demand for miniaturization of microwave 
communications systems. A compact design can be achieved through the implementation 
of planar microstrip technology. However, conventional electronically tunable bandstop 
filters suffer performance degradation due to the finite unloaded Q of the resonators and 
also the loss associated with the switching elements. Therefore, two low Q lossy resonator 
filter topology has been implemented where the topology can be used to partially 
compensate for the loss where a high Q absorptive bandstop filter can be achieved. The 
filter consists of λ/2 resonator with K-inverter, parallel with an Allpass nominally-90°-
phase-shift element. A frequency agile bandstop filter based on this topology has been 
developed, but such filters as well as conventional switchable bandstop filters encounter 
performance degradation in terms of tuning bandwidth and stopband bandwidth due to the 
frequency dependant losses and couplings. Through this thesis a new switchable 
microwave filter is investigated and developed, where this filter is able to switch from high 
Q absorptive bandstop response (ON state) to bandpass response (OFF state). This 
switchable filter is designed using four different types of resonator which are parallel 
coupled, dual mode ring, stepped impedance dual mode and T-shape. The parallel coupled 
resonator consisted of two low-Q lossy resonator connected with 90° wavelength and with 
correct k-inverter to produce high Q absorptive bandstop response. T-shape resonator 
consisted of T resonator coupled with 90° wavelength. While for the dual mode ring 
resonator structure is composed by two degenerate modes or splitting resonant frequencies, 
where the ring can be excited by perturbing stub. For stepped impedance resonator, the 
structure is consisted of the stepped impedance resonator with mid-plane of via hole and 
connected with 90° wavelength to achieve the high Q absorptive bandstop response. The 
filters are integrated with switching element, such as PIN and a varactor diode to switch 
the filter response and biasing circuit is needed to make the PIN or the varactor diode 
working properly. The absorptive bandstop filter operates at 2.4 GHz where S11 is below 
than 15 dB and S21 has high selectivity with the narrow bandstop response with high Q 
factor. The unloaded Q factor of the absorptive bandstop filter is more than 60 for 
measuring and 150 for simulation. For a bandpass response, the response depends on the 
filter structure. Where, each resonator produced different character of a bandpass filter. 
The dual mode bandpass response for stepped impedance, was achieved by switched 
‘OFF’ the PIN diodes, where the insertion loss, S21 4.9 dB, return loss, S11 is below 15 dB, 
and passband bandwidth is 200 MHz at centre frequency of 2.35 GHz. A good agreement 
is observed between simulated and measured results. The benefits of this filter is not only 
can produce a bandpass response, but also high quality factor in bandstop response which 
offer a better performance and high selectivity. The outcomes of the proposed switchable 
filters may facilitate improvements and the solution in cognitive radio. 
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ABSTRAK 

 

 

Perkembangan baru dalam reka bentuk penapis gelombang mikro boleh ubah dalam 
sistem radio kognitif adalah penting untuk memenuhi permintaan yang semakin meningkat 
digunakan untuk mengasingkan antara isyarat yang diingini dan yang tidak diingini. 
Permintaan yang tinggi untuk saiz yang kecil. Walau bagaimanapun, penapis jalur batas 
elektronik boleh-laras konvensional mengalami kemerosotan prestasi Q kerana tanpa 
beban terhingga daripada peresonan dan juga kehilangan yang berkaitan dengan unsur-
unsur pensuisan. Oleh itu, dengan menggunakan topologi dua kehilangan rendah Q 
peresonan digunakan untuk mengimbangi sebahagian kehilangan untuk menghasilkan 
penapis jalur batas yang mempunyai faktor Q yang tinggi. Rangkaian kehilangan semua 
lepas menunjukkan konsep dan reka bentuk tindak balas jalur batas padanan sempurna 
pada semua frekuensi. Penapis ini berdasarkan kepada λ/2 peresonan dengan gandingan 
jurang, selari dengan semua lepas ukuran-90° elemen peralihan fasa, yang boleh 
dioptimumkan untuk mencapai faktor-Q yang tinggi. Frekuensi tangkas penapis semua 
lepas berdasarkan topologi ini telah dibangunkan, tetapi penapis yang sama digunakan 
pada penapis semua lepas suis konvensional menghadapi kemerosotan prestasi dari segi 
penalaan lebar jalur dan batas jalur keluasan-jalur disebabkan oleh kekerapan 
kebergantungan-kehilangan dan gandingan. Didalam thesis ini, penapis gelombang mikro 
boleh ubah dikaji dan dibangunkan, di mana penapis ini dapat menukar dari penapis 
penyerap jalur batas kepada lulus jalur. Penapis boleh ubah ini direka menggunakan 
empat jenis peresonan, yang pertama ialah gandingan selari, dwi mod cincin, impedans 
langkah dwi mod dan bentuk T. Peresonan gandingan selari terdiri daripada dua 
peresonan kehilangan Q rendah yang disambungkan dengan 90° panjang gelombang dan 
faktor k-penyongsang yang betul untuk menghasilkan faktor Q tinggi jalur batas. 
Peresonan cincin dwi mod terdiri daripada dua mod merosot atau frekuensi salunan 
membelah. Peresonan impedans langkah terdiri dari impedans langkah pertengahan satah 
melalui lubang dan disambungkan kepada 90° panjang gelombang untuk mencapai 
sambutan menyerap. Penapis yang diintegrasikan dengan PIN dan varactor diod yang 
sesuai akan digunakan. Penapis gelombang mikro jalur batas menyerap beroperasi pada 
2.4 GHz mana S11 adalah di bawah 15 dB dan S21 mempunyai pemilihan tinggi dengan 
tindakbalas jalur batas sempit dengan faktor Q yang tinggi. Faktor Q untuk batas jalur 
serapan pada ukuran ialah diatas 60 manakala simulasi ialah atas 150.  Untuk respon 
lulus jalur, ia bergantung kepada struktur penapis gelombang mikro itu sendiri. Dua mod 
lulus jalur untuk impedans langkah dihasilkan apabila PIN diod dimatikan. Dimana S11 
dibawah 15 dB dan S21 4.9 dB dengan jalur lulus lebar jalur ialah 200 MHz pada 
frekuensi 2.35 GHz. Persetujuan yang baik dipatuhi antara keputusan simulasi dan diukur. 
Manfaat penapis ini bukan sahaja dapat menghasilkan respon lulus jalur, tetapi juga 
faktor Q tinggi dalam respon jalur batas yang menawarkan prestasi yang lebih baik dan 
pemilihan tinggi. Hasil daripada penapis yang boleh ditukar boleh dicadangkan bagi 
memudahkan penambahbaikan dan penyelesaian dalam radio kognitif.  
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