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Abstract 

 

An analysis of signal to noise ratio (SNR) of restored multispectral data is 

reported. The data comes from multispectral satellite sensor and has undergone a 

restoration process due to the degradation by atmospheric haze. The restoration 

involves subtracting haze mean due to haze scattering and filtering haze 

randomness due to haze spatial variability. The results shows that the SNR of 

restored data after Gaussian filtering is higher than average and median filtering. 

The improvement of SNR at short and moderate visibilities is more significant 

than good visibilities.   
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1 Introduction 
 

In [8], we developed a model for hazy satellite data, which can be expressed as: 

( ) ( ) ( )( ) ( ) ( )1 2

i i i O i iL V 1 V T L V H= − β + β+
            (1) 
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where Li�V�, Ti, Hi, Lo, β�

���
 and β

�

���
  are the hazy dataset, the signal component, 

the pure haze component, the radiance scattered by the atmosphere, the signal 

attenuation factor and the haze weighting in satellite band i, respectively. Hi can 

be expressed as:  

 

vi i iH H H+=
                (2) 

 

Where     is the haze mean, which is assumed to be uniform within the image or 

sub-region of the image, and     is a zero-mean random variable corresponding to 

haze randomness. Hence: 

 

( ) ( )
vi iVar H Var H=                (3) 

 

So Equation (1) can be written as: 

 

( ) ( ) ( ) ( ) ( )
v

1 2

i i i O i i iL V 1 V T L V H H   = − β + β +   +            (4) 

 

In order to remove the haze effects [4], [5], [10] we need to remove both the 

weighted haze mean 
( ) ( )2

i iV Hβ and the varying component 
( ) ( )

v

2

i iV Hβ and deal 

with the signal attenuation factor ( ) ( )1

i Vβ . The effects of ( ) ( )1

i Vβ  to classification 

accuracy are not significant [8], so we will not consider their removal throughout 

the analysis. We normally do not have prior knowledge about 
( ) ( )2

i iV Hβ  

therefore we need to estimate it from the hazy data itself. If the estimate is 

( ) ( )
�2

i i
V Hβ , subtracting it from ( )iL V  yields: 

 

( )� ( ) ( ) ( )
� ( ) ( ) ( ) ( )

( ) ( )
�

Z v

2 1 2

i i i i i i O i i i

2

i i

L V L V V H 1 V T L V H H

V H

   = − β = − β + β + −  

β

+
        (5) 

 

Equation (5) becomes: 

 

( )� ( ) ( ) ( ) ( ) ( ) ( )� ( ) ( )
Z v

1 2 2 2

i i i i i i i i i OL V 1 V T V H V H V H L  = − β β − β + β +    
+         (6) 

 

where 
( ) ( ) ( ) ( )
�2 2

i i i iV H V H β − β
  

 is the error associated with the difference 

between the ideal and estimated weighted haze mean. A common way to measure 

the accuracy of restored data is to compare its quality with uncorrupted data. 

Visual analysis offers a fast and simple way to do this, but suffers from possible 

analyst  

iH

vi
H
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bias. Hence we propose two quantitative approaches to assess the quality of 

restored data. Note that here we assume ( ) ( )1

i i1 β V T −  from the hazy data to be 

the signal amplitude because the effects of ( ) ( )1

i1 β V − 
 to data quality is 

negligible; this applies for all cases.  Due to the discrete properties of the hazy 

data, the exact values are replaced by their estimates: 

 

�

( ) ( ){ }
( ) ( ) ( )

m n

m n

v

Q Q 2
1

i i O

m 1 n 1

Q Q
222

ii i

m 1 n 1

1 β V T L

SNR

β V H + H

= =

= =

 − + 
=
∑∑

∑∑
             (7) 

 

where mQ  and nQ  are the numbers of pixels in the rows and columns of the 

image respectively. Note that such calculation is only possible if the values of iT , 

iH , 
vi

H , 
( ) ( )1

iβ V , 
( ) ( )2

iβ V , mQ  and nQ  are known a priori. Hence the SNR after 

subtraction of the haze mean is: 

 

  

�

( ) ( ){ }
( ) ( )

m n

m n

v

Q Q 2
1

i i O

m 1 n 1

Q Q
22 2

i i

m 1 n 1

1 β V T L

SNR

β V H

= =

= =

 − + 
=
∑∑

∑∑
             (8) 

 

For linear filtering we have: 

 

�

( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ }

m n

m n

v

Q Q 2
1

i i O

m 1 n 1

Q Q 2
1 2

i linear i i i linear i

m 1 n 1

1 β V T L

SNR

1 β V h T T β V h H

= =

= =

 − + 
=

   − −  

∑∑

∑∑ +

         (9) 

 

For median filtering we have: 

 

�

( ) ( ){ }
( ) ( ) ( ) ( )( )

( ) ( )

m n

m n
v

Q Q 2
1

i i O

m 1 n 1

2
1 2

Q Q i i i i O

1
m 1 n 1

i i O

1 β V T L

SNR

Median 1 β V T β V H L

1 β V T L

= =

= =

 − + 
=

  − + −   
 
  − −  

∑∑

∑∑
+

                  (10) 
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2 Calculation of SNR 
 

In this section, we calculate the SNR of the data after weighted mean subtraction 

and filtering for the case when the haze mean is known exactly. The SNR 

calculations for bands 1 are given first and the explanation is given after that. 

These are then followed by the SNR calculations for bands 2, 3, 4, 5 and 7. This 

makes use of the simulated dataset for visibilities 2 km to 18 km. Figure 1 shows 

the SNR for band 1 with the exact mean removed, after applying average, median 

and Gaussian filtering. These plots help to determine the window size that 

produces the highest SNR at a particular visibility.  

 

 
 

Figure 1: SNR for band 1 after applying (a) average filtering, (b) median filtering, 

(c) Gaussian filtering and (d) Same as (c) but in dB. 

 

For average and median filtering (Figure 1 (a and b)), for smaller window sizes, 

the drop in SNR gets more rapid as the visibility reduces, but for bigger sizes, the 

SNR is nearly constant for all visibilities. For longer and moderate visibilities, 3 x 

3 windows give the highest SNR, but the SNR drops when the window size is 

increased. For very short visibilities, bigger windows produce higher SNRs. For 

Gaussian filtering (Figure 1 (c)), the 3 x 3 window shows a sharp decrease in SNR 

for long visibilities, but then a slow decline for moderate visibilities. A big 

difference in SNR is observed between the 3 x 3 window and the rest of the 

windows, particularly for long visibilities. The larger-sized windows show a 

relatively flat trend towards shorter visibilities. The separation of the effect of 

window sizes is much better in the dB plot (Figure 1 (d)). It can be seen that, for 

longer visibilities, smaller windows show higher SNR than bigger windows, while  
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for shorter visibilities, the bigger windows exhibit higher SNRs, but the separation 

between windows is relatively narrow.  

 

 

  
(a) (b) 

Figure 2: Comparison of filter performances for band 1. 

 

Table 1: Optimal 

window sizes for band 

1. 
Visibility 

(km) 

Filter Types / 

Sizes A
v

erag
e 

M
ed

ian
 

G
au

ssian
 

2 7 7 15 

4 3 5 7 

6 3 3 5 

8 3 3 5 

10 3 3 3 

12 3 3 3 

14 3 3 3 

16 3 3 3 

18 3 3 3 
 

 

For all types of filtering, the highest SNR for a particular visibility (associated 

with the corresponding optimal window size in Table 1) is plotted in Figure 2(a). 

The SNR for Gaussian filtered data is very close to weighted-mean subtracted 

data and noticeably improves the original degraded data at shorter visibilities. The 

dB plot in Figure 2(b) provides a better separation for all types of filtering, where 

Gaussian filtering shows the best SNR for all visibilities. The changes in trend in 

the middle of the Gaussian filtering curve is due to a transition of the 

corresponding window sizes, i.e. the window size changes from 3 x 3 (at 10 km 

visibility) to 5 x 5 (at 8 km visibility). The improvement made by the Gaussian 

filtering with respect to weighted-mean subtracted data and degraded data curves 

is likely to increase as visibility reduces. The average and median filtering show a 

lower SNR than the degraded and weighted-mean subtracted data, for longer 

visibilities, indicating that the quality of the data becomes poorer after filtering 

compared to before filtering. However, the SNR of the average-filtered and the 

median-filtered data is better than the degraded and mean subtracted data for 

shorter visibilities. 

 

3 Explanation of the SNR Results 
 

In order for the filtered data to have higher SNR than the mean subtracted data, 

the denominator in Equations (9) and (10) should be smaller than that of (8). From 

(8) and (9), the denominator difference is: 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ){ }{ }

( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

m n

v v

v

v v

Q Q 22
2 1 22

i i i linear i i i linear i

m 1 n 1

1 2

i linear i i i linear i
2 21

22i linear i i
2 2

i i linear i
A

B

β V H 1 β V h T T β V h H

2 1 β V h T T β V h H

1 β V h T T
β V H h H

= =

   − − −  

  − − − +  
 = − − − +        −       

∑∑ +

�������������

��������� �

m nQ Q

m 1 n 1= =

 
 
  
 
 
 
  

∑∑

�� �����������

 (11) 
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For the denominator in (9) to be smaller than the denominator in (8), they must be 

positive. This means the term B should be larger than A; it seems that this is 

possible if   ( )
v v

2
2

i linear iH h H >
   and ( )( )linear i ih T - T 0≈ . However, if the term B 

is smaller than A, the SNR of the linear filtered data will be smaller than the SNR 

after subtraction of the haze mean. Similarly, for the median filtering, the 

denominator in (10) should be less than that of (8), in order for the filtered data to 

have larger SNR compared to before filtering.  However, this is not easy to predict 

because separation of 

( ) ( ) ( ) ( )( ) ( ) ( )
v

1 2 1

i i i i O i i OMedian 1 β V T β V H L 1 β V T L   − + − − −   +  is not possible. 

Here we carry out detail analysis on Equation (9) and (10) for extreme cases, i.e. 

very thin haze (good visibilities) and very severe haze. When there is good 

visibility, the term 
( ) ( ) ( )2

linear VV h Hβ  is very small (Figure 4(left)), therefore its 

contribution in Equation (9) is very small and can be ignored. Consequently, we 

have: 

 

�

( ) ( ){ }
( ) ( ) ( ){ }

m n

m n

Q Q 2
1

i i O

m 1 n 1

Q Q 2
1

i linear i i

m 1 n 1

1 β V T L

SNR

1 β V h T T

= =

= =

 − + 
=

   − −  

∑∑

∑∑
         (12) 

 

Equation (12) indicates that the �SNR depends only on the scene itself. For average 

filtering, at good visibilities, the filter significantly reduces the variability within 

the scene. Therefore ( )
2

linear i ih T T −   tends to be bigger than 
( ) ( )

v

2
2

i iβ V H 
   in 

Equation (7) and 
( ) ( ) ( )

v

222
ii iβ V H + H  in Equation (7); consequently, the SNR for 

the average filtered data tends to be lower than that of the mean subtracted data 

and original degraded data respectively. For Gaussian filtering using a 3 x 3 

window,  since the weight of the centre window is 0.9, the filtering hardly alters 

the original pixel, therefore ( )linear ih T  is almost equal to
iT , consequently 

( )
2

linear i ih T T −   is very small and almost zero. This explains why at good 

visibility, the SNR of Gaussian filtered data is higher than the average filtered 

data. For median filtering, at good visibilities, ( ) ( )
v

2

i iβ V H is very small compared 

to ( ) ( )( )1

i i1 β V T−  and can be neglected, hence Equation (10) becomes: 

 

�

( ) ( ){ }
( ) ( )( ) ( ) ( ){ }

m n

m n

Q Q 2
1

i i O

m 1 n 1

Q Q 2
1 1

i i O i i O

m 1 n 1

1 β V T L

SNR

Median 1 β V T L 1 β V T L

= =

= =

 − + 
=

   − + − − −   

∑∑

∑∑
      (13) 
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Due to the non-uniformity of the signal in the data (mainly caused by variability 

in land features), ( ) ( )( ) ( ) ( ){ }
2

1 1

i i O i i OMedian 1 β V T L 1 β V T L   − + − − −   
 tends to 

be bigger  than 
( ) ( )

v

2
2

i iβ V H 
   in Equation (8) and 

( ) ( )( )
v

2
2

i i iβ V H + H 
 

 in 

Equation (7), consequently, the SNR of median filtered data is smaller compared 

to the mean subtracted data. The results for all three filters suggest that for good 

visibilities, it is better not to filter the data at all, because the filtering will either 

decrease or give about the same SNR (as for Gaussian filtering). Visibilities 

considered good for bands 1, 2, 3, 4, 5 and 7 are given in Table 2.  

 

 
 

Figure 3: (a) Hazy data, (b) horizontal profile 

for and (c) horizontal profile for for different 

visibilities. 

Table 2: Visibility ranges at 

which filtering is not required. 

 

 

B
an

d
 

Visibility (km) 

A
v

e
rag

e 

M
ed

ia
n
 

G
au

ssian
 

1 > 8 > 8 > 10 

2 > 12 > 12 > 14 

3 > 10 > 10 > 12 

4 > 8 > 8 > 10 

5 > 8 > 8 > 12 

7 > 10 > 10 > 12 
 

 

Figure 3 shows (a) Hazy data, ( )iL V  (b) horizontal radiance profile for ( )iL V  

and (c) horizontal radiance profile for ( ) ( ) ( )2

i iV Hβ associated with 18 km, 8 km 

and 2 km visibility in band 1. The vertical lines in (b) and (c) represent the cut 

along the horizontal line in (a). ( ) ( ) ( )2

i iV Hβ  is obtained from the corresponding 

haze layers developed. It can be seen that at 18 km visibility, since ( ) ( ) ( )2

i iV Hβ  

is very small and almost not variable, the variation in the ( )iL V  is caused mainly 

by the scene itself, ( ) ( )1

i i1 β V T −  while at 2 km visibility, the variation in the 

( )iL V  is dominated by the haze, ( ) ( ) ( )2

i iV Hβ .For linear filtering, when the haze 

is very severe (i.e. short visibilities), ( ) ( ) ( )
v

2

i linear iβ V h H  will tend to be very 

variable and ( ) ( ) ( )1

i linear i i1 β V h T T   − −    in Equation (9) is very small because of 

the strong signal attenuation ( ( ) ( )1

iβ V 1≈ ) and so can be ignored; hence Equation 

(9) becomes: 
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�

( ) ( ){ }
( ) ( ) ( )

m n

m n

v

Q Q 2
1

i i O

m 1 n 1

2Q Q
2

i linear i

m 1 n 1

1 β V T L

SNR

β V h H

= =

= =

 − + 
=

 
 

∑∑

∑∑
          (14) 

 

Because of the very severe haze and the effect of averaging, here ( )
v

2

linear i
h H  

tends to be smaller than 
v

2

iH  in Equation (8) and ( )
v

2

i i
H + H  in Equation (7), 

therefore the average and Gaussian filtering are likely to have higher SNR than 

the mean subtracted data and original degraded data (Figure(b)). For median 

filtering, ( ) ( )1

i i1 β V T −    in the denominator of Equation (10) is very small 

compared to ( ) ( )
v

2

i iβ V H  and so can be neglected. Hence we have:  

 

�

( ) ( ){ }
( ) ( )( )

m n

m n

v

Q Q 2
1

i i O

m 1 n 1

Q Q 2
2

i i O O

m 1 n 1

1 β V T L

SNR

Median β V H L L

= =

= =

 − + 
=

 + −
 

∑∑

∑∑
         (15) 

 

Due to the very severe haze, ( ) ( )( )
v

2
2

i iMedian β V H 
 

 tends to be less than 

( ) ( )
v

2
2

i iβ V H 
    in Equation (8) and 

( ) ( )( )
v

2
2

i i iβ V H + H 
 

 in Equation (7). This is 

due to the removal of extreme values by the median filter. Consequently, the SNR 

of the median filtered data is likely to be higher than the mean subtracted and 

original degraded data. For linear filtering, for moderate haze,
vi

H in Equation (9) 

is more variable than for little haze. An optimal SNR can be achieved by keeping 

the denominator in Equation (9) low. In order to do so, the window size needs to 

be increased to effectively reduce variation in, but, at the same time, not to cause 

significant increase in ( )linear i ih T T −  . This explains why the optimal window 

size of the average and Gaussian filters needs to be increased as the visibility 

reduces (Table ). The larger the window, the more effectively the variation in 
vi

H  

will be reduced, but at some points, this may also cause  ( )linear i ih T T −   to 

increase, causing the SNR to drop below the optimal value. The visual effect of 

median filtering 12 km visibility on band 1 using 3 x 3 (left) and 21 x 21 (right) 

windows is shown in Figure 4. Similar SNR calculations are carried out for bands 

2, 3, 4, 5 and 7.  
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Figure 4: Visual effect of (a) 

average filtering, (b) median 

filtering and (c) Gaussian 

filtering with window sizes 3 x 

3 (left) and 21 x 21 (right). 

 

  
(a) (b) 

 
(c) 

Figure 5: The optimal window size for (a) 

average filtering (b) median filtering and (c) 

Gaussian filtering for visibilities 18 to 2 km. 

Figure 5((a) to (c)) show plots of window size needed to obtain the highest SNR 

by using average, median and Gaussian filtering respectively for visibilities 18 

down to 2 km, for all bands. For average and median filtering, little variation with 

window size can be seen for long and moderate visibilities but larger windows are 

needed as visibility drops (Figure (a) and (b)). For Gaussian filtering, 

progressively increasing window sizes are needed with reducing visibility 

(Figure(c)). 

 

4 Conclusion 
 

In this paper, we have analysed the SNR of multispectral satellite data after 

restoration that involves haze weighted-mean subtraction and haze randomness 

filtering. In overall, the SNR for the data after Gaussian filtering, is higher than 

the average and median filtering. However only slight improvement of SNR is 

shown for good visibilities. The separation between SNR curves for the Gaussian 

filtered data and that of the weighted-mean subtracted data and original hazy data 

increases towards shorter visibilities due to the transition from smaller to larger 

windows, allowing the higher variation rate of ( ) ( )
vi

β V H
2

 to be reduced more 

effectively.  
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