

Faculty of Electrical Engineering

LOCAL THRESHOLD IDENTIFICATION AND GRAY LEVEL CLASSIFICATION OF BUTT JOINT WELDING IMPERFECTIONS USING ROBOT VISION SYSTEM

Hairol Nizam bin Mohd Shah

Doctor of Philosophy

2018

🔘 Universiti Teknikal Malaysia Melaka

LOCAL THRESHOLD IDENTIFICATION AND GRAY LEVEL CLASSIFICATION OF BUTT JOINT WELDING IMPERFECTIONS USING ROBOT VISION SYSTEM

HAIROL NIZAM BIN MOHD SHAH

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

DECLARATION

I declare that this thesis entitled "Local Threshold Identification and Gray Level Classification of Butt Joint Welding Imperfections Using Robot Vision System" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Hairol Nizam Bin Mohd Shah
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature	:	
Supervisor Na	ame :	Prof. Ir. Dr. Marizan Bin Sulaiman
Date	:	

DEDICATION

Dear Allah

I devoted my life and death to You, Allah. May my life is within Your guidance.

Dear My Parent

Thank you for your sacrifice and love. No such compensate except from Allah.

Dear My Beloved Wife

Your support, patience and encouragement give me strength. May Allah bless us.

Dear Teachers

Thank you for all the knowledge. May your knowledge are useful for all humanity.

Dear My Siblings

Thank you for your support and love. May Allah forgive us.

Dear My Children

May Allah guide and protect us to be good Muslims.

C Universiti Teknikal Malaysia Melaka

ABSTRACT

This research is carried out be able to automatically identify the joint position and classify the quality level of imperfections for butt welding joint based on background subtraction, local thresholding and gray level approaches without any prior knowledge of the joint shapes. The background subtraction and local thresholding approaches consist of image pre-processing, noise reduction and butt welding representation algorithms. The approaches can automatically recognize and locate the butt joint position of the starting, middle, auxiliary and ending point according to the three different joint shapes; straight line, tooth saw and curved joint shapes. The welding process was done by implemented an automatic coordinate conversion between camera (pixels) and KUKA welding robot coordinate (millimeters) from the KUKA welding robot and camera coordinate ratio. The ratio was determined by a camera and three reference point (origin, x-direction and ydirection) taken around workpiece. Hence, the guality level of imperfection for butt welding joint was classified using Gaussian Mix Model (GMM), Multi-Layer Perceptron (MLP) and Support Vector Machine (SVM) classifiers according to their class of imperfection categories; good welds, excess welds, insufficient welds and no weld in each welding joint shape. These classifiers introduced 72 characteristics of feature values of gray pixels taken from co-occurrence matrix. The feature values consist of energy, correlation, homogeneity and contrast combine with gray absolute histogram of edge amplitude including additional characteristic features with scaled image factor by 0.5. The proposed approaches were validated through experiments with a KUKA welding robot in a realistic workshop environment. The results show that the approaches introduced in this research can detect, identify, recognize, locate the welding position and classify the quality level of imperfections for butt welding joint automatically without any prior knowledge of the joint shapes.

ABSTRAK

Penyelidikan ini dapat mengenalpasti kedudukan sambungan kimpalan dan mengelaskan tahap kualiti ketidaksempurnaan kimpalan untuk sambungan kimpalan temu berdasarkan pendekatan pengurangan latar belakang, ambang tempatan dan tahap kelabu tanpa pengetahuan sebelumnya tentang sambungan bentuk kimpalan. Pengurangan latar belakang dan ambang tempatan terdiri daripada pemprosesan imej, pengurangan hingar dan algoritma perwakilan kimpalan temu. Pendekatan in secara automatik dapat mengenali dan mencari kedudukan titik sambungan kimpalan temu samaada permulaan, pertengahan, persilangan dan pengakhiran mengikut tiga bentuk sambungan yang berbeza; garis lurus, gergaji gigi dan sambungan secara melengkung. Proses kimpalan dilakukan dengan melaksanakan penukaran koordinat antara kamera (piksel) dan kimpalan robot KUKA (milimeter) secara automatik dari nisbah antara kimpalan robot KUKA dan kamera yang diselaraskan. Nisbah itu diperolehi daripada kamera dan tiga titik rujukan (asal, arah x dan arah y) yang diambil di sekeliling benda kerja. Justeru itu, tahap kualiti ketidaksempurnaan untuk sambungan kimpalan temu akan diklasifikasikan menggunakan pengelas Gaussian Mix Model (GMM), Multi-Layer Perceptron (MLP) dan Support Vector Machine (SVM) mengikut kategori kelas ketidaksempurnaan mereka; kimpalan yang baik, kimpalan berlebihan, kimpalan yang tidak mencukupi dan tiada kimpalan di setiap sambungan kimpalan. Pengelas ini memperkenalkan 72 nilai ciri-ciri dalam piksel kelabu yang diambil dari matriks coocurrence. Nilai ciri-ciri tersebut terdiri daripada tenaga, hubung kait, serumpun dan pertentangan bergabung dengan histogram mutlak kelabu daripada pinggir amplitud termasuk tambahan ciri-ciri dengan meningkatkan faktor imej kepada 0.5. Pendekatan yang dicadangkan dibuktikan melalui percubaan dengan menggunakan kimpalan robot KUKA dalam persekitaran bengkel yang realistik. Keputusan menunjukkan bahawa pendekatan yang diperkenalkan dalam kajian ini dapat mengesan, mengenalpasti, mengenali, menyetempatkan kedudukan kimpalan dan mengelaskan tahap kualiti ketidaksempurnaan untuk sambungan kimpalan temu secara automatik tanpa pengetahuan sebelumnya tentang sambungan bentuk kimpalan.

ACKNOWLEDGEMENTS

In the Name of Allah, Most Gracious, Most Merciful,

First and foremost, all praise to Allah, Subhanahu-wa-Ta'ala, the Almighty, Who gave me an opportunity, courage and patience to carry out this work. I feel privileged to glory His name in the sincerest way through this small accomplishment. I seek His mercy, favour and forgiveness.

I would to express my deepest gratitude to my supervisor Prof. Ir. Dr. Marizan Sulaiman for his constant support and constructive guidance throughout this research. It is hard to express in words just how crucial his support has been. I am truly honored to be under his tutelage. Special thanks my co-supervisor, Prof. Madya Dr. Ahmad Zaki Shukor for his kind help and encouragement during my study.

I would like to thanks colleagues of Center for Robotics and Industrial Automation Group (CERIA), Faculty of Electrical Engineering Staffs and all person who have direct and indirectly involved in this project. Thank you also to the technical staffs at Faculty of Manufacturing Engineering for setting up the robotic welding workshop.

I would like to thank my employer and corporate sponsor, Universiti Teknikal Malaysia Melaka and Government of Malaysia for providing financial support for this work.

Finally, I would like to express my deepest appreciation for my late parents, Mohd Shah bin Mohd Noor and Munah binti Hj. Omar, my wife, Zalina binti Kamis, my son, Muhammad Ziaul-Haq, my daughter, Iris Mardhiyah and all family members for their patience and encouragement during the period of this research.

May Allah bless you and Thanks a lot for ALL.

TABLE OF CONTENTS

			PAGE
		RATION	
	PROV		
		TION	
	STRA		i
	STRA		ii
		WLEDGEMENTS	iii ·
		OF CONTENTS	iv
		FIGURES	vii
		APPENDICES	xvi xix
		AFFENDICES	
		PUBLICATIONS	xx xxii
	1 01	TUBLICATIONS	
СН	АРТЕ	CR	
1.	INT	RODUCTION	1
	1.1	Background	1
		Problem Statement	3
		Objective of the Research	3 5 5
		Scope of the Research	
		Contribution of the Research	6
	1.6	Thesis Organization	8
2.	LIT	ERATURE REVIEW	9
	2.1	Butt Welding Joint Identification and Localisation	9
		2.1.1 Introduction	9
		2.1.2 Type of Welding Joints	10
		2.1.3 Type of Welding Material	10
		2.1.4 Identification of Butt Welding Joints	12
		2.1.5 Butt Welding Joint Algorithms	17
	2.2	Robot Calibration and Camera Measurement	21
		2.2.1 Introduction	21
		2.2.2 Robot and Hand-Eye Calibration	22
		2.2.3 Single Fixed Camera Distance Measurement	24
	2.3	Butt Welding Joint Defect Classification	26
		2.3.1 Introduction	26
		2.3.2 Type of Welding Defects	27
		2.3.3 Features Extraction of Welding Defects	29
	. .	2.3.4 Classification of Butt Welding Defect Algorithms	31
	2.4	Summary of Research Gap	35

		2.4.1	Butt Joint Identification	35
		2.4.2	Butt Welding Joint Localisation	37
		2.4.3	Robot Calibration and Camera Measurement	40
		2.4.4	Butt Welding Imperfection Classification	41
3.	RES	SEARC	CH METHODOLOGY	46
5.	3.1		oint Identification Approach	46
	5.1		Introduction	46
			Image Pre-processing	47
			Image Segmentation	50
			3.1.3.1 Background Subtraction	51
			3.1.3.2 Local Thresholding	52
		3.1.4	Noise Reduction based on Morphological Operation	53
			Eliminated the Unwanted Edge Joint Points	55
			3.1.5.1 Background Subtraction Approach	55
			3.1.5.2 Local Threshold Approach	56
		3.1.6	Position and Location of Butt Joint Recognition	57
	3.2	Butt V	Velding Joint Representation Algorithms	59
		3.2.1	Introduction	59
		3.2.2	Case Study 1 – Straight Line	59
		3.2.3	Case Study 2 – Tooth Saw	60
			Case Study 3 – Curved	63
	3.3		n Based for KUKA Welding Robotics System	64
			Introduction	64
			KUKA KR 150 (Series 2000) Robot Manipulator	65
		3.3.3	ey	65
			KUKA.ArcTech	67
		3.3.5	51	67
		3.3.6	6 6	69
			KUKA Welding Robot Coordinate	70
		3.3.8		71
	2.4	3.3.9	11	71
	3.4		Velding Classification of Imperfection Approach	75
			Introduction Feature Extraction	75 76
		3.4.2	3.4.2.1 Co-occurrence Matrix	76
				77 83
			3.4.2.2 Filtering of Butt Welding Imperfections3.4.2.3 Butt Welding Imperfections Based on Gray Level	83
			Quantization	85
			3.4.2.4 Feature Vector	84
	3.5	Butt V	Velding Classifier of Imperfection Identification	84 87
	5.5	3.5.1	Introduction	87
			Training Classifiers	87
		3.5.3	•	90
		3.5.4	Results Selection	91
	3.6	Summ		91

4.	RES	SULT A	ND DIS	CUSSION	93	
	4.1	1 Experimental Setup				
	4.2	Butt J	oint Shape	e Recognition and Position Results	93	
		4.2.1	Workpie	ece Case Studies	93	
		4.2.2	Butt We	Iding Joint Shape Identification Results	95	
			4.2.2.1	Case Study 1 – Straight Line	95	
			4.2.2.2	Case Study 2 – Tooth Saw	102	
			4.2.2.3	Case Study 3 – Curved	108	
		4.2.3	Butt Join	nt Shape Identification Comparison	115	
		4.2.4		nt Image Matching Results	119	
				Test points	119	
				Proposed Approcahes Results	120	
			4.3.4.3	Comparison between Proposed Approaches	122	
				Comparison with Existing Methods	126	
	4.3			g Robot Results	128	
		4.3.1		ing Coordinate between Camera (pixels)	128	
				oot Coordinated (millimeters)		
		4.3.2		nt Localisation in KUKA Welding Robot Results	133	
				nary Welding Tests	135	
	4.4	~	2	vel for Imperfections in Butt Welding Results	136	
				Level of Imperfections Joint Class Categories	136	
				on Matrix Results	139	
		4.4.3		ance of Butt Welding Imperfections Results	144	
				Classification of Imperfections Rate	145	
				Processing Time in Data Testing	147	
		4.4.4	-	ison between Existing Methods	150	
	4.5	Summ	ary		160	
5.	CO	NCLUS	SION AN	D RECOMMENDATIONS	162	
	5.1	Concl	usion of F	Research	162	
	5.2	Achie	vement of	f Research Objectives	164	
	5.3	Signif	icance of	Research Outputs	165	
	5.4	Sugge	stion for l	Future Research	167	
RE	FERF	INCES			169	
		ICES			187	

LIST OF FIGURES

FIGURE

TITLE

PAGE

2.1	Type of welding joints	11
2.2	Intersection point and corner detection method (Dinham et al. 2014)	13
2.3	Butt welding joint identification and localisation process	15
	(Dinham et al., 2013)	
2.4	Curved seam identification in method (Dinham et al., 2013)	16
2.5	Saw-tooth seam identification in method (Dinham et al., 2013)	16
2.6	Butt welding initial grayscale images of the weld joints (Kong et al., 2007)	18
2.7	Butt welding joints pre-processing (Kong et al., 2007)	19
2.8	Butt welding joints after thresholding (Kong et al., 2007)	19
2.9	Butt welding joint detection using the method presented in	21
	(Chen et al., 2007)	
2.10	Distance measurement between camera and object (reproduced	25
	from reference (Krishnan et al., 2010))	
2.11	Different types of weld defects represented in method (Wang et al., 2003)	28
	and Liao et al., 1998, 2003 and 2009)	
2.12	Block diagram of back-propagation neural network	33
	(Kumar et al., 2012, 2014)	
2.13	3-layer structure of NEFCLASS	34

vii

C Universiti Teknikal Malaysia Melaka

2.14	An example between existing method in (a) (Dinham et al., 2013) and	36
	(b) (Kong et al., 2007)	
2.15	Existing approach for butt welding joint localisation (Dinham et al., 2013)	37
2.16	Taxonomy aspects used for the welding joint identification and	39
	localisation	
2.17	Existing method (Kumar et al., 2012 and 2014) for classification	42
	of welding imperfection in good weld class categories	
2.18	Existing method (Kumar et al., 2012 and 2014) for classification	42
	of welding imperfection in excess weld class categories	
2.19	Existing method (Kumar et al., 2012 and 2014) for classification	43
	of welding imperfection in insufficient weld class categories	
2.20	Existing method (Kumar et al., 2012 and 2014) for classification	43
	of welding imperfection in no weld class categories	
2.21	Taxonomy aspects used for the quality of imperfection inspection	45
	in welding environment	
3.1	Flow chart for identification the butt welding joint process	48
3.2	Butt welding joint with region of interest (ROI)	49
3.3	Results of the image 7 x 7 sizes (a) linear smoothing filter (b) median	50
	filter	
3.4	Background subtraction segmentation results	51
3.5	Local thresholding segmentation results	52
3.6	Closing operation (a) structuring element B "rolling" on the outer	53
	boundary of set A (b) outer boundary line of the closing	
	(c) complete closing (shaded)	

viii

3.7	Morphological operation (a) input image (b) structuring element	54
	(c) erosion (d) dilation.	
3.8	Background subtraction approach for remove unwanted edge joint	56
	point results	
3.9	Local Thresholding approach for remove unwanted edge joint point	57
	results	
3.10	Butt welding edge joint detection process (a) selected region (b) skeleton	58
3.11	Procedure to find starting, middle and ending point in straight line	60
	welding joint	
3.12	Procedure to define the starting, auxiliary and ending point in tooth saw	61
	welding joint	
3.13	Diagram of intersect point between two lines	62
3.14	Auxiliary point in tooth saw weld joint represent by "X"	62
3.15	Procedure to define the starting, middle and ending point in curved	63
	welding joint	
3.16	KUKA KR 150 dimensions (drawing) (KUKA., 2015)	65
3.17	Fronius welding system components	66
3.18	Types of KUKA welding robot motions (a) point to point (PTP),	68
	(b) linear (LIN) and (c) circular (CIR)	
3.19	Three reference positions selection	70
3.20	Position of CCD camera and KUKA welding robot set up	73
3.21	Step for butt welding joint classification of imperfection process	76
3.22	Generate features process	77
3.23	Case Studies 2 - Gray Absolute Histogram (Good Weld)	85
3.24	Case Studies 2 - Gray Absolute Histogram (Excess Weld)	85
	•	

ix

3.25	Case Studies 2 - Gray Absolute Histogram (Insufficient Weld)	86
3.26	Case Studies 2 - Gray Absolute Histogram (No Weld)	86
4.1	Workpiece of butt joint shape (a) case study 1 – straight line	94
	(b) case study 2 – tooth saw (c) case study 3 – curved	
4.2	The workpiece setup on the workbench	94
4.3	Butt welding joint drawing for case study 1	96
4.4	Region of interest (ROI) – case study 1	96
4.5	Local thresholding approaches results (a) mean filter	97
	(b) segment an image using local threshold	
4.6	Background subtraction approaches results (a) sobel filter	97
	(b) access channel (c) regions 1 (d) region 2 (e) region different	
4.7	Local Thresholding approaches for removing unwanted seeds	98
	(a) connected region (b) selected regions (c) union (d) dilated	
	(e) skeleton (f) joint with noise (g) joint after remove noise	
4.8	Background subtraction approach method for removing unwanted points	99
	(a) closing (b) erosion (c) dilation rectangle (d) fill up regions (joint	
	with noise) (e) selected regions (joint after remove noise) (f) skeleton	
	(g) regions contour	
4.9	Starting point close up - case study 1	100
4.10	Middle point close up - case study 1	100
4.11	Ending point close up - case study 1	101
4.12	Butt joint drawing for case study 2	102
4.13	Region of interest (ROI) – case study 2	103
4.14	Local thresholding approaches results (a) mean filter	103
	(b) segment an image using local threshold	

Х

4.15	Background subtraction approaches results (a) sobel filter	104
	(b) access channel (c) regions 1 (d) region 2 (e) region different	
4.16	Local Thresholding approaches for remove unwanted seeds	105
	(a) connected region (b) selected regions (c) union (d) dilated	
	(e) skeleton (f) joint with noise (g) joint after remove noise	
4.17	Background subtraction approach method for removing unwanted points	106
	(a) closing (b) erosion (c) dilation rectangle (d) fill up regions	
	(joint with noise) (e) selected regions (joint after remove noise)	
	(f) skeleton (g) regions contour	
4.18	Starting point close up - case study 2	107
4.19	First saw tooth peak (auxiliary 1) point close up - case study 2	107
4.20	Second saw tooth peak (auxiliary 2) point close up - case study 2	108
4.21	Ending point close up - case study 2	108
4.22	Butt joint drawing for case study 3	109
4.23	Region of interest (ROI) -case study 3	109
4.24	Local thresholding approaches results (a) mean filter	110
	(b) segment an image using local threshold	
4.25	Background subtraction approaches results (a) sobel filter	111
	(b) access channel (c) regions 1 (d) region 2 (e) region different	
4.26	Local Thresholding approaches for removing unwanted seeds	112
	(a) connected region (b) selected regions (c) union (d) dilated	
	(e) skeleton (f) joint with noise (g) joint after remove noise	
4.27	Background subtraction approach method for removing unwanted points	113
	(a) closing (b) erosion (c) dilation rectangle (d) fill up regions	
	(joint with noise) (e) selected regions (joint after remove noise)	
	V1	

(f) skeleton (g) regions contour

	(1) Sketcion (g) regions contour	
4.28	Starting point close up - case study 3	114
4.29	Middle point close up - case study 3	114
4.30	Ending point close up - case study 3	115
4.31	Butt joint segmentation results - case study 1 (a) Background Subtraction -	116
	Proposed 1 (b) Local Thresholding – Proposed 2 (c) M.K. method - joint not	
	segmented	
4.32	Butt joint segmentation results - case study 2 (a) Background Subtraction -	116
	Proposed 1 (b) Local Thresholding – Proposed 2 (c) M.K. method - joint not	
	segmented	
4.33	Butt joint segmentation results - case study 3 (a) Background Subtraction -	117
	Proposed 1 (b) Local Thresholding – Proposed 2 (c) M.K. method - joint not	
	segmented	
4.34	Butt joint identification - case study 1 (a) Background Subtraction -	118
	Proposed 1 (b) Local Thresholding – Proposed 2 (c) M.D. method - joint not	
	detected	
4.35	Butt joint identification - case study 2 (a) Background Subtraction -	118
	Proposed 1 (b) Local Thresholding – Proposed 2 (c) M.D. method - joint not	
	detected	
4.36	Butt joint identification - case study 1 (a) Background Subtraction -	119
	Proposed 1 (b) Local Thresholding – Proposed 2 (c) M.D. method - joint not	
	detected	
4.37	Localisation point test markers (a) case study 1 (b) case study 2	120
	(c) case study 3	
4.38	Localisation point proposed approach – case study 1	121

	xiii	
4.50	Comparison of classification of imperfections rate results for	155
1, 17	automatic (KUKA robot) welding	107
4.49	Comparison of classification of imperfections rate results for	154
1.10	manual welding	1 7 /
4.48	Proposed approach classification of imperfections rate results for	147
,	automatic welding	
4.47	Proposed approach classification of imperfections rate results for	146
4.46	Quality level of imperfection for butt welding joint system setup	139
	(b) excess welds, (c) insufficient welds (d) no welds	
	manual welding in tooth saw joint shapes (a) good welds,	
4.45	Example for class category of the imperfection joints for	138
	(a) good welds, (b) excess welds, (c) insufficient welds (d) no welds	
	automatic (KUKA robot) welding in curve joint shapes	
4.44	Example for class category of the imperfection joints for	137
	and the proposed approaches	
4.43	Comparison of butt joint for cases study 3 between the actual	125
	and the proposed approaches	
4.42	Comparison of butt joint for cases study 2 between the actual	125
	and the proposed approaches	
4.41	Comparison of butt joint for cases study 1 between the actual	124
	(a) Background Subtraction (b) Local Thresholding	
4.40	Localisation point proposed approach – case study 3	122
	(a) Background Subtraction (b) Local Thresholding	
4.39	Localisation point proposed approach – case study 2	121
	(a) Background Subtraction (b) Local Thresholding	

C Universiti Teknikal Malaysia Melaka

automatic (KUKA robot) welding

4.51	Case study 1 - Comparison of computation of imperfections time data	157
	testing classifiers for automatic (KUKA robot) welding	
4.52	Case study 2 - Comparison of computation of imperfections time data	158
	testing classifiers for automatic (KUKA robot) welding	
4.53	Case study 3 - Comparison of computation of imperfections time data	158
	testing classifiers for automatic (KUKA robot) welding	
4.54	Case study 1 - Comparison of computation of imperfections time data	159
	testing classifiers for manual welding	
4.55	Case study 2 - Comparison of computation of imperfections time data	159
	testing classifiers for manual welding	
4.56	Case study 3 - Comparison of computation of imperfections time data	160
	testing classifiers for manual welding	

LIST OF TABLES

PAGE

2.1	Welding Joints Description	11
3.1	Description of the parameters setting value	66
3.2	Description on KUKA welding robot motion movement	69
3.3	Camera and robot point data recorded	73
3.4	Gray Level Co-occurrence Matrix (GLCM) features characteristics	79
3.5	Sample result of co-occurrence matrix features for straight welding	80
	joint shape (automatic welding)	
3.6	Sample result of co-occurrence matrix features for tooth saw welding	80
	joint shape (automatic welding)	
3.7	Sample result of co-occurrence matrix features for curve welding	81
	joint shape (automatic welding)	
3.8	Sample result of co-occurrence matrix features for straight welding	81
	joint shape (manual welding)	
3.9	Sample result of co-occurrence matrix features for tooth saw welding	82
	joint shape (manual welding)	
3.10	Sample result of co-occurrence matrix features for curve welding	82
	joint shape (manual welding)	
3.11	Description of classification operator	91

XV

4.1	Total butt joint point detection	123
4.2	Numbers of butt joint points simplification	124
4.3	Image matching error for case study 1	127
4.4	Image matching error for case study 2	127
4.5	Image matching error for case study 3	128
4.6	Image matching for case study 1 - origin camera coordinate (306,84)	132
4.7	Image matching for case study 2 - origin camera coordinate (307,86)	132
4.8	Image matching for case study 3 - origin camera coordinate (306,84)	133
4.9	Localisation error case study 1	134
4.10	Localisation error case study 2	134
4.11	Localisation error case study 3	135
4.12	Confusion matrix results of GMM classification (KUKA Robot Welding)	140
4.13	Confusion matrix results of GMM classification (Manual Welding)	141
4.14	Confusion matrix results of MLP classification (KUKA Robot Welding)	142
4.15	Confusion matrix results of MLP classification (Manual Welding)	142
4.16	Confusion matrix results of SVM classification (KUKA Robot Welding)	143
4.17	Confusion matrix results of SVM classification (Manual Welding)	144
4.18	Proposed approaches for computation of imperfections time data testing	149
	for GMM, MLP and SVM classifiers in case study 1	
4.19	Proposed approaches for computation of imperfections time data testing	149
	for GMM, MLP and SVM classifiers in case study 2	
4.20	Proposed approaches for computation of imperfections time data testing	150
	for GMM, MLP and SVM classifiers in case study 3	
4.21	Comparison confusion matrix results of GMM classification	152
4.22	Comparison confusion matrix results of MLP classification	152

xvi

4.23	Comparison confusion matrix results of SVM classification	153
4.24	Existing method (S.K) for computation of imperfection time data	156
	testing for GMM, MLP and SVM classifiers in case study 1	
4.25	Existing method (S.K) for computation of imperfection time data	156
	testing for GMM, MLP and SVM classifiers in case study 2	
4.26	Existing method (S.K) for computation of imperfection time data	157
	testing for GMM, MLP and SVM classifiers in case study 3	

xvii

LIST OF APPENDICES

APPI	ENDIX TITLE	PAGE
А	Co-Occurrence Matrix (Automatic Welding)	187
В	Co-Occurrence Matrix (Manual Welding)	193
С	Gray Absolute Histogram (Automatic Welding)	199
D	Gray Absolute Histogram (Manual Welding)	205
Е	Gray Absolute Histogram (Testing Data)	211
F	Computation of Imperfection Time	223
	(Automatic Welding – KUKA Robot)	
G	Computation of Imperfection Time (Manual Welding)	226

xviii

LIST OF ABBREVIATIONS

ACO	-	Ant colony optimization
ANFIS	-	Fuzzy inference system based adaptation
ANN	-	Artificial neural network
CCD	-	Charge coupled devices
CIR	-	Circular motion
CoD	-	Correction of defect
DEA	-	Differential evolutionary algorithm
DOGS	-	Degree of grey similarity
EM	-	Expectation maximization
GLCM	-	Gray level co-occurrence matrix
GMA	-	Gas metal arc
GMM	-	Gaussian mixture model
GTAW	-	Gas tungsten arc
KRL	-	KUKA robotic language
LED	-	Light emitting diode
LIN	-	Linear motion
MIG	-	Metal inert gas
MLP	-	Multi-layer perceptrons
NCC	-	Normalized cross correlation
NDT	-	Non-destructive testing xix

C Universiti Teknikal Malaysia Melaka