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Abstract—During a tennis solo training, players usually train 

using an automatic ball launcher machine. After some time, they 

are required to collect all the balls scattered all around the court 

themselves to refill the launcher machine. This is a physically 

challenging procedure, which is generally loathed by keen tennis 

players and may cause unwelcome injuries. This study aims to 

design of an autonomous tennis ball retriever that will discard 

all the unnecessary energy and time wasting in traditional ball 

picking up method. This robot will sweep all the balls using a 

suitable path planning technique. After this, a few path planning 

methods such as Coverage Path Planning (CPP) U-Turn, CPP 

ISS, and Probabilistic Roadmap Method (PRM) were integrated 

into the tennis ball retriever robot for comparison. After 

comparison between all the experiment done, CPP U-Turn is 

proven the best path planning method among the three tested 

algorithms to be integrated into a tennis ball retriever robot. 

 

Index Terms—Coverage Path Planning; Mobile Robot; 

Probabilistic Roadmap Method; Tennis. 

I. INTRODUCTION 

In this era, the whole world concentrates on modernisation, 

automation, industrialisation and development. Some 

industries are currently trying to replace humans with robots 

to improve efficiency, accuracy and time. Robots in 

industries can be separated into arm robot (arm manipulators) 

and a mobile robot. Arm robots usually used to handle 

products while mobile robots are used to carry, move, collect, 

etc. the products. Now, there are the even humanoid type of 

mobile robot developed that can do various type of task [1]. 

Arm robots’ movements are limited to their joint, kinematics 

and dynamics while mobile robots are limited to its geometry 

and Degree of Freedom (DOF). 

This research focuses on the design and development of 

path planning techniques for a tennis ball retriever robot, 

which is to help tennis players collect the balls during their 

training. During a tennis solo training, players usually train 

using an automatic ball launcher machine. After the training 

section finished, they are required to collect all the balls 

which are scattered all around the court themselves in order 

to refill the launcher machine. This is a physically 

challenging procedure, which is generally loathed by keen 

tennis players and may cause unwelcome fatigue. This 

procedure, not just energy consumption, but also takes an 

extended period of time.  

To help them, an autonomous tennis ball retriever robot is 

developed to discard all the unnecessary energy and time 

wasting in traditional ball picking up method. This robot can 

sweep all the balls by integrating a suitable path planning 

technique and uses appropriate sensors to detect and avoid 

obstacles. 

II. LITERATURE REVIEW 

When talking about a mobile robot, the significant 

problems that will pop up are path planning and motion 

control. According to Strandberg [2], robot path planning is 

about finding a collision-free motion from one position to 

another. In planning a path for a mobile robot, a few factors 

should be considered which are the surrounding of the robot 

workspace, the path planning algorithm, and types of path 

planning techniques. 

 

  Robot Locomotion  

A robot can be divided into two types: stationary and 

mobile robots. Stationary robots are a robot that cannot move 

or in other words, has fixed position. Then, what is a mobile 

robot? Lima and Ribeiro [3] described mobile robots as a 

device with considerable flexibility within its surroundings. 

Mobile robots also must have a system with the following 

functional characteristics; mobility, which means it has total 

freedom of movement relative to the surroundings, need very 

little of human monitoring to make it less human-dependent 

and perception ability which is sensing and reacting in any 

situation. To summarise, the primary keys of the mobile robot 

is it is capable of moving around its environment and also 

capable of being autonomous in navigating itself. These two 

characteristics are the very opposite of industrial robots 

which are fixed to its station and depend on its hard-coded 

codes to perform its repetitious tasks. 

As the demand for mobile robot increasing in this era, many 

types of the mobile robot are design and developed to be used 

in various fields. However, the most common and widely 

developed by researchers are legged robots and wheeled 

robots. 

Wheeled robots, or also well known as Wheeled Mobile 

Robot (WMR) is mobile robots that move around an 

environment using powered wheels (usually with motors) to 

drive themselves. WMR is widely and most commonly used 

by researchers and engineers as they are easy to design, 

execute and efficient for robots that require speed. They also 

have more excellent stability in static and dynamic motion 

than legged robots as their centre of gravity does not change 

when the move or standing still [4].  

WMR does not require complicated and challenging 

algorithms and designs. However, the most wheeled mobile 

robot is not reliable in rough terrain as they became uneven 



Journal of Telecommunication, Electronic and Computer Engineering 

60                        e-ISSN: 2289-8131   Vol. 10 No. 1-15  

and unstable and also not useful in the very smooth surface as 

they tend to skid and slip. WMR may have a various number 

of wheels, but for static and dynamic balance, three wheels 

are considered adequate. 

The robot’s design and requirements should be focused on 

to choose the best and effective wheel for the robot. Fixed 

wheels are decent for merely connecting wheels to a motor 

and steering. Spherical and orientable wheels are right at 

balancing a robot. Omni wheels are an excellent choice for 

both steering and driving, but they are costly with reduced 

efficiency. Slippage of wheels may occur when they are used 

for positional control making it unreliable.  

Four-wheeled robot. Most WMR is of this type. This 

configuration is most straightforward to design and build. The 

first drawback of this configuration compared to the three-

wheeled configuration is the extra cost of the fourth wheel 

and sometimes an extra motor to propel them, but their 

advantages surpass these drawbacks.  

This type of robot can be divided into three configurations; 

1) two powered, two free rotating wheels, 2) two-by-two 

powered wheels for tank-like movement, and 3) two-by-two 

powered wheels car-like steering. Most of the projects 

regarding tennis ball collector review in this thesis use this 

kind of configuration [5-8]. Figure 1 shows locomotion of 

two powered wheels with two free turning wheels.  

 

 

Figure 1: Two powered, two free-turning configurations 

 Path Planning Techniques 

Before going further into path planning techniques and its 

applications, researchers usually need to know what path 

planning is, why is path planning important in mobile robots 

and what are the key aspects in developing a path planning. 

According to Strandberg [2], robot path planning is about 

finding a collision-free motion from one position to another. 

A path planning is considered not sufficient when the robot 

bump with obstacles, stray away from the path or takes too 

much time to reach the destination. In planning a path for a 

mobile robot, a few factors should be considered which are 

the surrounding of the robot workspace, the path planning 

algorithm, and types of path planning techniques. 

The surrounding or the environment of the workspace can 

be divided into two; static and dynamic. Static is when all 

object or obstacle in the workspace is not moving while 

dynamic is when the obstacles can move for example another 

mobile robot sharing the same workspace or human moving 

around. Path planning algorithm also can be separated into 

two; global and local. Global path planning algorithm is when 

all the obstacles in the workspace are static and known to the 

robot before it even starts. A slight change in obstacle 

location may disrupt the robot motion. On the contrary, a 

robot with local path planning algorithm does not know the 

workspace obstacles has to create its own path while moving. 

With the help of sensors, the robot will try to do its task while 

avoiding obstacles [9]. 

According to Cai [10], the intelligent robot path planning 

can be divided into two aspects; the one is point-to-point 

optimisation path planning, the other is complete coverage 

optimisation path planning. Currently, many projects and 

researchers are about point-to-point optimisation path 

planning, on the other hand, complete coverage optimisation 

path planning is not that popular among researchers. Enric 

and Marc [11] defined Coverage Path Planning (CPP) as a 

task finding a path that goes over all points of a region or any 

specific space while avoiding obstacles. CPP plays a 

significant role in robots like collector robot, vacuum 

cleaning robot, lawn mowing robot and so on. 

 

1) Coverage Path Planning (CPP) 

According to Enric and Marc[11], Coverage Path Planning 

(CPP) is the function of finding a path that goes through all 

points of a region or specific spaces while avoiding obstacles. 

This task is vital in many robotic applications, such as 

vacuum cleaning robots, autonomous mobile robot 

underwater, a paint sprayer robot and many more. The 

primary concern in this technique is usually the time taken for 

the algorithm to cover all the free space in the configuration 

space. Apparently, it may take a long time to generate a path 

that covers all the possible points in the configuration space. 

Moreover, if the configuration space has moving obstacles, 

this problem becomes much more complicated and 

computationally demanding if CPP is used. 

In the earliest research related to CPP by researchers in 

[12], they listed down the requirements and criteria a robot 

must meet to perform coverage operation. Below is the list of 

requirement and criteria mentioned in Journal of Robotic 

Systems [12]: 

i. A robot must navigate itself through all the points in 

the target area completely 

ii. The robot needs to move in the region without 

overlapping its own taken paths  

iii. Constant and orderly operation without any repetition 

of paths is requisite 

iv. The robot needs to avoid all obstacles 

v. A simple motion such as straight lines and circles 

should be used to simplify the control 

vi. An “ideal" path is preferred under existing conditions 

 

Choset, in his survey [13], has classified CPP into two 

algorithms; off-line algorithm and on-line algorithm. Online 

algorithms rely only on immobile information, and the 

environment is presumed to be known beforehand. However, 

sometimes, in some cases, assuming full prior knowledge of 

the environment might be unlikely. Contrariwise, on-line 

algorithms will not presume full knowledge of the 

surroundings and depend on real-time sensor measurements 

to navigate through all the target space. These algorithms are 

now also called as sensor-based coverage algorithms. Figure 

2 shows a typical zigzag or U-turn path design by Enric and 

Marc [11]. Shaded area indicates the covered path (darker) 

and the uncovered area (lighter) when the robot completed 

trailing the zigzag path. 
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Figure 2: Typical zigzag path. Covered path indicated darker colour than 

the uncovered region [11] 

 

2) Probabilistic Roadmap Method (PRM) 

For the past two decades, many researchers tried to come 

up with new techniques of path planning, but only a few of 

them are valid especially for a robot with many DOF. Among 

all the methods available, probabilistic roadmap method, also 

known as PRM really stands out and used by many 

researchers to computes collision-free paths for a mobile 

robot in a static environment. PRM is particularly related to a 

robot with many degrees of freedom. Some of the variants of 

PRM, such as lazy PRMs and visibility based PRMs, are 

examined by Charpin in [14]. Geraerts and Overmars [15] 

showed some studies and compared a few methods in PRM 

but it is difficult to justify the results as the testing spaces and 

hardware used is different. 

According to Kavralu, Svestka and Latombe [16], PRM 

can be separated into two kinds of phases; a learning phase 

and a query phase. In the learning phase, a graph with nodes 

that are collision-free configurations and the edges collision-

free paths, called a roadmap, is built by repeating two steps. 

The first step is to pick a random configuration and then test 

it for collision and repeat the step until it is collision-free. The 

second step is to connect the previous configuration to the 

roadmap using a fast-local planner. In Figure 3 shows an 

example of a roadmap generated using PRM algorithm in a 

two-dimensional Euclidian space while Figure 4 is an 

example of the shortest path solved using the roadmap in 

Figure 3. 

 

 
 
Figure 3: An example of a roadmap for a point robot in a two-dimensional 

Euclidean space from [17] 

 
 

Figure 4: An example of how to solve the query in Figure 3 

III. METHODOLOGY 

 

The primary purpose of this research is to design and 

develop path planning techniques for a tennis ball retriever 

robot. The robot will help tennis player by discarding all the 

unnecessary energy and time wasting in traditional ball 

picking up method. The robot will sweep all the balls 

scattered all over the court during solo training. While 

sweeping the balls, the robot will avoid any obstacle and try 

to stay and complete its path. 

This section focuses on the design of the experiment and 

how it is conducted. The experiment was conducted on an 

actual tennis court to test the robot more in its physical way. 

The robot movement is varied by few factors such as the robot 

locomotion, robot geometry, and type of wheels and so on. 

These factors are considered based on the literature review. 

The robot consists of a few sensors such as sonar sensors, and 

proximity sensor to detect obstacles. A few path planning 

methods were implemented into the robot and data was 

collected from the experiments. 

 

 Tennis Ball Retriever Robot 

Figure 5 shows the isometric view of the developed robot. 

The body of the robot is made of stainless steel making the 

robot durable enough to withstand being hit by a tennis ball. 

 

 
 

Figure 5: Isometric view of the actual tennis ball retriever robot 

 

After the robot is built, the specifications of the robot such 

as turning radius, velocity and total weight were defined by 

using experiments and calculation. The specifications of the 

tennis ball retriever robot will be shown in this subtopic. 
 

Table 1 

Robot specifications 

 

Specifications Value 

Weight 5.9kg 

Velocity 0.28𝑚𝑠−1 

Turning radius 28.77cm 

Dimensions 0.46m x 0.36m x 0.18m 
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 Mechanism of the System 

The developed tennis ball retriever robot is programmed by 

following the pseudo code below: 

 

Step 1:  Get a map from the knowledge base 

Step 2:   Convert the map to 2D grid map 

Step 3:   Generate goal point from the target areas 

Step 4:   Use path planning algorithm to find a path 

Step 5:  Robot moves along the path while marking the 

covered path 

Step 6:  If the ball storage is full, go to unload area and repeat 

step 3 

Step 7:  If the robot reaches the destination, go to step 8. If 

not repeat step 5. 

Step 8:  Calculate a number of the target area, if more than 

0, repeat step 3. If target area equal to 0, go to the 

base point, terminate the program. 

 

1) Changing the court into court map 

The grid method is a method that is changing the entire map 

into a grid. This grid allowed the robot to compute and plan 

its path in 2D, making the computational much simpler. 

These grids will be marked to represent the target area which 

is the uncovered area by the robot, the obstacle which is the 

grid that the robot does not need to cover, and the covered 

area which is the area that already passed by the robot. This 

robot need cover all target area while avoiding the obstacles. 

To ensure smooth coverage, the grid of the map must 

consider the robot dimension. If the grid dimension is bigger 

than the robot dimension, some region of the map will be left 

out. However, if the grid dimension is too small compared to 

the robot dimension, it will cost more time and more energy 

to the process. 

In the robot design section, the proposed robot dimension 

is 46cm (or 0.46 metres) in length and also 36cm (or 0.36 

metres) wide. With this two information, the number of the 

grid in the grid map can be measured. The actual full 

dimensions of a standard tennis court are approximately 37 

metres in length and 18 metres wide. However, in this project, 

the robot only has to cover one-half of the court making it 

cover 18m x 18m of the area. 

 

Number of grid in length= 18m /0.46m =39.13~= 40 grids 

Number of grid in width= 18m/0.36m = 50 grids 

Total grid = 40grids x 50 grids=2000grids 

 

Based on the calculation above, the robot needs to cover 

2000 grids, assuming that no obstacles are laying on the court. 

 

2) Changing the court map into grid map 

To represent the target area or the uncovered area, 0 is used. 

The already covered area is marked with 1, and the obstacle 

area will be marked as 2. As the robot moving through the 

target area, the 0 value in the grid will change into 1 to ensure 

no path overlapping or repetition. 

The grid in the environment is defined as g(x, y), where 

x(x=1,2,…,n) is the line number of g's grid, y(y=1,2,…,n) is 

the column number of g's grid. The sampling information of 

this environment is a series of continuous grid set 

G(g1,g2,…,gi), i(i=1,2,…,n) is the serial number of the grid 

sampling. 

The system uses the grid method to model the actual court 

into 40 x 50 environment map in this plane and extract the 

environment into a 2D grid. 

 Generating Path 

After a goal point is picked. The robot must find its way to 

the point while avoiding the obstacles around the map. Few 

path planning algorithms such as CPP U-Turn algorithm, CPP 

ISS and A* algorithm is put into tests. These algorithms will 

be compared and analysed to record their reliability in path 

planning, especially for a tennis ball collector robot. These 

algorithms will be compared based on their execution time to 

generate a path, time is taken to cover all target area entirely, 

and the accumulated path length after all target areas are 

covered. 

 

1) Pathfinding via Coverage Path Planning CPP (U-

Turn Algorithm) 

Based on literature review, CPP comes with many types of 

approaches, for example, U-turn shape algorithm and spiral-

shaped algorithm.  U-turn algorithm is an algorithm proposed 

by Zengyu Cai[10]. This algorithm is used to complete all-

region on a map while avoiding an obstacle in a U-turn 

manner. To use this algorithm, many factors should be 

considered such as robot maximum angular turn, robot 

geometry and robot degree of freedom.  

 

 
 

Figure 6: U-turn algorithm with an obstacle [10] 

 

Figure 6 shows what happen if an obstacle is added to the 

grid map. The thin arrow line shows the robot path while the 

bold arrow line represents a path that was passed by the robot 

twice. This path is called repetition path. In this algorithm, 

the robot will try to minimise the repetition rate as low as 

possible to cut waste in energy and time. 

 

Steps in CPP U-turn algorithm: 

Step 1:  Get target area 

Step 2:  Move in a straight path 

Step 3:  If the front of the robot is the obstacle grid, check 

the side grid of the robot, if the left side is an 

obstacle or already covered grid, turn 180 degrees 

to the right and vice versa 

Step 4:  If the robot comes into a dead situation where all 

side of the robot is an obstacle or covered grid, 

trace back the path until found an opening. Repeat 

step 2 until reached goal target area 

 

2) Pathfinding via Coverage Path Planning CPP (ISS 

Algorithm) 

Based on the literature review, Zengyu Chai[10] also 

introduce coverage path planning in shape resembling a spiral 

call Internal Spiral Shape (ISS). This algorithm will try to 

cover all target area while avoiding an obstacle spirally. Just 
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like its counterpart algorithm, U-turn, it also requires factors 

such as robot maximum angular turn, robot geometry and 

robot degree of freedom to be considered.  

The basic idea of the internal spiral algorithm is robot 

navigates this map area in a specific direction. When the front 

of the grid is not covered, the robot moves forward. If there 

are obstacles or the front of grid covered already, and then the 

robot turns right 90 degrees, as shown in Figure 7. 

 

 
 

Figure 7: ISS algorithm with an obstacle [10] 

 

Steps in CPP ISS algorithm: 

Step 1:  Get target area 

Step 2:  Move in a straight path 

Step 3:  If the front grid has an obstacle or covered grid, 

turn 90 degrees to the right 

Step 4:  If the robot comes into a dead situation where all 

side of the robot is an obstacle or covered grid, 

trace back the path until found an opening. Repeat 

step 2 until reached goal target area 

 

3) Pathfinding via Probabilistic Roadmap Method 

There are a few factors that may affect the path generated 

using PRM. The most crucial part is the deciding the number 

of nodes that will be used to get a suitable path. A higher 

number of nodes will result in a better path, but it will also 

increase the computational time. In the simulation, the 

number of nodes tested is 50 and 100. The first simulation 

with 50 nodes did not come with a path while 100 nodes do. 

Thus, 100 nodes are considered suitable for the project. 

 

Steps in PRM algorithm: 

Step 1:  Get target area 

Step 2:  Get number of nodes 

Step 3: Algorithm then attempts to connect all pairs of 

randomly selected nodes, if two nodes can be 

connected with a straight line, it will be added as 

an edge. 

Step 4: After any all possible pairs are connected, the 

shortest combination of the path will be generated  

Step 5:  Robot moves according to the path. Repeat step 1 

until all area is covered. 

 

 Experiment Design 

In this title, there will be three path planning techniques that 

will be implemented into the robot; CPP U-turn, CPP ISS and 

PRM. To test the effectiveness of these algorithms, the robot 

must cover all target area on the court in two conditions; 

without obstacle, known as Condition A and with obstacle, 

known as Condition B. The time taken for the robot to cover 

all target area and the algorithm to generate the path is 

recorded for comparison data. 

Figure 8 below shows how the experiment is conducted the 

tennis court. The green box represents the base or the robot 

start point. The grid representation of the base is g(0,0). The 

red dotted box with a dimension of 18m x 18m represents the 

area of experiment meaning that the robot has to cover all the 

grid within the red line. For Condition B, a box with 0.5m x 

0.5m x 0.2cm is put right at the baseline to act as the obstacle. 

Yellow circle with their grid representation represents balls. 

 

 
 

Figure 8: Layout of the experimental setup for Condition A 

IV. RESULTS AND DISCUSSION 

 Experimental Results 

The experiment was completed on UniMAP’s Sports 

Complex’s tennis court. Even though the recommended 

dimension of half a tennis court by International Tennis 

Federation is 18m x 18m, the court that was used as 

experiment location has 14m x 15m dimensions. To generate 

the grid map, some calculation has been made: 

 

Number of grid in length= 14m /0.46m =30.43~= 31 grids 

Number of grid in width= 15m/0.36m =41.667~=42 grids 

Total grid = 31grids x 42 grids=1302 grids 

 

Two set of experiment was conducted; court without 

obstacle (Condition A) and the court with an obstacle 

(Condition B). For each of the experiment set, three 

algorithms were tested for data collection. Also, each of the 

algorithms was tested three times to gained better result to get 

better analysis and comparison.  

Table 2 shows the result of CPP U-Turn algorithm in 

Condition A while the following Table 3 shows the result of 

CPP U-Turn algorithm in Condition B. 

 
Table 2 

The Result of Algorithm CPP U-Turn in Condition A 

 

Trial 
Time taken to finish 

algorithm (min) 

Balls 

collected (/5) 

Area 

covered (%) 

1 24.10 5 ~94.00 

2 24.30 5 ~97.00 

3 24.20 5 ~95.00 

Average 24.20 5 95.30 

 
Table 3 

The Result of Algorithm CPP U-Turn in Condition B 

 

Trial 
Time taken to finish 

algorithm (min) 
Balls collected 

(/5) 
Area covered 

(%) 

1 24.50 5 ~94.00 

2 24.45 5 ~95.00 
3 24.50 5 ~94.00 

Average 24.88 5 94.30 

 

NET 
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Table 4 shows the result of CPP U-Turn algorithm in 

Condition A while the following Table 5 shows the result of 

CPP U-Turn algorithm in Condition B. 

 
Table 4 

The Result of Algorithm CPP ISS in Condition A 
 

Trial 
Time taken to finish 

algorithm (min) 

Balls collected 

(/5) 

Area covered 

(%) 

1 27.20 5 ~94.00 
2 27.35 5 ~95.00 

3 27.10 5 ~92.00 

Average 27.22 5 93.67 

 
Table 5 

The Result of Algorithm CPP ISS in Condition B 

 

Trial 
Time taken to finish 

algorithm (min) 

Balls collected 

(/5) 

Area covered 

(%) 

1 28.05 5 ~92.00 

2 27.80 5 ~91.00 
3 28.10 5 ~92.00 

Average 27.98 5 91.67 

 

Table 6 shows the result of PRM algorithm in Condition A 

while the following Table 7 shows the result of PRM 

algorithm in Condition B. 

 
Table 6 

The Result of Algorithm PRM in Condition A 
 

Trial 
Time taken to finish 

algorithm (min) 

Balls collected 

(/5) 

Area covered 

(%) 

1 33.20 5 ~94.00 
2 36.25 5 ~95.00 

3 31.45 5 ~91.00 

Average 33.63 5 93.30 

 
Table 7 

The Result of Algorithm PRM in Condition B 

 

Trial 
Time taken to finish 

algorithm (min) 

Balls collected 

(/5) 

Area covered 

(%) 

1 31.55 5 ~91.00 

2 35.25 5 ~94.00 
3 33.30 5 ~93.00 

Average 33.37 5 92.67 

 

From all the results above, the data collected can be shown 

in graph form to make the analysis much more explicit and 

accurate. Figure 10 shows a graph of time taken for the robot 

to cover all targeted area in Condition A while Figure 11 

shows a graph of time taken for the robot to cover all targeted 

area in Condition B. 

 

 
 

Figure 10: Graph of time taken for the robot to cover all targeted area in 
Condition A 

 

 
 

Figure 11: Graph of time taken for the robot to cover all targeted area in 
Condition B 

 

 Data Analysis 

Based on Figure 10, it is also noticeable that result of using 

PRM was inconsistent throughout the three experiments. The 

difference between the slowest recorded time (31.55 minutes) 

and the fastest recorded time (35.25 minutes) is 3 minutes and 

42 seconds. This is because the algorithm used a different 

path in each of the experiment. In PRM, after the nodes were 

put on the map, the algorithm will try to find the shortest path 

by connecting two nodes in a straight line. The algorithm 

making every path randomises this process is different in the 

experiments. 

Based on the data collection, it is noticeable that the time 

taken for the robot to cover all target area for each experiment 

using CPP U-Turn and CPP ISS is not much different. Based 

on data in Figure 10, the fastest time recorded using CPP U-

Turn was 24.45 minutes, and the slowest time taken was 24.5 

minutes. The difference between the fastest time and the 

lowest time is just 3 seconds. This is because the robot used 

the same path for every experiment using CPP U-Turn. 

However, every experiment using CPP ISS also came out 

using the same path but the difference of time taken recorded 

between the highest and the lowest is 18 seconds. This is 

probably because the initial position of the robot before start 

move around the court is slightly different. By experimenting 

three times, the average of time can be calculated to minimise 

any error during the experiments. 

 

 
 

Figure 12: Graph of the average time taken in Condition A vs Condition B 

 

Using average from data collection as shown in Figure 12, 

the result of three algorithms used in this experiment can be 

compared. When there is an obstacle on the map, the path 

generated by the algorithm will be more complicated than the 

path from a clear map. The complicated path requires more 

time to generate and may cause the robot to cover an area that 

has been a cover to get to the uncovered area as shown in 

Figure 7.  
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From Figure 12, for Condition A, the graph shows that CPP 

U-Turn average time taken to cover all target was 24.2 

minutes, which is the fastest time among all the algorithms 

used in this experiment. CPP ISS took 27.22 minutes, 3 

minutes and 1.2 seconds slower than CPP U-Turn. PRM 

recorded the slowest time to cover Condition A with 33.63 

minutes, 9 minutes and 25.8 seconds slower that CPP U-Turn. 

For Condition B, CPP U-Turn also recorded the best time, 

which was 24.48 minutes. CPP ISS algorithm recorded the 

second best average time at 27.98 minutes, which was 3 

minutes 30 seconds slower than CPP U-Turn. By using PRM 

in Condition B, the average time taken was 33.37 minutes, 

which was 8 minutes and 53.8 seconds slower than CPP U-

Turn. 

 

 
 

Figure 13: Graph of average percentage area covered in Condition A vs 

Condition B 

 

From Figure 13, we can see the different percentage of area 

covered in both conditions by using three different 

algorithms. For Condition A, CPP U-Turn covered the most 

area with 95.3% and PRM covered the least percentage of 

area with 93.3%. For Condition B, CPP-U-Turn also recorded 

the highest result with 94.3% while CPP ISS recorded the 

least with 91.67%. 

By giving the best result in both Condition A and Condition 

B, it can be concluded that CPP U-Turn is the most suitable 

algorithm to be implemented on the tennis ball collector 

robot. 

V. CONCLUSION 

The designed and developed path planning algorithms 

using CPP U-Turn, CPP ISS and PRM were integrated into 

the robot successfully. All three algorithms were validated in 

two different conditions to identify which algorithm is best 

suited for a tennis ball retriever robot at an actual tennis court. 

From the results, it concludes that CPP U-Turn is the best 

algorithm to be used on the tennis court. For the continuation 

of the project, the path planning of the robot can be improved 

by using more complex localisation methods with the 

location information from GPS or WIFI. The localisation 

method is believed to be able to allow the robot to know its 

surrounding much better and more efficient in term of time. 
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