

 e-ISSN: 2289-8131 Vol. 10 No. 1-15 59

Design and Development of Path Planning

Techniques for a Tennis Ball Retriever Robot

M.F.Ali1, C.K.Lam1, K.V.Ch’ng1, K.Sundaraj2 and W.-H.Tan1
1School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), Kampus Pauh Putra, 02600 Pauh, Perlis.

Malaysia.
2Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100

Durian Tunggal, Melaka, Malaysia.

lckiang@unimap.edu.my

Abstract—During a tennis solo training, players usually train

using an automatic ball launcher machine. After some time, they

are required to collect all the balls scattered all around the court

themselves to refill the launcher machine. This is a physically

challenging procedure, which is generally loathed by keen tennis

players and may cause unwelcome injuries. This study aims to

design of an autonomous tennis ball retriever that will discard

all the unnecessary energy and time wasting in traditional ball

picking up method. This robot will sweep all the balls using a

suitable path planning technique. After this, a few path planning

methods such as Coverage Path Planning (CPP) U-Turn, CPP

ISS, and Probabilistic Roadmap Method (PRM) were integrated

into the tennis ball retriever robot for comparison. After

comparison between all the experiment done, CPP U-Turn is

proven the best path planning method among the three tested

algorithms to be integrated into a tennis ball retriever robot.

Index Terms—Coverage Path Planning; Mobile Robot;

Probabilistic Roadmap Method; Tennis.

I. INTRODUCTION

In this era, the whole world concentrates on modernisation,

automation, industrialisation and development. Some

industries are currently trying to replace humans with robots

to improve efficiency, accuracy and time. Robots in

industries can be separated into arm robot (arm manipulators)

and a mobile robot. Arm robots usually used to handle

products while mobile robots are used to carry, move, collect,

etc. the products. Now, there are the even humanoid type of

mobile robot developed that can do various type of task [1].

Arm robots’ movements are limited to their joint, kinematics

and dynamics while mobile robots are limited to its geometry

and Degree of Freedom (DOF).

This research focuses on the design and development of

path planning techniques for a tennis ball retriever robot,

which is to help tennis players collect the balls during their

training. During a tennis solo training, players usually train

using an automatic ball launcher machine. After the training

section finished, they are required to collect all the balls

which are scattered all around the court themselves in order

to refill the launcher machine. This is a physically

challenging procedure, which is generally loathed by keen

tennis players and may cause unwelcome fatigue. This

procedure, not just energy consumption, but also takes an

extended period of time.

To help them, an autonomous tennis ball retriever robot is

developed to discard all the unnecessary energy and time

wasting in traditional ball picking up method. This robot can

sweep all the balls by integrating a suitable path planning

technique and uses appropriate sensors to detect and avoid

obstacles.

II. LITERATURE REVIEW

When talking about a mobile robot, the significant

problems that will pop up are path planning and motion

control. According to Strandberg [2], robot path planning is

about finding a collision-free motion from one position to

another. In planning a path for a mobile robot, a few factors

should be considered which are the surrounding of the robot

workspace, the path planning algorithm, and types of path

planning techniques.

 Robot Locomotion

A robot can be divided into two types: stationary and

mobile robots. Stationary robots are a robot that cannot move

or in other words, has fixed position. Then, what is a mobile

robot? Lima and Ribeiro [3] described mobile robots as a

device with considerable flexibility within its surroundings.

Mobile robots also must have a system with the following

functional characteristics; mobility, which means it has total

freedom of movement relative to the surroundings, need very

little of human monitoring to make it less human-dependent

and perception ability which is sensing and reacting in any

situation. To summarise, the primary keys of the mobile robot

is it is capable of moving around its environment and also

capable of being autonomous in navigating itself. These two

characteristics are the very opposite of industrial robots

which are fixed to its station and depend on its hard-coded

codes to perform its repetitious tasks.

As the demand for mobile robot increasing in this era, many

types of the mobile robot are design and developed to be used

in various fields. However, the most common and widely

developed by researchers are legged robots and wheeled

robots.

Wheeled robots, or also well known as Wheeled Mobile

Robot (WMR) is mobile robots that move around an

environment using powered wheels (usually with motors) to

drive themselves. WMR is widely and most commonly used

by researchers and engineers as they are easy to design,

execute and efficient for robots that require speed. They also

have more excellent stability in static and dynamic motion

than legged robots as their centre of gravity does not change

when the move or standing still [4].

WMR does not require complicated and challenging

algorithms and designs. However, the most wheeled mobile

robot is not reliable in rough terrain as they became uneven

Journal of Telecommunication, Electronic and Computer Engineering

60 e-ISSN: 2289-8131 Vol. 10 No. 1-15

and unstable and also not useful in the very smooth surface as

they tend to skid and slip. WMR may have a various number

of wheels, but for static and dynamic balance, three wheels

are considered adequate.

The robot’s design and requirements should be focused on

to choose the best and effective wheel for the robot. Fixed

wheels are decent for merely connecting wheels to a motor

and steering. Spherical and orientable wheels are right at

balancing a robot. Omni wheels are an excellent choice for

both steering and driving, but they are costly with reduced

efficiency. Slippage of wheels may occur when they are used

for positional control making it unreliable.

Four-wheeled robot. Most WMR is of this type. This

configuration is most straightforward to design and build. The

first drawback of this configuration compared to the three-

wheeled configuration is the extra cost of the fourth wheel

and sometimes an extra motor to propel them, but their

advantages surpass these drawbacks.

This type of robot can be divided into three configurations;

1) two powered, two free rotating wheels, 2) two-by-two

powered wheels for tank-like movement, and 3) two-by-two

powered wheels car-like steering. Most of the projects

regarding tennis ball collector review in this thesis use this

kind of configuration [5-8]. Figure 1 shows locomotion of

two powered wheels with two free turning wheels.

Figure 1: Two powered, two free-turning configurations

 Path Planning Techniques

Before going further into path planning techniques and its

applications, researchers usually need to know what path

planning is, why is path planning important in mobile robots

and what are the key aspects in developing a path planning.

According to Strandberg [2], robot path planning is about

finding a collision-free motion from one position to another.

A path planning is considered not sufficient when the robot

bump with obstacles, stray away from the path or takes too

much time to reach the destination. In planning a path for a

mobile robot, a few factors should be considered which are

the surrounding of the robot workspace, the path planning

algorithm, and types of path planning techniques.

The surrounding or the environment of the workspace can

be divided into two; static and dynamic. Static is when all

object or obstacle in the workspace is not moving while

dynamic is when the obstacles can move for example another

mobile robot sharing the same workspace or human moving

around. Path planning algorithm also can be separated into

two; global and local. Global path planning algorithm is when

all the obstacles in the workspace are static and known to the

robot before it even starts. A slight change in obstacle

location may disrupt the robot motion. On the contrary, a

robot with local path planning algorithm does not know the

workspace obstacles has to create its own path while moving.

With the help of sensors, the robot will try to do its task while

avoiding obstacles [9].

According to Cai [10], the intelligent robot path planning

can be divided into two aspects; the one is point-to-point

optimisation path planning, the other is complete coverage

optimisation path planning. Currently, many projects and

researchers are about point-to-point optimisation path

planning, on the other hand, complete coverage optimisation

path planning is not that popular among researchers. Enric

and Marc [11] defined Coverage Path Planning (CPP) as a

task finding a path that goes over all points of a region or any

specific space while avoiding obstacles. CPP plays a

significant role in robots like collector robot, vacuum

cleaning robot, lawn mowing robot and so on.

1) Coverage Path Planning (CPP)

According to Enric and Marc[11], Coverage Path Planning

(CPP) is the function of finding a path that goes through all

points of a region or specific spaces while avoiding obstacles.

This task is vital in many robotic applications, such as

vacuum cleaning robots, autonomous mobile robot

underwater, a paint sprayer robot and many more. The

primary concern in this technique is usually the time taken for

the algorithm to cover all the free space in the configuration

space. Apparently, it may take a long time to generate a path

that covers all the possible points in the configuration space.

Moreover, if the configuration space has moving obstacles,

this problem becomes much more complicated and

computationally demanding if CPP is used.

In the earliest research related to CPP by researchers in

[12], they listed down the requirements and criteria a robot

must meet to perform coverage operation. Below is the list of

requirement and criteria mentioned in Journal of Robotic

Systems [12]:

i. A robot must navigate itself through all the points in

the target area completely

ii. The robot needs to move in the region without

overlapping its own taken paths

iii. Constant and orderly operation without any repetition

of paths is requisite

iv. The robot needs to avoid all obstacles

v. A simple motion such as straight lines and circles

should be used to simplify the control

vi. An “ideal" path is preferred under existing conditions

Choset, in his survey [13], has classified CPP into two

algorithms; off-line algorithm and on-line algorithm. Online

algorithms rely only on immobile information, and the

environment is presumed to be known beforehand. However,

sometimes, in some cases, assuming full prior knowledge of

the environment might be unlikely. Contrariwise, on-line

algorithms will not presume full knowledge of the

surroundings and depend on real-time sensor measurements

to navigate through all the target space. These algorithms are

now also called as sensor-based coverage algorithms. Figure

2 shows a typical zigzag or U-turn path design by Enric and

Marc [11]. Shaded area indicates the covered path (darker)

and the uncovered area (lighter) when the robot completed

trailing the zigzag path.

Design and Development of Path Planning Techniques for a Tennis Ball Retriever Robot

 e-ISSN: 2289-8131 Vol. 10 No. 1-15 61

Figure 2: Typical zigzag path. Covered path indicated darker colour than

the uncovered region [11]

2) Probabilistic Roadmap Method (PRM)

For the past two decades, many researchers tried to come

up with new techniques of path planning, but only a few of

them are valid especially for a robot with many DOF. Among

all the methods available, probabilistic roadmap method, also

known as PRM really stands out and used by many

researchers to computes collision-free paths for a mobile

robot in a static environment. PRM is particularly related to a

robot with many degrees of freedom. Some of the variants of

PRM, such as lazy PRMs and visibility based PRMs, are

examined by Charpin in [14]. Geraerts and Overmars [15]

showed some studies and compared a few methods in PRM

but it is difficult to justify the results as the testing spaces and

hardware used is different.

According to Kavralu, Svestka and Latombe [16], PRM

can be separated into two kinds of phases; a learning phase

and a query phase. In the learning phase, a graph with nodes

that are collision-free configurations and the edges collision-

free paths, called a roadmap, is built by repeating two steps.

The first step is to pick a random configuration and then test

it for collision and repeat the step until it is collision-free. The

second step is to connect the previous configuration to the

roadmap using a fast-local planner. In Figure 3 shows an

example of a roadmap generated using PRM algorithm in a

two-dimensional Euclidian space while Figure 4 is an

example of the shortest path solved using the roadmap in

Figure 3.

Figure 3: An example of a roadmap for a point robot in a two-dimensional

Euclidean space from [17]

Figure 4: An example of how to solve the query in Figure 3

III. METHODOLOGY

The primary purpose of this research is to design and

develop path planning techniques for a tennis ball retriever

robot. The robot will help tennis player by discarding all the

unnecessary energy and time wasting in traditional ball

picking up method. The robot will sweep all the balls

scattered all over the court during solo training. While

sweeping the balls, the robot will avoid any obstacle and try

to stay and complete its path.

This section focuses on the design of the experiment and

how it is conducted. The experiment was conducted on an

actual tennis court to test the robot more in its physical way.

The robot movement is varied by few factors such as the robot

locomotion, robot geometry, and type of wheels and so on.

These factors are considered based on the literature review.

The robot consists of a few sensors such as sonar sensors, and

proximity sensor to detect obstacles. A few path planning

methods were implemented into the robot and data was

collected from the experiments.

 Tennis Ball Retriever Robot

Figure 5 shows the isometric view of the developed robot.

The body of the robot is made of stainless steel making the

robot durable enough to withstand being hit by a tennis ball.

Figure 5: Isometric view of the actual tennis ball retriever robot

After the robot is built, the specifications of the robot such

as turning radius, velocity and total weight were defined by

using experiments and calculation. The specifications of the

tennis ball retriever robot will be shown in this subtopic.

Table 1

Robot specifications

Specifications Value

Weight 5.9kg

Velocity 0.28𝑚𝑠−1

Turning radius 28.77cm

Dimensions 0.46m x 0.36m x 0.18m

Journal of Telecommunication, Electronic and Computer Engineering

62 e-ISSN: 2289-8131 Vol. 10 No. 1-15

 Mechanism of the System

The developed tennis ball retriever robot is programmed by

following the pseudo code below:

Step 1: Get a map from the knowledge base

Step 2: Convert the map to 2D grid map

Step 3: Generate goal point from the target areas

Step 4: Use path planning algorithm to find a path

Step 5: Robot moves along the path while marking the

covered path

Step 6: If the ball storage is full, go to unload area and repeat

step 3

Step 7: If the robot reaches the destination, go to step 8. If

not repeat step 5.

Step 8: Calculate a number of the target area, if more than

0, repeat step 3. If target area equal to 0, go to the

base point, terminate the program.

1) Changing the court into court map

The grid method is a method that is changing the entire map

into a grid. This grid allowed the robot to compute and plan

its path in 2D, making the computational much simpler.

These grids will be marked to represent the target area which

is the uncovered area by the robot, the obstacle which is the

grid that the robot does not need to cover, and the covered

area which is the area that already passed by the robot. This

robot need cover all target area while avoiding the obstacles.

To ensure smooth coverage, the grid of the map must

consider the robot dimension. If the grid dimension is bigger

than the robot dimension, some region of the map will be left

out. However, if the grid dimension is too small compared to

the robot dimension, it will cost more time and more energy

to the process.

In the robot design section, the proposed robot dimension

is 46cm (or 0.46 metres) in length and also 36cm (or 0.36

metres) wide. With this two information, the number of the

grid in the grid map can be measured. The actual full

dimensions of a standard tennis court are approximately 37

metres in length and 18 metres wide. However, in this project,

the robot only has to cover one-half of the court making it

cover 18m x 18m of the area.

Number of grid in length= 18m /0.46m =39.13~= 40 grids

Number of grid in width= 18m/0.36m = 50 grids

Total grid = 40grids x 50 grids=2000grids

Based on the calculation above, the robot needs to cover

2000 grids, assuming that no obstacles are laying on the court.

2) Changing the court map into grid map

To represent the target area or the uncovered area, 0 is used.

The already covered area is marked with 1, and the obstacle

area will be marked as 2. As the robot moving through the

target area, the 0 value in the grid will change into 1 to ensure

no path overlapping or repetition.

The grid in the environment is defined as g(x, y), where

x(x=1,2,…,n) is the line number of g's grid, y(y=1,2,…,n) is

the column number of g's grid. The sampling information of

this environment is a series of continuous grid set

G(g1,g2,…,gi), i(i=1,2,…,n) is the serial number of the grid

sampling.

The system uses the grid method to model the actual court

into 40 x 50 environment map in this plane and extract the

environment into a 2D grid.

 Generating Path

After a goal point is picked. The robot must find its way to

the point while avoiding the obstacles around the map. Few

path planning algorithms such as CPP U-Turn algorithm, CPP

ISS and A* algorithm is put into tests. These algorithms will

be compared and analysed to record their reliability in path

planning, especially for a tennis ball collector robot. These

algorithms will be compared based on their execution time to

generate a path, time is taken to cover all target area entirely,

and the accumulated path length after all target areas are

covered.

1) Pathfinding via Coverage Path Planning CPP (U-

Turn Algorithm)

Based on literature review, CPP comes with many types of

approaches, for example, U-turn shape algorithm and spiral-

shaped algorithm. U-turn algorithm is an algorithm proposed

by Zengyu Cai[10]. This algorithm is used to complete all-

region on a map while avoiding an obstacle in a U-turn

manner. To use this algorithm, many factors should be

considered such as robot maximum angular turn, robot

geometry and robot degree of freedom.

Figure 6: U-turn algorithm with an obstacle [10]

Figure 6 shows what happen if an obstacle is added to the

grid map. The thin arrow line shows the robot path while the

bold arrow line represents a path that was passed by the robot

twice. This path is called repetition path. In this algorithm,

the robot will try to minimise the repetition rate as low as

possible to cut waste in energy and time.

Steps in CPP U-turn algorithm:

Step 1: Get target area

Step 2: Move in a straight path

Step 3: If the front of the robot is the obstacle grid, check

the side grid of the robot, if the left side is an

obstacle or already covered grid, turn 180 degrees

to the right and vice versa

Step 4: If the robot comes into a dead situation where all

side of the robot is an obstacle or covered grid,

trace back the path until found an opening. Repeat

step 2 until reached goal target area

2) Pathfinding via Coverage Path Planning CPP (ISS

Algorithm)

Based on the literature review, Zengyu Chai[10] also

introduce coverage path planning in shape resembling a spiral

call Internal Spiral Shape (ISS). This algorithm will try to

cover all target area while avoiding an obstacle spirally. Just

Design and Development of Path Planning Techniques for a Tennis Ball Retriever Robot

 e-ISSN: 2289-8131 Vol. 10 No. 1-15 63

like its counterpart algorithm, U-turn, it also requires factors

such as robot maximum angular turn, robot geometry and

robot degree of freedom to be considered.

The basic idea of the internal spiral algorithm is robot

navigates this map area in a specific direction. When the front

of the grid is not covered, the robot moves forward. If there

are obstacles or the front of grid covered already, and then the

robot turns right 90 degrees, as shown in Figure 7.

Figure 7: ISS algorithm with an obstacle [10]

Steps in CPP ISS algorithm:

Step 1: Get target area

Step 2: Move in a straight path

Step 3: If the front grid has an obstacle or covered grid,

turn 90 degrees to the right

Step 4: If the robot comes into a dead situation where all

side of the robot is an obstacle or covered grid,

trace back the path until found an opening. Repeat

step 2 until reached goal target area

3) Pathfinding via Probabilistic Roadmap Method

There are a few factors that may affect the path generated

using PRM. The most crucial part is the deciding the number

of nodes that will be used to get a suitable path. A higher

number of nodes will result in a better path, but it will also

increase the computational time. In the simulation, the

number of nodes tested is 50 and 100. The first simulation

with 50 nodes did not come with a path while 100 nodes do.

Thus, 100 nodes are considered suitable for the project.

Steps in PRM algorithm:

Step 1: Get target area

Step 2: Get number of nodes

Step 3: Algorithm then attempts to connect all pairs of

randomly selected nodes, if two nodes can be

connected with a straight line, it will be added as

an edge.

Step 4: After any all possible pairs are connected, the

shortest combination of the path will be generated

Step 5: Robot moves according to the path. Repeat step 1

until all area is covered.

 Experiment Design

In this title, there will be three path planning techniques that

will be implemented into the robot; CPP U-turn, CPP ISS and

PRM. To test the effectiveness of these algorithms, the robot

must cover all target area on the court in two conditions;

without obstacle, known as Condition A and with obstacle,

known as Condition B. The time taken for the robot to cover

all target area and the algorithm to generate the path is

recorded for comparison data.

Figure 8 below shows how the experiment is conducted the

tennis court. The green box represents the base or the robot

start point. The grid representation of the base is g(0,0). The

red dotted box with a dimension of 18m x 18m represents the

area of experiment meaning that the robot has to cover all the

grid within the red line. For Condition B, a box with 0.5m x

0.5m x 0.2cm is put right at the baseline to act as the obstacle.

Yellow circle with their grid representation represents balls.

Figure 8: Layout of the experimental setup for Condition A

IV. RESULTS AND DISCUSSION

 Experimental Results

The experiment was completed on UniMAP’s Sports

Complex’s tennis court. Even though the recommended

dimension of half a tennis court by International Tennis

Federation is 18m x 18m, the court that was used as

experiment location has 14m x 15m dimensions. To generate

the grid map, some calculation has been made:

Number of grid in length= 14m /0.46m =30.43~= 31 grids

Number of grid in width= 15m/0.36m =41.667~=42 grids

Total grid = 31grids x 42 grids=1302 grids

Two set of experiment was conducted; court without

obstacle (Condition A) and the court with an obstacle

(Condition B). For each of the experiment set, three

algorithms were tested for data collection. Also, each of the

algorithms was tested three times to gained better result to get

better analysis and comparison.

Table 2 shows the result of CPP U-Turn algorithm in

Condition A while the following Table 3 shows the result of

CPP U-Turn algorithm in Condition B.

Table 2

The Result of Algorithm CPP U-Turn in Condition A

Trial
Time taken to finish

algorithm (min)

Balls

collected (/5)

Area

covered (%)

1 24.10 5 ~94.00

2 24.30 5 ~97.00

3 24.20 5 ~95.00

Average 24.20 5 95.30

Table 3

The Result of Algorithm CPP U-Turn in Condition B

Trial
Time taken to finish

algorithm (min)
Balls collected

(/5)
Area covered

(%)

1 24.50 5 ~94.00

2 24.45 5 ~95.00
3 24.50 5 ~94.00

Average 24.88 5 94.30

NET

Journal of Telecommunication, Electronic and Computer Engineering

64 e-ISSN: 2289-8131 Vol. 10 No. 1-15

Table 4 shows the result of CPP U-Turn algorithm in

Condition A while the following Table 5 shows the result of

CPP U-Turn algorithm in Condition B.

Table 4

The Result of Algorithm CPP ISS in Condition A

Trial
Time taken to finish

algorithm (min)

Balls collected

(/5)

Area covered

(%)

1 27.20 5 ~94.00
2 27.35 5 ~95.00

3 27.10 5 ~92.00

Average 27.22 5 93.67

Table 5

The Result of Algorithm CPP ISS in Condition B

Trial
Time taken to finish

algorithm (min)

Balls collected

(/5)

Area covered

(%)

1 28.05 5 ~92.00

2 27.80 5 ~91.00
3 28.10 5 ~92.00

Average 27.98 5 91.67

Table 6 shows the result of PRM algorithm in Condition A

while the following Table 7 shows the result of PRM

algorithm in Condition B.

Table 6

The Result of Algorithm PRM in Condition A

Trial
Time taken to finish

algorithm (min)

Balls collected

(/5)

Area covered

(%)

1 33.20 5 ~94.00
2 36.25 5 ~95.00

3 31.45 5 ~91.00

Average 33.63 5 93.30

Table 7

The Result of Algorithm PRM in Condition B

Trial
Time taken to finish

algorithm (min)

Balls collected

(/5)

Area covered

(%)

1 31.55 5 ~91.00

2 35.25 5 ~94.00
3 33.30 5 ~93.00

Average 33.37 5 92.67

From all the results above, the data collected can be shown

in graph form to make the analysis much more explicit and

accurate. Figure 10 shows a graph of time taken for the robot

to cover all targeted area in Condition A while Figure 11

shows a graph of time taken for the robot to cover all targeted

area in Condition B.

Figure 10: Graph of time taken for the robot to cover all targeted area in
Condition A

Figure 11: Graph of time taken for the robot to cover all targeted area in
Condition B

 Data Analysis

Based on Figure 10, it is also noticeable that result of using

PRM was inconsistent throughout the three experiments. The

difference between the slowest recorded time (31.55 minutes)

and the fastest recorded time (35.25 minutes) is 3 minutes and

42 seconds. This is because the algorithm used a different

path in each of the experiment. In PRM, after the nodes were

put on the map, the algorithm will try to find the shortest path

by connecting two nodes in a straight line. The algorithm

making every path randomises this process is different in the

experiments.

Based on the data collection, it is noticeable that the time

taken for the robot to cover all target area for each experiment

using CPP U-Turn and CPP ISS is not much different. Based

on data in Figure 10, the fastest time recorded using CPP U-

Turn was 24.45 minutes, and the slowest time taken was 24.5

minutes. The difference between the fastest time and the

lowest time is just 3 seconds. This is because the robot used

the same path for every experiment using CPP U-Turn.

However, every experiment using CPP ISS also came out

using the same path but the difference of time taken recorded

between the highest and the lowest is 18 seconds. This is

probably because the initial position of the robot before start

move around the court is slightly different. By experimenting

three times, the average of time can be calculated to minimise

any error during the experiments.

Figure 12: Graph of the average time taken in Condition A vs Condition B

Using average from data collection as shown in Figure 12,

the result of three algorithms used in this experiment can be

compared. When there is an obstacle on the map, the path

generated by the algorithm will be more complicated than the

path from a clear map. The complicated path requires more

time to generate and may cause the robot to cover an area that

has been a cover to get to the uncovered area as shown in

Figure 7.

24.1
27.2

33.2

24.3
27.35

36.25

24.2
27.1

31.45

15

20

25

30

35

40

CPP U Turn CPP ISS PRM

Ti
m

e
ta

ke
n

 (
m

in
)

trial 1 trial 2 trial 3

24.5

28.05

31.55

24.45
27.8

35.25

24.5

28.1

33.3

15

20

25

30

35

40

CPP U Turn CPP ISS PRM

Ti
m

e
ta

ke
n

 (
m

in
)

trial 1 trial 2 trial 3

24.2
27.22

33.63

24.48
27.98

33.37

0

10

20

30

40

CPP U-Turn CPP ISS PRM

Ti
m

e
ta

ke
n

 (
m

in
)

Condition A Condition B

Design and Development of Path Planning Techniques for a Tennis Ball Retriever Robot

 e-ISSN: 2289-8131 Vol. 10 No. 1-15 65

From Figure 12, for Condition A, the graph shows that CPP

U-Turn average time taken to cover all target was 24.2

minutes, which is the fastest time among all the algorithms

used in this experiment. CPP ISS took 27.22 minutes, 3

minutes and 1.2 seconds slower than CPP U-Turn. PRM

recorded the slowest time to cover Condition A with 33.63

minutes, 9 minutes and 25.8 seconds slower that CPP U-Turn.

For Condition B, CPP U-Turn also recorded the best time,

which was 24.48 minutes. CPP ISS algorithm recorded the

second best average time at 27.98 minutes, which was 3

minutes 30 seconds slower than CPP U-Turn. By using PRM

in Condition B, the average time taken was 33.37 minutes,

which was 8 minutes and 53.8 seconds slower than CPP U-

Turn.

Figure 13: Graph of average percentage area covered in Condition A vs

Condition B

From Figure 13, we can see the different percentage of area

covered in both conditions by using three different

algorithms. For Condition A, CPP U-Turn covered the most

area with 95.3% and PRM covered the least percentage of

area with 93.3%. For Condition B, CPP-U-Turn also recorded

the highest result with 94.3% while CPP ISS recorded the

least with 91.67%.

By giving the best result in both Condition A and Condition

B, it can be concluded that CPP U-Turn is the most suitable

algorithm to be implemented on the tennis ball collector

robot.

V. CONCLUSION

The designed and developed path planning algorithms

using CPP U-Turn, CPP ISS and PRM were integrated into

the robot successfully. All three algorithms were validated in

two different conditions to identify which algorithm is best

suited for a tennis ball retriever robot at an actual tennis court.

From the results, it concludes that CPP U-Turn is the best

algorithm to be used on the tennis court. For the continuation

of the project, the path planning of the robot can be improved

by using more complex localisation methods with the

location information from GPS or WIFI. The localisation

method is believed to be able to allow the robot to know its

surrounding much better and more efficient in term of time.

REFERENCES

[1] S. A. Mnubi, "Motion Planning and Trajectory for Wheeled Mobile

Robot," International Journal of Science and Research (IJSR), vol.
Volume 5, no. 1, pp. 1064-1066, 2016.

[2] M. Strandberg, Robot Path Planning: An Object-Oriented Approach,

Stockholm, Sweden: Royal Institute of Technology (KTH), 2004.
[3] P. Lima and M. I. Ribeiro, "Introduction to Mobile Robotics," in

Mobile Robotics, Instituto Superior Técnico/Instituto de Sistemas e

Robótica, 2002, pp. 22-24.
[4] Y. Zhao and S. L. BeMent, "Kinematics, Dynamics and Control of

Wheeled Mobile Robots," in International Conference on Robotics and

Automation, Nice, 1992.
[5] D. Szondy, "Murata's Dancing Robotic Cheerleaders Showcase

Advanced Group Control," New Atlas, Tokyo, 2014.

[6] I. Elamvazuthi and V. Singh, "Development of an Autonomous Tennis
ball Collector," December 2015. [Online]. Available:

https://www.researchgate.net/publication/283347206.
[7] M. Farrell, J. Hack and R. Irwin, "Bear Claw: Tennis Ball Collector,"

University of California, Berkeley, Carlifornia, 2009.

[8] D. Ford, "The BallBot Project," Encoder: The Newsletter of Seattle
Robotics Society, pp. 1-12, August 1999.

[9] K. Leena. N, "A survey on path planning techniques for autonomous

mobilerobots Leena.N1, K.K.Saju1," IOSR Journal of Mechanical and
Civil Engineering, pp. 76-79, 2014.

[10] Z. Cai, "Research on Complete Coverage Path Planning Algorithms

based on A* Algorithm," The Open Cybernetics & Systemics Journal,
no. 8, pp. 418-426, 2014.

[11] G. Enric and C. Marc, A Survey on Coverage Path Planning for

Robotics, Catalonia: University of Girona Press, 2013.
[12] Z. L. H. Y. a. H. E. L. Cao, "Region filling operations with random

obstacle avoidance for mobile robotics," Journal of Robotic Systems,

vol. 5, no. 2, pp. 87-102., 1988.
[13] H. Choset, "Coverage for robotics: A Survey of Recent Results," in

Annals of Mathematics and Artificial Intelligence, Pennsylvania,

Kluwer Academic Publishers Hingham, 2001, pp. 113-126.
[14] S. Carpin, "Randomized Motion Planning - A Tutorial," International

Journal of Robotics and Automation, vol. 3, no. 21, pp. 184-196, 2006.

[15] R. G. a. M. Overmars., "A Comparative Study of Probabilistic
Roadmap Planners," Workshop on the Algorithmic Foundations of

Robotics, pp. 43-57, 2002.

[16] L. E. Kavralu, P. Svestka and J.-C. Latombe, "Probabilistic Roadmaps
for Path Planning in High-Dimensional Configuration Spaces," Ieee

Transactions On Robotics And Automation, vol. 12, no. 4, pp. 568-571,

1996.
[17] H. Choset, W. Burgard, S. Hutchinson, G. Kantor, L. E. Kavraki, K.

Lynch and S. Thrun, "Theory, Algorithms, and Implementation," in

Principles of Robot Motion, Massachusetts, MIT Press, 2005, pp. 121-
123.

95.3
93.67 93.394.3

91.67 92.67

80

85

90

95

100

CPP U-Turn CPP ISS PRMA
re

a
C

o
ve

re
d

 (
%

)

Condition A Condition B

