1

HEMOGLOBIN RESPONSE TO INTRAVENOUS IRON THERAPY IN NONDIALYTIC CHRONIC KIDNEY DISEASE PATIENTS WITH ANEMIA

Dissertation submitted in partial fulfilment for the

DEGREE OF DOCTOR OF MEDICINE

BRANCH - III

DM (Nephrology)

DEPARTMENT OF NEPHROLOGY

KILPAUK MEDICAL COLLEGE

THE TAMILNADU DR.M.G.R. MEDICAL UNIVERSITY

CHENNAI – TAMILNADU

August 2015

CERTIFICATE

This is to certify that this dissertation entitled "HEMOGLOBIN RESPONSE TO INTRAVENOUS IRON THERAPY IN NONDIALYTIC CHRONIC KIDNEY DISEASE PATIENTS WITH ANEMIA" submitted by Dr V.Murugesan to the Faculty of Nephrology, The Tamilnadu Dr.MGR Medical University, Guindy, Chennai-600032, in partial fulfilment of the requirement for the award of DM Degree, Branch III (Nephrology) is a bonafide work carried out by him under my direct supervision and guidance for the academic period from October 2012 to February 2015.

Dr V. Balaraman MD DM, Professor and HOD, Department of Nephrology, Kilpauk Medical College , Chennai. **Dr. R.Narayana Babu, MD DCH,** Dean, Kilpauk Medical College, Chennai.

DECLARATION

I, Dr.V.Murugesan declare that I carried out this work on "HEMOGLOBIN RESPONSE TO INTRAVENOUS IRON THERAPY IN NONDIALYTIC CHRONIC KIDNEY DISEASE PATIENTS WITH ANEMIA" at the Department of Nephrology, Kilpauk Medical College. I also declare that this bonafide work or a part of this work was not submitted by me or any other for any award, degree and diploma to any university, board either in India or abroad.

This is submitted to the Tamilnadu Dr.M.G.R. Medical University, Chennai in partial fulfilment of the rules and regulation for the D.M. Degree examination in Nephrology.

Place : Chennai Date : Dr. Murugesan V.

ACKNOWLEDGEMENT

I thank our Dean **Dr.R.Narayana Babu,** MD DCH, Kilpauk Medical College for granting me permission to do this dissertation in Kilpauk Medical College, Chennai.

I will ever remain in gratitude to my Chief and guide of this study **Dr.V.Balaraman** MD DM, Head of department and Professor of Nephrology, Kilpauk Medical College not only for guiding me throughout this study, but also for being my source of inspiration during my postgraduate training.

My heartfelt thanks are to my beloved teachers **Dr R. Venkata Raman MD DM and Dr S.Ilango MD DM.**

I thank my assistant professors Dr.S.Jayakumar MD, Dr.P.Shankar MD DM, Dr.C.Vasudevan, MD DM, Dr.R.P.Senthilkumar MD DM, Dr.Abeesh padmanaban MD DM, Dr.D.K.Shivakumar MD DM, Dr.Andrew MD DM. who have guided me not only through this study but also through the resident training. I am very much thankful to **the Professor, Assistant professors and Post Graduates, Dept. of Biochemistry, Govt. Kilpauk medical college** for helping me to conduct the study.

I am also thankful to all my colleagues who have helped me in this dissertation.

I duly acknowledge my parents. I would like to thank my wife, **Dr.K.Ramya**, for her support and sacrifices and my daughter **Rithicka**'s tender love.

I duly acknowledge the co-operation and support provided by the patients without whom the work couldn't have been completed.

CONTENTS

Sl.No.	Title	Page No.
1	Introduction	1
2	Aims of the Study	3
3	Review of Literature	4
4	Materials and Methods	31
5	Results	35
6	Discussion	73
7	Limitations of the study	77
8	Conclusions	78
	Bibliography	
	ANNEXURES	

Approval letter from the Ethical

Committee

Proforma

Master Chart

Plagiarism report

ABBREVIATION

WHO	-	World Health Organisation	
CKD	-	Chronic Kidney Disease	
RBC	-	Red Blood Cells	
EPO	-	Erythopoietin	
KDIGO	-	Kidney disease Improving Global Outcome	
TSAT	-	Transferrin saturation	
TIBC	-	Total iron binding capacity	
IV	-	Intra Venous	
ESA	-	Erythropoiesis Stimulating Agents	
USA	-	United States of America	
DRIVE	-	Dialysis patient's Response to IV iron with Elevated ferritin level	
RES	-	Reticulo Endothelial System	
Hb	-	Hemoglobin	
ESRD	-	End Stage Renal Disease	
GFR	-	Glomerular Filtration Rate	
RRT	-	Renal Replacement therapy	
DM	-	Diabetes Mellitus	
HT	-	Hypertension	
CGN	-	Chronic Glomerulo Nephritis	
CIN	-	Chronic Interstitial Nephritis	
ADPKD	-	Autosomal Dominant Polycystic Kidney Disease	

RVD	-	Renal Vascular Disease
HD	-	Hemo Dialysis
PD	-	Peritoneal Dialysis
NGO	-	Nongovernmental organisation
Govt.	-	Government
RIA	-	Radio Immuno Assay
TCA	-	Tricarboxilic acid
CNS	-	Central Nervous System
ANS	-	Autonomic Nervous System
PNS	-	Peripheral Nervous System
BMT-1	-	Bivalent metal transporter-1
FP-1	-	Ferroportin-1
IL-6	-	Interleukin-6
PTH	-	Parathyroid hormone
DNA	-	Deoxy ribo nucleic acid
ACE	-	Angiotensin converting enzyme
GIT	-	Gastro intestinal tract
EPO-R	_	Erythropoietin Receptor
HIF	-	Hypoxia Inducible Factor
HMW	-	High molecular weight
DPO	-	Darbepoetin
ECG	-	Electro cardiogram
HCV	-	Hepatitis C virus
DOPPS	_	Dialysis outcomes and practice pattern study

INTRODUCTION

Anemia is a common complication in chronic kidney disease (CKD) patients. Anemia causes left ventricular hypertrophy and congestive cardiac failure. It increases cardio vascular morbidity and mortality¹. It is also a non-traditional risk factor for progression of CKD^2 . Anemia also causes fatigue, weakness, dizziness, breathlessness, decreased exercise tolerance, decreased muscle strength, falls and decreased quality of life³. Iron deficiency is one of the major causes of anemia associated with CKD. Iron deficiency may be absolute or functional deficiency. According to Kidney Disease Improving Global Outcome (KDIGO) guidelines on anemia management in CKD a trial of parenteral iron therapy or 1-3 month trial of oral iron therapy is suggested if TSAT is < 30% and serum ferritin< 500 ng/ ml⁶. Following a black box warning on Erythropoiesis stimulating agents (ESAs) regarding concerns about malignancies and cerebro vascular events and also due to problems in reimbursements there is a trend towards reduced usage of ESAs and increased usage of IV iron in USA. Many centres in USA have started using higher iron dosage in spite of having ferritin levels > 500 ng/ dl when TSAT is < 30% based on Dialysis patient's Response to IV iron with Elevated ferritin level (DRIVE) trial. According to DRIVE study group intravenous iron therapy in dialylic patients with ferritin between

500- 1200 ng/ ml and TSAT < 25% caused significant improvement in anemia and reduced ESA dosage need⁷. The intra venous (IV) iron usage increased from 55% in 2010 to 77% in 2011 and stabilised at 66%-68% in 2012 in USA. Higher threshold for ferritin (>800 ng/ml) is the norm in many US centres. In 25% of dialysis centres 2/3 of patients had ferritin level > 800 ng/ ml and 15% had ferritin 1200 ng/ ml⁸. But these measures led to increased need for blood transfusions. Also there is concern about iron overload.

AIMS OF THE STUDY

- 1. To assess the Hb response to treatment with intravenous iron in nondialytic CKD patients with anemia.
- 2. To assess whether the serum ferritin, serum iron, Total iron binding capacity, transferrin saturation (calculated) alone or in combination can predict the response to iron therapy.

REVIEW OF LITERATURE

Stages of CKD

CKD is defined as kidney damage or GFR <60 ml/ min/ 1.73 m² presenting for > 3 months with implications on health⁹. Kidney damage is diagnosed on the basis of presence of certain markers like persistent proteinuria, active urine sediments, serum abnormalities, imaging studies and histology¹⁰.

STAGE	DESCRIPTION	eGFR (ml/min/1.73 m ²)	PLAN OF TREATMENT
1	Kidney damage with normal or increased GFR	≥90	Diagnosis and treatment of comorbidities
2	Kidney damage with mildly decreased GFR	60-89	Estimate progression
3	Kidney damage with moderately decreased GFR	30-59	Evaluate and treat complications
4	Kidney damage with severely decreased GFR	15-29	Preparation for RRT
5	ESRD	<15	Dialysis or transplantation

Table - 1: STAGES OF CKD

In India the incidence of ESRD is 151/ million population¹¹. Diabetes mellitus (DM 31.2%) forms the primary causative factor in India just like the world over followed by undetermined cause (16.4%), CGN(13.8%), HT(12.8%), others(11.7%), CIN(7%), obstructive uropathy (3.4%), ADPKD (2.5%), RVD(0.8%) and graft loss(0.3%)¹². Due to the growing epidemic of DM the incidence of CKD & ESRD are increasing. In India only 10-20% of ESRD patients get RRT in the form of renal transplantation, HD or PD mainly through private sectors, NGOs and Govt. Medical College Hospitals.

Complications of CKD

- 1. Cardio vascular disease.
- 2. Anemia.
- 3. Nervous system (CNS/ PNS/ ANS) abnormalities.
- 4. Mineral and bone disorder.
- Metabolic abnormalities (hyper/hypoglycaemia, hyperlipidemia, hypertriglyceridemia, protein catabolism)
- 6. Other endocrine abnormalities
 - decreased libido, sexual function and depression in men, reduced fertility in women
 - growth retardation in children
 - Vitamin D deficiency,
 - hypertension

RELATIONSHIP OF ANEMIA AND OTHER COMPLICATIONS.

Cardiovascular disease

Cardiac disease is major cause of morbidity and mortality in CKD patients. Uremic toxins especially parathyroid hormones and anemia cause cardiac muscle hypertrophy and cardiac failure.

Central nervous system disease

Many of uremic symptoms like fatigue, weakness, dizziness, cognitive impairment and decreased muscle strength initially thought of due to CNS involvement are mainly due to anemia. Anemia also causes impaired mobility and increased risks of falls.

Bone and mineral disease

Marrow fibrosis caused by uremic toxins like parathyroid hormones may aggravate anemia.

Anemia

Anemia is defined as a state characterised by decrease red blood cell and haemoglobin mass resulting in decreased oxygen carrying capacity and decreased oxygen delivery to the tissues. Anemia is diagnosed when haemoglobin level less than 13 g/dl in men and less than 12 g/dl in women⁶. The NICE guidelines advocate a higher Hb target (> 13.5 g/ dl in males). Renal anemia was defined as anemia occurring in patients with GFR < 45 ml/ min/ 1.73 m² with DM and < 30 ml/ min/ m² without DM¹⁴. The prevalence of anemia increases with progression of CKD. According to 2nd annual report of Indian CKD Registry prevalence of anemia is 67.4% in CKD stage 1, 72.5% in stage 2, 83.5% in stage 3, 93.8% in stage 4, 98.7% in stage 5. According to United States Renal Data System (USRDS) the prevalence of anemia is 43% in CKD stages 1-2 and 57% in CKD stages $3-5^{15}$. In contrast prevalence of anemia is 12% to 14% of subjects at risk for kidney disease (Kidney Early Evaluation Programme [KEEP]) and 5% to 6% in general population (National Health and Nutrition Examination Survey [NHANES] 1999 to 2004)¹⁶. Over half of adults with CKD stage 3 / 4 are affected with anemia¹⁷. According to predialysis survey on anemia management (PRESAM) 20% patients had Hb > 12g/dl and 2/3 had $Hb < 11g/dl^{18}$. In India prevalence of anemia is 33% in general population and 41% in CKD patients¹⁹.

Features of renal anemia

- 1. Anemia is rare in CKD stages $1-3(GFR > 30 \text{ ml/min}/1.73 \text{ m}^2)$.
- 2. In diabetic CKD patients anemia starts early (eGFR <45 ml/min/1.73 m²)

3. Anemia is severe in diabetic CKD patients, younger women and older men.

Figure – 1: Prevalence of anemia in CKD

Historical perspectives of anemia.

- 1825- First human to human blood transfusion was given in London by James Blundell who transfused a man's blood into his wife for postpartum haemorrhage²⁰.
- 1836- renal anemia was first described by Richard Bright²¹.
- 1906- Carnot and Deflandre discovered that serum from rabbits (hemopoietins) when injected into other rabbits stimulated RBC production.

- 1948- Bonsdorff and Jalavisto named the hemopoietic factor as erythropoietin.
- 1977- Purification of EPO was done.
- 1979- RIA of EPO.
- 1985-Cloning and expression of EPO gene.
- 1986-87- clinical trials of recombinant human EPO.
- Till 1980s blood transfusion and androgen were the treatment modalities for anemia¹³.

Normal erythropoiesis

Figure - 2 : Normal Erythropoiesis

Erythropoiesis occurs mainly in bone marrow in adults. RBC production starts with EPO independent maturation of multipotent stem cells into colony forming unit – granulocyte, erythrocyte, monocyte, macrophage (CFU-GEMM). CFU- GEMM develops into burst forming unit Erythroid (BFU-E) which is the first cell to have EPO-R which again develops into CFU- E from which erythroblasts, basophilic, polychromatic, orthochromatic normoblasts, reticulocytes and mature RBCs develop.

EPO

Figure - 3 : Structure of EPO

EPO is a glycoprotein containing 165 aminoacids with a molecular weight of 30 kDa. Kidney is the major site of EPO synthesis in adults. 90% of EPO is secreted in the peritubular fibroblasts in the cortex and outer medulla, the areas susceptible to hypoxia. Moderate hypoxia stimulates additional EPO from liver, mainly hepatocytes and to some extent from stellate or Ito cells. EPO is essential for maturation of RBCs. EPO deficiency leads to neocytolysis of immature RBCs²².

EPO-R

EPO-R is also a glycoprotein containing 484 amino acids. It is synthesised in endoplasmic reticulum. It binds with tyrosine kinase and Janus kinase-2. The entire complex associates with type 2 transferrin receptor (TfR-2) for trafficking to cell membrane.

HIF

Tissue hypoxia in the kidney provides the major erythropoietic stimuli.

Hypoxia inducible factors are helix transcription factors consisting O_2 regulated α subunits and constitutively expressed β subunits. Under normoxia, O2, Fe⁺⁺ and ascorbic acid activate prolyl 4-hydroxylase domain (PHD) proteins and degrade HIF. Hypoxia and high concentrations of TCA cycle intermediates inhibit PHD proteins allowing

HIF- α to translocate to nucleus and activate hypoxia response elements (HRE). HRE regulates numerous cellular processes like erythropoiesis, angiogenesis and anaerobic metabolism. There are 3 HIFs. HIF-2 plays an important role in erythropoiesis. HIF-1 is important in regulating glycolysis. HIF-3 splice variants may actually inhibit transcription. HIF proteins activate the transcription of PHD-2 and PHD-3 resulting in their own degradation by negative feedback.

Iron

Iron is essential for erythropoiesis. Total body iron is 50mg/kg. 65% of iron is in Hb; 10% in Mb, cytochromes and enzymes. Remainder is in RES, liver and bone marrow. Differentiating erythroblasts need 20-30 mg/ day of iron. Most of this iron is derived from recycling of senescent RBCs.

Daily intake of iron is 10- 20 mg/ day of which only 10% (Fe⁺⁺) is absorbed by enterocytes. Non heme iron presenting as Fe³⁺ needs to be converted to Fe²⁺ by ferrireductase in conjunction with Vitamin C. Fe²⁺ is transported by Divalent Metal Transporter - 1 (DMT-1) into enterocytes which is delivered to circulation via ferroportin-1, oxidized to Fe³⁺ and bound to transferrin. Iron enters erythroblast when 2 transferrin molecules bind TfR-1 which then undergoes endocytosis into a clathrin coated sclerosome. Fe^{3+} is released and again reduced to Fe^{2+} by ferrireductase and exported to cytoplasm via DMT-1. Cytosolic Iron enters mitochondria where ferrochelatase causes its insertion into protoporphyrin IX to form heme. Apotransferrin: TfR-1 complex is released into circulation for recycling.

Iron regulation

1. When the iron storage is low there is upregulation of BMT-1, FP-1, TfR-1 and increased absorption of iron from duodenal enterocytes.

2. When iron is adequate hepcidin is secreted by liver which combines with FP-1 in enterocytes, macrophages and hepatocytes and degrades it thereby prevents iron absorption. Hepcidin is downregulated by HIF in hypoxia, by soluble hemojuvelin in Iron deficiency, by EPO during erythroblast formation.

Figure – 4 : Regulation of iron

HFE – human hemochromatosis protein 3. Inflammation and infections through IL-6, bone morphogenic proteins and lipopolysaccharides inhibit hepcidin expression, increase BMP-1 expression by macrophages and release of apolactoferrin and neutrophil gelatinase- associated lipocalin(NGAL). These prevent release of iron from RES thereby decrease its availability to iron dependent microorganisms.

4. Iron availability is regulated by iron response elements (IRE) in a negative feedback mechanism.

Other functions of iron

- Essential for cellular respiration and synthesis
- Converts harmless superoxide and hydrogen peroxide (Fenton reaction)²³ into toxic hydroxyl ions which causes damage of adjacent macromolecules²⁴.
- Can increase intracellular labile iron which causes lipid peroxidation, DNA as well as membrane damage and immunological disturbance²⁵.
- Taken by iron dependant bacteria and precipitates infection.

Vitamin B_{12} and folic acid

Vitamin B_{12} and folic acid are essential for many enzymatic reactions in erythropoiesis.

Causes of anemia in CKD

- 1. EPO deficiency relative to the degree of anemia.
 - Adaptation of kidney by attenuation of sodium channels improves oxygenation in outer medulla thereby removes hypoxic stimuli to EPO.
 - Neutralisation of EPO by soluble EPO-R.
 - Inactivation of EPO by desialysation due to uremia.

Blunting of action of EPO in marrow by absence of permissive factors like IL-3, calcitriol and CD4 cells and presence of inhibitory factors like polyamines, ribonuclease and PTH.

EPO levels are normal or slightly increased in anemia of CKD. Comparing to anemic patients with CKD anemic patients without CKD have 10-100 times EPO levels²⁶(relative EPO deficiency).

2. Absolute and functional iron deficiency.

Blood loss, inhibition of iron absorption by hepcidin and drugs, poor intake due to anorexia and nausea are the main causes of Iron deficiency. Even though iron deficiency is more common in CKD patients on HD more than 50% of CKD stage 3 or 4 patients also have Iron deficiency²⁸. In addition to symptoms of anemia Iron deficiency impairs cellular energy generation in skeletal and cardiac muscles, oxygen storage in myoglobin, T cell proliferation and function, neuron myelination and DNA synthesis²⁹. Absolute iron deficiency is the presence of low iron stores (serum ferritin < 100 ng/ml & TSAT <20%)⁶⁴. Functional iron deficiency occurs due to impaired release of iron from RES.

- 1. Accelerated destruction of young and senescent RBCs.
- 2. Hemolysis during HD and also due to drugs.

- 3. Deficiencies of vitamins B_6 , folic acid, B^{12} and L- carnitine.
- 4. Marrow fibrosis due to excessive PTH.
- 5. Chronic inflammation and infections.
- 6. ACE inhibitors.
- 7. Malignancy.
- 8. Pure red cell aplasia.
- 9. Hemoglobinopathies.
- 10.Malnutrition.
- 11.Hepcidin excess.

Inflammation increases hepcidin production from liver. CKD is a chronic inflammatory state. IV iron may increase hepcidin further and aggravate anemia³⁰.

12. Aluminium toxicity, one of the major causes of renal anemia has reduced significantly following improvements in HD and reduced usage of citrates^{4,5}.

Figure - 5 : Causes of Anemia in CKD

Diagnosis of anemia in CKD

Anemia is diagnosed when Hb level is below 13 g/dl in men and below 12 g/dl in women⁶. Packed cell volume is not used to diagnose anemia in CKD because of variations due to glucose concentration, storage conditions or analysis techniques. There may be associated thrombocytosis. Peripheral smear study may show normocytic normochromic anemia to indicate anemia of chronic disease or microcytic hypochromic anemia in case of Iron deficiency anemia and macroytic anemia in case of folic acid,vitamin B_{12} deficiency and fragmented RBCs in hemolysis. Reticulocyte count may be increased in case of hemolysis and decreased in case of marrow failure due to marrow fibrosis. In macrocytosis serum B_{12} and RBC folate level should be measured. Blood loss through GIT and hemolysis should be evaluated.

Iron indices

Iron indices show low serum ferritin, low serum Iron levels and low TSAT.

Serum ferritin

Serum ferritin level was taken as less than 100 ng/ml in non dialytic patients and less than 200 ng/ml in dialytic patients. Now the target has been increased to less than 500 ng/ml⁶. KDOQI doesn't recommend serum ferritin more than 500 ng/dl. This recommendation is being disputed now. As ferritin is an acute phase reactant it can be elevated in infection and inflammation but supply for erythropoiesis may be low (low TSAT). In 47 non dialytic CKD patients the mean serum ferritin level was 236 ng/dl but 46 patients didn't have detectable bone marrow Iron deposits⁶⁰.

Serum iron

Serum iron levels may be modified by diurnal variation and food intake.

Reference values⁵⁴

Males - 65- 175 µg/dl

Females -40- 150 µg/dl

Total Iron binding capacity

Reference value

 $200\text{-}400\ \mu\text{g/dl}$

Transferrin saturation(TSAT)

 $TSAT = serum Iron \times 100 \div TIBC$

Target value - 30% - 40%

Initially iron deficiency was treated when TSAT is < 20%. Now target has been increased to $< 30\%^{6}$.

Limitations of Iron indices

- 1. Acute phase reactant.
- 2. Diurnal variation
- 3. Variation due to food intake.

Correlation of serum ferritin and TSAT with eGFR

According to NHANES III (1988- 2004) serum ferritin and TSAT didn't correlate with declining renal function in men. In women serum ferritin increases with declining renal function while TSAT decreases with eGFR decline⁶¹.

Other markers of anemia

- 1. Reticulocyte Hb content (CHr).
- 2. Percentage of hypochromic red cells (PHRC).
- 3. Soluble transferrin receptor (sTfR).
- 4. Erythrocyte zinc protoporphyrin.
- 5. Hepcidin.
- 6. Bone marrow/ liver biopsy.
- 7. ESR/CRP.

Bone marrow iron stores

Bone marrow iron stores are the gold standard for diagnosis of iron deficiency. Many have demonstrated iron deplete states in marrow of non dialytic CKD patients. Silverberg has demonstrated 90% iron deplete state in CKD patients⁶⁰. Simona stancu observed 48% iron deplete state⁶⁵ while it was 23% in Rahman's study⁶⁶. Bone marrow iron stores could not explain functional iron status in CKD patients. Simona stancu et al

demonstrated that in 100 non dialytic CKD patients 1/3 of iron replete (52 iron replete patients) had > 1 g/dl Hb increase 1 month after 1 g Inj. iron sucrose⁶⁵.

Both PRBC and CFr appear imperfect but they are stable and accurate³¹.

EPO assays

EPO assays are done in research laboratories only. Presence of immunogenic EPO fragments²⁷ are the major limiting factors for EPO assays.

Hb variability

Hb variability is defined as fluctuation in Hb levels above or below the original value within a short period even though the mean value may be within the target range³². The standard deviation of Hb in dialytic CKD patients in US population is 1.1 to 1.3 g/ dl. It is believed to be due to intermittent short nonbiologic burst of EPO especially in HD patients. Causes may due to iron- EPO imbalance (EPO without iron) and vice versa, infections, inflammation and blood loss. It is said to be a predictor of mortality. To avoid this variation Hb should at least be measured weekly once.

Treatment of anemia in CKD

Target Hb

When Hb is below 10 g/dl CKD patients should be treated with EPO after a loading dose of IV iron. Hb target should be between 11-12 g/dl. Target should not be more than 13 g/dl to prevent thrombosis related events (stroke, angina, MI and vascular access failure). A higher dosage of ESAs associated with higher Hb target is associated with increased cardiovascular mortality³³.

ESA administration

ESA is administered when Hb is less than 10 mg/ dl to keep the Hb between 11-12 g/ dl.

ESA dosage

Epoetin- alfa or beta is started in the dosage of 20- 50 IU/ kg weekly thrice , DPO with $0.45\mu g/kg$ SC/ IV weekly once dose or 0.75 $\mu g/kg$ SC fortnightly and CERA with 0.6 $\mu g/kg$ SC/IV fortnightly in non dialytic patients or 1.2 $\mu g/kg$ SC monthly once in CKD stage 5D. Women and diabetic patient may need high ESA dosage.

Types of ESA

First generation ESAs - Epoetin alfa

- Epoetin beta

Second generation ESAs

Darbepoetin alfa- modified form of erythropoietin wih a carbohydrate moiety which increases the half-life to 25 hours by IV and 48 hours by SC injection⁴⁵. In US it is usually given mainly in non dialytic patients⁴⁶ as monthly injections.

Third generation ESAs

- methoxy polyethylene glycol–epoetin beta (Mircera) has a long half-life of 130 hours⁴⁷. Half-life is same for IV as well as SC forms⁴⁸.

Side effects of ESAs⁴⁹

- HT
- Seizures
- Dialysis access clotting

ESA resistance

ESA resistance is defined as continued need for rHuEPO at doses of > 300 IU/kg/week SC or > 400 – 450 IU/kg/week IV or darbepoetin at a dose of 1.5 μ g/kg/week SC⁵⁰. ESA resistance occurs in 10-20% of patients.

Causes of ESA resistance

- Inflammation
- Iron deficiency
- Marrow fibrosis
- Hemolysis
- Nutritional deficiencies folic acid, vitamin B_6 , B_{12} , L- carnitine
- Miscellaneous pure red cell aplasia, aluminium, ACEI/ARB.

Novel agents

HIF prolyl- hydroxylase inhibitors, orally active prevent degradation of HIF- α , thereby stimulate EPO release. In experimental studies it increases EPO levels 3 times more than normal⁵¹.

Management of iron deficiency

Iron deficiency is treated when serum ferritin level is less than 500 ng/ ml and TSAT is less than 30%⁶. In dialytic patients parenteral iron should be administered. In predialytic patients a 3 month trial of oral iron or parenteral iron may be administered.

Oral iron therapy

Ferrous sulphate, chloride, fumarate, gluconate and heme iron polypeptide (HIP) are the oral iron preparations available. 200 mg of elemental iron is administered daily. Advantages are cheap, easy administration and less systemic side effects. Disadvantages are GI side effects, inability to administer in case of persistent vomiting and less reliable absorption due to hepcidin and other medications especially in dialytic CKD patients. Not effective in patients on EPO³⁴. Ferric citrate has in addition phosphate binding properties. In many trials oral Heme Iron Polypeptide produce comparable Hb response⁶³.

IV Iron therapy

Iron dextran, Iron sucrose, ferric gluconate, ferrumoxytol, ferric carboxy maltose and Iron isomaltoside 1000 are the available IV Iron formulations. Due to increased anaphylactic reactions Iron dextran especially HMW is not preferred now. Advantages of IV Iron are utility in dialytic patients, reliable absorption and compliance. It bypasses absorption difficulties even in the presence of high hepcidin³⁵. Disadvantages are cost, need for saline and infusion sets and allergic reactions. Other concerns are proteinuria due to proximal tubular injury, peroxidation of lipids, infections, iron overload and hemosiderosis.

Hemosiderosis is rare when serum ferritin level is less than 2000 ng/ ml. In animal models iron administration may precipitate infections^{36,37,38,39}. IV Ferric carboxy maltose can rarely produce hypophosphstemia due to its effect on FGF-23 especially in renal transplant recipients⁵⁹.

Oral vs IV iron therapy

IV iron is indicated in dialytic patients. In non dialytic CKD patients a trial of oral iron or IV iron is indicated. In non dialytic patients 2 doses of 510 mg IV Ferumoxytol given 5 ± 3 days gives good Hb improvement in 35 days as against elemental oral iron 200 mg given for 21 days; Safety profile was good; can be given within a minute in fact within 20 seconds⁴⁰. IV iron therapy can reduce the need for higher EPO dosages in dialytic patients and may delay the start of EPO administration. Hb concentration and iron indices rise in short time comparing to oral iron^{41,42,43}. Less stable oral iron preparations like ferrous sulphate can release iron rapidly and cause oxidative damage while iron sucrose and ferric carboxy maltose are more stable.

Studies comparing Hb response to oral/IV iron therapies

1. Agarwal et al in 2006 compared oral (ferrous sulphate) vs IV iron (sodium ferric gluconate) therapy in 75 patients and showed that Hb response was more in IV iron therapy $(0.4\pm 0.8 \text{ g/dl})$ than oral iron $(0.2\pm 0.9 \text{ g/dl})^{55}$.

- 2. Qunibi et al in 2008 involving 188 patients over 8 weeks compared oral (ferrous sulphate) vs IV iron therapy (ferric carboxy maltose) and observed that Hb response to oral iron was 0.76 ± 1.1 g/dl whereas to that of IV iron was 1.16 ± 1.1 g/dl⁵⁶.
- 3. Spinowitz et al in 2008 involving 188 patients compared oral iron (ferrous fumarate) with IV iron (ferrumoxytol) observed that Hb response to IV iron was 0.62 ± 1.02 g/dl and to oral iron was 0.13 ± 0.93 g/dl⁵⁷.
- 4. Von wyck in 2005 compared 161 patients with oral ferrous sulphate with IV iron sucrose and observed 0.7 g/dl Hb increase in IV iron group and 0.4 g/dl Hb increase in ferrous sulphate group⁵⁸.

Other studies assessing Hb response

 Gabriel Mircescu et al from ·Dr Carol Davila' Teaching Hospital of Nephrology, Bucharest, Romania treated 60 predialytic patients with Hb less than 11 g/dl and serum ferritin levels between 20 ng/ml and <500 ng/ml with 200 mg monthly IV iron sucrose for 12 months (total dose 2400 mg). Mean pre-treatment Hb was 9.7 g/dl. Mean Hb increase was 0.8 g/dl after 3 months and 1.3 g/dl after 1 year. Serum ferritin increased from 98 ng/ ml to 156 ng/ml (3 months) and 442.5 ng/ml (1 year). Serum iron increased from (73.9
μ g/dl) to 74.8 μ g/dl (3 months) and 442.5 μ g/dl (1 year). TSAT increased from 21.6% to 24.9% (3 months) and 33.6% (1 year)⁵².

Silverberg et al administered 200 mg monthly IV iron sucrose for 5 months (total 1000 mg) and noted 1.9 vol% increase in Hct I month after last iron dose⁵³ in non dialytic patients from Switzerland.

Iron and hepatitis C infection

Hepcidin is synthesized by liver. Persistent hepatitis C infection causes low hepcidin due to STAT3 activation which leads to accumulation of iron in liver and augments liver injury (fibrosis, cirrhosis and hepato cellular carcinoma). Iron removal by phlebotomy improves liver function tests and liver histology. Iron depletion also augments HCV eradication by antiviral therapy and decreases the development of hepato cellular carcinoma (HCC)⁴⁴.

Adjuvant therapies

- Before the advent of ESAs androgens were used to treat anemia which are not advocated now.
- Routine use of vitamins B, C,D, L-Carnitine and pentoxyphylline are not advocated now.

Blood transfusions

Blood transfusions should be avoided except in urgent indications like blood loss, urgent preoperative corrections and unstable coronary artery disease to avoid blood borne infections and also to prevent sensitization in patients on renal transplant work up.

Figure - 6 : Management protocol for CKD

MATERIALS AND METHODS

Study design:

Prospective study.

Study Place :

Kilpauk Medical College Hospital

Study Population

INCLUSION CRITERIA:

•All CKD patients more than 18 years with

1. GFR < 60 ml/min/1.73 m2.

2. Hb < 10 g/dl.

EXCLUSION CRITERIA:

- Patients with active infections/ active bleeding.
- Patients with recent myocardial infarction
- Patients with congestive cardiac failure.
- Patients with previous H/O allergic reactions to IV iron sucrose.
- Patients on maintenance hemodialysis.
- Patients on oral iron therapy or erythropoietin therapy.
- Unwilling patients.

Sample size : 50

Methodology:

50 newly detected CKD patients more than 18 years who attended nephrology outpatient department and admitted in medical and nephrology wards in Govt. Kilpauk Medical College, Chennai were included in this study after obtaining institutional ethical committee permission from the period between December 2014- February 2015. They were explained about the procedure and informed consent was obtained. GIT bleeding was ruled out by doing stool for occult blood test. Infections were ruled out by doing CBC, X- ray chest, urine and blood C&S tests. 10 injections of iron sucrose were administered daily for 10 days in 100 ml NS over 1 hr. Pre-treatment Hb and Iron indices (serum ferritin, serum iron, Total iron binding capacity and TSAT%(calculated) were compared with 1 month post treatment values. Three patients developed minor allergic reactions (rigors and itching) which were treated with antihistamines. They were withdrawn from the study. 2 discontinued treatment due to personal reasons. Five patients didn't return for follow up study in spite of many reminders through mobile phones. At the end 40 patients were assessed the Hb and iron indices response to IV iron sucrose.

Quantitative determination of serum iron.

Principle – colorimetry

Reagent - ferrozine (spinreact)

Iron is dissociated from Transferrin- iron complex in weakly acid medium. Liberated Fe $^{3+}$ is reduced to Fe²+ which gives Ferrozine, the reagent used, a coloured complex.

Transferrin (Fe³⁺⁾₂ + e⁻ \rightarrow 2 Fe²⁺ + transferrin

 $\text{Fe}^{2+} \rightarrow \text{coloured complex}$

Total iron binding capacity

Principle – saturation – precipitation

Serum transferrin is saturated with an excess of Fe^{2+} and the unbound portion is precipitated with magnesium carbonate. Total amount of iron is then determined. Difference between total iron binding capacity and initial serum iron yields unsaturated iron binding capacity.

Ferritin

Principle – enzyme immune assay.

Reagent – pathozyme ferritin (omega diagnostic)

Specific anti-Ferritin antibodies are coated on to microtitration wells. Test sera are applied. Then monoclonal anti – Ferritin labelled with Horseadish peroxide enzyme is added. Ferritin if present is sandwitched between Ab in the wells and Abs labelled with enzymes.

TSAT is calculated from serum Iron and TIBC

 $TSAT = serum Iron \times 100 \div TIBC$

eGFR was calculated using MDRD formula.

Conflict of interest: Nil

Financial grants: Nil

Statistical Analysis: was done using t test, paired t test, chi-square test and ANOVA.

RESULTS

ASSESSMENT OF Hb RESPONSE TO INTRAVENOUS IRON THERAPY

Pre-Treatment & Post-Treatment Hb

Paired samples t-test

Sample 1	Hb_pre_	
	Hb(pre)	
Sample 2	Hb_post_	
	Hb(post)	

	Sample 1	Sample 2
Sample size	40	40
Arithmetic mean	7.4500	8.2625
95% CI for the mean	7.0449 to 7.8551	7.8159 to 8.7091
Variance	1.6041	1.9496
Standard deviation	1.2665	1.3963
Standard error of the mean	0.2003	0.2208

Paired samples t-test

Mean difference	0.8125
Standard deviation	0.7858
95% CI	0.5612 to 1.0638
Test statistic t	6.539
Degrees of Freedom (DF)	39
Two-tailed probability	P < 0.0001

Mean pretreatment Hb is 7.45 g/dl while mean post treatment Hb is 8.26 g/dl.

Maximum pre-treatment Hb is 9.7 g/dl. Maximum post treatment Hb is 10.8 g/ dl.

Minimum pre-treatment Hb is 5 g/ dl while minimum post treatment Hb level is 5.1 g/ dl.

Median pre-treatment Hb level is 7.45 g/ dl while median post-treatment Hb level is 8.3 g/ dl.

One month after administration of 1000 mg Inj. Iron Sucrose there is increase in Hb which is statistically significant (p < 0.0001). Mean posttreatment increase in Hb is 0.8 g/dl.

Description of dot and line diagram

Figure - 7 : Graphical representation of dot and line diagram.

DOT AND LINE DIAGRAM

Figure – 8 : Dot and line diagram showing minimum, maximum and median pre-treatment and post-treatment Hb values.

DISTRIBUTION OF Hb INCREASE

Figure – 9: Distribution of Hb increase

AGE GROUP WISE Hb INCREASE

For statistical analysis patients are divided into 4 age groups.

Group 1 - age < 40 years

Group 2 – age 41-50 years

Group 3 – age 51- 60 years

Group 4 – age 61- 70 years

Mean age - 55.825 years

Median age – 58 years

Maximum age - 70 years

Minimum age – 19 years

	-					95% Confide for N	ence Interval ⁄Iean
		N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound
Hb	1	4	1.175	.8655	.4328	202	2.552
uiii.	2	7	.829	.7296	.2758	.154	1.503
	3	12	.817	.9203	.2657	.232	1.401
	4	17	.644	.8054	.1953	.230	1.058
	Total	40	.781	.8182	.1294	.520	1.043

There are 4 patients aged less than 40 years. Hb increase is more in the age group < 40 years. Mean Hb increase in the age group < 40 years is 1.175 g/dl.

There are 7 patients in the age group between 41 - 50 years. 12 patients are in the age group between 51 - 60 years. The mean Hb increase in the age groups 41-50 years and 51-60 years come in between. The mean Hb increases in the age groups 41—50 years is 0.83 g/dl and mean Hb increase in the age group between 51 - 60 years is 0.82 g/dl.

Patients aged more than 61 years form the major part of study group. There are 17 patients in the age group more than 61 years. The mean Hb increase is lower in the age group between 61-70 years. The mean Hb increase in the age group between 61 years to 70 years is 0.644 g/dl.

Correlation of age & Hb response

Variable Y	AGE
Variable X	Hb_diff.
	Hb diff.

Sample size	40
Correlation coefficient r	-0.2053
Significance level	P=0.2038
95% Confidence interval for r	-0.4857 to 0.1135

Age group wise mean Hb increase is statistically not significant (p-0.2038).

Figure – 10 : Distribution of age group wise Hb increase Scatter diagram

The above scatter diagram clearly shows more number of patients in the age group more than 61 years and less number of patients in the age group less than 40 years. Age groups 41-50 years and 51-60 years come in between.

The scatter diagram also shows the Hb difference distribution. Seven patients have reduced post treatment Hb level. Fifteen patients have less than 1 g/dl increase in Hb level. Seventeen patients have 1-2 g/dl increase in Hb levels. One patient has 3 g/dl increase in Hb level.

One patient in the age group less than 40 year has reduced post treatment Hb level. One patient in the age group 41- 50 years, one patient in the age group 51 - 60 years and four patients more than 61 years also have reduced post treatment Hb levels. Two patients more than 61 years have more than 0.5 g/dl decrease in Hb level.

Two patients in the age group 41-50 years, six patients in the age group 51-60 years and seven patients have upto 1 g/dl increase in Hb levels.

Three patients below 40 years have mean Hb increase of 1-2 g/dl. Two patients in the age group 41-50 years, four patients in the age group 51-60 years and eight patients in the age group more than 61 years have 1-2 g/dl increase in Hb level.

One patient in the age group 51-60 year has 3 g/dl increase in Hb level.

Figure - 11

Group 1 - < 40 years

Group 2 - 41-50 years

Group 3 – 51-60 years

Group 4 – 61- 70 years

The above mean plot diagram shows highest mean Hb increase in age group less than 40 years, lowest Hb increase in age group more than 61 years and intermediate Hb increase in age groups 41-60 years.

SEX WISE Hb INCREASE

- 1- Male
- 2- Female

	SEX	Ν	Mean	Std. Deviation	Std. Error Mean
Hb diff.	1	24	.725	.7450	.1521
	2	16	.866	.9364	.2341
DIFF	1	24	6.17	6.790	1.386
	2	16	2.76	18.897	4.724

Table - 3

There are 24 males and 16 females. The mean Hb increase is more in females comparing to males. The mean increase in Hb males is 0.725 g/dl while in females it is 0.866 g/dl.

Hb increase between males and females is statistically not significant.

CKD STAGEWISE Hb INCREASE

SERUM CREATININE

 $Mean-4.825 \ mg/ \ dl$

 $Median-5.2\ mg/\ dl$

 $Maximum-6\ mg/\ dl$

 $Minimum-1.7\ mg/\ dl$

						95% Co Interval	nfidence for Mean
		N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound
Hb diff.	3	1	1.700				
	4	11	.791	.8080	.2436	.248	1.334
	5	28	.745	.8321	.1573	.422	1.067
	Total	40	.781	.8182	.1294	.520	1.043
DIFF	3	1	15.90	•	•	•	•
	4	11	6.69	5.553	1.674	2.96	10.42
	5	28	3.67	14.934	2.822	-2.12	9.46
	Total	40	4.80	12.938	2.046	.67	8.94

Table - 4 : CKD STAGES 3, 4 AND 5.

```
Mean -13.4275 ml/ min/ 1.73 m<sup>2</sup>
Median -11.45 ml/ min/ 1.73 m<sup>2</sup>
Maximum -32 ml/ min/ 1.73 m<sup>2</sup>
Minimum -7.8 ml/ min/ 1.73 m<sup>2</sup>
```

There is only one patient in CKD stage 3. Eleven patients are in CKD stage 4 and twenty two patients are in CKD stage 5. Hb increase in CKD stage 3 is 1.7 g/dl. Mean Hb increase is 0.8 g/dl and 0.74 g/dl in CKD stages 4 and 5 respectively.

		Minimum	Maximum
Hb diff.	3	1.7	1.7
	4	7	1.8
	5	6	3.0
	Total	7	3.0
DIFF	3	16	16
	4	-1	15
	5	-59	19
	Total	-59	19

Table - 5

The minimum Hb increase is -0.7 g/dl in CKD stage 4 and -0.6 g/dl in CKD stage 5. The maximum Hb increase is 1.8 g / dl in CKD stage 4 and 3 g/dl in CKD stage 5.

Figure - 12 : The above graph showing more mean pre-treatment Hb increase in early stages of CKD

CORRELATION BETWEEN Hb INCREASE AND INCREASE IN SERUM FERRITIN

Correlation

Variable Y	Ferritin_Diff
	Ferritin Diff
Variable X	Hb_diff.
	Hb diff.

Sample size	40
Correlation coefficient r	0.01421
Significance level	P=0.9306
95% Confidence interval for r	-0.2986 to 0.3243

There is no statistically significant correlation between post treatment increase in Hb and post treatment increase in serum ferritin.

Scatter diagram

Figure – 13 : The above scatter diagram showing more of ferritin increase than decrease. Most of the patients have upto 100 ng/ ml increase in serum ferritin levels.

Correlation between Hb response and TSAT% differencce

Correlation

Variable Y	TSATDIFF
Variable X	Hb_diff.
	Hb diff.

Sample size	40
Correlation coefficient r	0.2458
Significance level	P=0.1263
95% Confidence interval for r	-0.07117 to 0.5177

There is no statistically significant correlation between post treatment increase in Hb and post treatment increase in TSAT%.

Scatter diagram

Figure 14 The above scatter digram showing more of TSAT% increase than decrease. Most patients have 10% - 20% increase in TSAT% post-treatment.

ASSESSMENT OF INDIVIDUAL IRON INDICES RISE

Assessment of Serum ferritin

Paired samples t-test

Sample 1	Ferritin_pre_	The second secon
Sample 2	Ferritin_post	
	Ferritin post	

	Sample 1	Sample 2
Sample size	40	40
Arithmetic mean	311.0600	336.6200
95% CI for the mean	241.5705 to 380.5495	281.4788 to 391.7612
Variance	47210.6327	29727.1693
Standard deviation	217.2801	172.4157
Standard error of the mean	34.3550	27.2613

Paired samples t-test

Mean difference	25.5600
Standard deviation	142.3275
95% CI	-19.9585 to 71.0785
Test statistic t	1.136
Degrees of Freedom (DF)	39
Two-tailed probability	P = 0.2630

SERUM FERRITIN (ng/ml)

	PRE-TREATMENT	POST- TREATMENT
Mean	311	336.6
Median	233.55	318.4
Maximum	982.2	798.6
Minimum	68.8	82.6

There is increase in mean serum ferritin levels of 25.56 ng/ dl which is statistically insignificant (p = 0.2630).

DOT AND LINE DIAGRAM

Figure - 15 : The above diagram showing no significant ferritin increase in spite of having increase in maximum post-treatment ferritin value and median post-treatment ferritin value

CORRELATION OF AGE & FERRITIN DIFFERENCE

Correlation

Variable Y	AGE	
Variable X	Ferritin_Diff	
	Ferritin Diff	

Sample size	40
Correlation coefficient r	-0.3553
Significance level	P=0.0245
95% Confidence interval for r	-0.6004 to -0.04923

There is significant correlation (p=0.0245) between age group and post treatment ferritin rise.

SCATTER DIAGRAM

SERUM IRON

Paired samples t-test

Sample 1	serum_Iron
	serum Iron
Sample 2	Iron_post_
	Iron(post)

	Sample 1	Sample 2
Sample size	39	39
Arithmetic mean	120.5026	134.0795
95% CI for the mean	104.1450 to 136.8601	122.3607 to 145.7983
Variance	2546.3055	1306.8896
Standard deviation	50.4609	36.1509
Standard error of the mean	8.0802	5.7888

Paired samples t-test

Mean difference	13.5769
Standard deviation	38.8589
95% CI	0.9803 to 26.1735
Test statistic t	2.182
Degrees of Freedom (DF)	38
Two-tailed probability	P = 0.0354

SERUM IRON (µg/dl)

	Pre-treatment	Post-treatment
Mean	120.5	134
Median	118.35	138
Maximum	283	211.8
Minimum	36.3	42

There is post treatment increase in serum iron (13.57 μ g/dl) which is statistically significant (p= 0.0354).

Figure - 17 : The above diagram showing distribution of pre and post-treatment serum iron.

TIBC

Paired samples t-test

Sample 1	TIBC_Pre_
	TIBC(Pre)
Sample 2	TIBC_post_
	TIBC(post)

	Sample 1	Sample 2
Sample size	40	40
Arithmetic mean	435.3593	405.2555
95% CI for the mean	399.2723 to 471.4462	373.2151 to 437.2959
Variance	12732.1673	10036.8461
Standard deviation	112.8369	100.1841
Standard error of the mean	17.8411	15.8405

Paired samples t-test

Mean difference	-30.1037
Standard deviation	73.0883
95% CI	-53.4785 to -6.7290
Test statistic t	-2.605
Degrees of Freedom (DF)	39
Two-tailed probability	P = 0.0129

$TIBC \; (\mu g \! / \; dl)$

	PRE-TREATMENT	POST-TREATMENT
Mean	435.3	405.2
Median	412	384.2
Maximum	765.9	652.8
Minimum	217.2	196.8

There is post treatment decrease in TIBC (30.1 μ g/ dl) which is statistically significant (p= 0.0129).

Figure - 18 : The above diagram showing distribution of pre, posttreatment TIBC.

TSAT%

Paired samples t-test

Sample 1	TSAT%_pre_	50000000
	TSAT%(pre)	
Sample 2	TSAT%_post_	
	TSAT%(post)	

	Sample 1	Sample 2
Sample size	40	40
Arithmetic mean	29.1975	33.9665
95% CI for the mean	25.4102 to 32.9848	30.7912 to 37.1418
Variance	140.2331	98.5741
Standard deviation	11.8420	9.9285
Standard error of the mean	1.8724	1.5698

Paired samples t-test

Mean difference	4.7690
Standard deviation	13.4142
95% CI	0.4789 to 9.0591
Test statistic t	2.248
Degrees of Freedom (DF)	39
Two-tailed probability	P = 0.0303

TSAT%

	PRE-TREATMENT	POST- TREATMENT
Mean	29.19	33.9
Median	28.7	33.35
Maximum	76	60.4
Minimum	10.8	12.9

There is post treatment increase in TSAT% (4.769) which is statistically significant (p=0.0303).

Correlation

Variable Y	AGE	
Variable X	TSATDIFF	

Sample size	40
Correlation coefficient r	0.05729
Significance level	P=0.7255
95% Confidence interval for r	-0.2588 to 0.3623

There is no statistically significant (p=0.7255) age related TSAT rise.

SCATTER DIAGRAM

Figure - 19 : The above scatter diagram showing 10-20% increase in post-treatment TSAT in many patients.

CORRELATION OF Hb RESPONSE AND PRE-TREATMENT IRON INDICES

Correlation between pre-treatment serum ferritin and Hb response

To assess the correlation between pre-treatment serum ferritin and Hb response patients were divided into three groups according to pretreatment serum ferritin levels.

- 1. Serum ferritin levels less than 200 ng/ml.
- 2. Serum ferritin levels between 200 500 ng/ml.
- 3. Serum ferritin levels more than 500 ng/ml

Descriptive

					95% Confide	ence Interval
					for N	Iean
			Std.	Std.	Lower	Upper
	Ν	Mean	Deviation	Error	Bound	Bound
1	17	1.1059	.74117	.17976	.7248	1.4870
2	15	.7433	.86373	.22301	.2650	1.2216
3	8	.1625	.53436	.18892	2842	.6092
Total	40	.7813	.81820	.12937	.5196	1.0429

Table - 6

Descriptive

Hb diff.

	Minimum	Maximum
1	70	1.80
2	35	3.00
3	30	1.30
Total	70	3.00

ANOVA

	Sum of		Mean		
	Squares	df	Square	F	Sig.
Between	4.876	2	2.438	4.248	.022
Groups					
Within Groups	21.232	37	.574		
Total	26.108	39			

Table - 8

There are 17 patients with ferritin levels less than 200 ng/ml, 15 patients with ferritin levels between 200-500 ng/ml and 8 patients with ferritin levels more than 500 ng/ ml.

Mean increase in Hb is 1.1 g/ dl, 0.74 g/ dl and 0.16 g/ dl in groups 1, 2 and 3.

Hb diff.

Means Plots

Figure - 21 : The above means plot diagram clearly shows the increase in Hb response in patients with lower pre-treatment ferritin levels.

Correlation between pretreatment serum iron and Hb response

For statistical purposes patients are divided into 2 groups depending on pre-treatment serum iron levels.

Group 1 – pre-treatment serum iron below the reference value (< 175 μ g/dl in males and < 150 μ g/dl in females).

Group 2 – pre-treatment serum ron above 175 μ g/dl in males and > 150 μ g/dl in females.

	Descriptives							
Hb diff.								
				95% Confidence Interval				
				for Mean				
			Std.	Std.	Lower			
	Ν	Mean	Deviation	Error	Bound	Upper Bound		
1	33	.7909	.72860	.12683	.5326	1.0493		
2	7	.7357	1.23177	.46557	4035	1.8749		
Total	40	.7812	.81820	.12937	.5196	1.0429		

Table 9

Descriptives

Hb diff.

	Minimum	Maximum
1	70	1.80
2	35	3.00
Total	70	3.00

Table - 10

ANOVA

Hb diff.							
	Sum of Squares	df	Mean Square	F	Sig.		
Between Groups	.018	1	.018	.026	.874		
Within Groups	26.091	38	.687				
Total	26.108	39					

Table – 11

There are 33 patients within the reference value of serum Iron. 7 patients are having serum Iron above reference values.

Figure - 22 : The above diagram clearly showing the inverse relationship between pre-treatment serum iron and Hb response

Correlation between pre-treatment TIBC and Hb response

For statistical analysis patients are divided into 2 groups depending upon the pre-treatment TIBC.

Group 1 – pre-treatment TIBC in the reference value $\ (200\text{-}400\ \mu\text{g/dl}).$

Group 2 – pre-treatment TIBC above 400 μ g/dl .
Descriptives

Hb	diff.
110	un.

				95% Confide for M	ence Interval ⁄Iean	
	Std. Std.			Lower		
	N	Mean	Deviation	Error	Bound	Upper Bound
1	19	.5263	.77520	.17784	.1527	.9000
2	21	1.0119	.80435	.17552	.6458	1.3780
Total	40	.7812	.81820	.12937	.5196	1.0429

Table 12 Descriptives

Hb diff.		
	Minimum	Maximum
1	70	1.60
2	35	3.00
Total	70	3.00

Table-13

ANOVA

Hb diff.

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	2.352	1	2.352	3.762	.060
Within Groups	23.756	38	.625		
Total	26.108	39			

Table – 14

There are 19 patients having TIBC within reference value and 21 patients having TIBC above reference value. Mean Hb increase in group is less (0.52 g/ dl) than in group 2(1.01 g/dl).

Means Plots

Figure - 23 : The above means plot diagram showing direct relationship between Hb response and pre-treatment TIBC.

Correlation between Hb response and pre-treatment TSAT

To assess the correlation between pre-treatment serum ferritin and Hb response patients were divided into three groups according to pretreatment TSAT levels.

TSAT levels less than 20%
 TSAT levels between 20% - 30%
 TSAT levels more than 30%

Descriptives

Hb	diff.

				95% Confide	ence Interval	
				for N	/lean	
		Std. Std.				
	Ν	Mean	Deviation	Error	Bound	Upper Bound
1	7	1.3429	.30472	.11518	1.0610	1.6247
2	17	1.1529	.45705	.11085	.9179	1.3879
3	16	.1406	.85969	.21492	3175	.5987
Total	40	.7813	.81820	.12937	.5196	1.0429

Table 16

Descriptives Hb diff.

	Minimum	Maximum
1	.80	1.80
2	.30	1.80
3	70	3.00
Total	70	3.00

Table - 17

7 patients have pre-treatment TSAT <20%, 17 patients have 20-30% and 16 patients have pre-treatment TSAT > 30%. In patients with pretreatment TSAT < 20% there is greater increase in post treatment Hb (mean increase 1.34 g/dl), patients with TSAT 20-30% have 1.15 g/dl increase whereas in patients with pretreatment TSAT > 30% there is not much increase in post treatment HB (mean difference 0.14 g/dl).

	Hb diff.								
	Sum of SquaresdfMean SquareFSig.								
Between	11.123	2	5.561	13.731	.000				
Groups									
Within Groups	14.986	37	.405						
Total	26.108	39							

Table – 18 : ANOVA

Means Plots

Figure – 24 : There is inverse relationship between Hb response and

pre-treatment TSAT.

Correlation of Hb response with pre-treatment serum ferritin and

TSAT levels

For statistical analysis patients are divided into 9 groups depending upon pre-treatment serum ferritin and TSAT levels.

groups	Pre-treatment serum ferritin(ng/ml)	Pre-treatment TSAT
Group 1	< 200	<20%
Group 2	<500	<30%
Group 3	>500	>30%
Group 4	<200	<30%
Group 5	<200	>30
Group 6	<500	<20%
Group 7	<500	>30%
Group 8	>500	<20%
Group 9	>500	<30%

					95% Confide for 1	ence Interval √Iean
			Std.	Std.	Lower	
	N	Mean	Deviation	Error	Bound	Upper Bound
1	4	1.3750	.41932	.20966	.7078	2.0422
2	6	.9500	.35637	.14549	.5760	1.3240
3	5	1400	.20736	.09274	3975	.1175
4	9	1.4667	.18708	.06236	1.3229	1.6105
5	4	.0250	.78475	.39238	-1.2237	1.2737
6	2	1.3000	.14142	.10000	.0294	2.5706
7	7	.4071	1.16348	.43975	6689	1.4832
8	1	1.3000	•	.		
9	2	.3500	.07071	.05000	2853	.9853
Total	40	.7813	.81820	.12937	.5196	1.0429

Hb diff.

Table - 20

Descriptives Hb diff.

no uni.					
	Minimum	Maximum			
1	.80	1.80			
2	.60	1.50			
3	30	.20			
4	1.30	1.80			
5	70	.80			
6	1.20	1.40			
7	35	3.00			
8	1.30	1.30			
9	.30	.40			
Total	70	3.00			

Table - 21

Hb diff.							
	Sum of	Sum of Mean					
	Squares	df	Square	F	Sig.		
Between	14.499	8	1.812	4.840	.001		
Groups							
Within Groups	11.609	31	.374				
Total	26.108	39					

ANOVA

Table - 22

There are 4,6,5,9,4,2,7,1 and 2 patients in groups 1,2,3,4,5,6,7,8 and 9 respectively.

Mean increase in post-treatment Hb is 1.375 g/dl, 0.95 g/dl, -0.14 g/dl, 1.46 g/dl, 0.025 g/dl, 1.3 g/dl, 0.4 g/dl, 1.3 g/dl and 0.35 g/dl respectively in groups 1,2,3,4,5,6,7,8 and 9 respectively.

There is greater increase in post-treatment Hb in patients with low serum ferritin and low TSAT.

The Hb response decreases (mean Hb increase -0.14 g/ dl in Iron replete patients (serum ferritin > 500 ng/ dl and TSAT > 30%).

When the pre-treatment TSAT is < 20 % the Hb response is good; 1.375 g/ dl with ferritin < 200 ng/ dl: 1.3 g/ dl with ferritin 200- 500 ng/ dl and > 500 ng/ dl.

Means Plots

Figure - 25 : The diagram showing negative response in Iron replete state and good response in patients with TSAT < 20 % and intermediate response in other patient groups.

DISCUSSION

Absolute and relative ron deficiency

There is only one patient with absolute iron deficiency (serum ferritin < 100 ng/ dl and TSAT < 20%). But there are 20 patients with functional iron deficiency (serum ferritin < 500 ng/ml and TSAT < 30%). 4 patients (10%) have serum ferritin level less than 100 ng/dl and seven (17.5%) patients have TSAT < 20%. According to NHANES III (1988-96) 46% of women and 19% men had TSAT < 20%. 47% women and 44% of men had ferritin < 100 ng/dl.

Hb response

There is statistically significant increase in Hb level 1 month after 1 G Inj. iron sucrose IV in most of the patients. Mean increase in Hb post treatment is 0.81 g/dl. In many similar study groups the Hb response is between 0.4 g/ dl to 1.4 g/ dl after IV iron therapies. In similar studies Agarwal has observed 0.4 g/dl Hb response in 75 patients. Qunibi observed 1.16 g/dl Hb response in 188 patients, Spinowitz 0.62 g/dl in 188 patients, Von wyk 0.7 g/dl in 188 patients, Anuradha 0.94 g/dl in 56 patients, Panesar 1.3 g/dl in 32 patients, Bennett 0.99 g/dl in 36 patients, Atray 1.16 g in 22 patients and Post 1.4 g/dl in 5 patients.

AGE GROUP

The increase in Hb response is more in younger age group which is statistically insignificant due to small number of patients in younger age (<40 years). Majority of patients are from 61-70 years (17 numbers). This may be due to more conservative non dialytic approach in older peoples comparing to younger patients. Decreased response to IV iron in older age group may be due to age related cytopenias.

SEX

Males are expected to show higher Hb response than females due to the influence of androgens over erythropoiesis. In our study females fare slightly better than their male counterparts. This may be again due to majority of patients being from older age group.

CKD STAGE

Majority of patients are from CKD stages 4, 5 than CKD stage 3. In general population CKD stage 3 are more than stage 4 or 5. But our study was conducted in outpatient as well as in patients of tertiary health care centre where the symptomatic CKD stage 4, 5 patients constitute the majority of patients. As there is only one patient in CKD stage 3 we could not assess the Hb response according to the CKD stages. There is no statistically significant age, sex and CKD stage related Hb response.

CORRELATION BETWEEN Hb RESPONSE AND FERRITIN AND TSAT

In our study there is no correlation between Hb response and ferritin and TSAT response. In a similar study Silverberg et al has observed that there is no correlation between Hb response and ferritin and TSAT response in CKD patients from Switzerland.

ASSESSMENT OF FERRITIN, IRON, TIBC AND TSAT RESPONSES

In our study serum ferritin increased from 311 ng/dl to 336.6 g/dl, iron from 120.5 μ g/dl to 134 μ g/dl and TSAT from 29.19% to 33.9%. TIBC decreased from 435.3 μ g/dl to 405.2 μ g/dl. In a similar study by Gabriel Mircescu from Romania involving 60 patients serum ferritin increased from 98 ng/ ml to 156 ng/ml a 3 months after 600 mg IV iron Sucrose and 442.5 ng/ml 1 year after 2400 mg IV iron Sucrose. Serum iron increased from (73.9 μ g/dl) to 74.8 μ g/dl (3 months) and 442.5 μ g/dl (1 year). TSAT increased from 21.6% to 24.9% (3 months) and 33.6% (1 year)⁵². There is no statistically significant serum ferritin response. But statistically significant age related ferritin response is present.

There are statistically significant serum iron, TIBC and TSAT responses present. But there is no age related response.

CORRELATION BETWEEN PRETREATMENT FERRITIN, TSAT AND Hb RESPONSE

When the TSAT is < 20% the Hb response is more irrespective of serum ferritin levels. When serum ferritin is less than 200 ng/ dl the Hb response is good if TSAT is < 30%. If the TSAT is > 30% there is no significant Hb response in spite of having low serum ferritin levels (< 200 ng/ dl).When the serum ferritin is > 500 ng/ml or TSAT is > 30% (Iron replete state) there is negative Hb response. This is the basis for more emphasis on TSAT rather than serum ferritin. This has been shown in the 2012 DOPPS study where more than half of dialytic patients have serum ferritin > 800 ng/ml.

LIMITATIONS OF THE STUDY

- 1. Small sample size.
- 2. No control group.
- 3. No long term follow up.
- 4. Hb is measured only once before and after treatment with parenteral Iron therapy. Hb variability is not studied.
- 5. Gold standard bone marrow iron stores were not compared due to ethical concerns.

CONCLUSIONS

- 1. There is increase in Hb after one month of intravenous iron therapy.
- 2. Pre-treatment transferrin saturation (TSAT) level < 20% is the most important predictable factor to assess Hb response.
- If TSAT is < 30%, Hb response is good even with high serum ferritin level (>500 ng/dl).
- 4. Serum ferritin response is not statistically significant.
- 5. Iron, TIBC, TSAT responses are statistically significant
- 6. Response in Hb, ferritin and TSAT did not correlate with each other.
- 7. There is a significant correlation between Hb response and pretreatment ferritin and TSAT levels.
- 8. There is no correlation between Hb response and pre-treatment serum iron and TIBC.
- IV iron sucrose has very good safety profile except for a few minor adverse effects.

BIBLIOGRAPHY

- 1. Astor BC. Kidney function and anemia as risk factors for coronary heart disease and mortality: the Atherosclerosis Risk in Communities (ARIC) Study. Am heart J. 2006; 151:492.
- 2. K Iseki. Anemia as a risk factor for chronic kidney disease. Kidney International (2007) 72, S4–S9
- 3. Cesari M. haemoglobin levelsand skeletal muscle: results from the in CHIANTI study. J Gerontol A Biol Sci Med Sci. 2004;59:249.
- 4. Jodie L. Mechanisms of Anemia in CKD. J Am Soc Nephrol 23: 1631–1634, 2012.
- 5. EDITORIAL REVIEW. Anemia of end-stage renal disease (ESRD). Kidney International. Vol. 28 (1985), pp. 1—5.
- 6. KDIGO clinical practice guideline for anemia in chronic kidney disease. Kidney International Supplements (2012) 2, v
- Daniel W. Coyne. Ferric Gluconate Is Highly Efficacious in Anemic Hemodialysis Patients with High Serum Ferritin and Low Transferrin Saturation: Results of the Dialysis Patients' Response to IV Iron with Elevated Ferritin (DRIVE) Study. J Am Soc Nephrol 18: 975–984, 2007
- DOPPS Practice Monitor Update. Commentary on 'The DOPPS Practice Monitor for US Dialysis Care:Update on Trends in Anemia Management 2 Years Into the Bundle': Iron(y) Abounds 2 Years Later. Am J Kidney Dis. 2013;62(6):1213-1220.
- 9. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney International Supplements (2013) 3, xi.
- Locatelli F. Epidemiology of caediovascular risk in patients with chronic kidney disease. Nephrol Dial Transplant.2003; 18 (Suppl 7): vii2-vii9.

- Modi G, Jha V. Incidence of ESRD in India. Kidney Int 2011; 79: 573.
- Vivekanand Jha. Current status of end-stage renal disease care in India and Pakistan. Kidney International Supplements (2013) 3, 157–160.
- 13. Watson AJ, Adverse effects of therapy for the correction of anemia in hemodialysis patients. Semin Nephrol.1989; 9 {suppl1} 30-34.
- European Best Practice Guidelines for the Management of Anaemia in Patients with Chronic Renal Failure. Nephrol Dial Transplant 1999; 14 [Suppl 5]: 1–50.
- Collins AJ.USRDS 2010 annual report, Am J Kidney Dis.2011; 57:A8.
- Mcfarlane SI. Prevalence and associations of anemia of CKD: Kidney Early Evaluation Programme(KEEP) and National Health And Nutrition Examination Survey(NHANES)1999-2004.Am J Kidney Dis.2008;51:s46.
- Fishbane S, Pollack S, Feldman HI, Joffe MM. Iron indices in chronic kidney disease in the National Health and Nutritional Examination Survey 1988-2004. Clin J Am Soc Nephrol. 2009;4:57-61.
- Valderra bano F. Anaemia management in chronic kidney disease patients: an overview of current clinical practice. Nephrol Dial Transplant 2002; 17 [Suppl 1]: 13–18.
- 19. Singh et al. BMC Nephrology 2013, 14:114.
- 20. Jelkmann W.erythropoietin after a century of research. Younger than ever. E J Hematol 2007;78:183.
- 21. Bright R: Cases and observations: Illustrative of renal disease accompanied by the secretion of albuminous urine. Guys Hosp Rep 1: 338, 1836.
- 22. Righetti m. A Single center study about the 5/77/7 effects of HFR on anemia, G Ital Nefrol, 219 suppl 30) S168-71.

- 23. Dresow B, Petersen D, Fischer R, Nielsen P.Nontransferrin- bound iron in plasma following administration of oral iron drugs. Biometals. 2008;21: 273-6.
- 24. Geisser P. Iron therapy with special emphasis on oxidative stress. St Gallen, Switzerland: Vifor International Inc;1998.
- 25. Crichton RR, Danielson BG, Geisser P. Iron therapy with special emphasis on intravenous administration. 4th ed. Bremen, Germany: UNI- MED Verlag AG; 2008.
- 26. McGonigle RJ, Wallin JD, Shadduck RK, Fisher JW: Erythropoietin deficiency and inhibition of erythropoiesis in renal insufficiency. Kidney Int 25: 437–444, 1984.
- 27. Cotes PM, Tam RC, Reed P, Hellebostad M: An immunological cross- reactant of erythropoietin in serum whichmay invalidate EPO radioimmunoassay. Br J Haematol 73: 265–268, 1989.
- Fishbane S, Pollack S, Feldman HI, Joffe MM. Iron indices in chronic kidney disease in the National Health and Nutritional Examination Survey 1988-2004. Clin J Am Soc Nephrol. 2009; 4:57-61.
- 29. Iain C Macdougall. Use of Intravenous Iron Supplementation in Chronic Kidney Disease-An Update. IJKD 2013;7:9-22.
- 30. Ashby DR, Gale DP, Busbridge M, Murphy KG, Duncan ND, Cairns TD, Taube DH, Bloom SR, Tam FW, Chapman RS, Maxwell PH, Choi P: Plasma hepcidin levels are elevated but responsive to erythropoietin Therapy in renal disease. Kidney Int 75: 976–981, 2009.
- 31. Cullen P, Soffker J, Hopfl M, et al. Hypochromic red cells and Reticulocyte haemglobin content as markers of iron-deficient erythropoiesis in patients undergoing chronic haemodialysis. Nephrol Dial Transplant 1999; 14: 659–665.
- 32. Kamyar Kalantar-Zadeh. Hemoglobin Variability in Anemia of Chronic Kidney Disease. *J Am Soc Nephrol* 20: 479–487, 2009.

- 33. Pfeffer MA, Burdmann EA, Chen C-Y *et al.* A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. *N. Engl. J. Med.* 2009; 361: 2019–32.
- 34. Locatelli F, Aljama P, Barany P, et al. European Best Practice Guidelines Working Group. Revised European best practice guidelines for the management of anaemia in patients with chronic renal failure. Section III: Treatment of renal anaemia. Nephrol Dial Transplant. 2004;19:ii16-31.
- 35. Auerbach M. Clinical experience with intravenous iron. Transfus Altern Transfus Med. 2007;9:26-30.
- 36. Appelberg R. Macrophage nutriprive antimicrobial mechanisms. J Leukoc Biol 2006; 79: 1117–1128.
- 37. Byrd TF, Horwitz MA. Interferon gamma-activated human monocytes downregulate transferrin receptors and inhibit the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. J Clin Invest 1989; 83: 1457–1465.
- 38. Mencacci A, Cenci E, Boelaert JR et al. Iron overload alters innate and T helper cell responses to Candida albicans in mice. J Infect Dis 1997; 175:1467–1476.
- 39. Nairz M, Theurl I, Ludwiczek S et al. The co-ordinated regulation of iron homeostasis in murine macrophages limits the availability of iron for intracellular Salmonella typhimurium. Cell Microbiol 2007; 9: 2126–2140.
- 40. Spinowitz BS, Kausz AT, Baptista J, et al. Ferumoxytol for treating iron deficiency anemia in CKD. J Am Soc Nephrol 2008; 19:1599–1605.
- 41. Qunibi WY, Martinez C, Smith M, Benjamin J, Mangione A, Roger SD. A randomized controlled trial comparing intravenous ferric carboxymaltose with oral iron for treatment of iron deficiency anaemia of non-dialysisdependent chronic kidney disease patients. Nephrol Dial Transplant. 2011;26:1599-607.

- 42. Li H, Wang SX. Intravenous iron sucrose in peritoneal dialysis patients with renal anemia. Perit Dial Int. 2008;28:149-54.
- 43. Spinowitz BS, Kausz AT, Baptista J, et al. Ferumoxytol for treating iron deficiency anemia in CKD. J Am Soc Nephrol. 2008;19:1599-605.
- 44. Walter h. Horl. Low hepcidin triggers hepatic iron accumulation in patients with hepatitis C. NDT (2014)29;1141-1144.
- 45. Macdougall IC, Gray SJ, Elston O, et al. Pharmacokinetics of novel Erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. J Am Soc Nephrol 1999; 10:2392–2395.
- 46. Agarwal A, Silver MR, Walczyk M, et al. Once-monthly darbepoetin alfa for maintaining hemoglobin levels in older patients with chronic kidney disease. J Am Med Dir Assoc 2007; 8:83–90.
- 47. Macdougall IC. CERA (continuous erythropoietin receptor activator): a New erythropoiesis-stimulating agent for the treatment of anemia. Curr Hematol Rep 2005; 4:436–440.
- 48. Macdougall IC, Robson R, Opatrna S, et al. Pharmacokinetics and Pharmacodynamics of intravenous and subcutaneous continuous Erythropoietin receptor activator (C.E.R.A.) in patients with chronic kidney disease. Clin J Am Soc Nephrol 2006; 1:1211– 1215.
- 49. Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW: Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med 316: 73–78, 1987.
- 50. Johnson DW. ESA hyporesponsiveness. Nephrology (carlton).2007;12: 321.
- 51. Bernhardt WM, Wiesener MS, Scigalla P, et al. Inhibition of prolyl Hydroxylases increases erythropoietin production in ESRD. J Am Soc Nephrol.2010;21:2151.

- 52. Gabriel Mircescu. Intravenous iron supplementation for the treatment of anaemia in pre-dialyzed chronic renal failure patients. Nephrol Dial Transplant (2006) 21: 120–124.
- 53. Silverberg DS.intravenous Iron supplementation for the treatment of anemia of moderate to severe renal failure in patients not receiving dialysis. AJKD 27;234-238,1996.
- 54. Tietz N W. clinical guide to laboratory tests. 3rd ed AACC 1995.
- 55. Agarwal R, Rizkala AR, Bastani B, Kaskas MO, Leehey DJ, Besarab A. A randomized controlled trial of oral versus intravenous iron in chronic kidney disease. Am J Nephrol.2006;26:445-54.
- 56. Qunibi WY, Martinez C, Smith M, Benjamin J, Mangione A, Roger SD. A randomized controlled trial comparing intravenous ferric carboxymaltose with oral iron for treatment of iron deficiency anaemia of nondialysis dependent chronic kidney disease patients. Nephrol Dial Transplant. 2011;26:1599-607.
- 57. Spinowitz BS, Kausz AT, Baptista J, et al. Ferumoxytol for treating iron deficiency anemia in CKD. J Am Soc Nephrol. 2008;19:1599-605.
- 58. Van Wyck DB, Roppolo M, Martinez CO, Mazey RM, McMurray S; for the United States Iron Sucrose (Venofer) Clinical Trials Group. A randomized, Controlled trial comparing IV iron sucrose to oral iron in anemic patients with nondialysis-dependent CKD. Kidney Int. 2005;68:2846-56.
- 59. Manuel Muñoz, Ferric carboxymaltose for the treatment of irondeficiency anemia.expert opinion on pharmacotherapy. April 2012, Vol. 13, No. 6, Pages 907-921.
- 60. Gotloib L, Silverberg D, Fudin R, et al. Iron deficiency is a common cause of anemia in chronic kidney disease and can often be corrected with intravenous iron. J Nephrol 2006;19:161-7.

- 61. Steven Fishbane. Iron Indices in Chronic Kidney Disease in the National Health and Nutritional Examination Survey 1988–2004. *Clin J Am Soc Nephrol* 4: 57–61, 2009
- 62. Csaba P. Kovesdy. Association of Markers of Iron Stores with Outcomes in Patients with Nondialysis-Dependent Chronic Kidney Disease. Clin J Am Soc Nephrol 4: 435–441, 2009.
- 63. Shankar P Nagaraju. Heme iron polypeptide for the treatment of iron deficiency anemia in non-dialysis chronic kidney disease patients: a randomized controlled trial. BMC Nephrology 2013, 14:64.
- 64. Jay B. Wish. Assessing Iron Status: Beyond Serum Ferritin and Transferrin Saturation. *Clin J Am Soc Nephrol* 1: S4–S8, 2006.
- 65. Simona stancu. Can the response to iron therapy be predicted in anemic non dialysis patients with chronic kidney disease. CJASN 2010; march 5(3):409-416.
- 66. Rahman MM.evaluattion of iron status by bone marrow iron stain and correlation with serum profile in chronic kidney disease patients. Journal of Bangaladesh College of physicians and surgeons 25, 117-120,2007.

INSTITUTIONAL ETHICAL COMMITTEE GOVT.KILPAUK MEDICAL COLLEGE, CHENNAI-10 Protocol ID.No.3/10/2014 CERTIFICATE OF APPROVAL

The Institutional Ethical Committee of Govt. Kilpauk Medical College, Chennai reviewed and discussed the application for approval "Haemoglobin response to intravenous iron therapy in nondialytic chronic kidney disease patients with anemia submitted by Dr.V. Murugesan, Dept. of Nephrology, PG Student, KMC, Chennai-10.

The Proposal is APPROVED.

The Institutional Ethical Committee expects to be informed about the progress of the study any Adverse Drug Reaction Occurring in the Course of the study any change in the protocol and patient information /informed consent and asks to be provided a copy of the final report.

1-1-12224

CHAIRMAN, Ethical Committee Govt.Kilpauk Medical College,Chennai

PROFORMA

NAME:		AGE:	SEX:
ADDRESS		MOBILE	
D.O.A:	D.O.D		IP.NO:
HISTORY			
Breathlessness	pedal edema	facial puffiness	easy fatiguability
anorexia	Nausea/vomiting	Hematemesis	malena
hematochezia	hemoptysis	Hematuria	Epistaxis
menorrhagia/scanty	y flow		
Passing worms	Barefoot walking		
Drugs			
DM	SHT	CAD	
GENERAL EXAM	IINATION		
Conjunctiva	tongue	Hand s	skin crease
Nail changes	pedal edema		
PR	BP	Temp	RR
Weight			
CVS	RS	ABI	DOMEN
INVESTIGATION	S		
Hb			
Pre-treatment		post-tre	atment
Complete blood co	unt		
pretreatment		post trea	tment

Peripheral smear study

Blood sugar	urea		creatinine
eGFR (MDRD formula)			
Na +		K+	
URINE albumin		deposits	
URINE C&S		BLOOD C&S	
Motion for occult blood			
X-Ray chest	ECG		
ECHOcardiography			
USG KUB			
Serum ferritin			
Pretreatment		post treatment	
Serum iron			
Pretreatment		post treatment	
Total iron binding capacity			
Pretreatment		post treatment	
Transferrin saturation			
Pretreatment		post treatment	

MASTER CHART

SI.NO	AGE	SEX	CREATININE(mg%	eGFR(ml/min/1.73m2	CKD STAGE	Hb(pre)g/dl	Hb(post)g/dl	Hb diff.
1	57	1	5.8	10.8	5	9.7	9.4	-0.3
2	60	1	5.5	11.3	5	7.7	9	1.3
3	58	2	5.2	9	5	7	10	3
4	70	2	3	16.4	4	7.3	8.5	1.2
5	41	1	5.8	11.5	5	7.2	8.7	1.5
6	62	1	3.1	21.8	4	7.6	8.9	1.3
7	35	2	5.3	10	5	6	5.9	-0.1
8	65	2	5.8	7.8	5	7.3	7.9	0.6
9	48	1	4.2	16.2	4	8.2	9.5	1.3
10	60	1	5.1	12.4	5	7	7.8	0.8
11	55	1	4.3	16	4	8.4	8.1	-0.3
12	70	2	5.2	8.7	5	5	5.1	0.1
13	64	1	5.4	11.4	5	8	9.2	1.2
14	63	1	2.8	24.4	4	9	8.3	-0.7
15	66	2	1.7	32	3	8.3	10	1.7
16	52	1	2.8	25.4	4	7.8	8.4	0.6
17	53	1	6	10.5	5	7	7.2	0.2
18	68	2	5.2	8.7	5	5.2	6.5	1.3
19	19	2	5.2	11.3	5	6.2	7.8	1.6
20	65	2	5.6	8.1	5	6	5.7	-0.35
21	62	1	6	10.1	5	5	6.8	1.8
22	45	1	5.2	12.8	5	7.4	7.5	0.1
23	70	1	5.4	11.2	5	5.3	5.9	0.6
24	68	1	5.6	11.8	5	6.2	6.8	-0.6
25	68	1	4.8	12.9	5	8.5	8.6	0.1
26	44	2	3.9	13.3	5	9.3	9.6	0.3
27	21	2	3.5	17.5	4	7.5	9.3	1.8
28	55	1	5.3	20.8	4	8.1	8.3	0.2
29	68	1	4	15	4	9.1	10.5	1.4
30	70	1	5.8	10.3	5	6.7	7.5	0.8
31	58	1	3.5	19.2	4	9.2	10.7	1.5
32	52	1	3.8	17.9	4	9	9.4	0.4
33	62	2	5.2	8.9	5	7.2	8	0.8
34	56	2	5.6	8.6	5	8.2	9.2	1
35	50	1	5.2	12.5	5	8.2	9.6	1.4
36	34	1	5.4	13	5	6.2	7.6	1.4
37	47	2	5.6	8.7	5	8.2	8	-0.2
38	70	2	4.8	9.5	5	7.3	7	-0.3
39	52	2	5.4	8.8	5	6.1	7.5	1.4
40	50	1	6	10.6	5	9.4	10.8	1.4

Sex 1 - Male 2 - Female

9	8
/	υ

Ferritin(pre)ng/ml FERRITIN GROUP ferritin (post)ng/ml ferritin Diff Iron(pre)µg/dl Iron group Iron(post)µg

599	3	708	109	114	1	154
127.3	1	178	50.7	133.4	1	155
433.8	2	343.8	-90	283	2	139.4
225.4	2	252	26.6	57.4	1	78
125.5	1	155	29.5	38.4	1	42
138	1	243	105	142	1	183
575.9	3	612	35.9	123.2	1	142
418.9	2	453	34.1	150.2	2	168
136	1	175	39	78	1	112
374.8	2	354	-20.8	143.2	1	162
486	2	542	56	152	1	166
409.5	2	434	24.5	119.2	1	128
312.6	2	345	32.4	178	1	154
98.4	1	154	55.6	118	1	134.6
124.6	1	176.4	51.8	98.6	1	154
154.7	1	178	23.3	104.9	1	142
478	2	434	- 44	184	2	138
504.5	3	289	-215.5	60.4	1	133,6
100.1	1	293	192.9	96.2	1	106.5
310.8	2	354	43.2	196.5	2	211.8
68.8	1	124.6	55.6	74.4	1	124.8
415	2	393.6	-21.4	118.7	1	123.4
368	2	452	84	134	1	178
77.4	1	82.6	5.2	103.3	1	132.8
202.4	2	186.2	-16.2	175	1	152.5
558	3	478.6	-79.4	138	1	152.4
121.2	1	437	315.8	159	2	123.8
641.5	3	412.6	-238.9	176.1	2	189.7
123	1	154.2	31.2	115	1	134.8
96	1	124	28	126.5	1	114.6
231.7	2	286.8	55.1	129	1	144.2
732	3	798.6	66.6	57.3	1	78.4
103	1	156.8	53.8	66	1	88.4
235.4	2	254	28.6	93.2	1	176.8
125	1	198.6	73.6	80.4	1	134.8
437	2	498.6	61.6	44.4	1	68.4
982.2	3	409.7	572.5	36.3	1	71.9
519.4	3	578.4	59	187.3	2	114.2
108.2	1	224	115.8	109.2	1	154
163.4	1	540.7	377.3	66.3	1	100.9

Ferritin group 1- < 200 ng/ml, 2- <500 ng/ml, 3- >500 ng/ml

Iron group $1- <175 \ \mu g/dl$ in males, $< 150 \ \mu g/ml$ in females,

2->175 µg/dl in males, >150 µg/dl in females

99

TIBC(Pre)	TIBC group	TIBC(post)	TSAT%(pre)	TSAT group	TSAT%(post)	TSAT DIFF(µg/ml)	ferritin/TSAT group
333.9	1	298	34.1	3	51.6	17.5	3
626.4	2	512	21.2	2	30.2	9	4
765.9	2	416.4	36.9	3	33.4	-3.5	7
378.9	1	350	15.1	1	22.2	7.1	6
330.5	1	324	11.6	1	12.9	1.3	1
589	2	498	24.1	2	36.7	12.6	4
354.1	1	382	34.7	3	37.1	2.4	3
512	2	486	29.3	2	34.5	5.2	2
412	2	386	20.2	2	29	8.8	4
483.8	2	456	29.5	2	33.4	3.9	2
356	1	380	42.6	3	43.68	1.08	7
347.1	1	360	34.3	3	35.5	1.2	7
624.6	2	652.8	28.4	2	23.5	-4.9	2
390.8	1	362.6	30.1	3	37.12	7.02	5
412	2	386	23.9	2	39.8	15.9	4
340.8	1	312	30.7	3	45.5	14.8	5
534.6	2	496.2	34.4	3	27.8	-6.6	7
559.2	2	448.5	10.8	1	29.7	18.9	8
355.2	1	248.79	27	2	42	15	4
416.7	2	352	47	3	60.4	13.4	7
500.6	2	453.8	14.8	1	27.5	12.7	1
299.7	1	306.7	39	3	40	1	7
450	2	614.8	29.7	2	28.9	-0.8	2
282.9	1	265.9	36.5	3	49.9	13.4	5
497.1	2	464.8	35	3	32.8	-2.2	7
546.9	2	524.8	25.2	2	29	3.8	9
570	2	460.89	27.8	2	26.86	-0.94	4
546.4	2	624.48	31.2	3	30	-1.2	3
397.5	1	382.4	29	2	35.2	6.2	4
344.4	1	378	36	3	30.3	5.7	5
505	2	478.8	25.5	2	30.1	4.6	2
217.2	1	196.8	26.3	2	39.8	13.5	9
394.8	1	356.2	16.7	1	24.8	8.1	1
336.3	1	312.6	27.7	2	56.5	18.8	2
372.9	1	354.8	21.5	2	37.9	16.4	4
301.8	1	296.2	14.7	1	23	8.3	6
471.9	2	415.56	76	3	17.3	-58.7	3
373.2	1	342.9	50.1	3	33.3	-16.8	3
458.1	2	404.8	23.7	2	38	14.3	4
424.17	2	467.7	15.6	1	21.5	5.9	1

TIBC groups 1- < 400 $\mu g/dl, \qquad$ 2- > 400 $\mu g/dl$

TSAT groups 1- $<20\%,\ 2-<30\%$ and 3 -> 30%

KEY TO MASTER CHART

Ferritin & TSAT	Pre-treatment serum	Pre-treatment
groups	ferritin(ng/ml)	TSAT
Group 1	< 200	<20%
Group 2	<500	<30%
Group 3	>500	>30%
Group 4	<200	<30%
Group 5	<200	>30
Group 6	<500	<20%
Group 7	<500	>30%
Group 8	>500	<20%
Group 9	>500	<30%

turnitin

Digital Receipt

This receipt acknowledges that Turnitin received your paper. Below you will find the receipt information regarding your submission.

The first page of your submissions is displayed below.

Submission author:	161213041.dm lii - Nephrology MUR
Assignment title:	TNMGRMU EXAMINATIONS
Submission title:	hemoglobin response to intranven
File name:	thesis_print_Autosaved.doc
File size:	634.5K
Page count:	99
Word count:	11,089
Character count:	61,744
Submission date:	04-Apr-2015 12:45PM
Submission ID:	523037166

