

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN OF CIRCULARLY POLARIZED RECTENNA WITH HARMONIC REJECTION CAPABILITY AT 2.45 GHZ FOR MICROWAVE ENERGY TRANSFER

SHARIF AHMED QASEM AHMED

MASTER OF SCIENCE IN ELECTRONIC ENGINEERING

2017

C Universiti Teknikal Malaysia Melaka

Faculty of Electronic and Computer Engineering

DESIGN OF CIRCULARLY POLARIZED RECTENNA WITH HARMONIC REJECTION CAPABILITY AT 2.45 GHZ FOR MICROWAVE ENERGY TRANSFER

Sharif Ahmed Qasem Ahmed

Master of Science in Electronic Engineering

2017

C Universiti Teknikal Malaysia Melaka

DESIGN OF CIRCULARLY POLARIZED RECTENNA WITH HARMONIC REJECTION CAPABILITY AT 2.45 GHZ FOR MICROWAVE ENERGY TRANSFER

SHARIF AHMED QASEM AHMED

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electronic Engineering

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Design of Circularly Polarized Rectenna with Harmonic Rejection Capability at 2.45 GHz for Microwave Energy Transfer" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Sharif Ahmed Qasem Ahmed
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering

Signature	:
Supervisor Name	: Prof. Dato' Dr. Mohd Nor Bin Husain
Date	:

C Universiti Teknikal Malaysia Melaka

DEDICATION

To my beloved mother and father

ABSTRACT

Nowadays, with the fast development in wireless devices, microwave energy transfer in which energy is transmitted from one point to another without wires, becomes more vital. There are many applications in which microwave energy transfer technology can be utilized such as smart healthcare, environmental monitoring, and home automation. Microwave energy transfer has the advantages of easy communication and lower cost compared to traditional transmission mediums. A rectifying antenna or rectenna which consists of receiving antenna, rectifier, matching network, and output DC filter, is an important element in microwave energy transfer. The antenna receives RF signals that are converted from alternative current (AC) into usable direct current (DC) by the rectifying circuit. Rectifying diodes have nonlinear behavior which generates harmonics and degrades RF-to-DC conversion efficiency of the rectenna. Harmonic rejection filter is used to suppress these harmonics. However, adding harmonic rejection filter increases the size and cost of the rectenna. Antennas with harmonic rejection is used to replace the harmonic rejection filter. However, the proposed antennas have a low gain which degrades rectenna conversion efficiency. To increase the amount of collected RF signals, circular polarization, dual-band and broadband operation are adopted but these techniques increase the size and design complexity. This thesis proposed a rectenna design with harmonics rejection and circular polarization at 2.45 GHz to enhance the RF-DC conversion efficiency. The harmonic rejection capability is achieved using triangular aperture coupling slot. The circular polarization property is achieved with a single feed line which reduces the size and design complexity. The aperture coupled antenna is simulated with an air gap to enhance the gain, using Computer Simulation Technology (CST). The voltage doubler rectifier is simulated with a fast switching HSMS286B Schottky diode, using Advance Design System (ADS). The fabrication process is carried out using a low-cost 4.4 permittivity FR-4 substrate. The antenna can reject harmonics up to 10 GHz with -50 dB return loss, 7 dB gain, 1.5 dB axial ratio and 40.8% axial ratio bandwidth. The doubler rectifier with radial stub filter can provide output DC voltage higher than 7 V. The measured RF-to-DC conversion efficiency of the integrated rectenna is 76.84%. at an input power of 20 dBm. The proposed rectenna has the advantages of harmonic rejection, circular polarization, high gain and low cost which make it a suitable candidate for microwave energy transfer.

ABSTRAK

Pada masa kini, dengan perkembangan pantas dalam peranti tanpa wayar, pemindahan tenaga gelombang mikro di mana tenaga dihantar dari satu titik ke titik vang lain tanpa menggunakan wayar, menjadi sangat penting. Terdapat banyak aplikasi di mana teknologi pemindahan tenaga gelombang mikro boleh digunakan seperti penjagaan kesihatan pintar, pemantauan alam sekitar dan automasi rumah. Pemindahan tenaga gelombang mikro mempunyai kelebihan terhadap komunikasi yang mudah dan kos yang lebih rendah berbanding dengan medium penghantaran tradisional. Sebuah antena penerusan atau "rectenna" vang terdiri daripada antenna penerima, penerus, rangkaian yang hampir sama, dan penapis DC keluaran, adalah elemen penting dalam pemindahan tenaga gelombang mikro. Antena itu menerima isyarat RF yang telah ditukarkan dari arus alternatif (AC) ke dalam arus terus (DC) agar boleh digunakan oleh litar penerusan itu. Diod penerusan mempunyai tingkah laku tidak linear yang mana menjana harmonik dan merendahkan kecekapan penukaran RF-DC "rectenna". Penapis penolakan harmonik telah digunakan untuk menyekat harmonik itu. Walau bagaimanapun, penambahan penapis penolakan harmonik meningkatkan saiz dan kos "rectenna" itu. Antena dengan penolakan harmonik digunakan untuk menggantikan penapis penolakan harmonik. Walau bagaimanapun, antena yang dicadangkan mempunyai dapatan yang rendah yang mana merendahkan kecekapan penukaran "rectenna". Untuk meningkatkan jumlah pengumpulan isyarat RF, polarisasi bulat, dua jalur dan operasi jalur lebar digunakan tetapi teknik-teknik ini meningkatkan saiz dan kerumitan reka bentuk. Thesis ini mencadangkan reka bentuk "rectenna" dengan penolakan harmonik dan polarisasi bulat pada 2.45 GHz untuk meningkatkn kecekapan penukaran RF-DC. Keupayaan penolakan harmonik dapat dicapai menggunakan slot segitiga "aperture coupled". Ciri-ciri polarisasi bulat dapat dicapai dengan satu garis suapan yang mana mengurangkan saiz dan kerumitan reka bentuk. Bukaan terganding antena disimulasi dengan jurang udara untuk meningkatkan dapatan, dengan menggunakan Teknologi Simulasi Komputer (CST). Voltan pendua penerus telah disimulasi dengan pensuisan pantas HSMS286B Schottky Diod, menggunakan Rekabentuk Sistem Kehadapan (ADS). Proses fabrikasi dijalankan menggunakan FR-4 substrat kos rendah dengan 4.4 ketelusan. Antena ini boleh menolak harmonik sehingga 10 GHz dengan -50 dB kehilangan balik, 7 dB dapatan, 1.5 nisbah paksi dB dan 40.8% nisbah paksi jalur lebar. Penerus pendua dengan penapis puntung jejarian boleh memberikan keluaran DC voltan lebih tinggi daripada 7V. Pengukuran kecekapan penukaran RF-DC "rectenna" bersepadu adalah 76.84% pada kuasa masukan 20 dBm. "Rectenna" yang dicadangkan mempunyai kelebihan penolakan harmonik, polarisasi bulat, dapatan yang tinggi dan kos rendah yang menjadikannya calon yang sesuai digunakan untuk pemindahan tenaga gelombang mikro.

ACKNOWLEDGEMENTS

First and foremost, i would like to praise to Allah, the almighty for giving me a little strength and granting me the capability to do my master research and eventually succeed to complete my thesis as required. I would like to warmly thank my father and mother for their great support and encourage thoughout my research work. Throughout my master reseach project, there have been support, guidance and assistance of several people which helped me to finish this research work and write my thesis to appears in its current form. Therefore, its an oppertunative to thank and appreciate these people's great efforts.

I would like to take this opportunity to express my greatest gratitude to my supportive supervisors, Prof. Dato' Dr. Mohd Nor Bin Husain and Associate Professor Dr. Zahriladha for their insightful knowledge and valuable assistance throughout this research project.

I would like to express my thanks to all lecturers and technicians, from Faculty of Electronics and Computer Engineering (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), for their time and efforts that contributed to my achievement. I would also like to thank UTeM Zamalah Scheme for their encouragement and financial support throughout this project.

Thanks and appreciation go to my fellow Ph.D. students in Makmal Pasca Siswazah laboratory, Ahmed, Sam, Ariffin, Rammah, and Amyrul for their assisstance and being a good friends.

To all my colleagues and friends, Nas, Ammar and Zaimah, i would like to express my thanks for their support thoughout my master research project. Lastly, thank you to everyone who suporrted me directly or indirectly to the crucial parts of realization of this research project.

TABLE OF CONTENTS

AP]	PROV		I		FAGE
AB AB AC TA LIS LIS LIS LIS LIS	BLE C T OF T OF T OF T OF T OF	CT K VLEDC DF CON TABLI FIGUR APPEN ABBRI SYMB(PUBLI	ES DICES EVIATIO	NS	i iii iv vii ix xvii xviii xix xx xx
СН	АРТЕ	R			1
1.			CTION		1
	1.1		ch Backgı		1
	1.2			ss Power Transfer	1
	1.3		-	of Wireless Power Transfer	2
	1.4		m Stateme		4
	1.5	-		Research Work	6
	1.6	-	of the The		6
	1.7		bution of t		7
	1.8	I hesis	Organizat	tion	8
2.	LIT	ERATI	JRE REV	IEW	10
	2.1	Introd	uction		10
	2.2		ina Concej		10
		2.2.1	Antenna	-	11
				Antenna Gain	12
				Antenna Radiation	13
			2.2.1.3	Antenna Efficiency	13
			2.2.1.4	Antenna Bandwidth	14
			2.2.1.5	Antenna Return Loss and Harmonic Rejection	14
				Antenna Polarization	17
		2.2.2	Rectifier	6	20
	2.2	2.2.3		g Network	21
	2.3			DC Conversion Efficiency	22
	2.4			ectenna Design	24
	2.5			f the Rectenna	26 24
	2.6			Limitations of the Past Studies	34
	2.7	Summ	ary		38

3. METHODOLOGY

40

PAGE

	3.1	Introd	uction		40
	3.2	Flow (Chart of th	ne Research Work	41
	3.3	Anten	na Design	Methodology	46
		3.3.1	U	e Coupled Antenna Design Structure	46
			3.3.1.1	Aperture Coupled Antenna with Rectangular Slot	
				(Design 1)	50
			3.3.1.2	Aperture Coupled Antenna with T-shape Slot	
				(Design 2)	53
			3.3.1.3	Aperture Coupled Antenna with Triangular Slot	
			5.5.1.5	(Design 3)	56
		3.3.2	Fabricat	ion and Measurement Processes of the Antenna	58
	3.4			fier Design	60
	5.4		Diode S		61
		3.4.2		ace Matching	63
		5.4.2	3.4.2.1	Input Impedance of the Single Diode Rectifier	64
					65
		2 4 2	3.4.2.2	Input Impedance of the Voltage Doubler Rectifier	
		3.4.3		g Network Design	66 67
			3.4.3.1	8 8	67
		2 4 4	3.4.3.2	Matching Network of the Doubler Diode Rectifier	68
		3.4.4		on of RF-to DC Rectifier	69
				Single Diode Rectifier	71
				Voltage Double Rectifier	72
		3.4.5		ion and Measurement of RF-to DC Rectifier	75
	3.5	•		e Rectenna	76
		3.5.1		a Simulation	77
				a Fabrication	78
				a Measurement	80
	3.6	Summ	ary		80
4.	DFS	штс	AND DIG	CUSSION	82
4.	кез 4.1	Introd		CUSSION	82 82
	4.1			ntanna Dagian	82 83
	4.2			ntenna Design	
		4.2.1		on Results	83
				Return Loss and Harmonic Rejection Capability	83
			4.2.1.2	Antenna Gain	90
			4.2.1.3		93
			4.2.1.4	1 5	96
				Analysis of Triangular Slot Coupling	101
		4.2.2		ement Results of Fabricated Antenna	115
				Return Loss	115
				Axial Ratio	116
			4.2.2.3		117
	4.3			o- DC Rectifier	118
		4.3.1		g Network	118
		4.3.2	U	Diode Rectifier	122
			4.3.2.1	Single Diode Rectifier with Short-Circuited Stub	123
			4.3.2.2	Single Diode Rectifier with Open-Circuited Stub	124
		4.3.3	Doubler	Rectifier	126
			4.3.3.1	Doubler Rectifier with Open Circuited Stub	126
			4.3.3.2	Voltage Double Rectifier with Short-Circuited Stub	128

	4.4	Rectenna Measurement	130
		4.4.1 Single Diode Rectenna with Open-Circuited Matching	
		Network	130
		4.4.2 Single Diode Rectenna with Short-Circuited Matching	132
		4.4.3 Double Diode Rectenna with Open-Circuited Matching	133
		4.4.4 Double Diode Rectenna with Short-Circuited Matching	134
	4.5	Comparison with the Past Studies Designs	137
	4.6	Summary	138
5.	CON	NCLUSION AND RECOMMENDATIONS FOR FUTURE WORK	140
5.	CON 5.1	NCLUSION AND RECOMMENDATIONS FOR FUTURE WORK Conclusion	140 140
5.			-
5.	5.1	Conclusion	140
	5.1 5.2 5.3	Conclusion Significance of Research Findings	140 141
REF	5.1 5.2 5.3	Conclusion Significance of Research Findings Future Work NCES	140 141 142 145
REF APP	5.1 5.2 5.3	Conclusion Significance of Research Findings Future Work NCES IX A	140 141 142

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Comparison of different past research studies of the rectenna design	26
2.2	Results summary of literature review	35
2.3	Specifications of the proposed rectenna design	38
3.1	Antenna design specifications	43
3.2	Rectifier design specifications	44
3.3	Design specifications of the aperture coupling antenna	49
3.4	Design parameters of the antenna with rectangular aperture coupling	
	slot	53
3.5	Design parameters of the antenna with right angle aperture coupling	
	slot	55
3.6	Design parameters of the antenna with right angle aperture coupling	
	slot	58
3.7	Parameter design description of the interdigital capacitor	70
4.1	Comparison of the aperture coupling slots harmonic rejection	
	capability	90
4.2	Comparison of the antenna simulated realized gain and total	
	efficiency	93
4.3	Circular polarization property comparison	101

4.4	Output DC voltage and conversion efficiency at different power	
	density.	131
4.5	Output DC voltage and conversion efficiency at different power	
	density	133
4.6	Output DC voltage and conversion efficiency at different power	
	density	133
4.7	Output DC voltage and conversion efficiency at different power	
	density	135
4.8	Comparison of the proposed rectenna with past research work	138

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Types of wireless power transfer	2
1.2	Applications of far-field wireless power transfer (Charthad and	
	Dolatsha, 2016)	3
1.3	Basic Block diagram of RF energy harvesting receiver	4
2.1	General block diagram of the rectenna	11
2.2	Radiation pattern of an antenna	13
2.3	Low pass filter for harmonic rejection function (Han and Sohn,	
	2014)	15
2.4	Low pass filter for harmonic rejection function (Kumar et al., 2012)	16
2.5	Harmonic rejection property within the antenna design using	
	unbalance slots (Yo et al., 2008)	17
2.6	Antenna polarization, (a) Electromagnetic wave rotation and (b)	
	Antenna polarization as a function of time (Balanis, 2005)	18
2.7	Matching network in rectenna design	22
2.8	Block diagram: (a) source-pull RF-DC measurement (b) harmonic-	
	balance simulations (Falkenstein et al., 2012)	29
2.9	(a) The Rectifier simulated efficiency versus frequency (b) Measured	
	rectenna efficiency. (Vera et al., 2010)	30

2.10	(a) Receiving antenna Thevenin equivalent circuit (b) RF-to-dc	
	efficiency versus frequency	31
2.11	(a) The proposed 3X 3 antenna array (b) rectifier efficiency versus	
	input Power (Sennouni et al. 2014)	32
2.12	(a) Buck-Boost converter circuit (b) Results of efficiency versus RF-	
	DC-DC circuit load resistance (Huang et al., 2013).	33
2.13	(a) Simulated and measurement results of Antenna connected to the	
	Filter (b) Input Power vs. output DC Voltage (Kumar et al., 2012)	34
3.1	Flow chart of the research work	42
3.2	Experimental setup of the rectenna	46
3.3	Aperture coupling antenna design structure	47
3.4	Top view of the aperture coupling antenna	47
3.5	Bottom view of the aperture coupling antenna	48
3.6	Bottom view of the rectangular aperture coupling slot antenna	51
3.7	Parametric study of the rectangular aperture coupling slot length (L)	52
3.8	Parametric study of the rectangular aperture coupling slot width (W)	52
3.9	Bottom view of the T- shape aperture coupling slot antenna	53
3.10	Parametric study of the T-shape aperture coupling slot length (T3)	54
3.11	Parametric study of the T-shape aperture coupling slot width (T1)	54
3.12	Parametric study of the T-shape aperture coupling slot length (T5)	55
3.13	Bottom view of the aperture coupling antenna	57
3.14	Parametric study of the triangular aperture coupling slot size	57
3.15	Measurement of the antenna return loss	59
3.16	General block diagram of the rectifier	60
3.17	Rectenna RF-DC conversion efficiency behavior	62

3.18	Equivalent circuit of HSMS286B Schottky diode	63
3.19	Single diode circuit with input impedance block	64
3.20	Input impedance of the single diode rectifier	65
3.21	Voltage doubler rectifier circuit with input impedance block	65
3.22	Input impedance of the voltage doubler rectifier	66
3.23	Smith chart utility in ADS (Advance System Design)	67
3.24	Grounded matching network of the single diode rectifier	67
3.25	Opened matching network of the single diode rectifier	68
3.26	Short-circuited matching network of the voltage doubler rectifier	68
3.27	Open- circuited matching network of the voltage doubler rectifier	69
3.28	Structure of the interdigital capacitor	69
3.29	Schematic circuit of the single diode rectifier with open- circuited	
	stub	71
3.30	Layout of the single diode rectifier with open- circuited stub	71
3.31	Schematic circuit of the single diode rectifier with short- circuited	
	stub	72
3.32	Layout of the single diode rectifier with short- circuited stub	
	matching network	72
3.33	Schematic circuit of the voltage doubler rectifier with short-	
	circuited stub	73
3.34	Layout of the voltage doubler rectifier with short- circuited stub	74
3.35	Schematic of the voltage doubler rectifier with open- circuited stub	74
3.36	Layout of the voltage doubler rectifier with open- circuited stub	75
3.37	Experimental measurement of the rectifier	76
3.38	Antenna results exporting from CST into ADS	77

3.39	Integration of the antenna result with the single diode rectifier circuit	77
3.40	Integration of the antenna result with voltage doubler rectifier	78
3.41	Fabricated rectenna. (a) The top view of the fabricated rectenna, (b)	
	the bottom view of the fabricated rectenna.	79
3.42	Experimental step up of the fabricated rectenna	80
4.1	Return loss of the antenna with rectangular aperture coping slot	84
4.2	The simulated surface current at 2.45 GHz, 4.5 GHz and 6.6 GHz of	
	the antenna with rectangular aperture coupling slot	85
4.3	Return loss of the antenna with T-shape aperture coping slot	86
4.4	The simulated current surface of the antenna with T-shape aperture	
	slot at 2.45 GHz, 4.83 GHz, and 5.6 GHz.	87
4.5	Simulated return loss of the antenna with right-angled triangular	
	aperture coupling slot	88
4.6	Simulated electric current distribution of the antenna with right-	
	angled aperture slot at 2.45 GHz, 4.5 GHz, and 6.6 GHz	89
4.7	Simulated realized gain of the antenna with rectangular aperture	
	coupling slot	91
4.8	Simulated realized gain of the antenna with T-shape aperture	
	coupling slot	92
4.9	Simulated realized gain of the antenna with right-angled aperture	
	coupling slot	93
4.10	Simulated E-plane and H-plane radiation patterns of the antenna with	
	rectangular aperture coupling slot	94
4.11	Simulated E-plane and H-plane radiation patterns of the antenna with	
	T-shape aperture coupling slot	95

4.12	Simulated E-plane and H-plane radiation patterns of the antenna with	
	right-angled aperture coupling slot	96
4.13	Simulated axial ratio of the antenna with rectangular aperture	
	coupling slot	97
4.14	Simulated electric field distribution of the antenna with rectangular	
	slot	98
4.15	Simulated axial ratio of the antenna with T-shape aperture coupling	
	slot	99
4.16	Simulated axial ratio of the antenna with right-angled triangular	
	aperture coupling slot	99
4.17	Simulated electric field distribution of the antenna with right-angled	
	triangle slot	100
4.18	Optimum position of the right- angled triangle aperture coupling slot	102
4.19	Optimum size of the right-angled triangle aperture coupling slot	103
4.20	Parametric study on antenna return loss and harmonic rejection when	
	moving the slot to the right with respect to the radiated patch	104
4.21	Parametric study on antenna return loss and harmonic rejection when	
	moving the slot to the left with respect to the radiated patch	104
4.22	Parametric study on antenna return loss and harmonic rejection when	
	moving the slot to up on the y-axis	105
4.23	Parametric study on antenna return loss and harmonic rejection when	
	moving the slot to down on the y-axis	105
4.24	Parametric study on antenna return loss and harmonic rejection when	
	moving at different aperture size of the right-angled triangle slot	106

4.25	Parametric study on antenna axial ratio when moving the slot to the	
	right on the x-axis	107
4.26	Parametric study on antenna axial ratio when moving the slot to the	
	left on the x-axis	108
4.27	Parametric study on the antenna axial ratio when moving the right-	
	angle triangle up on the y-axis	109
4.28	Parametric study on the antenna axial ratio when moving the right-	
	angle triangle down on the y-axis	109
4.29	Parametric study on the antenna axial ratio at different aperture sizes	
	of the right-angle triangle slot	110
4.30	Parametric study on the antenna radiation efficiency when moving	
	the right-angle triangle slot to the right on the x-axis	112
4.31	Parametric study on the antenna radiation efficiency when moving	
	the right-angle triangle slot to the left on the x-axis	112
4.32	Parametric study on the antenna radiation efficiency when moving	
	the right-angle triangle slot up on the y-axis	113
4.33	Parametric study on the antenna radiation efficiency when moving	
	the right-angle triangle slot down on the y-axis	114
4.34	Parametric study on the antenna radiation efficiency at different	
	aperture sizes of the right-angle triangle slot	115
4.35	Simulated and measured return loss of the aperture coupled antenna	
	with right-angled triangular aperture coupling slot	116
4.36	Simulated and measured axial ratio of the aperture coupled antenna	
	with right-angled triangular aperture coupling slot	117

Radiation pattern. (a) Simulated and measured E-plane radiation	
pattern of the proposed antenna, (b). Simulated and measured H-	
plane radiation pattern of the proposed antenna	118
Simulated S-parameters of the open-circuited matching network for	
the single diode rectifier	119
Simulated S-parameters of the short-circuited matching network for	
the single diode rectifier	120
Simulated S-parameters of the open-circuited matching network for	
the double diode rectifier	121
Simulated S-parameters of the short-circuited matching network for	
the double diode rectifier	122
Simulated and measured return loss of the single diode rectifier with	
short-circuited stub matching circuit	123
Output DC voltage at different input power of the short-circuited	
stub single diode rectifier	124
Simulated and measured return loss of single diode rectifier with	
open stub matching circuit	125
Output DC voltage at different input power of the open-circuited	
stub single diode rectifier	126
Simulated and measured return loss of the double rectifier with	
open-circuited stub matching circuit	127
Simulated and measured output voltage of doubler rectifier with	
open stub	128
Simulated and measured return loss of the double rectifier with short	
stub matching circuit	129
	pattern of the proposed antenna, (b). Simulated and measured H- plane radiation pattern of the proposed antenna Simulated S-parameters of the open-circuited matching network for the single diode rectifier Simulated S-parameters of the short-circuited matching network for the single diode rectifier Simulated S-parameters of the open-circuited matching network for the single diode rectifier Simulated S-parameters of the open-circuited matching network for the double diode rectifier Simulated S-parameters of the short-circuited matching network for the double diode rectifier Simulated S-parameters of the short-circuited matching network for the double diode rectifier Simulated and measured return loss of the single diode rectifier with short-circuited stub matching circuit Output DC voltage at different input power of the short-circuited stub single diode rectifier Simulated and measured return loss of single diode rectifier with open stub matching circuit Simulated and measured return loss of the double rectifier with open-circuited stub matching circuit Simulated and measured return loss of the double rectifier with open-circuited stub matching circuit Simulated and measured return loss of the double rectifier with open-circuited stub matching circuit Simulated and measured output voltage of doubler rectifier with open stub Simulated and measured return loss of the double rectifier with open stub Simulated and measured network of the double rectifier with short

4.49	Simulated and measured output voltage of doubler rectifier with		
	short stub matching	130	
4.50	Output DC voltage and conversion efficiency of the single diode		
	rectifier with open-circuited stub at 2 k Ω load resistance	131	
4.51	Output DC voltage and conversion efficiency of the single diode		
	rectifier with short-circuited stub at 2 K Ω load resistance	132	
4.52	Output DC voltage and conversion efficiency of the voltage doubler		
	rectifier with short-circuited stub at 2 K Ω load resistance	134	
4.53	Output DC voltage and conversion efficiency of the voltage doubler		
	rectifier with short-circuited stub at 2 K Ω load resistance	135	
5.1	General block diagram of the bridge rectifier	143	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	FR-4-86 UV BLOCK	160
В	Data Sheet of HSMS286B Schottky Diode	162
С	Design, Fabrication, and Measurement	179

LIST OF ABBREVIATIONS

CST	- Computer Simulation Technology
ADS	- Advanced Design System
DUT	- Device Under Test
RFEH	- Radio Frequency Energy Harvesting
MET	- Microwave Energy Transfer
WPT	- Wireless Power Transfer
RF	- Radio Frequency
ACAS	- Aperture Coupled Antenna
AR	- Axial Ratio
EM	- Electromagnetic
VNA	- Vector Network Analyzer