

PERFORMANCE EVALUATION AND ENHANCEMENT OF EDCA PROTOCOL TO IMPROVE THE VOICE CAPACITY IN WIRELESS NETWORK

AHMED ISMAIL MOHAMMAD ABU-KHADRAH

DOCTOR OF PHILOSOPHY

2017

🔘 Universiti Teknikal Malaysia Melaka

Faculty of Electronic and Computer Engineering

PERFORMANCE EVALUATION AND ENHANCEMENT OF EDCA PROTOCOL TO IMPROVE THE VOICE CAPACITY IN WIRELESS NETWORK

Ahmed Ismail Mohammad Abu-Khadrah

Doctor of Philosophy

2017

🔘 Universiti Teknikal Malaysia Melaka

PERFORMANCE EVALUATION AND ENHANCEMENT OF EDCA PROTOCOL TO IMPROVE THE VOICE CAPACITY IN WIRELESS NETWORK

AHMED ISMAIL MOHAMMAD ABU-KHADRAH

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that the study entitled "Performance Evaluation and Enhancement of EDCA Protocol to Improve the Voice Capacity in Wireless Network" is the result of my own study except as cited in the references. The study has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature	:
Name	: Ahmed Ismail Mohammad Abu-khadrah
Date	:

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature	·
Supervisor Name	: Assoc. Prof. Dr. Zahriladha Bin Zakaria
Date	·

DEDICATION

The sake of Allah, my Creator and my Master,

My great messenger, Mohammad S.A.W who taught us the purpose of life,

My beloved father and mother,

My beloved wife Ghada

My beloved daughters Asma, Len and Mariam,

My brothers and sisters

All the people in my life who touch my heart,

I dedicate this research.

ABSTRACT

Enhanced Distributed Channel Access (EDCA) protocol is used to support quality of service (QoS). However, using the default parameter values for EDCA protocol leads to increasing the collisions in the wireless network and decreasing the capacity. This is due to the default EDCA protocol gives the access point and wireless stations the same priority to access the medium, in spite of the access point has high load traffic compared with normal wireless stations. Therefore, in this research work a new algorithm was proposed to enhance the capacity of the EDCA protocol and increase the number of the active voice users. The idea of the algorithm was based on creating different contention window ranges between access point and wireless workstations, and changing the technique of increasing the contention window value when the collision happened. Through the proposed algorithm, the Minimum Contention Window (CW_{min}) and Arbitration Inter Frame Space (AIFS) parameters were adapted based on the percentage of the collision in the network. By applying the proposed algorithm, the throughput of EDCA protocol was increased by 42.9% and it can support 14 voice users rather than 11 in the default EDCA protocol. The QoS requirements were achieved when the network contained 14 voice users. The end to end delay became 86.44 ms and the packet loss percentage was 0.06 %. In addition to that the uplink and downlink voice throughputs covered the data rate requirements. Moreover, a new mathematical model was designed based on the Markov chain mechanism in order to evaluate the performance of the EDCA protocol under saturation and non saturation conditions, which aimed to separate between the uplink and downlink throughputs with different data types. The separation between uplink and downlink throughputs is based on separating the model equations between the access point and the stations. This separation contributes in determining the effect of access point on the network performance as well as it allows in evaluating the algorithms that based on the differentiation between the access point and stations. The OPNET simulator and the mathematical model were used to evaluate the performance for the proposed algorithm. Therefore, by applying the proposed algorithm, the collisions in network will be decreased and leading to the enhancement of the network capacity. It is believed that this study is useful to cover more voice users in the public wireless network that deployed in bus stations, restaurants, parks, airports and etc.

ABSTRAK

'Enhanced Distributed Channel Access' (EDCA) protokol digunakan untuk menyokong 'Quality of Service' (QoS). Walau bagaimanapun, menggunakan nilai parameter yang tetap bagi protokol EDCA akan membawa kepada peningkatan perlanggaran dalam rangkaian tanpa wayar dan ianya akan mengurangkan kapasiti. Ini disebabkan ketetapan protokol EDCA memberikan keutamaan pusat akses dan stesen tanpa wayar yang sama untuk akses medium tersebut, walaupun pusat akses mempunyai trafik muatan yang tinggi berbanding stesen tanpa wayar yang normal. Oleh itu, dalam kerja penyelidikan ini, algoritma baru telah dicadangkan untuk meningkatkan kapasiti protokol EDCA dan meningkatkan bilangan pengguna suara. Idea untuk algoritma ini adalah mewujudkan tetingkap perdebatan yang berbeza antara pusat akses dan perlantar kerja tanpa wayar, dan merubah teknik dalam meningkatkan jumlah tetingkap perdebatan apabila perlanggaran berlaku. Melalui algoritma yang dicadangkan, 'Minimum Contention Window' (CWmin) dan parameter 'Arbitration Inter Frame Space' (AIFS) telah berdasarkan peratusan perlanggaran dalam disesuaikan rangkaian. Dengan menggunakan algoritma yang dicadangkan, daya pemprosesan protokol EDCA telah meningkat sebanyak 42.9% dan ia boleh menyokong 14 pengguna suara berbanding 11 daripada protokol EDCA yang tetap. Syarat-syarat QoS telah dicapai apabila rangkaian mengandungi 14 orang pengguna suara. Kelewatan hujung ke hujung menjadi 86.44 ms dan peratus kerugian paket ialah 0.06 %. Tambahan pula, daya pemprosesan suara pautan naik dan pautan turun meliputi syarat-syarat kadar data. Selain itu, model matematik telah direka berdasarkan mekanisma rantaian Markov untuk menilai prestasi protokol EDCA di bawah kondisi tepu dan bukan tepu, yang bertujuan untuk memisahkan daya pemprosesan pautan naik dan pautan turun dengan mengasingkan persamaan model antara pusat akses dan stesen. Pemisahan ini menyumbang dalam mengenalpasti kesan pusat akses kepada prestasi rangkaian dan juga kerana ia membolehkan dalam menilai algoritma yang berdasarkan perbezaan di antara pusat akses dan stesen. Simulasi OPNET dan model matematik digunakan untuk menilai prestasi algoritma yang dicadangkan. Oleh itu, dengan menggunakan algoritma yang dicadangkan, perlanggaran dalam rangkaian akan menurun dan ini akan membawa kepada perningkatan kapasiti rangkaian. Adalah dipercayai bahawa kajian ini amat berguna bagi menampung pengguna suara dalam rangkaian tanpa wayar awam yang ditempatkan di stesen bas, restoran, taman, lapangan terbang dan lain-lain.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful. All praises to Allah, without His blessing I will not come to achieve this.

I would like to take this opportunity to express my sincere gratitude to my main supervisor, Associate Professor Dr. Zahriladha Bin Zakaria and my co-supervisor, Dr. Mohdazlishah Bin Othman for their invaluable guidance, supervision and support towards completing this research work and thesis successfully.

My special thanks are due to all postgraduate colleagues at Makmal Pasca Siswazah laboratory, and in particular to Mohtadee, Rammah, Hussain, Sam, Arrifin, Ammar and Sharif, for their contribution and technical support.

I am indebted to my beloved father and mother for their encouragement, support and prayers for me all the time. Also, I am deeply indebted to my wife Ghada for her patience and creating the good environment during the period of my PhD study. Thanks also for my brothers Mohammad, Suliman and Laith for their support to complete my study.

I would like to acknowledge Universiti Teknikal Malaysia Melaka (UTeM) and Zamalah Scheme for the scholarship. Lastly, thank you to everyone who has indirectly contributed to this research work.

TABLE OF CONTENTS

APP	LAR ROV ICAT		
ABS ACK TAB LIST LIST LIST	LE O F OF 7 F OF 1 F OF 2		i ii iv vi vi xi xv
		PUBLICATIONS	xvi
	PTE		
1.		RODUCTION	1
	1.1	Research Background	1
	1.2	1.1.1 Real Time Applications over IEEE802.11 WLAN Problem Statement	3 4
		Objectives	4
		Research Scopes	6
		Contributions of Research Work	9
		Thesis Outline	10
2.	LITI	ERATURE REVIEW	12
	2.1	Introduction	12
	2.2	MAC Layer Protocols	12
	2.3	Review of Related Works	13
		2.3.1 Several Studies on Adaptive EDCA Parameters	14
		2.3.2 Several Studies on Markov Chain Models	32
	2.4	Summary	41
3.		FEM DESIGN	42
		Introduction	42
	3.2	Research Design	42
	3.3	Network Simulation Design	53
	3.4	Evaluation of DCF and EDCA Protocol	61
	3.5	Determining the Limitation of EDCA Protocol	66
	3.6	Proposed Algorithm Evaluation of Proposed Algorithm	69 76
	3.7 3.8	Proposed Markov Chain Model	76 79
	5.0	3.8.1 Estimate the Traffic Load	86
	3.9	Evaluate the Default EDCA Protocol Mathematically	80
	5.7	3.9.1 Study the Effect of CW _{min} on the Voice Throughput	89
	3.10	Design Scenarios for Results Validation	90

		3.10.1 Scenarios for Validating the Results of Default EDCA	90
		3.10.2 Scenarios for Validating the Results after Applying the	
		Proposed Algorithm	91
	3.11	Summary	92
CHA	PTE	R 4	94
4.	RES	ULTS AND DISCUSSION	94
	4.1	Introduction	94
	4.2	Results of Evaluating DCF and EDCA Protocols	95
		4.2.1 Discussion for Evaluating DCF and EDCA Protocols	100
	4.3	Results of Determining the Limitation of EDCA Protocol	101
		4.3.1 Discussion for Determining the Limitation of EDCA Protocol	109
	4.4	Results of Evaluating the Proposed Algorithm by Using OPNET	
		Simulator	111
		4.4.1 Evaluation Results for 12-15 Voice Users	111
		4.4.2 Discussion for Evaluating the Proposed Algorithm By Using	
		OPNET Simulator	125
	4.5	Results of evaluating default EDCA protocol mathematically without	
		Estimate Traffic Load	129
		4.5.1 Results of Studying the Effect of Changing CW _{min} [Voice]	133
		4.5.2 Discussion for Evaluating the Default EDCA Protocol	
		Mathematically	135
	4.6	Results Validation by Using OPNET Simulator and Mathematical	
		Model	139
		4.6.1 Results Validation for the Default EDCA Protocol with	
		Estimate Traffic Load	140
		4.6.2 Results validation for proposed algorithm	142
		4.6.3 Discussion for results validation	144
	4.7	Summary	147
5.	CON	NCLUSION AND FUTURE WORK	148
	5.1	Conclusion	148
	5.2	Achievement of Research Objectives	149
	5.3	Significant of Research Findings	149
	5.4	Future Work	150
REF	'EREI	NCES	151
APP	END	ICES	174

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Several studies about adapting CW	29
2.2	Several Markov chain models for 802.11WLAN	37
3.1	VOIP application parameters values	57
3.2	QoS parameters requirements when using G.711 voice codec with	
	20 ms packetization time	68
3.3	The numbers of the wireless workstations in the designed scenarios	77
3.4	IEEE802.11b parameters values	88
4.1	QoS parameters values for voice traffic when using DCF and	
	EDCA protocols in scenario 1 and scenario 2 (with 11 wireless	
	workstations)	99
4.2	QoS parameters values for voice traffic when using default EDCA	
	protocol in scenario 3 (with 12 wireless workstations)	109
4.3	The comparison between the QoS parameters values of default	
	EDCA protocol and proposed algorithm when increasing the	
	number of voice users from 12 to 14 users.	121
4.4	Voice capacitates for several algorithms when using EDCA	
	protocol	129
4.5	Comparison between proposed Markov chain model and other	
	models	137

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	VOIP system.	2
1.2	The capacity of wireless network in public locations	4
1.3	Stages of this research work	8
3.1	Steps in mathematical modeling	44
3.2	Methodology flowchart	46
3.3	Application configuration attributes	55
3.4	Configuration of the voice codec	56
3.5	Configuration of the background application	58
3.6	Wireless workstation attributes	59
3.7	Server attributes	60
3.8	Choosing the results for statistic types	61
3.9	Scenario 1 components	62
3.10	Scenario 2 components	64
3.11	Flowchart for evaluating DCF and EDCA protocols.	65
3.12	Scenario 3 components	66
3.13	Flowchart for finding the EDCA protocol capacity	68
3.14	The node level of the wireless workstation	70
3.15	Process stages in the MAC layer for wireless node	71
3.16	The value of CW [voice] after collision	74

3.17	Algorithm for adjusting CW and AIFSN	75
3.18	Flowchart of evaluating the proposed algorithm.	78
3.19	Markov chain model for EDCA	80
3.20	Basic access method frames	86
4.1	The average of End to End delay for the voice traffic when using	
	DCF and EDCA protocols (with 11wireless workstations)	96
4.2	The average of voice transmitted rate in the wireless workstation	
	(with 11 wireless workstations)	97
4.3	The average voice received rate for DCF and EDCA protocols	
	(with 11 wireless workstations)	98
4.4	The average of jitter values for DCF and EDCA protocols (with 11	
	wireless workstations)	99
4.5	The average of End to End delay for the voice traffic when using	
	EDCA protocol (with 12 wireless workstations)	102
4.6	The average of voice transmitted rate in the wireless workstation	
	(with 12 wireless workstations)	103
4.7	The average of voice received rate when using EDCA protocol	
	(with 12 wireless workstations)	104
4.8	The average of voice throughput in the wireless workstation when	
	using EDCA protocol (with 12 wireless workstations)	105
4.9	The voice throughput in the access point when using EDCA	
	protocol (with 12 wireless workstations)	106
4.10	The total voice throughput when using EDCA protocol (with 12	
	wireless workstations)	107

4.11	The average of jitter values for voice traffic when using default	
	EDCA protocol (with 12 wireless workstations)	108
4.12	Scenario 4 and Scenario 5 components	112
4.13	The comparison between the End to End delay of default EDCA	
	protocol and proposed algorithm (with 12 wireless workstations)	113
4.14	The average of voice transmitted rate in the wireless workstation	
	when using default EDCA protocol and after applying the proposed	
	algorithm (with 12 wireless workstations)	114
4.15	The comparison between the voice received rate of default EDCA	
	protocol and proposed algorithm (with 12 wireless workstations)	115
4.16	The comparison between the total voice throughput of default	
	EDCA protocol and proposed algorithm (with 12 wireless	
	workstations)	116
4.17	The comparison between the voice throughput in the wireless	
	workstation of default EDCA protocol and proposed algorithm	
	(with 12 wireless workstations)	117
4.18	The comparison between the voice throughput in the access point	
	of default EDCA protocol and proposed algorithm (with 12	
	wireless workstations)	118
4.19	The comparison between the retransmission attempts values of	
	default EDCA protocol and proposed algorithm (with 12 wireless	
	workstations) 119	
4.20	The comparison between the jitter values of default EDCA protocol	
	and proposed algorithm (with 12 wireless workstations)	120
4.21	Throughput of the voice traffic for stations and AP	131

4.22	Throughput of the best effort and background for stations and AP	132
4.23	The effect of changing CW_{min} for voice in stations	134
4.24	The effect of changing CW_{min} for voice in AP	134
4.25	Voice capacity for default EDCA protocol	141
4.26	The voice capacity after applying the proposed algorithm	143

LIST OF ABBREVIATIONS

AC	-	Access Category
ACK	-	Acknowledgment
ACW	-	Adaptive Contention Window
a-EDCA	-	Adaptive Enhanced Distributed Channel Access
AID	-	Association Identifier
AIFS	-	Arbitration Inter Frame Space
AIFSN	-	Arbitration Inter Frame Space Number
AM	-	Active Mode
AP	-	Access Point
APP	-	Application Specific Function
B-EDCA	-	Balanced Enhanced Distributed Channel Access
BSA	-	Basic Service Area
BSS	-	Basic Service Set
BSSID	-	Basic Service Set Identifier
CNAME	-	Canonical Name
CRC	-	Cyclic Redundancy Check
CS-ACELP	-	Conjugate Structure Algebraic Code Excited Linear Prediction
CSMA/CA	-	Carrier Sense Multiple Access with Collision Avoidance
CSRC	-	Contributing source
CSRC count	-	Contributing Source Count
CTS	-	Clear To Send

CW	-	Contention Window
CW _{max}	-	Maximum Contention Window
CW _{min}	-	Minimum Contention Window
DA	-	Destination Address
DCF	-	Distributed Coordination Function
DCW	-	Dynamic Contention window
DIFS	-	Distributed Inter Frame Space
DLSR	-	Delay since last Sender Report
DS	-	Distribution System
DSCP	-	Differentiated Service Code Point
DSSS	-	Direct Sequence Spread Spectrum
ECN	-	Explicit Congestion Notification
EDCA	-	Enhanced Distributed Channel Access
EDCAF	-	Enhanced Distributed Channel Access Function
ESS	-	Extended Service Set
FCS	-	Frame Check Sequence
HTTP	-	Hypertext Transfer Protocol
IBSS	-	Independent Basic Service Set
IEEE	-	Institute Of Electrical and Electronic Engineering
IETF	-	Internet Engineering Task Force
IP	-	Internet Protocol
ISDN	-	Integrated Service Digital Network
LSR	-	Last Sender Report timestamp
MAC	-	Medium Access Control
MATLAB	-	Matrix Laboratory
MIMO	-	Multiple Input and Multiple Output
MITCW	-	Modification of Initial and Thereafter Contention Window

MMPDU	-	MAC Management Protocol Data Unit
MPDU	-	MAC Protocol Data Unit
MSDU	-	MAC Service Data Unit
NAV	-	Network Allocation Vector
NTP timestamp	-	Network Time Protocol Timestamp
OFDM	-	Orthogonal Frequency Division Multiplexing
OPNET	-	Optimum Network performance
OUI	-	Organizationally Unique Identifier
PCF	-	Point Coordination Function
PCM	-	Pulse Code Modulation
PDA	-	Personal Digital Assistant
PDF	-	Probability Density Function
PDU	-	Protocol Data Unit
РНҮ	-	Physical
PSM	-	Power Save Mode
PSTN	-	Public Switched Telephone Network
РТ	-	Payload type
QoS	-	Quality of Service
RA	-	Receiver address
RAMPS	-	Random Adaptive MAC Parameters Scheme
RR	-	Receiver Report
RTCP	-	Real Time Control Protocol
RTP	-	Real Time Protocol
RTS	-	Request To Send
SA	-	Source Address
SDES	-	Source Description
SDU	-	Service Data Unit

SIFS	-	Short Inter Frame Space
SIP	-	Session Initiation Protocol
SR	-	Sender Report
SSID	-	Service Set Identification
SSRC	-	Synchronization Source
ТА	-	Transmission Address
ТСР	-	Transmission Control Protocol
TOS	-	Type of Service
TXOPlimit	-	Transmit Opportunity Limit
UAC	-	User Agent Client
UAS	-	User Agent Server
UDP	-	User Datagram Protocol
VAD	-	Voice Activity Detection
VOIP	-	Voice Over Internet Protocol
WLAN	-	Wireless Local Area Network

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	VOIP over IEEE802.11 Wireless Network	174
В	Markov Chain Mechanism	215
С	OPNET Simulation Tools	218
D	Derivation of Equations	223
Ε	Wireless LAN Parameters for Wireless Workstations	229
F	Wireless LAN Parameters for Access Point	230
G	The Node Level of Access Point	231
Н	Simulation Results for 13, 14 and 15 Voice Users	232

LIST OF PUBLICATIONS

The research papers produced and published during this research are as follows:

- Abu-Khadrah, A., Zakaria, Z., Othman, M. and Zin, M.S.I.M., 2016. Markov Chain Model and Performance Enhancement for EDCA Protocol. *Journal of Communications*, 11(8), pp.748–757.
- Abu-khadrah, A., Zakaria, Z., Othman, M. and Zin, M.S.I.M., 2015. Markov Chain Model for EDCA Protocol under Saturation and Non-Saturation Conditions. *Journal of Communications*, 10(8), pp.596–602.
- Abu-khadrah, A., Zakaria, Z., Othman, M.A., et al., 2015. Analysis of Enhanced Distributed Channel Access Protocol Under Non-saturation. *IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies* (AEECT), 1–6.
- Abu-Khadrah, A., Zakaria, Z., Othman, M. and Zin, M.S.I.M., 2015. Using Markov Chain Model to Evaluate the Performance of EDCA Protocol Under Saturation and Non-Saturation Conditions. *International Review on Computers and Software* (*I.RE.CO.S.*), 10(March), pp.315–323.
- Abu-Khadrah, A., Zakaria, Z. and Othman, M.A., 2014. New Technique to Enhance Quality of Service Support for Real Time Applications in EDCA Protocol. *International Review on Computers and Software (IRECOS)*, 9(3), pp.541–546.

- 6. Abu-khadrah, A., Zakaria, Z. and Othman, M., 2015. New Algorithm to Enhance the Capacity of EDCA Protocol to Tolerate More Voice Users by Adjusting Contention Window. *Advanced Science Letters*, 21(1), pp.5–11.
- Abu-Khadrah, A., Zakaria, Z., Othman, M. and Zin, M.S.I.M., 2015. Evaluating the performance for DCF protocol and EDCA protocol. *Jurnal Teknologi*, 72(5), pp.51–55.
- Abu-khadrah, A., Zakaria, Z. and Othman, M., 2014. EDCA Limitation With High Traffic Real Time. *Journal of Theoretical and Applied Information Technology*, 64(1), pp.261–266.

CHAPTER 1

INTRODUCTION

1.1 Research Background

Recently, IEEE802.11Wireless Local Area Network (WLAN) has been extensively deployed in many different environments for enterprise, office, home and public networking. It is considered one of the most popular techniques used in wireless network. The simplicity of configuration, ease to expand and low costs are its main properties (Yoo & Kim, 2014). Nowadays, there is a huge usage of the Internet in different fields of life, and there is a need of supporting the Internet in public locations such as parks, restaurants, bus stations and airports. These locations do not have a fixed number of users, and can be increased dramatically. Therefore, a wireless network is suitable in these locations as it can accept more users with a low cost (Yu & Yao, 2012). The IEEE802.11 standards are used in a wireless network. These standards are very popular because they use unlicensed channels. In 1997, the IEEE802.11a standard was issued with a data rate 2 Mb/s. Currently, the data rate has increased to 600 Mb/s in the IEEE802.11n standard (Lee & Kim, 2010).

Real time applications such as Voice Over Internet Protocol (VOIP) and video conference are considered the main challenges that face wireless network (Charfi et al., 2013). These applications succeed within specific conditions in the delay time and packet loss percentage. For example, the VOIP call succeeds when the end to end delay is less than 150 ms and the packet loss percentage does not exceed more than 1% (Kazemitabar et al., 2010; Fitzpatrick et al., 2007). The VOIP is one of the fastest growing internet applications. There is a trend to use the VOIP application instead of the traditional