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ABSTRACT 
 

 

Advanced composite materials are increasingly selected to be used in fabricating new 
generation of aircraft primary structures than traditional materials due to its high strength-
to-weight ratio, fatigue and corrosion resistance. Despite the rapid rising of the composite 
usage in aircraft industry recently, composite structures depict process-induced geometrical 
and dimensional distortion after processing. The shape deformation is unpredictable and 
contributes a mismatch between assembled components. Often, a traditional trial-and-error 
approach is deployed iteratively to ensure manufacturability in the mass production, which 
is very uneconomical, expensive and time consuming. There is still lacking experimental 
data and studies on the effect of different weaving styles of plain weave (PW), 5 harness 
satin (5HS) and 8 harness satin (8HS) in affecting shape deformation of angled composite 
laminates. The composite material selected was carbon fibre reinforced with epoxy matrix 
that could be cured at elevated temperature of 180°C with 7 bars pressure in the autoclave. 
Using design of experiment (DOE) methodology, two-level fractional factorials of 24-1 
Resolution IV were performed to investigate the main effects and interactions of different 
plies orientation, number of layers, sample sizes, tool materials as well as weaving styles in 
affecting the spring-in angle of composite laminates. From the design of experiments and 
analyses of variances, the plies orientation, number of layers, sample sizes and weaving 
styles were successfully determined to be significant when comparing the effect of PW and 
8HS woven fabric. PW fabric induced approximately three times spring-in angle than 8HS. 
This relationship was determined to be strong with R-squared value of 97.2% and 87.9% 
when the aluminium and carbon tool was kept constant, respectively. Meanwhile, the 
relationship of PW and 5HS, and 5HS and 8HS were moderate with an average of R-
squared values of 66%. There were some level two interaction terms affecting shape 
deformation mainly between plies orientation and tool materials when the weaving 
material was kept constant. On the other hand, the majority of level two interaction terms 
were between plies orientation and number of layers, and plies orientation and sample sizes 
when the tool materials were kept constant. Using the actual testing results of coefficient of 
thermal expansion and chemical shrinkage, the analytical data was calculated and 
compared with the actual measured results. The coefficient of thermal expansion and 
chemical shrinkage strain at the through-thickness direction is larger by 10 to 18 times than 
the in-plane properties dependent of the types of weaving pattern. Unfortunately, the 
analytical results were not in agreement with the experimental data possibly due to fibres 
misalignment and slippage during the lay-up process as well as non-thermoelastic 
properties not taken into account. Despite that, the effect of weaving styles cannot be 
ignored because statistically there were some main effects and interaction terms that might 
affect the shape deformation of L-shaped composite laminates. 
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ABSTRAK 
 

 

Bahan komposit terkini semakin dipilih untuk digunakan dalam rekabentuk generasi baru 
struktur utama pesawat kapal terbang di bandingkan dengan bahan-bahan tradisional 
kerana mempunyai keutuhan bahan serta ringan, ketahanan struktur dan tiada 
pengaratan. Walaupun penggunaan komposit dalam industri pesawat meningkat baru-
baru ini, struktur komposit mempunyai masalah kecacatan daripada segi geometri dan 
dimensi yang disebabkan oleh pemprosesan. Perubahan rupa bentuk tidak dapat diduga 
dan menyumbang kepada ketidaksepadanan antara komponen yang dipasang. Selalunya, 
teknik tradisional yakni percubaan berulang-kali digunakan untuk memastikan kesesuaian 
pengilangan sebelum pengeluaran besar-besaran, yang sangat tidak ekonomi, mahal dan 
memakan masa. Terdapat kekurangan data eksperimen dan kajian mengenai kesan gaya 
tenunan yang berbeza seperti tenunan biasa (PW), tenunan 5 satin (5HS) dan tenunan 8 
satin (8HS) dalam mempengaruhi bentuk perubahan komposit laminat yang berbentuk 
sudut tepat. Menggunakan rekabentuk ujikaji dengan faktorial pecahan dua peringkat iaitu 
24-1 Resolusi IV dilakukan untuk mengkaji kesan utama dan interaksi pelbagai lapisan 
orientasi, jumlah lapisan, saiz sampel, bahan acuan serta gaya tenunan dalam 
mempengaruhi perubahan komposit laminat. Bahan komposit yang dipilih adalah serat 
karbon yang diperkukuhkan dengan resin epoksi yang boleh dipanaskan pada suhu tinggi 
180 ° C dengan tekanan 7 bar dalam mesin pendandang. Berdasarkan kepada rekabentuk 
eksperimen dan analisa variasi, didapati orientasi ply, bilangan lapisan, saiz sampel dan 
gaya tenunan adalah faktor-faktor yang signifikan di dalam mempengaruhi kesan tenunan 
PW dan 8HS. Tenunan PW boleh mengakibatkan perubahan sudut komposit laminat 
sebanyak tiga kali ganda besar berbanding dengan tenunan 8HS. Hubungan ini adalah 
kuat dengan mempunyai nilai R2 sebanyak 97.2% dan 87.9% untuk setiap acuan yang 
diperbuat daripada aluminium dan karbon. Sementara itu, hubungan tenunan PW dan 
5HS, dan 5HS dan 8HS adalah sederhana dengan nilai purata R2 sebanyak 66%. Dari segi 
interaksi, hanya tahap dua dapat menjejaskan rekabentuk yakni di antara orientasi ply dan 
acuan apabila faktor tenunan adalah kekal. Sebaliknya, majoriti tahap dua dari segi 
interaksi adalah di antara orientasi ply dan jumlah lapisan, dan orientasi ply dan sampel 
saiz apabila faktor acuan adalah kekal. Daripada ujian makmal, keputusan kadar 
pengembangan haba dan pengecutan kimia resin digunakan untuk mengira analisa 
ramalan dan dibandingkan dengan keputusan eksperimen. Pekali pengembangan haba dan 
pengecutan kimia pada arah ketebalan lebih besar sebanyak 10 hingga 18 kali ganda 
daripada dalam-satah yang mana ianya bergantung kepada jenis corak tenunan. 
Malangnya, keputusan analisa ramalan dan eksprimen tidak sama berkemungkinan 
disebabkan oleh serat  gentian tidak selari dan tergelincir, serta pengaruh bukan 
termoelastik yang tidak diambil kira. Walaupun begitu, kesan gaya tenunan tidak boleh 
diabaikan kerana secara statistik terdapat beberapa faktor-faktor utama dan interaksi 
yang mungkin dapat memberi kesan kepada perubahan rekabentuk komposit laminat 
berbentuk ‘L’. 
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