i

0000097937

A simple strategy to solve complicated square root

problem in DTC for FPGA implementation / Tole Sutikno ...
[et al.].

A SIMPLE STRATEGY TO SOLVE COMPLICATED SQUARE ROOT
PROBLEM IN DTC FOR FPGA IMPLEMENTATION

TOLE SUTIKNO
AIMAN ZAKWAN JIDIN
NIK RUMZI NIK IDRIS
AUZANI JIDIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

A Simple Strategy to Solve Complicated Square
Root Problem in DTC for FPGA Implementation

Tole Sutikno', Aiman Zakwan Jidin®, Nik Rumzi Nik Idris’, Auzani Jidin*
'Electrical Engineering Dept., Ahmad Dahlan University, Yogyakarta, Indonesia.
?Ecole Supérieure d’Ingénieur en Electronique et Electrotechnique Paris, Paris, France.
*Energy Conversion Dept., Universiti Teknologi Malaysia, Johor Bahru, Malaysia.
“Power Elect. & Drives Dept., Universiti Teknikal Malaysia Melaka, Melaka, Malaysia.
Email: thsutikno@ieee.org, jidina@esiee.fr, nikrumzi@ieee.org, auzani@ieee.org

Abstract—This paper presents a digit-by-digit calculation
method to calculate the complicated square root problem
faced in implementing the direct torque control (DTC) of
induction motor drives using Field Programmable Gate
Arrays (FPGA). The main principle of the proposed method
is based on a two-bit shifter and a subtractor-multiplexor
operation that gives simpler implementation and faster
calculation. The proposed strategy was successfully
implemented on an FPGA device using unsigned 32 bit and
64-bit binary square root. The strategy can be easily
expanded to larger number.

Keywords—Digit-by-Digit Calculation; FPGA; Square Root

I. INTRODUCTION

It is well-known that the direct torque control method
(DTC) for AC motors has simple structure and excellent
performance such as fast torque response, no requirements
for PWM pulse generation and coordinate transformation,
no position encoder and does not need current regulators
[1-7]. The DTC algorithm is usually implemented based
on serial calculations using Microcontroller or Digital
Signal Processing (DSP) [8-11]. These are truly software-
based platform which may be not fast enough for some
applications. For instance, in DTC drive implementation,
the stator flux and electric torque have to be estimated in
real-time. For hysteresis-based DTC with digital
implementation, it is necessary to have several samplings
as the torque error moves from lower to upper (or vice
versa) bands in order to avoid large torque ripple. In space
vector modulation -based (SVM-based) implementation,
other than estimating the torque and flux, the processor
has to implement the SVM algorithm as well. These all
translate to the need of faster and hence more expensive
processors. As an alternative solution to provide a faster
calculation for real time flux and torque estimations is to
use FPGA based system [12-14]. However, the main
drawback in using FPGA in performing the estimation is
the complexity. One problem which has been identified in
DTC induction motor drive system based on FPGA
Hlplementatio is the complicated square root calculations

5-17].

There are many algorithms which have been proposed
to solve the square root calculation problem, such as using
Rough estimation [18], Babylonian method [19],
€xponential identity [20], Taylor-Series Expansion
Algorithm [21], Newton-Raphson method [22-24], and
Sequential algorithm (digit-by-digit calculation method)
25-29]. However, these proposed methods are not

particularly found in electric drive system applications
where square root calculation is normally required.
Specifically, in this paper, calculation of square root for
the direct torque control drive will be addressed.

This paper proposes digit-by-digit calculation method
as a simple strategy to solve complicated square root
calculation implemented using FPGA. The proposed
implementation strategy is slightly different from the
strategies proposed in [25-29], as will be discussed later.
An optimization is also done by eliminating circuitry that
is not needed. The method is proposed as part of the
development of the controller used in the DTC drive
system which is fully based on FPGA.

II. DIGIT-BY-DIGIT CALCULATION METHOD

In digit-by-digit calculation method, each digit of the
square root is found in a sequence where only one digit of
the square root is generated at each iteration [27-29]. It
has several advantages, such as: every digit of the root
found is known to be correct and it will not has to be
changed later; if the square root has to be expanded, it will
be terminated after the last digit is found; and the
algorithm works for any number base (of course the
process depends on number base).

In general, this method can be divided in two classes,
i.e. restoring and non restoring digit-by-digit algorithm
[29]. In restoring algorithm, the procedure is composed by
taking the square root obtained so far, appending 01 to it
and subtracting it, properly shifted, from the current
remainder. The 0 in 01 corresponds to multiplying by 2;
the 1 is a new guess bit. The new root bit developed is 1, if
the resulting remainder is positive, else it is 0, which the
remainder must be restored by adding the quantity just
subtracted. It is different from the non restoring algorithm
where the subtraction is not restored if the result is
negative. Instead, it appends 11 to the root developed so
far and on the next iteration it performs an addition. If the
addition causes an overflow, then on the next iteration it
has to go back to the subtraction mode [30]. Figure 1 (a)
and (b) gives an example on how take the binary square
root of 01011101 (equivalent with 93 decimal) for
restoring and non restoring algorithm respectively.

In this paper, a simple modification to the conventional
non-restoring digit-by-digit algorithm is made in order to
give a simpler implementation and faster calculation. The
conventional method is shown in Figure 1(a) whereas the
modification is shown in Figure 1(b). In this modification,
only subtract operation with append 01 is used; add

operation and append 11 is not used. This paper adopts
this modification to implement unsigned 32 and 64-bit
binary square root based on FPGA.

III. PROPOSED SQUARE ROOT ALGORITHM

Samavi, et al. [29] has improved classical non-restoring
digit-by-digit square root circuit by eliminating the
redundant blocks. Their circuit is referred to as the
reduced area non restoring circuit. However, it is still
based on constant digit of 01 or 11 and add-subtract as the
main building block (Figure 1 b). This paper offers a
simple alternative solution that only uses subtract
operation and appends 01. Consequently, the subtract-
multiplex is used as the main building block (refer to
Figure 2). The principle of the proposed algorithm can be
described as shown in Figure 3.

i 0 0o 1.

/01 01 11 01 . OO

-1

00 01 <—— positive: first bit is a 1
-1 01

11 00 <«—— negative: 2nd bit is a 0O
+1 01 « restore the wrong guess
00 01 11

~-10 01

11 11 10
+10 O1

«—— negative: 3rd bit is a zero
<«—— rescore the wrong guess

01 11 Q1
-1 00 01

0 11 00 <—— positive: 4th bit is a 1
(a)

01 01 11 01 . 0O
=i

00 01 <«—— positive: first bit is a 1
-1 01 <—— Developed root is "1"; appended 01; subtract

11 00 11 <«—— negative: 2nd bit is a 0
+10 11 <—— Developed root is "10"; append 11 and add

11 11 10 01 | — negative: 3rd bit is a O
1 00 11 '«—— Developed root is "100"; append 11 and add

100 00 11 00 «—— Overflow: 4th bit is a 1

(b)
Figure 1. The example of digit-by-digit calculation to solve square
root: (a) restoring algorithm; (b) non restoring algorithm

1 0 0 1.

/ choose 1 squared, subtract, keep if positive
01 01 11 D1 . 0O

shift two bits at a time
=1 subtract guess sguared

00 01
-1 01 sqrt so far with 01 appended : 2nd bit is a 0
no subtract because result would be negative
01 11

-10 01 ¢— sqrt so far with D1 appended: 3rd kit is a O

no subtract because result would be negative
0111 01

-1 00 Ot
11 00 <«—— positive : 4th bit is a 1
Figure 2. The example of using modified non restoring digit-by-digit
calculation algorithm to solve square root

Step 0. Start

Step 1. Initialization radicand (the n-bit number will be
squared root), quotient (the result of squared root),
and remainder. To calculate square root of a 2n bit
number, it needs n stage pipelines to implement the
proposed algorithm.

Step 2. Beginning at the binary point, divide the radicand into
groups of two digits in both direction.

Step 3. Beginning on the left (most significant bit), select
the first group of one or two digit (If n is odd then
the first groups is one digit, and vice versa)

Step 4. Choose 1 squared, and then subtract.

Fist developed root is “1” if the result of subtract is
positive, and vice versa is “0”

Step 5. shift two bits, subtract guess squared with append 01.

Nth-bit squared is “1” if the result of subtract is
positive, and Because of subtract operation is done

else

Nth-bit squared is “0”, and not subtract
Step 6. Go to step 5 until end group of two digits
Step 7. End

Figure 3. The principle of proposed algorithm to solve square root

A simple hardware implementation of the non-restoring
digit-by-digit algorithm for unsigned 6-bit square root by
an array structure is shown in Figure 4. The radicand is P
(p5,P4,P3,P2,P1,P0), U (U2,U1,U0) as quotient
and R (R4,R3,R2,R1,R0) as remainder. It can be
shown that the implementation needs 3 stage pipelines.
The main building blocks of the array are blocks called as
controlled subtract-multiplex (CSM). Figure 5 present the
details of a CSM. Input of the building block is x,y, b

and u, and as an output is bo (borrow) and d
(result).Ifu=0, then d<=x-y-b else d<=x.
P5 PI.] P3 P2 P1 PO
L9 Lig
x ybu x ybu
bo d bo
uz<——"_J =
le e 1. L 1]¢ 12
xybu x yhbhu % yhu x ybu
bo o bo d bo d be d

" HJ

T
0 0 0
L
y

0 1
s L
X b u x ybu x yhu x yhu Xy I
bo d bo bo d ho d bo
uoe__—'l] !

R4 3 R2 R1 RO

T
-

=

Figure 4. A simple hardware implementation of the non-restoring
digit-by-digit algorithm for unsigned 6-bit square root

xyb

Figure 5. Internal structure of a CSM block

—
T[]
e
0 0 A e
S —]
[A A A
n/2 Ty
LR P N 1 1 P [0
| |

shift 2-bit

xybu
______________ \lmd

n2+2
CsMm

Figure 6. A simple hardware implementation of the non-restoring
digit-by-digit algorithm for unsigned n-bit square root

The generalization of simple implementation of the
non-restoring digit-by-digit algorithm for unsigned n-bit
square root by an array structure is shown in Figure 6.
Each row (stage) of the circuit in Figure 6 executes one-
iteration of the non-restoring digit-by-digit square root
algorithm, where it only uses subtracts operation and
appends 01.

To optimize hardware resource utilization of the
implementation, specialized entities can be created as
building block components. It will eliminate circuitry that
is not needed. As an example, the implementation in
Figure 6 for unsigned 6-bit square root can be optimized
to become as shown in Figure 7 (in this case, the
remainder is ignored, because in the DTC drive, it is not
required). The specialized entities A, B, C, D and E are
minimized CSM when input ybu=100, yu=00, u=0,
yu=10, and y=0 respectively, and the remainder is
ignored. The generalization of optimized simple
implementation of the non-restoring digit-by-digit
algorithm for unsigned n-bit square root is shown in
Figure 8.

P|5 PIJ P3 P2 P1 PO
[[
X b u X u
D
bo d bo d
2 ¢—a— T I
Lk

b x ybu
[+ CSM
bo po d
-

Ur ¢

Figure 7. Optimized simple hardware implementation of the non-
restoring digit-by-digit algorithm for unsigned 6-bit square root

L= e] o™

shift 2-bit

‘ ¢ e IJZHII shift 2-bit

B0 D
shift 2-bit

ni2

stage Lo [[eon] e][eom][=][>]
\ \
| N N

N\ \
¥ N

N R iy oy
ffffffffffffffffff I

ni2+2
Entities

Figure 8. Optimized simple hardware implementation of the non-
restoring digit-by-digit algorithm for unsigned n-bit square root

IV. THE CALCULATION OF STATOR FLUX LINKAGE IN
DTC oF AC MACHINE DRIVE

The most important and difficult task in DTC of AC
machine drive in the d-q stationary reference frame is to
accurately calculate the stator flux linkage [4-5, 7]. This is
because the performance of the DTC drive is highly
dependent on the control of the amplitude and phase of the
Stator flux linkage, ¢, and thus require an accurate
estimation of these quantities. If the calculation error is

such that the estimated angle dexceeds the limit value, the
torque may fall with increasing & and thus can lead to
instability.

The d-q axes components of the stator flux
linkage,pp(k) and @q(k), at the k-th sampling instant can
be calculated as follows:

Po(k)=@p|,_,+(Vo|, ,—Rip)T, (1)
(Dg(k) - ¢Q|k—l * (lek-/ - RITQ)T (2)

@.(k)=|op(k)+g5(k) ®3)

In this paper, equation (3) is addressed as complicated
square root problem in DTC for FPGA implementation
[15-17]. In Figure 9 which shows the torque and flux
estimator design based on FPGA, the need for the 64-bit
square root calculation is specifically shown. To solve
this problem, optimized simple hardware implementation
method of the non-restoring digit-by-digit algorithm is
proposed.

Sa Sy Se L Iy
I 1 a2 A
S2 Sv Sc Ly Iy
Vd‘ v v
iy Vp Vo IpIp
12 Calculation Caleulation
Vp Vg I I
90.17 % - 017 616 4618
y k. v v
Vp Vq Ip Ig
.Rs \p W Calculati
Q ation
.-._-—7(_.;
55 Vo it Vo ia
Filter | | Filter | |
i [+ : ctic-» [T ([T #cl
Wi ek e SWad
429 7 429
|1
¥ y
Sector 2 IZ\2:| v y
Judge i
& / 3 Torque C'alculation
% ; e '3
v o+
Sector \ /
.58
SQRT 6.29
Calculation
yam
3
%«-clk : ¢-clk
|
v
Flux () Torque

Figure 9. Block diagram of torque and flux estimator design based on
FPGA in fixed point term

V. RESULTS AND ANALYSIS

In the previous sections, optimized simple hardware
implementation method of the non-restoring digit-by-digit
algorithm for square root and the difficult task in DTC to
calculate square root were explained. In this section,
simulation results of 32-bit and 64-bit square root based

on Altera APEX 20KE FPGA using the proposed method
is presented, as shown in Figure 10. In this simulation, P
is radicand and U is quotient. The results showed that the
implementation is successful and worked properly.

Gimulation mode: Funclional

ly MasterTine Bar: N0ns £+ Pointer R4 Intervak 5616 ns s
A Dps 100ns 200ns 300ns 400ns 500ns 600ns 70}
% Name

_Q 0 | BP G L L G E N G5/ L)
ST 28 %5 512 024 2008 1%

Simulation mode; Functional

problem in FPGA implementation. Unfortunately, the
proposed method is only appropriate for gate level
abstraction and is not powerful for RTL or behaviour level
abstraction.

VI. CONCLUSION

This paper presents a modification of conventional non
restoring digit-by-digit calculation = method for
implementation in FPGA hardware, mainly to solve
complicated square root in DTC drive algorithm. The
main principle of the proposed method is the two-bit
shifter and subtractor-multiplexor operations, and only
uses subtract operation and append 01, without add
operation and append 11. The proposed strategy has been
successfully implemented on an FPGA device based on
unsigned 32-bit and 64-bit binary square root. The results
have shown that the proposed method is the most efficient
in terms of hardware resource usability compared to other
methods. The strategy can also be easily expanded to

Iy Master Time Bar: = 00ons </?>§ Pointer: 113ns >
A oo 4 - solve larger numbers for complicated square root problem
% Name 6384)- in FPGA-based implementation system.
Q ~_____ 00000000000000000100000000000000 3
4 00000000710000000) ACKNOWLEDGMENT
) The authors wish to acknowledge the Ministry of
@29 Higher Education (MOHE) of Malaysia for sponsoring the
(b) research under the FRGS scheme.
Gimutation Waveforie .
Simulation mode: Functional
TABLE L.
g SRR S P ————— THE COMPARISON OF LOGIC ELEMENT USAGE
& Master Time Bar: 80.0ns un Pointer: 68.26 ns Intervak:
A Dps 100ns 200ns 300ns 400ns 500ns 600ns 70 LE Usage
*® Nare: No Method 32-bit 64-bit
& 50 3 K 75384 X 65536 ¥ 262144) 1048576 Y 4194304 ¥16777216)67108864 square root square root
66 u (328X 256 512 0242048 ¥ 40% §_B1%2 1 Classical-NR 1008 4092
() 2 Reduced-Area-NR 632 2464
T e 3 Modular-NR 624 2468
Simu\atun mode: Fual 4 Simple—X-Module 648 2438
5 Proposed 256 1023
Based on [31], for Altera APEX 20KE & Xilinx Virtex-E, 1 LC = 1 LE, and | CLB = 4 LE

[y MosterTineBar |~ 700ns <! i Poirter 317ns Inevaki 6683
A) u ¥ it

ps e 10
% Name /—,{\Qﬁi
Q |~ 5000000000000G00300000000000000000003000000000000100000000000000__)

240 P
u 00000000000000000000000010000000 b

% (i)

(d)

Figure 10. Simulation result of n-bit square root using optimized simple
hardware implementation method of the non-restoring digit-by-digit
algorithm: (a) 32-bit in decimal display, (b) 32-bit in binary display, (c)
64-bit in decimal display, (d) 64-bit in binary display

Based on the compilation report, in order to implement
32-bit and 64-bit square root using the optimized simple
hardware implementation method of the non-restoring
digit-by-digit algorithm, 256 and 1023 logic element (LE)
are needed respectively. The comparison of results
obtained from different implementation methods is shown
in Table 1. The comparison of LE or logic cell (LC) usage
is listed based on references [29] and [31]. The number of
employed LE indicates the size of hardware resource
required to implement the circuit. The table clearly
showed that the proposed method is most efficient method
in terms of the usage of hardware resource. This is
particularly true as it only uses subtract operation and
append 01 with no add operation.

Based on Figure 8, the strategy can be easy expanded
for larger number to solve complicated square root

REFERENCES

[1] 1. Takahashi and T. Noguchi, "A New Quick-Response and High-
Efficiency Control Strategy of an Induction Motor," JEEE
Transactions on Industry Applications, vol. Vol.IA-22, No.5, pp.
820-827, Sept/Oct 1986.

[2] M. Depenbrock, "Direct self control (DSC) of inverter-fed
induction machine," JEEE Trans. on Power Electronics, vol. 3 (4),
pp. 420429, 1988.

[3] T.G. Habetler, et al., "Direct torque control of induction machines
using space vector modulation," Industry Applications, IEEE
Transactions on, vol. 28, pp. 1045-1053, 1992.

[4] L. Zhong, et al., "Analysis of direct torque control in permanent
magnet synchronous motor drives," Jeee Transactions on Power
Electronics, vol. 12, pp. 528-536, May 1997.

[5] C. French and P. Acarnley, "Direct torque control of permanent
magnet drives," Industry Applications, IEEE Transactions on, vol.
32, pp. 1080-1088, 1996.

[6] L. Yong, et al, "Direct torque control of brushless DC drives with
reduced torque ripple," Industry Applications, IEEE Transactions
on, vol. 41, pp. 599-608, 2005.

[71 - L. Yong, et al., "Commutation-Torque-Ripple Minimization in
Direct-Torque-Controlled PM Brushless DC Drives," Industry
Applications, IEEE Transactions on, vol. 43, pp. 1012-1021, 2007.

(8]

9

[10]

(1]

(14]

(15]

(16]

117

[18]

[19

—

B. K. Bose and P. M. Szczesny, "A microcomputer-based control
and simulation of an advanced IPM synchronous machine drive
system for electric vehicle propulsion," Industrial Electronics,
IEEE Transactions on, vol. 35, pp. 547-559, 1988.

L. Lianbing, et al, "A high-performance direct torque control
based on DSP in permanent magnet synchronous motor drive," in
Intelligent Control and Automation, 2002. Proceedings of the 4th
World Congress on, 2002, pp.-1622-1625 vol.2.

L. Weijie, "Implementation of Direct Torque Control for
Permanent Magnet Synchronous Motor with Space Vector
Modulation Based on DSP," in Signal Processing, 2006 8th
International Conference on, 2006.

S. M. A. Cruz, et al, "DSP implementation of the multiple
reference frames theory for the diagnosis of stator faults in a DTC
induction motor drive," Energy Conversion, IEEE Transactions
on, vol. 20, pp. 329-335, 2005.

E. Monmasson and M. N. Cirstea, "FPGA Design Methodology
for Industrial Control Systems: A Review," Industrial Electronics,
IEEE Transactions on, vol. 54, pp. 1824-1842, 2007.

C. T. Kowalski, et al., "FPGA Implementation of DTC Control
Method for the Induction Motor Drive," in EUROCON, 2007. The
International Conference on Computer as a Tool, 2007, pp. 1916-
1921.

V. D. Colli, et al., "Design of a System-on-Chip PMSM Drive
Sensorless Control," in Industrial Electronics, 2007. ISIE 2007.
IEEE International Symposium on, 2007, pp. 2386-2391.

L. Yamin and C. Wanming, "Implementation of Single Precision
Floating Point Square Root on FPGAs," in IEEE Symposium on
FPGA for Cusom Computing Machines, Napa, California, USA,
1997, pp. 226-232.

K. Piromsopa, et al., "An FPGA Implementation of a fixed-point
Symp. on
Communications and Information Technology (ISCIT 2001),
ChiangMai, Thailand, 2001.

S. Lachowicz and H. J. Pfleiderer, "Fast Evaluation of the Square

square root operation," presented at the Int.

Root and)Other Nonlinear Functions in FPGA," in Electronic
Design, Test and Applications, 2008. DELTA 2008. 4th IEEE
International Symposium on, 2008, pp. 474-477.

M. D. Ercegovac, "On Digit-by-Digit Methods for Computing
Certain Functions," in Signals, Systems and Computers, 2007.
ACSSC 2007. Conference Recordl of the Forty-First Asilomar
Conference on, 2007, pp. 338-342.

0. Kosheleva, "Babylonian method of computing the square root:
Justifications based on fuzzy techniques and on computational
complexity," in Fuzzy Information Processing Society, 2009.

[20]

21

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

B1

NAFIPS 2009. Annual Meeting of the North American, 2009, pp.
1-6.

W. B. Ligon, II], ef al., "Implementation and analysis of numerical
components for reconfigurable computing," in Aerospace
Conference, 1999. Proceedings. 1999 IEEE, 1999, pp. 325-335
vol.2.

K. Taek-Jun, et al., "Floating-point division and square root
implementation using a Taylor-series expansion algorithm," in
Electronics, Circuits and Systems, 2008. ICECS 2008. 15th IEEE
International Conference on, 2008, pp. 702-705.

H. Kabuo, et al., "Accurate rounding scheme for the Newton-
Raphson method using redundant binary representation,"
Computers, IEEE Transactions on, vol. 43, pp. 43-51, 1994.

M. Allie and R. Lyons, "A root of less evil [digital signal
processing)," Signal Processing Magazine, IEEE, vol. 22, pp. 93-
96, 2005.

W. Liang-Kai and M. J. Schulte, "Decimal floating-point square
root using Newton-Raphson iteration," in Application-Specific
Systems, Architecture Processors, 2005. ASAP 2005. 16th IEEE
International Conference on, 2005, pp. 309-315.

V. Tchoumatchenko, ef al, "A FPGA based square-root
coprocessor," in EUROMICRO 96. 'Beyond 2000: Hardware and
Software Design Strategies', Proceedings of the 22nd
EUROMICRO Conference, 1996, pp. 520-525.

N. Takagi and K. Takagi, "A VLSI Algorithm for Integer Square-
Rooting," in Intelligent Signal Processing and Communications,
2006. ISPACS '06. International Symposium on, 2006, pp. 626-
629.

L. Yamin and C. Wanming, "Parallel-array implementations of a
non-restoring square root algorithm," in Computer Design: VLSI
in Computers and Processors, 1997. ICCD '97. Proceedings.,
1997 IEEE International Conference on, 1997, pp. 690-695.

W. Xiumin, ef al., "A New Algorithm for Designing Square Root
Calculators Based on FPGA with Pipeline Technology," in Hybrid
Intelligent Systems, 2009. HIS '09. Ninth International Conference
on, 2009, pp. 99-102.

S. Samavi, et al., "Modular array structure for non-restoring
square root circuit," Journal of Systems Architecture, vol. 54, pp.
957-966, 2008.

S. Dattalo. (2000, March 17, 2010). Square Root Theory.
Available: http://www.dattalo.com/technical/theory/sqrt.html
March 30, 2010). Comparing Altera APEX 20KE & Xilinx Virtex-
E Logic Available:
http:/www.altera.com/products/devices/apex/features/apx-
compdensity.html

Densities.

