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Abstract—This paper presents a digit-by-digit calculation
method to calculate the complicated square root problem
faced in implementing the direct torque control (DTC) of
induction motor drives using Field Programmable Gate
Arrays (FPGA). The main principle of the proposed method
is based on a two-bit shifter and a subtractor-multiplexor
operation that gives simpler implementation and faster
calculation. The proposed strategy was successfully
implemented on an FPGA device using unsigned 32 bit and
64-bit binary square root. The strategy can be easily
expanded to larger number.
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I.  INTRODUCTION

It is well-known that the direct torque control method
(DTC) for AC motors has simple structure and excellent
performance such as fast torque response, no requirements
for PWM pulse generation and coordinate transformation,
no position encoder and does not need current regulators
[1-7]. The DTC algorithm is usually implemented based
on serial calculations using Microcontroller or Digital
Signal Processing (DSP) [8-11]. These are truly software-
based platform which may be not fast enough for some
applications. For instance, in DTC drive implementation,
the stator flux and electric torque have to be estimated in
real-time. For hysteresis-based DTC with digital
implementation, it is necessary to have several samplings
as the torque error moves from lower to upper (or vice
versa) bands in order to avoid large torque ripple. In space
vector modulation -based (SVM-based) implementation,
other than estimating the torque and flux, the processor
has to implement the SVM algorithm as well. These all
translate to the need of faster and hence more expensive
processors. As an alternative solution to provide a faster
calculation for real time flux and torque estimations is to
use FPGA based system [12-14]. However, the main
drawback in using FPGA in performing the estimation is
the complexity. One problem which has been identified in
DTC induction motor drive system based on FPGA
Hlplementatio is the complicated square root calculations

5-17].

There are many algorithms which have been proposed
to solve the square root calculation problem, such as using
Rough estimation [18], Babylonian method [19],
€xponential identity [20], Taylor-Series Expansion
Algorithm [21], Newton-Raphson method [22-24], and
Sequential algorithm (digit-by-digit calculation method)
25-29]. However, these proposed methods are not

particularly found in electric drive system applications
where square root calculation is normally required.
Specifically, in this paper, calculation of square root for
the direct torque control drive will be addressed.

This paper proposes digit-by-digit calculation method
as a simple strategy to solve complicated square root
calculation implemented using FPGA. The proposed
implementation strategy is slightly different from the
strategies proposed in [25-29], as will be discussed later.
An optimization is also done by eliminating circuitry that
is not needed. The method is proposed as part of the
development of the controller used in the DTC drive
system which is fully based on FPGA.

II. DIGIT-BY-DIGIT CALCULATION METHOD

In digit-by-digit calculation method, each digit of the
square root is found in a sequence where only one digit of
the square root is generated at each iteration [27-29]. It
has several advantages, such as: every digit of the root
found is known to be correct and it will not has to be
changed later; if the square root has to be expanded, it will
be terminated after the last digit is found; and the
algorithm works for any number base (of course the
process depends on number base).

In general, this method can be divided in two classes,
i.e. restoring and non restoring digit-by-digit algorithm
[29]. In restoring algorithm, the procedure is composed by
taking the square root obtained so far, appending 01 to it
and subtracting it, properly shifted, from the current
remainder. The 0 in 01 corresponds to multiplying by 2;
the 1 is a new guess bit. The new root bit developed is 1, if
the resulting remainder is positive, else it is 0, which the
remainder must be restored by adding the quantity just
subtracted. It is different from the non restoring algorithm
where the subtraction is not restored if the result is
negative. Instead, it appends 11 to the root developed so
far and on the next iteration it performs an addition. If the
addition causes an overflow, then on the next iteration it
has to go back to the subtraction mode [30]. Figure 1 (a)
and (b) gives an example on how take the binary square
root of 01011101 (equivalent with 93 decimal) for
restoring and non restoring algorithm respectively.

In this paper, a simple modification to the conventional
non-restoring digit-by-digit algorithm is made in order to
give a simpler implementation and faster calculation. The
conventional method is shown in Figure 1(a) whereas the
modification is shown in Figure 1(b). In this modification,
only subtract operation with append 01 is used; add



operation and append 11 is not used. This paper adopts
this modification to implement unsigned 32 and 64-bit
binary square root based on FPGA.

III. PROPOSED SQUARE ROOT ALGORITHM

Samavi, et al. [29] has improved classical non-restoring
digit-by-digit square root circuit by eliminating the
redundant blocks. Their circuit is referred to as the
reduced area non restoring circuit. However, it is still
based on constant digit of 01 or 11 and add-subtract as the
main building block (Figure 1 b). This paper offers a
simple alternative solution that only uses subtract
operation and appends 01. Consequently, the subtract-
multiplex is used as the main building block (refer to
Figure 2). The principle of the proposed algorithm can be
described as shown in Figure 3.
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Figure 1. The example of digit-by-digit calculation to solve square
root: (a) restoring algorithm; (b) non restoring algorithm
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Figure 2. The example of using modified non restoring digit-by-digit
calculation algorithm to solve square root

Step 0. Start

Step 1. Initialization radicand (the n-bit number will be
squared root), quotient (the result of squared root),
and remainder. To calculate square root of a 2n bit
number, it needs n stage pipelines to implement the
proposed algorithm.

Step 2. Beginning at the binary point, divide the radicand into
groups of two digits in both direction.

Step 3. Beginning on the left (most significant bit), select
the first group of one or two digit (If n is odd then
the first groups is one digit, and vice versa)

Step 4. Choose 1 squared, and then subtract.

Fist developed root is “1” if the result of subtract is
positive, and vice versa is “0”

Step 5. shift two bits, subtract guess squared with append 01.

Nth-bit squared is “1” if the result of subtract is
positive, and Because of subtract operation is done

else

Nth-bit squared is “0”, and not subtract
Step 6. Go to step 5 until end group of two digits
Step 7. End

Figure 3. The principle of proposed algorithm to solve square root

A simple hardware implementation of the non-restoring
digit-by-digit algorithm for unsigned 6-bit square root by
an array structure is shown in Figure 4. The radicand is P
(p5,P4,P3,P2,P1,P0), U (U2,U1,U0) as quotient
and R (R4,R3,R2,R1,R0) as remainder. It can be
shown that the implementation needs 3 stage pipelines.
The main building blocks of the array are blocks called as
controlled subtract-multiplex (CSM). Figure 5 present the
details of a CSM. Input of the building block is x,y, b

and u, and as an output is bo (borrow) and d
(result).Ifu=0, then d<=x-y-b else d<=x.
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Figure 4. A simple hardware implementation of the non-restoring
digit-by-digit algorithm for unsigned 6-bit square root
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Figure 5. Internal structure of a CSM block
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Figure 6. A simple hardware implementation of the non-restoring
digit-by-digit algorithm for unsigned n-bit square root



The generalization of simple implementation of the
non-restoring digit-by-digit algorithm for unsigned n-bit
square root by an array structure is shown in Figure 6.
Each row (stage) of the circuit in Figure 6 executes one-
iteration of the non-restoring digit-by-digit square root
algorithm, where it only uses subtracts operation and
appends 01.

To optimize hardware resource utilization of the
implementation, specialized entities can be created as
building block components. It will eliminate circuitry that
is not needed. As an example, the implementation in
Figure 6 for unsigned 6-bit square root can be optimized
to become as shown in Figure 7 (in this case, the
remainder is ignored, because in the DTC drive, it is not
required). The specialized entities A, B, C, D and E are
minimized CSM when input ybu=100, yu=00, u=0,
yu=10, and y=0 respectively, and the remainder is
ignored. The generalization of optimized simple
implementation of the non-restoring digit-by-digit
algorithm for unsigned n-bit square root is shown in
Figure 8.
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Figure 7. Optimized simple hardware implementation of the non-
restoring digit-by-digit algorithm for unsigned 6-bit square root
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Figure 8. Optimized simple hardware implementation of the non-
restoring digit-by-digit algorithm for unsigned n-bit square root

IV. THE CALCULATION OF STATOR FLUX LINKAGE IN
DTC oF AC MACHINE DRIVE

The most important and difficult task in DTC of AC
machine drive in the d-q stationary reference frame is to
accurately calculate the stator flux linkage [4-5, 7]. This is
because the performance of the DTC drive is highly
dependent on the control of the amplitude and phase of the
Stator flux linkage, ¢, and thus require an accurate
estimation of these quantities. If the calculation error is

such that the estimated angle dexceeds the limit value, the
torque may fall with increasing & and thus can lead to
instability.

The d-q axes components of the stator flux
linkage,pp(k) and @q(k), at the k-th sampling instant can
be calculated as follows:

Po(k)=@p|,_,+(Vo|, ,—Rip)T, (1)
(Dg(k) - ¢Q|k—l * (lek-/ - RITQ )T (2)

@.(k)=|op(k)+g5(k) ®3)

In this paper, equation (3) is addressed as complicated
square root problem in DTC for FPGA implementation
[15-17]. In Figure 9 which shows the torque and flux
estimator design based on FPGA, the need for the 64-bit
square root calculation is specifically shown. To solve
this problem, optimized simple hardware implementation
method of the non-restoring digit-by-digit algorithm is
proposed.
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Figure 9. Block diagram of torque and flux estimator design based on
FPGA in fixed point term

V. RESULTS AND ANALYSIS

In the previous sections, optimized simple hardware
implementation method of the non-restoring digit-by-digit
algorithm for square root and the difficult task in DTC to
calculate square root were explained. In this section,
simulation results of 32-bit and 64-bit square root based



on Altera APEX 20KE FPGA using the proposed method
is presented, as shown in Figure 10. In this simulation, P
is radicand and U is quotient. The results showed that the
implementation is successful and worked properly.
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problem in FPGA implementation. Unfortunately, the
proposed method is only appropriate for gate level
abstraction and is not powerful for RTL or behaviour level
abstraction.

VI. CONCLUSION

This paper presents a modification of conventional non
restoring  digit-by-digit  calculation = method  for
implementation in FPGA hardware, mainly to solve
complicated square root in DTC drive algorithm. The
main principle of the proposed method is the two-bit
shifter and subtractor-multiplexor operations, and only
uses subtract operation and append 01, without add
operation and append 11. The proposed strategy has been
successfully implemented on an FPGA device based on
unsigned 32-bit and 64-bit binary square root. The results
have shown that the proposed method is the most efficient
in terms of hardware resource usability compared to other
methods. The strategy can also be easily expanded to
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Figure 10. Simulation result of n-bit square root using optimized simple
hardware implementation method of the non-restoring digit-by-digit
algorithm: (a) 32-bit in decimal display, (b) 32-bit in binary display, (c)
64-bit in decimal display, (d) 64-bit in binary display

Based on the compilation report, in order to implement
32-bit and 64-bit square root using the optimized simple
hardware implementation method of the non-restoring
digit-by-digit algorithm, 256 and 1023 logic element (LE)
are needed respectively. The comparison of results
obtained from different implementation methods is shown
in Table 1. The comparison of LE or logic cell (LC) usage
is listed based on references [29] and [31]. The number of
employed LE indicates the size of hardware resource
required to implement the circuit. The table clearly
showed that the proposed method is most efficient method
in terms of the usage of hardware resource. This is
particularly true as it only uses subtract operation and
append 01 with no add operation.

Based on Figure 8, the strategy can be easy expanded
for larger number to solve complicated square root
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