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Abstract: The purpose of this paper was to design a much simpler control method for a wastewater treatment
plant. The work proposes a direct adaptive predictive control (DAMPC) also known as subspace predictive control
(SPC) as a solution to the conventional one. The adaptive control structure is based on the linear model of the
process and combined with numerical algorithm for subspace state space system identification (N4SID). This
N4SID plays the role of the software sensor for on-line estimation of prediction matrices and control matrices of
the bioprocess, joint together with model predictive control (MPC) in order to obtain the optimal control sequence.

The performances of both estimation and control algonthms are illustrated by simulation results. Stability analysis
is done to investigate the response of the system proposed when parameter changes exist. This project proves that
subspace-adaptive method has a large number of important and useful advantages, primarily the application ability
to Multi Input Multi Output (MIMO) systems, and the low requirements on prior system information. Given the
advantages observed, the most likely areas of application for the proposed algorithm are multivariable processes,
about which little information is known such as this wastewater treatment plant. Hence, direct adaptive predictive
control (DAMPC) can provide simplicity and good performance in of an activated sludge process.
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1. Introdﬁction activated sludge wastewater treatment process. Finally, to

This peper aims to develop @ direct adaptive analyze the stability issues occur on the system proposed.

predictive controller (DAMPC) that able to provide
simplicity, good performance and stability robustness in
controlling an activated sludge process in wastewater The nonlinear biological wastewater treatment
treatment plant. process which has been studied in this paper is taken from

There are several problem statements in control  [3].
design of an activated sludge process; the dynamical
model obtained is most often highly complex and high
order non-linear system, lack of cheap and reliable
sensors for on-line measurement of the key state 1
variables, laboratory analysis with delays of several days Infivont
cannot be used for on-line monitoring, low effluent S
quality and high energy consumption,

Thus, the main objective of this paper is to study the
operation of activated sludge process in wastewater
treatment plant. In addition to it, the prediction and Acivated Siudge \L

Qw . Xr St

2. Bioprocess Modeling

(Q-Qw) Xe Se
—

controller matrices are estimated by using online RQ.Xr Se

Numerical algorithms for subspace state space system Excess Sludge
identification (N4SID), and hence design a subspace |
predictive control (SPC) also known as direct adaptive
contro] with the aims of improving the performance of

Fig. 1 Activated Sludge Reactor
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The substances from the substrate (S), represents a
source of energy and carbon (necessary for the synthesis
of new cellular material) that are used by the
microorganism (biomass — X) to live and reproduce
themselves. This process is aerobic, that means that it
happens only if in the tank there is dissolved oxygen (O;)
which is used by the microorganism for their metabolism.

Fig 1 illustrates an activated sludge reactor which
comprises a secondary clarifier that is necessary for the
settling of the biomass and its removal. Part of the settled
biomass is recycled in order to allow the right
concentration of microorganism in the aerated tank. This
recycled biomass (Xr) has a higher concentration than the
biomass in the reactor (Xr > X) related to the fact that is
coming from a settling process.

The mass balance around the aerator and the settler
give the following set of non-linear differential equations:

X(®) = u@®X(®) — DO +7)X() + rDOXr(E) (1)
() = —E2X(®) - DO +SE) + DE)Sim ()

60 = — 2% _ D) +1)C(E) + Kyo(Cs -
Ct+DtCin 3)

Xr(®) = DA +1)X() — DE)(B + r)Xr(t) @
where X(t), S(t), Xr (t) and C(t) are the state variables
representing the biomass, the substrate, the recycled
biomass and dissolved oxygen concentrations,
respectively. D(f) is the dilution rate, r and {8 represent,
respectively, the ratio of recycled flow to influent flow
and the ratio of waste flow to influent flow, S;, and Cj,
correspond to the substrate and dissolved oxygen
concentrations in the feed stream, respectively. The
kinetics of the cell mass production are defined in terms
of the specific growth rate p and the yield of cell mass Y;
the term Ky is a constant, C; is the maximum dissolved
oxygen concentration and K, represents the oxygen mass
transfer coefficient.

The specific growth rate p is a key parameter for the
description of biomass growth and is known to be a
complex function of many physic-chemical and
biological factors like the biomass concentration, the
substrate  concentration, the dissolved oxygen
concentration, the pH, the temperature, and various others
inhibitors. Many different analytical laws have been
suggested for modelling this parameter. The most popular
is certainly the Monod law.

Here the specific growth rate is assumed to be
depending on substrate, dissolved oxygen concentrations
and several kinetic parameters. The kinetic model is then
given by

- S(8) c(®)

“(t) - H-max KS+S(t) Kc+C(t) (5)
where 1., is the maximum specific growth rate, K is the
so-called affinity constant, expressing the dependency of
the degradation rate on the concentration of pollutant S,
and K_ is the saturation constant.

The choice of Olsson model is partially motivated by
its very large use in aerobic biotechnological applications,
and particularly in activated sludge processes.

Kinetic parameters:

Y =065 Umax =015 1!
r=0r/Q=06 K, = 100 mgl’
B=0./0=02 Ko=0.5
a=0018 C, =10 mgl’
K. =2 mgl!

Initial conditions:
X(0) =215 mgl’”’ - C(0) = 6 mgl'’
S(0) = 55 mgl”’ Sy = 200 mgl”’
X, (0) = 400 mgl”! Cin = 0.5 mgl”

3. Subspace System Identification

Recently a great deal of attention has been given to
numerical algorithms for subspace state space system
identification (N4SID). The N4SID algorithms are always
convergent (non-iterative) and numerically stable since
they only make use of QR and singular value
decompositions (SVD).

The greater part of the system identification literature
is concerned with computing polynomials models, which
are however known to typically give rise to numerically
ill-conditioned mathematical problems, especially for
Multi Input Multi Output (MIMO) systems. Numerical
algorithms for subspace state space system identification
(N4SID) are then viewed as the better alternatives. This
especially true for high order multivariable systems, for
which it is not trivial to find useful parameterization
among all the parameterizations. This parameterization is
needed to start up the classical identification algorithms
(see e.g. [1]), which means that a prior knowledge of the
order and the observability (or controllability) indices is
required.

With N4SID algorithms, most of the prior
parameterization can be avoided. Only the order of the
system is needed and it can be determined through
inspection of the dominant singular values of a matrix
that is calculated during identification. Another major
advantage of N4SID is that it is non-iterative, with no
non-linear optimization part involved. This is why they
do not suffer from the typical disadvantages of iterative
algorithms such as no guaranteed convergence, local
minima of the objective criterion and sensitivity to initial
estimates. A final advantage of the N4SID algorithms is
that there is no difference between zero and non-zero
initial states [4].

The approach adopted here is similar to the
identification schemes of [2] for the purely deterministic
case and [5] for the stochastic case. First a state sequence
is determined from the projection of input-output data.
This projection retains all the information (deterministic
and stochastic) in the past that is useful to predict the
future. Then the state space matrices are determined from
this state sequence. Fig 2 shows how these N4SID
algorithms differ from the classical identification
schemes.
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Fig. 2 Subspace and classical methods of system
identification
The subspace model identification (SMI) uses
projection methods and SVD to obtain the model. The
identified models describe the activated sludge process
around an operating point and can be in the form of
standard linear discrete time invariant state space system:
Xps1 = AXy + By +wy (6)
Yie = Cxpe + Dy + vy Q)
with
w s SS
()t D] =gy me)Buz0 @
and A, Qs e R""", Be Rnxm’ Ce Rlxn’ De Rlxm, Ss e Rnxl
and R® ¢ R™. The input vectors w, ¢ R™ and output
vectors yx € R™ are measured. vy € R™ and w, € R™ on
the other hand are unmeasurable, Gaussian distributed,
zero mean, white noise vector sequences. {A, C} is
assumed to be observable, while {A, (B(Q")')} is

assumed to be controllable.
Input and output block Hankel matrices are defined

as:
uo u1 uz oo u}‘_l
f uw Uy ug v Y
Ui-1={ .. .0 ... ©)
Uiap U U™ Uitj-2
Yo Y1 Y2 Yj-1
Yi Y2 Y3 Y
Yopea = e s sa s (10)
i-1 Yi Yi+1"" Yi+j-2

where the number of column j is assumed to go to infinity
throughout this thesis. The subscripts of U and Y denote
the subscript of the first and last element of the first
column, The past inputs and future inputs are denote as
Upjieqy = Up and Uypi-y = Uy respectively. A similar
notation applies for the past and future outputs. This
notational convention is useful when explaining concepts.

The matrix input-output equations are defined in the
following theorem [2]:
where the extended (i > n) observability matrix, I';and the
deterministic lower block triangular Toeplitz matrix, H;
are defined as:

c

CA

D 0 0

CB D 0

Hi = (13)

Jooco

CAI=2B CA'3B CA"*B--
Finally, the future state sequences are denoted as follows:
Xi=x Xig2™" Xi4j-1) (14)
where X; = X;. :

Subspace identification algorithms are often based on
geometric concepts. The geometric tools used in SMI are
orthogonal and oblique projections of the row space of
matrices. These projections are naturally used in QR
decomposition as well as for calculating the state vectors.
A short description on the projection method is presented
in the next following section.

In this subsection, the matrices A € RP¥,B €
R%and C € R™ are given. The elements of a row of
one of the given matrices are considered as the
coordinates of a vector in the j-dimensional ambient
space. The rows of each matrix A, B, C thus define a
basis for a linear vector space in this ambient space.

g denotes the operator that projects the row space of
a matrix onto the row space of the matrix B € R:

Mz = BT.(BB™)'.B (15)
where 1 denotes the Moore-Penrose pseudo-inverse of the
matrix. A / B is shorthand for the projection of the row
space of the matrix A € RP¥ on the row space of matrix
B:

Xi1

A/B=4.Tlg=4B". (BB t1.B (16)

Note that in the notation 4 / B the matrix B is printed
bold face, which indicates that the result of the operation
A/ B lies in the row space of B.

Instead of decomposing A as linear combinations of
two orthogonal matrices (B and B*), it can also be
decomposed as linear combinations of two non-
orthogonal matrices B and C and of the orthogonal
complement of B and C. The rows of a matrix A are
decomposed as linear combinations of the rows of B and
C and of the rows of a third matrix orthogonal to B and C.
This can be written as:

B
A= Ly.B +LC.C+LB_L_C_L.(C) (17

The matrix L¢.C is defined as the oblique projection
of the row space of A along the row space of B on the
row space of C:

L

A/gC=1L.C (18)
The oblique projection can be expressed as follows:
A/sC = (A/B).(C/BY) 1.C (19)

where gives the oblique projection of row space of
A € RP¥ along the row space of B € R% on the row
space of C € R™! . Properties of the oblique projection
are:
B/zC=0
C/gC=C

(20)
(21)

4. Direct Adaptive Model Predictive Control

Fuel A data-driven adaptive control is proposed and
tested on activated sludge process. In this control design,
the subspace identification technique is combined with
MPC control design. The design of adaptive MPC can be



performed in two different ways; indirect method and
direct method. Fig 3 shows the differences between the
two methods.

Input-output data
Indirect approach Direct approach
State estimate !
[ Sroetiuis | N
QR decomposition -
/SVD
System matrices
(A,B,C, D)
[———b-l MPC parameters 2-4—

Fig. 3 Comparison between indirect (left) and direct
(right) schemes for obtaining controller parameters

This study will only focus on the direct approach.
Note that, in the direct method the steps of identification
and control design can be carried out simultaneously by
applying a single QR decomposition to the input-output
data. This stands in contrast to the design of indirect
adaptive MPC.

Model Predictive Control or MPC, is an advanced
method of process control that has been in use in the
process industries since the 1980s. Model predictive
controllers rely on dynamic models of the process, most
often linear empirical models obtained by system
identification. Fig 4 shows the receding horizon control
strategy used in MPC.

PAST A FUTURE

Reference Trajectory
-+~ Predicted Qulput
¢ Measured Qutput
Predicted Conlrol Input
—  Past Control Inpul

>
Sample Time

ko kel ke2 kp

Fig. 4 Principle of receding horizon control strategy

Although this approach is not optimal, in practice it
has given very good results. Much academic researches
has been done to find fast methods of solution of Euler-
Lagrange type equations, to understand the global
stability properties of MPC's local optimization, and in
general to improve the MPC method. To some extent the
theoreticians have been trying to catch up with the control
engineers when it comes to MPC.

Model Predictive Control (MPC) is a multivariable
contro] algorithm that uses:

e an internal dynamic model of the process

e a history of past control moves and

e an optimization cost function J over the receding
prediction horizon,

to calculate the optimum control moves.

The optimization cost function is given by:

J= 2?’:1 wyi(r — %)% + Z?}=1 Wy Au;? (22)

without violating constraints (low/high limits)

With:

x; =i -th controlled variable (e.g. measured temperature)
r; =i -th reference variable (e.g. required temperature)
u; = i -th manipulated variable (e.g. control valve)

wy,; = weighting coefficient reflecting the relative
importance of x;

w,; = weighting coefficient penalizing relative big
changes in u;

The data-driven design approach based on direct
adaptive MPC in the literature so far has been derived
using windowing approach, for instance [7]. One of the
main features of MPC is its flexibility to handle
constraints.

The computation is more involved for the constrained
case, particularly in the multivariable constrained
systems. The problem takes the form of a standard
quadratic programming which can be solved online. Since
the DAMPC uses sliding window method, the solution to
the QP problem leads to a highly computational burden as
the size of identification window increases. Fig 5
represents the block diagram of a subspace based
adaptive MPC.

Subspace
algorithm

Plant. y

MPC
controller

Fig.5 Subspace based adaptive MPC

In DAMPC, the controller parameters can be retrieved
directly from the identification steps and the possibility of
handling constraint implicitly is explored. To circumvent
this problem, we consider the data-driven DAMPC
control strategy for increment input constrained
multivariable system. The strategy is based on analyzing
the SVD of the Hessian of the quadratic performance
index considered in DAMPC.



5. Results and Discussion

An interesting link between subspace identification
and model predictive control is exploited to implement a
predictive controller for an unknown system based on
subspace techniques. The algorithm presented does not
require computation of the system matrices, and as such
this method of control design can be interpreted as
‘djrect’ adaptive control. In addition, a modification was
made to the algorithm, and this modified algorithm was
successfully implemented in Simulink.

A simulink model of the implemented subspace
predictive controller was created to control a stable
MIMO system that represents the wastewater treatment
plant. The model used is shown in Fig 6, and the SPC
controller subsystem can be seen in Fig 7.

vl

Fig. 6 Simulink model used to implement SPC on a
wastewater treatment plant system

6

-0

Fig. 7 SPC subsystem Simulink model

The system used was the same linear model obtained
previously. In the simulation, the following parameters
were used:

Block data size, N 100
Hankel matrix index / MPC horizon, s 10
Sampling interval, h 0.1
Weighting matrix for future error sequence, Q | 400Is,s
Weighting matrix for future control sequence, | 10Is,s
Input dimension, m 2
Output dimension, 1 2

B N o neptern e S g e s s S . S s e
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Fig. 8 Controller matrix values change from
original dynamics to new dynamics at =100

- ) ‘ All colours are the conlrol
o - matrices values |

S “« # i 8 =1 ax E XFe

Fig. 9 Controller matrix values change from
original dynamics to new dynamics at =400

From Fig 8, it was found that when the dynamics
were changed during the simulation from the original
system to a new value of weighting matrix (Q =4 and R
= 1) the system responded well, with the control
continuing to stabilize the system before the identification
had collected a new set of input-output data and
calculated new control matrices. Fig 9 shows the same
results but for t=400.

s — * : - -
All colours are the control |
matrices vakes

it

SE

2 5 i i . 3 L 1
o & X . < [ i 2k @

Fig. 10 Controller matrix values change from
new dynamics to original dynamics at =100

®
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Fig. 11 Controller matrix values change from
new dynamics to original dynamics at =400

However, when the simulation was started with the
new values of weighting matrix, and the parameter was
changed to the original dynamics, the system became
badly unstable for a number of sample periods before
being stabilized again by the newly obtained controller
matrices. The extent of the instability is shown in Figs 10
and 11, although it should be noted that there was no
limitation on the control, and a rather unrealistically low
control weighting matrix was used, for the purposes of
experiment. Thus the control signal obtained was very
large.

This is a good example why the introduction of the
MPC methods for dealing with constraints should be
introduced in the basic SPC formulation, a higher control
weighting in the cost function would negatively affect the
control performance. These instability problems arise
because of the finite horizon nature of MPC. Concepts of
stability are intrinsically asymptotic, and thus control
design for finite horizon cannot have guaranteed stability
in the same way as is found in linear quadratic Gaussian
(LQG) control design. Thus it is unknown whether such
instability windows will arise if the simulation is run for
an arbitrary length of time. This is clearly a disadvantage
of MPC strategies.

The relatively small block data size appears to give
fairly poor identification in comparison with larger block
sizes. But larger block sizes imply longer delays in
responses to parameter changes, and can only be
compensated for with smaller sampling periods, which
increases the requirement and computational power.

Another possible disadvantage is the tuning of the
parameters. In standard MPC, the parameters to be tuned
include the weighting matrices Q and R, which are able to
allocate different weights to different time steps within
the forward horizon. This implies that the tuning is very
difficult. Indeed it was found that tuning these matrices
for the wastewater treatment plant system to obtain
adequate control was not easy.

In SPC, further parameters must be chosen, namely
the size of the block data and the size of the block Hankel
matrices. While these do not appear to be control
parameters, they affect the identification result and thus
the control design, and therefore have an effect on
stability and performance of the system.

6. Summary

It is clear that subspace-adaptive method have a large
number of important and useful advantages, primarily the
application ability to MIMO systems, and the low
requirements on prior system information. It is also clear
that a great many problems need to be solved, including
the issues of parameter tuning, response time to
parameter changes, and stability. In conclusion, it is
proposed that this algorithm shows much promise for
further development. At this stage, given the advantages
observed and the problems encountered, the most likely
areas of application for the proposed algorithm are
multivariable processes, about which little information is
known such as the wastewater treatment plant. Processes
to be controlled with long sampling period are ideal
targets, since the issue of computation time is reduced in
importance.
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