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ABSTRACT
Analytical models of the sound radiation a rectangular plate are often based on simply supported edges for
mathematical convenience. Models for other boundary conditions also exist, but mostly these employ rather
complicated analytical calculations. This paper presents an analytical model of the radiation efficiency for a
baffled plate using a discrete elementary source model. The model requires only the a knowledge of the spatial
distribution vibration velocity of the panel and hence this surface velocity can be calculated conveniently by
using the established mobility equations for different plate boundary conditions. This is then included in the
discretized Rayleigh integral to calculate the radiated sound pressure to the far-field. Variability of the radiation
efficiency for different forcing locations and its average value are presented here for several combinations of
boundary conditions. Experimental results are presented for free and clamped edges which show reasonable
agreement with the predicted results.
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1. INTRODUCTION
Sound radiation from plate-like structures has been extensively studied, in particular for the case of a plate

mounted in an infinite rigid baffle. Maidanik (1) first proposed a model for the radiation efficiency of a baffled
plate assuming broadband excitation and multi-mode response. Wallace (2) employed the Rayleigh integral
to calculate the radiation efficiency for individual vibration modes. Later Leppington et al. (3) proposed an
improvement of Maidanik’s model especially for the result near the critical frequency. Xie et al. (4) calculated
the total radiation efficiency using a modal summation approach based on the modal radiation efficiencies
from Wallace (2). Williams and Maynard (5) used the Fast Fourier Transform (FFT) for the Rayleigh’s integral
formula to evaluate numerically the sound power baffled planar radiator based on Rayleigh’s integral formula.
Williams (6) also proposed a method based on a series expansion technique to calculate the acoustic power
radiated from a flat panel.

However all the models previously discussed were based on the vibration plate with simply supported
edges. These boundary conditions are commonly used because of their convenience for analytical calculations.
Nevertheless, approximate analytical models are available for the vibration of plates with other boundary
conditions (7, 8). Several auhors have calculated the sound radiation from plates with different boundary
conditions. An analytical model for the modal radiation efficiency was presented by Gomperts (9) which used
the flexural modes of uniform beams to develop the expressions for the sound radiation from a rectangular
plate. His results are only applicable where the conditions where the edge conditions of the plates are identical
on both sides. This was extended to cover two dimensional radiation problems for five different ideal boundary
conditions ranging from free to restrained edges (10) . Berry et al. (11) proposed a formulation for general
boundary conditions using a Rayleigh-Ritz method by selecting a set of trial functions satisfying the geometry
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of the boundary conditions. Later, Berry (12) found only that one set of trial functions was required to
represent the plate displacement. Most recently, Squicciarini et al. (13) models the radiation efficiency for
nine configurations of different plate edges employing the beam mode shape for the particular boundary
condition. It is shown that a free plate has the lowest radiation efficiency and a clamped plate the highest for
most frequencies between the fundamental panel natural frequency and the critical frequency.

In this paper, an alternative approach is taken based on discrete elementary sources where the panel is
assumed to consists of series of monopole sources, radiating sound power into the air. Discretisation into
elementary sources is useful to obtain the strength of each volume source, where this can also be obtain from
the Finite Element Model to calculate sound radiation for other complicated flat, baffled plate structure. The
concept is similar to the models of Vitiello et al. (14), Cunefare and Koopman (15), Elliott and Johnson (16)
which used discrete elementary radiators to replace a continuous radiator. The plate is divided into rectangular
sources, where for each source, the normal time-harmonic velocity is defined at its central position. The
interaction among the elementary sources, i.e. the pressure at one source position as a result of contributions
from the remaining sources, is expressed by a radiation resistance matrix. The power radiated by the plate can
be found from the contributions of these sources provided that the elementary source dimensions are small
compared with both structural and acoustic wavelengths.

2. GOVERNING EQUATION
2.1 Discrete version of Rayleigh integral

The radiated pressure at any point of observation due to a vibrating planar structure located in xy-plane in a
co-planar rigid baffle can be represented by Rayleigh integral (17) given by

p(x) =
jρck
2π

∫
s
vp(xs)

e− jkR

R
dS (1)

where ρ is the air density, c is the speed of sound, S denotes the surface area of the plate (assumed to lie in the
xy-plane), x = (x,y,z) is the location of the observation point. The vibration of the panel has normal velocity
amplitude vp at xs = (x,y) and R = |x−xs| is the distance from the source point to the acoustic response point.
A time dependence of e jωt is assumed implicitly, where t is time, ω is the circular frequency and k = ω/c is
the acoustic wavenumber.

The Rayleigh integral can be written in discrete form as a sum over elementary source regions as shown in
Figure 1 for a rectangular plate with dimensions of a×b. The sources can be defined by dividing the plate
into a grid of cells. The spacings between the centres of adjacent cells are dx in the x direction and dy in
the y direction. Each cell can be considered as a compact acoustic source and can be replaced by a discrete
monopole source. This requires that the size of the elemental source must be much smaller than half the
acoustic wavelength (k dx� π,k dy� π) and half the structural wavelength.
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Figure 1 – A vibrating plate lying in xy plane: a) before discretization and b) after discretization.

Discretizing the Rayleigh integral, Eq. (1) can be re-written as

p(x) =
jρck
2π

∑
s

vp(xs)
e− jkR

R
dxdy (2)

where R = |x−xs| and xs is the centre of source position s. However for response positions x on the surface of
the panel (x = xr) the integrand in Eq. (2) is singular for r = s. To solve the integral for element r, another
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approximation corresponding to the pressure distribution on the plate surface is needed. Morse and Ingard (18)
give the total force per unit area (pressure) acting on a rectangular piston with small aspect ratio moving with
uniform velocity un. For a piston dimensions dx×dx (i.e where dy = dx), the radiation impedance is given by

p
un

= ρc
(

k2dx2

8
+

j4kdx
3π

)
, kdx� π (3)

Combining this with Eq. (2) the Rayleigh integral can be written in matrix form

p = Mv (4)

where M is an impedance matrix with elements

Mrs =


jρck
2π

(
e− jkRrs

Rrs

)
(dx)2, r 6= s

ρc
(
(kdx)2

8
+

j4kdx
3π

)
, r = s

(5)

and p and v are vectors of pressure and velocity at each element. The sound power radiated by the plate can be
expressed as the summation over the power contributions from all discrete sources. The sound power can thus
be given by

W = Re
(

∑
s

pv∗p (x,y)
)

dx2 (6)

where ∗ indicates complex conjugate.
Finally, the radiation efficiency of the plate can be written as

σ =
W

ρcab
〈

v2
p

〉 (7)

where
〈

v2
p

〉
is the spatially-averaged mean square velocity across the total surface of the plate given by〈

v2
p

〉
=

1
ab ∑

s

∣∣vp(x,y)
∣∣2 dx2 (8)

2.2 Plate velocity
The Rayleigh integral in Eq. (1) requires that the normal velocity vp is known over the whole plate surface

area. For bending of a rectangular plate, the velocity can be written as the sum of modal contributions given by

vp(xs) =
∞

∑
m=1

∞

∑
n=1

umnΦmn(x,y) (9)

where umn is the complex velocity amplitude of mode (m,n) and Φmn is the mode shape function . For a point
force excitation at a specific location (x0,y0) and at frequency ω , it is given by (19)

umn = iω
∞

∑
m=1

∞

∑
n=1

Φmn (x0,y0)

[ω2
mn(1+ jη)−ω2]M

(10)

where F is the force amplitude, η is the damping loss factor, M is the plate mass and ωmn is the natural
frequency given by (7)

ωmn =

√
Eh2

12ρ(1−ν2)

(
π

a

)2
qmn (11)

where E is the Young’s modulus, ν is the Poisson’s ratio, ρ is the plate density, h is the plate thickness and
where

qmn =
√

G4
x (m)+G4

y (n)(a/b)4 +2(a/b)2 [νHx (m)Hy (n)+(1−ν)Jx (m)Jy (n)] (12)
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The constants Gx, Hx, Jx and Gy, Hy, Jy can be referred in (?) for various boundary conditions. The
subscripts x and y for the constants G, H, and J are defined with reference to the boundary conditions for x = 0
and x = a or y = 0 and y = b. The plate modeshapes Φmn (x,y) are given by the product of the ’characteristic
beam functions’, φm (x) and φn (x), that is Φmn(x,y) = φm(m)φn(y). The characteristic beam functions for the
common boundary conditions and the zeros of the function of γ are also given in details in (8). It should
be noted that these expression are approximations for most boundary conditions, an exception being simply
supported edges.

3. ANALYTICAL RESULTS
Figure 2 shows the radiation efficiency for simply-supported, free-free, clamped-clamped, clamped-pinned

and free-pinned boundary conditions for different forcing locations. The plate dimensions are taken as
0.3×0.2 m with a thickness of 1 mm and the material is taken as aluminium having a Young’s modulus of
7.1×1010 N/m2, density of 2700 kg/m3 , Poisson’s ratio of 0.33, and damping loss factor of 0.1.

The results are calculated for 40 excitation points distributed over the one quarter of the plate surface,
making use of symmetry. The calculation is performed up to 10 kHz involving all modes with m≤ 25 and
n≤ 25. The radiation efficiency is then obtained for each force position and as an average over the forcing
locations. The variability can be seen to be large between the first peak at the low frequency (fundamental
mode) and the critical frequency i.e. at 8 kHz for each configuration of boundary conditions as also discussed
for simply supported edges in (20) where the variability is high between the corner and edge mode regions.
Here for the free-free edge, as shown Figure 2b, the result can also be seen to be sensitive to the forcing
location in the fundamental mode region (below 50 Hz) due to different excitation of rocking modes.

Figure 3 compares averaged radiation efficiency for various boundary conditions from Figure 2. Additional
results are also given for a 3 mm thick plate. Results for all boundary conditions can be seen to similar the
fundamental mode region and the edge mode region (frequency range approaching the critical frequency).
However, the differences can be seen in the corner mode region for the free or less restrained edges, i.e.
free-free and free-pinned between 40 and 300 Hz for the 1 mm thick plate and 100 Hz–1 kHz for the 3 mm
thick plate where the radiation efficiency for these boundary conditions is smaller than those of the restrained
plate edges (pinned and clamped). This finding is also agree as in (13) where the free-free plate has the lowest
radiation efficiency and the clamped-clamped plate gives the highest. Note that in (13), the boundaries are
arranged to have the same conditions in the opposite directions, while in this paper, using the characteristic
beam function in Table 2, the boundaries are different in the opposite directions.

4. EXPERIMENTS
An experiment was conducted to compare the analytical results with measurements. From Eq. (7) by

normalising with mean-squared force, the radiation efficiency requires measurement of acoustic sound power
and plate mobility as given by

σ =
W/F2

ρcS
〈
Y 2

t
〉 (13)

where W is the sound power, ρ is the air density, c is the speed of sound, S is the surface area of the structure
and

〈
Y 2

t
〉
=
〈

v2
〉
/F2 is the spatially averaged squared transfer mobility. The measurement of sound power

was conducted using the reciprocity technique where, instead of measuring the directly radiated power due to
mechanical excitation on the plate, a sound source is used to provide acoustic excitation to the plate located in
a diffuse room and the plate response is then measured using an accelerometer. The normalised sound power
can be obtained by (21)

W

F2
=

a2〈
p2
〉 ( ρ

4πc

)
(14)

where a is the acceleration response of the structure and
〈

p2
〉

is the spatially-averaged mean-square acoustic
pressure developed in the test room. The result is independent of the properties of the room as long as the field
is diffuse. This technique has been shown to be successfully applied to measure the radiation efficiency of
perforated plates (22, 23) in unbaffled condition.

The plate was rested on an aluminium frame with soft foam under the plate edges to simulate the free-free
boundary conditions. For the clamped edges, the plate was clamped around the edges using beams screwed on
a rectangular frame as seen in Figure 4a.

Firstly, the plate mobility was measured using an instrumented hammer at 42 points across the plate surface

Page 4 of 8 Inter-noise 2014



Inter-noise 2014 Page 5 of 8

101 102 103 104

10−4

10−3

10−2

10−1

100

101

frequency [Hz]

ra
di

at
io

n 
ef

fic
ie

nc
y,

σ

(a)

101 102 103 104

10−4

10−3

10−2

10−1

100

101

frequency [Hz]

ra
di

at
io

n 
ef

fic
ie

nc
y,

σ

(b)

101 102 103 104

10−4

10−3

10−2

10−1

100

101

frequency [Hz]

ra
di

at
io

n 
ef

fic
ie

nc
y,

σ

(c)

101 102 103 104

10−4

10−3

10−2

10−1

100

101

frequency [Hz]

ra
di

at
io

n 
ef

fic
ie

nc
y,

σ$

(d)

101 102 103 104

10−4

10−3

10−2

10−1

100

101

frequency [Hz]

ra
di

at
io

n 
ef

fic
ie

nc
y,

σ

(e)

Figure 2 – Radiation efficiency of a baffled plate for dimensions of 0.3×0.2 m and 1 mm thick for (a) simply-
supported, (b) free-free, (c) clamped-clamped, (d) clamped-pinned, (e) free-pinned boundary conditions. Thin
line: radiation efficiency at 40 different excitation points; thick line: average radiation efficiency.

for each boundary conditions. A miniature accelerometer was attached at one fixed location to measure the
plate acceleration around the midspan of the plate (off-centre of the plate). From these different excitation
points, the spatially averaged squared mobility was obtained.

Secondly, the reciprocal technique was used to measure the radiated sound power using a small chamber
having volume of roughly 0.18 m3 as seen in Figure 4b. The chamber is made of steel with non-parallel walls
to assist the generation of the a diffuse field. The room has an opening area at the top and the test plate (with
the frame) was then laid covering this hole. A loudspeaker fed a broadband white noise to excite the panel and
a free-field acoustic microphone was used to record the sound pressure inside the chamber also was located
off-center of the chamber. The accelerometer was used to measure the plate acceleration at the same location
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Figure 3 – Radiation efficiency for various boundary conditions for: (a) 1 mm and (b) 3 mm plate thickness;
simply-supported (dashed line), free-free (dotted line), clamped-clamped (dashed-dotted line), clamped-pinned
(solid, thick line), free-pinned (solid, thin line).

as in the mobility measurement. From the measured reverberation time, the Schroeder’s frequency of the
chamber is around 850 Hz which is not an ideal acoustic space in order to have valid data at lower frequencies.
However, this is intended here as a preliminary experiment just to show the general trend of the measured data.

Figure 5 shows the experimental results for two extreme plate edges; free-free and clamped-clamped up
to 4 kHz. The measured data is only shown above 500 Hz (slightly lower than the Schroeder’s frequency).
For the 1 mm thick plate in Figure 5a, the measured results can be seen to consistently follow the trend of the
analytical results, especially for the clamped edge. The result for free-free edges can be seen to be lower than
the theory. This might be due to errors from the mobility measurement and/or acoustic measurement due to
the limitations of the enclosure. The differences seen in the predictions between the two different edge below
2 kHz conditions are not seen in the measured results. Better agreement is found in Figure 5b for the 3 mm
thick plate where measured results for the clamped plate show good agreement with the simulation above 500
Hz. For the free-free edges, the experimental results also show reasonable agreement with the theory.

To improve the range of reliability of the experimental results, they should be conducted in a reverberation
chamber to give results that are also valid at low frequencies at where the differences between the free and
restrained plate edges are expected to be greatest.

accelerometer
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3
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loudspeaker

(b)

Figure 4 – (a) Experimental setup for the reciprocity measurement and (b) test plate on the experimental
chamber (top view).
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Figure 5 – Radiation efficiency of a baffled plate for (a) 1 mm and (b) 3 mm thick plate: theory (free-free (—)
and clamped-clamped (−−) edges), experiment (free-free (◦) and clamped-clamped (4))

5. CONCLUSION
The sound radiation of a baffled plate has been modelled using an elementary source technique has been

proposed. Radiation efficiencies averaged over forcing locations for five different boundary conditions have
been calculated. The results show that for all edge conditions, the radiation efficiency is similar except for
the free or less restrained edges, where the radiation efficiency is lower in the corner mode region of the
corresponding boundary conditions. Experimental results shows reasonable agreement with the theory but
require extension to lower frequency. The model can be extended to calculate the radiation efficiency of a
more complex, baffled flat plate such as a honeycomb structure, sandwich panel or extruded panel. For this
purpose, the velocity of the structure can be obtained from the finite element (FE) model.
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