Fabrication of Cold Spray Ti-O Coatings Engineered from Agglomerated Powders

(凝集粉末作製技術によるコールドスプレーTi-O皮膜の創製)

July, 2016

Doctor of Engineering

Toibah Binti Abd. Rahim

トイバ ビンティ アブド ラヒム

Toyohashi University of Technology

C Universiti Teknikal Malaysia Melaka

Abstract

Current attention has focused on the preparation of thick ceramic coating using nanostructured materials as feedstock materials using thermal spray process. Cold spray method has appeared as a promising process to form ceramic nanostructured coating without significantly changing the microstructure of the initial feedstock materials whereas many conventional thermal spray processes do due to its low processing temperature. However, deposition of ceramic powders by cold spray is not easy due to brittle characteristics of the material. Moreover, the bonding mechanism on how the ceramic coating was formed on the substrate is still unclear as this method requires plastic deformation of particles upon the impact onto the substrate.

Therefore, in this study, focused have been made on the TiO_2 nanostructured feedstock materials which were synthesized throughout of the study. The properties of the powders also have been altered by several conditions in order to make it suitable for cold spray deposition. The mechanism of coating deposition and properties of the feedstock powders were investigated in this study. The following results which obtained by this study were summarized as below:

1. In this work, the synthesis of agglomerated TiO₂ powders, which are ready to be used as feedstock materials for a cold spray process after synthesis via a simple hydrolysis (TiO₂-H) and hydrothermal (TiO₂-HT) process, is described. The XRD patterns showed that single phase anatase TiO₂ was able to be produced using a low temperature process for the hydrolysis and hydrothermal methods. However, the results showed that TiO₂-HT powders have a smaller crystallite size and broader peaks compared with TiO₂-HT powders. SEM and TEM analysis confirmed that the TiO₂-H powders were built up from nano-sized particles, and were further agglomerated into micrometer-size, which is a preferable size for the cold spray process. On the other hand, TiO₂-HT powders showed a formation of agglomerated particles with minimal particle agglomeration which was revealed by the SEM image and the particle size analyzer. A preliminary study on coating

deposition using cold spray showed that TiO_2 -H powders can be deposited onto ceramic tile substrate with a ~50µm thickness. Meanwhile for TiO_2 -HT powders, only particle embedment can be observed on the surface of the substrate. The results reveal that porosity contained in the agglomerated morphology is important in order to build up the coating by cold spray due to the tendency of the porous structure to break easily upon impact onto the substrate.

- 2. To further clarify the effect of porosity contain in the powder for the cold spray deposition, effect of low calcination on the as-synthesized TiO₂ by hydrolysis method have been conducted. Then, as-synthesized TiO₂ and calcined TiO₂ powders were studied on coating deposition by cold spray process. The results of this study indicated that a post treatment on TiO₂ powder improved powder deposition on ceramic tile substrate via the cold spray method. The cross-section of the obtained coating which was observed using SEM showed that nanoparticles TiO₂ powders in the agglomerated form were able to be deposited on the substrate and formed a thick coating. A stacking of agglomerated TiO₂ powders was found on the cross-section observation which is due to the breaking up of ceramic particles which was induced by porosity in the powder and is believed to be responsible for the formation of the coating. The results of this study also reveal that, when the feedstock powders have denser packing of particles and minimum number of porosity in the powder, breaking of particles during the spraying become more difficult. This hard and dense particle made them resistant to fragmentation and adherence on surface of the substrate.
- 3. Further study have been conducted by addition of ammonium sulfate; (NH₄)₂SO₄ during the powder synthesis. Addition of structure-directing agent, (NH₄)₂SO₄ promotes the agglomeration to occur with denser closed packing of particle arrangement which reduce the number of existing porosity in the synthesized powder. The addition of (NH₄)₂SO₄ addition was found to be very effective to unite the nano-sized particles together to form agglomeration in order to form the tertiary particles. The preliminary study of coating

formation depicted that the powder obtained could be used as the feedstock powder for cold spray process to make coating as it can be deposited onto the ceramic tile substrate. Once again, porosity in the powders was deduced as one of the crucial factors that contribute to better deposition of TiO_2 coating by cold spray process. Plastic deformation also may contribute to the formation of coating due to the used of nanostructured powders which received high local compact pressure during the spraying process.

- 4. Further studies on the obtained coating have been investigated. The study reveals that the properties of the coating (hardness, roughness and porosity) also depend on the properties of the initial feedstock powders. Moreover, anatase phase was preserved as revealed by the XRD analysis. This finding proves that cold spray process is suitable process to fabricate TiO₂ coating which can prevent phase transformation to occur due to low processing temperature. Details observation on the surface and cross-section of the coatings show that nanostructured particles from the feedstock powders were well-retained in the coating structure.
- 5. In order to study the individual particle impact morphologies, wipe tests were conducted on aluminum, copper and ceramic tile substrate. From the SEM observation, the results showed that the collided particles were plastically deformed and adhered on the hard ceramic tile substrate during deposition. However, in the case of aluminum and copper substrate, the splat diameters were smaller than the feedstock powder size and both particles and substrates were deformed during the collision. Moreover, many craters were observed on these metal substrates. It was found that the deposition behavior of TiO₂ particle and the crater formation by the cold spray process was affected by the hardness and surface roughness of the substrate materials.

Table of Contents

Abstra	act		i
Table	of C	Contents	iv
List of	Figu	ure	vii
List of	⁻ Tab	ole	xi
1 I	ntro	oduction	1
1.1		Titanium Dioxide (TiO ₂)	1
1	.1.1	Phase Structure of Titanium Dioxide	1
1	.1.2	2 Properties of TiO ₂	1
1	1.3	Applications of TiO ₂ as Photocatalyst	3
1.2		Titanium Dioxide Coatings	5
1	2.1	Conventional Coating Processes	5
1	.2.2	2 Thermal spray process	6
1.3		Current Studies/ Developments of Thermal Spray Titanium Dioxide Coating	7
1	3.1	Conventional Thermal Spray Processes	7
1	3.2	2 Low Temperature Process	11
1.4		Cold Spray Technology	14
1	4.1	Basic Principles	14
1	4.2	2 Bonding Mechanism in Cold Spray	16
1.5		Titanium Dioxide as Ceramic Feedstock Materials for Cold Spray Process	26
1	5.1	Feedstock Materials for Cold Spray Process	26
1	5.2	2 Conventional TiO ₂ Powders	27
1	5.3	8 Nanopowders	29
1.6		Objectives	33
1.7		Thesis Organization	34
1.8		References	36
2 S for Co	iynth Id Sj	hesis and Properties of Agglomerated TiO_2 Powder by Hydrolysis and Hydrothermal Methora pray Coating	hods 41
2.1		Introduction	41
2.2		Experimental Procedure	43

	2.2.1	Synthesis of TiO_2 Powders by Hydrolysis Method	43
	2.2.2	Synthesis of TiO ₂ Powders by Hydrothermal Method	43
	2.2.3	TiO ₂ Coating by Cold Spray Process	44
	2.2.4	Characterization of TiO_2 Powders and Coating	44
	2.3	Results & Discussion	45
	2.3.1	Characterizations of TiO_2 powders	45
	2.3.2	Microstructure and Crystalline Structure of TiO $_2$ Coating	51
	2.3.3	Deposition Mechanism	54
	2.4	Conclusions	56
	2.5	References	57
3	Cold	-Sprayed Titanium Dioxide Coating Using Powders Calcined at Low Temperatures	59
	3.1	Introduction	59
	3.2	Experimental Procedures	61
	3.2.1	Preparation of TiO_2 Powders for Cold Spray Coating	61
	3.2.2	Cold Spray Process	62
	3.2.3	Characterization of TiO_2 Powders and Coating	62
	3.3	Results & Discussion	63
	3.3.1	Effects of Low Calcination Temperatures on the Properties of TiO_2 Powders	63
	3.3.2	Coating Development using as-synthesized TiO ₂ and Calcined TiO ₂ Powders	74
	3.4	Conclusions	79
	3.5	References	80
4	Cold	Sprayed TiO ₂ Coating from Nanostructured Ceramic Agglomerated Powders	82
	4.1	Introduction	82
	4.2	Experimental Procedure	84
	4.2.1	Materials	84
	4.2.2	Cold Spray Process	85
	4.2.3	Characterization of Feedstock Materials and Cold-sprayed TiO $_2$ Coatings	86
	4.3	Results & Discussion	87
	4.3.1 (NH4	Characterization of as-synthesized TiO_2 powders with different mol % addition of $_{4}$)_2SO_4	87
	4.3.2	Characterization of as-synthesized TiO ₂ powders used for cold spray process	92

	4.3.	3	Characterization of TiO_2 coatings prepared by cold spray method	
	4.4	Con	clusions	115
	4.5	Ref	erences	116
5	Effe	ect of	Substrate Material on Cold-Sprayed Titanium Dioxide Coating	118
	5.1	Intr	oduction	118
	5.2	Ехр	erimental Procedure	121
	5.2.	1	Synthesis of Agglomerated TiO_2 Powders	121
	5.2.	2	TiO_2 Coating Preparation by Cold Spray Process	121
	5.2.	3	Characterization of TiO_2 Powders and TiO_2 Coating	123
	5.3	Res	ults & Discussion	
	5.4	Con	clusions	135
	5.5	Ref	erences	136
6	Ger	neral	Conclusions & Recommendations for Future Work	138
	6.1	Ger	eral Conclusions	138
	6.1.	1	Feedstock particle size	139
	6.1.	2	Porosity	140
	6.1.	3	Crystallinity	140
	6.1.	4	Substrate materials	141
	6.2	Rec	ommendations for Future Work	142
7	Con	tribu	tion of Study	143
	7.1	Con	tribution of This Study to the Research/ Academic Field	143
	7.2	Con	tribution of This Study to the Industrial Field	144
8	Pub	licati	ons List and Oral Presentations	145
	8.1	List	of Papers/Journals and Proceedings with Referee's Review	145
	8.1.	1	List of Journals	145
	8.1.	2	List of Proceedings	145
	8.2	Ora	l presentations	146
9	Ack	nowl	edgements	

List of Figure

Figure 1.1: Simplified principle of the conventional thermal spray process using ceramic as feedstock materials. 8
Figure 1.2: Schematic diagram showing the phase transformation of anatase TiO_2 to rutile TiO_2 during the conventional thermal spray process
Figure 1.3: SEM image of TiO_2 powder (a) and its cross section which shows that the agglomerated particles with solid and dense particles after have been tempered at 600°C18
Figure 1.4: SEM images of cold-sprayed TiO_2 coatings on $AIMg_3$ substrate. (a) Sprayed as one pass and (b) sprayed with 10 passes
Figure 1.5: SEM image of cross-section of polymer coated with TiO_2 using cold spray method
Figure 1.6: Proposed mechanism of particle bonding of a cold spray coating on a polymer substrate 20
Figure 1.7: SEM image of (a) the spray TiO_2 powder agglomerated from nanoparticles using polymer binder and (b) the cross-section of TiO_2 coating deposited by cold spray process
Figure 1.8: Cross section microstructure of coatings sprayed with He. Spraying with gas temperature of (a) 200 °C, (b) 300 °C, and (c) 400 °C22
Figure 1.9: Cross section microstructure of coatings sprayed with N_2 . Spraying with gas temperature of (a) 200 °C, (b) 300 °C, and (c) 400 °C22
Figure 1.10: Morphology of TiO_2 feedstock powder; (a) SEM image, (b) FE-SEM image, (c) TEM image and schematic image of adhesion mechanism of cold-sprayed TiO_2 particle
Figure 1.11: The cold spray result of (a) as-synthesized, (b) annealed, and (c) hydrothermal treated TiO_2 powders deposited on copper substrates24
Figure 1.12: SEM micrograph of the cold spray coating cross-sectional area: (a) cold sprayed nano-TiO ₂ layer, (b) APS TiO ₂ - coating, and (c) steel substrate
Figure 1.13: SEM image of (a) conventional fused and crushed titania feedstock particle and (b) particle of (a) observed at higher magnification; absence of nanostructural character
Figure 1.14: (a) Typical morphology of agglomerated spray-dried titania powders. (b) High magnification view of (a)—agglomeration of individual nanosized titania particles and (c) Nanotexture formed by a
semi-molten agglomerate on the surface of an HVOF-sprayed nanostructured titania coating
Figure 2.1: Schematic diagram of cold spray system

Figure 2.2: TEM images of TiO ₂ powders that synthesized by hydrolysis (a) and hydrothermal (b) method.
Figure 2.3: SEM images of TiO_2 powders that synthesized by hydrolysis (a & c) and hydrothermal (b & d) methods. 47
Figure 2.4: FESEM images of TiO ₂ powders that synthesized by (a) hydrolysis and (b) hydrothermal method
Figure 2.5: Particle size distribution profile of starting agglomerated TiO ₂ powders synthesized by (a) hydrolysis and (b) hydrothermal method
Figure 2.6: XRD pattern of TiO_2 powders that were synthesized by (a) hydrolysis (TiO_2 -H) and (b) hydrothermal (TiO_2 -HT)
Figure 2.7: Cross-sectional view of TiO_2 coating deposited by cold spray using powder synthesis by (a) hydrolysis (TiO_2 -H) and (b) hydrothermal (TiO_2 -HT)52
Figure 2.8: XRD pattern of (a) TiO_2 -H powder and (a) TiO_2 -H coating deposited by cold spay process53
Figure 2.9: Possible mechanism of bonding between TiO_2 powders and the substrates using powder synthesized by (a) hydrolysis and (b) hydrothermal method
Figure 3.1: DTA curve recorded in air with a 10°C/ min heating rate for as-synthesized TiO ₂ 64
Figure 3.2: XRD patterns of TiO_2 powders that calcined at different temperatures; (a) as-synthesized powder (TiO_2 -0), (b) TiO_2 powder calcined at 200°C (TiO_2 -2), (c) TiO_2 powder calcined at 300°C (TiO_2 -3) and (d) TiO_2 powder calcined at 400°C (TiO_2 -4)
Figure 3.3: The XPS spectra of (a) wide scan spectra of TiO_2 powders that calcined at different temperatures and narrow scan spectra of TiO_2 powders that calcined at different temperatures corresponds to (b) Ti 2p, (c) O 1s, and (d) S2p
Figure 3.4: SEM micrographs of TiO_2 powders calcined at different temperatures: (a) as-synthesized powder (TiO_2 -0), (b) TiO_2 powder calcined at 200°C (TiO_2 -2), (c) TiO_2 powder calcined at 300°C (TiO_2 -3) and (d) TiO_2 powder calcined at 400°C (TiO_2 -4)
Figure 3.5: SEM images taken at high magnification of TiO_2 powders calcined at different temperatures: (a) as-synthesized powder (TiO_2 -0), (b) TiO_2 powder calcined at 200°C (TiO_2 -2), (c) TiO_2 powder calcined at 300°C (TiO_2 -3) and (d) TiO_2 powder calcined at 400°C (TiO_2 -4)
Figure 3.6: TEM micrographs of TiO_2 powders calcined at different temperatures: (a) as-synthesized powder (TiO_2 -0), (b) TiO_2 powder calcined at 200°C (TiO_2 -2), (c) TiO_2 powder calcined at 300°C (TiO_2 -3) and (d) TiO_2 powder calcined at 400°C (TiO_2 -4)

Figure 3.7: Cross-sectional view of the nanostructured TiO_2 coating deposited on a ceramic tile substrate by a CS process using: (a) as-synthesized powder (TiO_2 -0), (b) TiO_2 powder calcined at 200°C (TiO_2 -2), and (c) TiO_2 powder calcined at 300°C (TiO_2 -3)
Figure 3.8: Cross-sectional view of TiO_2 coating using powder calcined at 300°C revealing coatings that were formed by the stacking of TiO_2 agglomerates: (a) low magnification (x 300) and (b) & (c) higher magnification (x 3000)
Figure 4.1: Synthesis of TiO ₂ powders with different mol% addition of (NH ₄) ₂ SO ₄ by simple hydrolysis method
Figure 4.2: SEM images of the TiO_2 powders synthesized with different mol% addition at different magnifications: (a, f & j) 0, (b, g & l) 0.1, (c, h & m) 0.5, (d, i & n) 1 and (e, j & o) 5
Figure 4.3: X-ray diffraction patterns of as-synthesized TiO_2 : (a) without addition of $(NH_4)_2SO_4$ and (b) with 1 mol% addition of $(NH_4)_2SO_4$
Figure 4.4: SEM image and EDX elemental mapping of Ti, O and S in TiO_2 powders synthesized with 1 mol% addition of $(NH_4)_2SO_4$ 96
Figure 4.5: XPS spectra of the S $2p$ region for the as-synthesized TiO ₂ powders: (a) without addition of (NH ₄) ₂ SO ₄ and (b) with 1 mol% addition of (NH ₄) ₂ SO ₄ 97
Figure 4.6: SEM micrograph of as-synthesized TiO_2 : (a & c) without addition of $(NH_4)_2SO_4$ and (b & d) with addition of $(NH_4)_2SO_4$
Figure 4.7: High-resolution TEM pictures of crystalline grains for the as-synthesized TiO_2 : (a) without addition of $(NH_4)_2SO_4$ and (b) with addition of $(NH_4)_2SO_4$. The red arrows show some of the single size of 1° nano-particles
Figure 4.8: DTA curved of as-synthesized TiO_2 via hydrolysis method102
Figure 4.9: Cross-sectional view of TiO_2 coating deposited on ceramic tiles by cold spray process, respectively: (a) without addition of $(NH_4)_2SO_4$ and (b) with addition of $(NH_4)_2SO_4$ 104
Figure 4.10: XRD patterns of powder and coating using different type of TiO_2 powder, respectively: (a) without addition of $(NH_4)_2SO_4$ and (b) with addition of $(NH_4)_2SO_4$
Figure 4.11: SEM images of single impact morphologies of TiO_2 powders on substrate using TiO_2 powders synthesized (a) without addition of $(NH_4)_2SO_4$ and (b) with addition of $(NH_4)_2SO_4$
Figure 4.12: Details of SEM images of existing porosity of as-synthesized TiO_2 with arrows show some of the existing porosity in the obtained TiO_2 powder; (a) TiO_2 powders without addition of $(NH_4)_2SO_4$ and (b) with addition of $(NH_4)_2SO_4$, respectively

Figure 4.13: SEM images of cross-section of coating and surface of coating, respectively: (a) & (c) TiO_2 without addition of $(NH_4)_2SO_4$ and (b) & (d) TiO_2 with addition of $(NH_4)_2SO_4$
Figure 4.14: High magnification SEM micrographs of (a) TiO_2 feedstock powders synthesized with $(NH_4)_2SO_4$ addition and (b-d) cross-sectional views of TiO_2 coating prepared by cold spray process at different magnifications
Figure 4.15: SEM micrographs of surface topography of TiO_2 coating prepared by cold spray process at different magnification using TiO_2 feedstock powders synthesized with $(NH_4)_2SO_4$ addition; (a) 5000 X, (b) 50 000 X, (c) 200 000 X and (d) 300 000 X113
Figure 5.1: Characteristics of the starting TiO ₂ powder for cold spray process: (a) and (b) are SEM images at low magnification, (c) FESEM image at higher magnification and (d) TEM image of the starting TiO ₂ powder
Figure 5.2: Particle size distribution profile of starting agglomerated TiO ₂ powders synthesized via simple hydrolysis method
Figure 5.3: Single impact morphologies of TiO_2 particles and cross-sectional view of TiO_2 coating on different types of substrates: (a & b) ceramic tile, (c & d) copper and (e & f) aluminum, respectively. Pores and craters on the surface of substrates for single impact morphologies are indicated by white and black arrows, respectively.
Figure 5.4: Schematic diagram of possible deposition mechanism of agglomerated TiO ₂ on different substrate: (a) soft substrate; copper and aluminum and (b) hard ceramic tile substrate
Figure 5.5: XRD pattern of as-synthesized TiO_2 and the coating deposited on ceramic tile substrate by cold spray process
Figure 5.6: Fractured cross-section of TiO_2 coating on ceramic tile substrate at high magnification. The inset in (a) and (b) are the evidence of presence of different size of fractured TiO_2 particles after cold-sprayed coating

List of Table

Table 1.1: Properties of TiO ₂ based on Crystal Structure2
Table 1.2: Summary of surface modification technologies to prepare TiO ₂ coatings using conventional method for photocatalyst applications
Table 1.3: Summary of preparation method to deposit TiO ₂ coatings using conventional method for photocatalyst applications
Table 1.4: Summary of comparison between cold spray process and aerosol deposition process
Table 3.1: Calculated crystallite size using the Scherrer equation of TiO ₂ powders calcined at different temperatures
Table 4.1: Cold spray conditions 86
Table 4.2: The correlation between $(NH_4)_2SO_4$ addition during the synthesis and the crystallite size and particle size
Table 4.3: Lattice strain, primary particle size and lattice parameters of as-synthesized TiO_2 powders95
Table 4.4: Chemical composition analysis by EDS for as-synthesized TiO_2 powders synthesized by hydrolysis method
Table 4.5: Properties of TiO ₂ coating prepared by cold spray process
Table 5.1: Cold spray conditions. 122

.

1 Introduction

1.1 Titanium Dioxide (TiO₂)

1.1.1 Phase Structure of Titanium Dioxide

There are three types of crystal structures of TiO_2 that exist naturally and mainly sourced from ilmenite ore which are known as rutile, anatase and brookite. All these types are known as TiO_2 which using the same chemical formula, but their crystal structures are different. However, brookite type is less common using in the industry as it can transform into rutile phase at very low temperatures. Meanwhile, rutile is well known as a very stable phase compared to anatase type. The anatase type can convert irreversibly to the equilibrium rutile phase upon heating above temperatures in the range 600°- 800 °C. Generally, anatase and brookite are more common phase exists in nanoscale natural and synthetic samples, but conversely rutile is the stable phase at high temperatures [1,2].

1.1.2 Properties of TiO₂

The properties of TiO_2 depend largely on its particle size, crystal structure, morphology and crystallinity [3]. Titanium dioxide (TiO_2) is widely known as a crucial material in photocatalysts, gas sensors, water and air purification, electrochromic devices, solar cells, and many more [4–15]. TiO_2 is well known as a wide gap semiconductor oxide. It works based on the UV light; electron and hole pair is generated by the UV irradiation, inducing chemical reactions at the surface. Hence, the most promising characteristic of TiO_2 lies in its photochemical properties such as high photocatalytic activity. In terms of solubility, TiO_2 is insoluble in dilute alkali, dilute acid. Though, this oxide material is soluble in hot concentrated sulfuric acid, hydrochloric acid, nitric acid. The solubility of titanium dioxide is related to solutes. TiO_2 also has excellent electrical properties as it has high dielectric constant. It can be transformed into rutile when anatase and plate TiO_2 are at high temperatures, so melting and boiling points of the board of rutile and anatase TiO_2 actually does not exist. Only rutile TiO_2 has a melting point and boiling point. TiO_2 has hydroscopicity, but not too strong. The hydrophilic is related to surface area. When the surface area is large, the moisture absorption is high. The moisture absorption of TiO_2 is relevant to the surface treatment and the nature too. Moreover, TiO_2 has a good thermal stability. Table 1 summarizes the characteristics of each types of these TiO_2 .

Table 1.1: Properties of TiO₂ based on Crystal Structure

Type of TiO ₂	Rutile	Anatase	Brookite
Properties			
Crystal system	Tetragonal	Tetragonal	Orthorhombic

No. of unit cell	2	4	8
	a = 0.459 nm	a = 0.379 nm	a = 0.917 nm
	c = 0.296 nm	c = 0.951 nm	b = 0.546 nm
			c = 0.514 nm
Density (g/cm ³)	4.13	3.79	3.99
Melting Point (°C)	1840 ± 10	change to rutile	change to rutile
Refractive Index	2.605–2.616,	2.561, 2.488	2.583, 2.700
	2.890-2.903		
Band gap value (eV)	3.0	3.2	-

1.1.3 Applications of TiO₂ as Photocatalyst

Environmental pollution has drawn attention in the world today due to the need of safe and clean environment. Industrial activities and transportation are some examples that contribute to the unhealthy surroundings especially in the urban areas. Of the technologies recently use to reduce the pollution in our environment are by the applications of photocatalysts. TiO₂ have attracted much attention to be used as photocatalyst materials among the photocatalytically active materials due to its availability, low cost, chemical stability and nontoxic properties [16– 22]. TiO₂ is the widely studied photocatalyst for waste water purification owing to its biological and chemical inertness, strong oxidizing power, nontoxicity and long term stability against chemical and photochemical corrosion [23]. The brookite phase has not been used and studied widely as a photocatalyst due to presents of many defects in its crystal structure [24]. Moreover, the brookite structure is more difficult to obtain as compared to anatase and rutile structure [25]. Among these three structures of TiO₂, anatase phase with fine particles are more preferable for high photoactivity with the absence of rutile phase which has lower photoactivity than anatase [2,5,24,26]. There are several studies reported that the properties of the as-synthesized TiO₂ including its polymorphic transformation from anatase to rutile was likely dependent upon on the precursor and the preparation method [1,2].

TiO₂ is an effective photocatalyst for water and air purification, treatment of indoor air and for self-cleaning surfaces. Moreover, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity [27]. It has been reported that for the photocatalytic applications, TiO₂ can be used in powder form (slurry) or coating deposited by several methods [28,29]. Despite the fact that TiO₂ powders have an outstanding photocatalytic activity compared to the coating due to their higher specific surface area, separation of powder from the liquid state used in water treatments and recycling processes can reduce their effectiveness [30]. Coating of TiO₂ on various materials as substrates can be one of the solution to this problem. Therefore, coating of TiO₂ for photocatalyst applications are the main focused in this study.

1.2 Titanium Dioxide Coatings

1.2.1 Conventional Coating Processes

Moreover, many attempts have been made to prepare TiO₂ coatings, such as chemical vapor deposition, (CVD), pulsed laser deposition, sputtering, electrodeposition, hydrothermal crystallization, chemical spray pyrolysis, sol gel and also thermal spray process. The photocatalytic activity of the coating depends on several factors such as crystal size, surface area, crystal structure and also coating thickness [31]. These factors are largely affected by the preparation methods and deposition conditions. Table 1.2 is a summary of the TiO₂ coating or film deposited on different substrates using different methods for photocatalytic applications. Major drawbacks using these conventional coating techniques are difficulties to deposit thick coating. Moreover, coating techniques such as PVD and CVD requires large and complicated equipment. Therefore, a more simpler and economic coating method such as thermal spray process can be used to prepare thick coating on large surface substrates.

Table 1.2: Summary of surface modification technologies to prepare TiO_2 coatings using conventional method for photocatalyst applications.

Method	Substrate materials	Typical coating thickness	Ref.
CVD	Steel sheet	Less than 5 µm	[32]
Dip coating	Stainless steel mesh	155 nm	[33]

Sol-gel	Soda lime glass or quartz plates	Less than 300 nm	[31]
Magnetron sputtering	Stainless steel mesh	165 nm	[33]
Spray pyrolysis	Stainless steel	Less than 2.5 µm	[34]

1.2.2 Thermal spray process

Nowadays, surface treatments of engineering materials have become significant for serviceable engineering components. Recently, thermal spray processes have been used for industrial surface treatment application due to coating properties such as adhesion strength to substrate, low porosity-oxide content and microstructural characteristics. Thermal spray coatings have become an important part of modern industry, offering customized surface properties for a variety of industrial applications ranging from thermal barrier coatings for high tech turbine blades to erosion resistant coatings for boiler tubes.

Thermal spraying is a coating process where the metallic and non-metallic materials are deposited in a molten or semi-molten condition to form a coating using a thermal source. Metals, alloys, carbides, ceramics, plastic, composites, blended materials and cermets are the most widely used coating materials for this process. The initial coating material for thermal spray process which usually in the form of rods, wires, or powders is heated, generally to a molten state and projected onto a substrate thereby forming a coating.

Usually, the surface of the substrate is degreased, masked, and roughened prior the coating process in order to activate the surface by increasing the free surface energy which will lead to increase of surface area for bonding of the sprayed particles. In principle, any material that can withstand blasting procedures to roughen the surface can be used as thermal spray coating base material. One of inherent advantages of thermal spraying is the process covers diverse range of substrate materials and substrate sizes. Moreover, thermal spray process also having the greatest range of coating materials. Basically, any material that does not decompose to other material once melted when expose to heat generated during the thermal spray process can be used as the coating feedstock material. Thermal spray process also known as a faster rate coating process and it is also possible to do coating on-site work. Furthermore, the coating can be done in a dry process thus less environmental impact.

1.3 Current Studies/ Developments of Thermal Spray Titanium Dioxide Coating

1.3.1 Conventional Thermal Spray Processes

Thermal spraying is an effective and low cost process to prepare thick and large coatings to modify the surface properties of the component. During the conventional thermal spray process, some parts of the feedstock powders will melt to assure coating integrity, i.e., adhesion and cohesion. Therefore, the processing temperature use is usually above the melting temperature of the spray particles. Figure 1.1 shows the simplified principle of conventional thermal spray process using agglomerated ceramics powder from nanostructured materials as spray materials. Since the use of nanostructured materials show superior properties in various applications when compared to their conventional powders, it opens remarkable possibilities to be used as feedstock materials in agglomerated form to prepare coating by thermal spray process. Moreover, when nanostructured materials have been used as spray particles to prepare coating by thermal spray process, the molten particles will act as a binder to the non-molten spray particles during the spraying process [35]. It is important to point out that during the thermal spraying; the molten particles have loss the characteristics or properties of nanostructured materials as it experienced grain growth. This will reduce the performance of the coating as compared to its powder when uses for real application. Therefore, the preservation of the small grain size which originally from the nanostructured powder is very crucial as the TiO₂ photocatalytic reaction depends strongly on its grain size. Photodecomposition of nanostructured TiO₂ coating can be higher than the microstructured coating prepared with similar process and conditions.

Figure 1.1: Simplified principle of the conventional thermal spray process using ceramic as feedstock materials.

While thermal spraying have significant progress in preparing coating for wide area with more cost effective and minimum operation time, challenges still exist in various aspect especially when it involves ceramic materials such as TiO_2 . The drawback of the conventional thermal spray process to prepare TiO_2 coating is the irreversible phase transformation of TiO_2 structure from anatase to a less photocatalytic rutile phase at 500-600°C under normal conditions [36] as shown in Fig. 1.2. Moreover, Table 1.3 shows the summary of some thermal spray methods that have been used to prepare TiO_2 coating. The results show that, it is quite challenging to preserve the anatase phase in the as-prepared coating by conventional thermal spray method.

Figure 1.2: Schematic diagram showing the phase transformation of anatase TiO_2 to rutile TiO_2 during the conventional thermal spray process.

Table 1.3: Summary of preparation method to deposit TiO₂ coatings using conventional method for photocatalyst applications.

Spray technique	Size of agglomerated feedstock material	Substrate	Coating thickness	Phase structure in the obtained coating	Reference
Air Plasma Spraying	10 to 50μm (from 7 nm)	Stainless steel	~30 µm	Anatase, rutile & different titanium suboxides	[30]
High Velocity Oxygen Fuel	10 to 50µm (from 7 nm)	Stainless steel	~20 µm	Rutile & anatase	[30]
Suspension Spraying	10 to 50 μm (ranging from 6- 12 nm)	Stainless steel	~20 µm	Anatase and small amount of rutile	[37]
Flame Spraying	20-50 μm (from 20 nm)	Stainless steel & Carbon steel	150 μm	Rutile	[38]

Therefore, a proper selection of coating process is crucial due to the goal to obtain coatings with higher photocatalytic activity. Anatase and rutile has differences of photocatalytic properties. Several studies suggested that anatase is more efficient as photocatalyst and this structure can be preserved if only the processing temperature of the thermal spray process is below the transformation temperature of anatase to rutile. Moreover, low processing temperature of thermal spray process also can maintain the initial grain size of the feedstock materials which also has significant effect on the catalytic activity of TiO_2 . This might due to the characteristics of smaller crystallites size which can promote the photocatalytic activity of TiO_2 . Preservation of the anatase phase after the thermal spray is desirable for photocatalytic applications. Consequently coating process of a high temperature which above the transformation temperature of anatase to rutile phase is one of the major challenges in conventional spray thermal spray.

The results obtained to date, strongly indicated there is necessity for development of thermal spray coating of TiO_2 or any other ceramic materials that can avoid phase transformation to occur during the process. Due to this problem, it encourage new discoveries of new process of thermal spray which utilize kinetic energy instead of thermal energy by increase particle velocity to project the feedstock powders to the substrate. The kinetic energy will transform to thermal energy upon impact on the substrate in order to permit sticking of particles. There are two new technologies of thermal spray methods that utilize low processing temperature during the process and working based on the kinetic energy of the particles for deposition. The processes are cold spray and aerosol deposition method.

1.3.2 Low Temperature Process

Aerosol deposition method (ADM) and cold spray deposition is the low energy consumption processes dissimilar to conventional deposition processes. The aerosol deposition method is a room temperature process which has been used to coat ceramics materials on metal, ceramic and polymer substrates. This process uses an aerosol mixture of nano-sized ceramic particles and a carrier gas which will be accelerated by the carrier gas through a nozzle. For the acceleration of the particles, pressure difference is required. For this reason, the ADM method consists of two vacuum chambers; an aerosol-generation chamber and deposition chamber which were connected by a tube. During the process, the ceramic particles were aerosolized by aerosol-generation chamber which has a carrier gas system and a vibration system to mix the powder with the carrier gas and conveyed to the deposition chamber. The kinetic energy of the particles is used for bonding during the impact [40]. This process is widely used as it can be carried out at low temperature. Therefore, thermal damage of the substrate can be minimized. Despite of these advantages, ADM process requires vacuum condition during the process and the deposited coating only limited to several micrometer of thickness.

Meanwhile, cold spray process is deposition technique to deposit micro-sized particles using a high pressure gas. This process does not require vacuum condition. During the process, the particles are accelerated to supersonic velocities and impact onto a substrate surface without melting before the impact. This technique can produce thicker coating thickness as compared to ADM process. Unfortunately, this process does not permit the direct spraying of nanostructured powder which can cause blockage in the feeding system during the powder supply to the nozzle. However, the use of nano-powders as spray materials for this process can be achieved by modification of the size of feedstock powders by agglomeration of the particles. Moreover, since deformability is important for cold spray coating to build up, this method shows more potential to deposit metal materials rather than ceramic materials. However, ceramic coatings are possible to be deposited by cold spray process. This part will be discussed in details in Chapter 1.4.2. Therefore, in summary, based on the principle of particle collisions by utilizing kinetic energy at a low-process temperature, ADM and cold spray process can be used to fabricate ceramic