

Faculty of Mechanical Engineering

STUDY OF TRANSMISSIBILITY OF LAMINATED RUBBER-METAL SPRING

Mohd Azli bin Salim

Doctor of Philosophy of Mechanical Engineering

2016

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Study of Transmissibility of Laminated Rubber-Metal Spring" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature

Name

Date

: Mohd Azli bin Salim 4 Nov 2016

C Universiti Teknikal Malaysia Melaka

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy in Mechanical Engineering.

Signature

Supervisor Name

Date

: A.P. Dr. Azma Putra 4/11/2016

C Universiti Teknikal Malaysia Melaka

DEDICATION

To my father and to my mother and most importantly my beloved wife

ABSTRACT

Laminated rubber-metal bearing has been well-known as a vibration isolator to dissipate vibration energy. However, most of existing works on the bearing especially the mathematical models consider only the performance of the bearing due to the static force. The main objective of this study is therefore to develop mathematical model to characterize the isolation performance of the bearing; called here laminated rubber-metal spring (LRMS). Mathematical models for 'transmissibility' are developed by using three different approaches: (i) lumped parameter system, (ii) distributed parameter system and (iii) discrete lumped parameter system. The first approach uses assumption of massless rubber, where the rubber layers are simply modelled by using spring and damper elements. The second approach employs impedance technique derived from wave propagation across a cylindrical rubber. In this approach, the internal resonances can be predicted. And the third approach uses a method of dividing a rubber layer into multiple elements of masses and springs in order to predict the equivalent internal resonance as in the second approach. It is found that by adding more metal plates in the rubber, more resonances exist in the transmissibility which can degrade the isolation performance. However, the isolation at high frequencies is improved compared with that of the spring without embedded metal plates. The resonances can be reduced by adding more damping to the rubber. For the experimental work, the LR-MS samples with five different number of embedded metal plates were fabricated using Standard Malaysian Rubber Constant Viscosity (SMR-CV). A test rig for this purpose was also fabricated based on international standards. The measured data of force transmissibility shows good agreement with the proposed mathematical model. Last but not least, there parametric study is also discussed in this thesis.

ABSTRAK

"Laminated rubber-metal spring (LR-MS)" telah dikenali sebagai pemencil getaran, bertujuan untuk menghalang pergerakan tenaga getaran. Pemencil getaran pada masa kini hanya mempunyai model matematik untuk mengkaji prestasi pemencil getaran pada daya statik sahaja. Oleh yang demikian, pembangunan model matematik daya dinamik masih jauh ketinggalan. Model matematik untuk kebolehpindahan dibangunkan dengan menggunakan tiga pendekatan yang berbeza: (i) sistem parameter teragih dan (ii) sistem parameter tergumpal diskret. Pendekatan pertama menggunakan andaian getah tanpa jisim, di mana lapisan getah hanya dimodelkan dengan menggunakan unsur pegas dan peredam. Pendekatan kedua menggunakan teknik galangan dari perambatan gelombang untuk silinder getah. Dalam pendekatan ini resonan dalaman boleh diramalkan. Untuk kaedah ketiga, lapisan getah dibahagikan kepada elemen kecil yang dikenali sebagai jisim dan peregas, ini bertujuan untuk menjangka salunan dalaman yang terhasil dari kaedah kedua. Dapat disimpulkan bahawa apabila menambah kepingan logam di dalam getah, salunan dalaman yang terhasil telah bertambah. Salunan dalaman ini akan mengurangkan prestasi pemencil getaran. Pada frekuensi tinggi, prestasi pemencil getaran dapat ditingkatkan dengan memasukkan kepingan logam ke dalam getah. Salunan dalaman dapat dikurangkan apabila nilai kepingan logam ditambah. Di dalam eksperiman, sampel LR-MS telah di bangunkan dengan menggunakan "Standard Malaysian Rubber Constant Viscosity (SMR-CV)". Sebanyak lima sampel berjaya dibangunkan, di mana setiap sampel mempunyai nilai kepingan logam yang berlainan. Pelantar ujian telah dibangunkan dengan rujukan piawaian antarabangsa. Hasil keboleh-pindaan daripada eksperimen telah dibandingkan dengan model matematik, dan hasilnya adalah menyokong antara satu sama lain. Analisis parameter turut di jalankan di dalam kajian ini.

ACKNOWLEDGEMENTS

In the name of Allah, The Beneficent, The Merciful

All thanks belong to ALLAH, the Most Gracious, the Most Merciful and the source of this success to complete this thesis.

I was honoured to have Associate Professor Dr. Azma Putra as my main supervisor, Dr. Mohd Azman bin Abdullah as my co-supervisor, Professor David Thompson as my external supervisor and Dr. Nazirah binti Ahmad as my industrial supervisor. Here, I would like to express my sincere appreciation for their guidance, patience, support, ideas and encouragement throughout the research. Without their suggestions and criticisms, this thesis would not be as it is presented now. Actually, their technical advice significantly contributed to my research work.

Here, I would like to thank Universiti Teknikal Malaysia Melaka (UTeM) and the Ministry of Education (MoE), Malaysia for giving me the chance to conduct this research by funding my Philosophy of Doctorate studies. Additionally, I would like to thank Professor Paul White, Dr. Lacome and Dr. Giacomo Squicciarini from the Institute of Sound and Vibration Research (ISVR), University of Southampton, United Kingdom because they gave me full support when I was there to conduct my research. Great thanks to Mr. Asyraf bin Ismail and Mr. Mohd Fazuandy bin Abu Asshaari from Lembaga Getah Malaysia (LGM) for giving me the chance to have some technical experience and help for my research work.

For all my postgraduate friends and colleagues at both the University of Southampton and UTeM, thank you very much for giving me support throughout my studies and understanding my ups and downs. They have contributed this thesis in different ways as well as given support in a various matters.

I would also like to thank all my family members. My parents, brother and sister have always been supportive during all my endeavours. They were always ready with encouraging suggestions and were always there just to listen. Thanks for everything you have done.

Lastly, and most importantly, I am also deeply grateful to my beloved wife, Mrs. Norhaifi binti Osman, for her continuous moral support, patience and love.

TABLE OF CONTENTS

	CLAR PROV	ATION	
	PROV DICA		
	STRA		i
	STRA		ii
		N VLEDGEMENTS	iii
		DF CONTENTS	iv
		TABLES	vii
		FIGURES	viii
		ABBREVIATIONS	xiv
		SYMBOLS	XV
		PUBLICATIONS	xviii
		AWARDS	xxii
			2 6/344
СН	APTE	R	1
1	INT	RODUCTION	1
	1.1	Background of the Study	1
	1.2	Problem Statement	5
	1.3	Hypothesis of the Study	6
	1.4	Objectives of the Study	6
	1.5	Scopes and Limitations of the Study	7
	1.6	General Methodology	7
	1.7	Thesis Outline	9
	1.8	Contributions of the Thesis	10
2	LIT	ERATURE REVIEW	12
	2.1	Introduction	12
	2.2	Criteria of Vibration Isolators	14
		2.2.1 New Design of Vibration Isolators	15
		2.2.2 Resonance Frequency Behavior	16
		2.2.3 Chaotic Response Characteristics	18
		2.2.4 Internal Resonance Effects	19
		2.2.5 Controlling the Effects of Internal Resonances	21
	2.3	Development of Vibration Isolators	22
	2.4	Rubber Materials as a Vibration Isolators	28

2.5	Spring Behaviour in Rubber Materials	
2.6	Metal Plates inside Vibration Isolators	
2.7	Transmissibility	
2.8	Basic Concepts of Massless Isolators	
2.9	Basic Concepts of Two-Degree-of-Freedom Vibration Isolators	
2.10	Critical Discussions	
2.11	Summary	
DEVELOPMENT OF A LAMINATED RUBBER-METAL SPRING		

3 DEVELOPMENT OF A LAMINATED RUBBER-METAL SPRING 48 MODEL

3.1 Introduction

48

3.3.1 Introduction 3.3.2 Derivation of Wave Effects using Wave Propagation Method 3.3.2.1 Wave Effects in Longitudinal Vibration 3.3.2.1 Basic Assumptions of Isolator Model 3.4.1 Distributed Parameter Isolator 3.4.1 Basic Assumptions of Isolator Model 3.4.1.2 Assumptions of the Basic Design 3.4.1.3 Dynamic Stiffness of the Isolator 3.4.2 Isolator Model without Embedded Metal Plate 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 3.5.1 Single-Degree-of-Freedom 3.5.2 Multi-Degree-of-Freedom 3.5.3 Results and Discussion 3.5.3 Results and Discussion 3.5.3 Ringle-and Multi-Degree-of-Freedom 3.5.3 Higher-Degree-of-Freedom 3.6 Summary 4 EXPERIMENTAL WORK AND VALIDATION 1 4.1 Introduction 1 4.2 Design and Fabrication of the Test Samples 1 4.2.1 Static Test Methods (Tensile and Compression Tests) 1 4.2.2 Solid Rubber Sample 1 4.2.4 LR-MS S	3.3.1 Introduction 5 3.3.2 Derivation of Wave Effects using Wave Propagation Method 6 3.3.2.1 Internal Resonance Behaviour in Rods 6 3.4 Distributed Parameter Isolator 6 3.4.1 Basic Assumptions of Isolator Model 7 3.4.1 Assumptions of the Basic Design 7 3.4.1.3 Dynamic Stiffness of the Isolator 7 3.4.2 Isolator Model without Embedded Metal Plate 7 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 9 3.5.1 Single-Degree-of-Freedom 11 3.5.2 Multi-Degree-of-Freedom 13 3.5.3 Results and Discussion 13 3.5.3 Summary 14 4 EXPERIMENTAL WORK AND VALIDATION 14 4.1 Introduction 14 4.2.1 Static Test Methods (Tensile and Compression Tests) 14 4.2.2 Solid Rubber Sample 15 4.2.3 Fabrication of the Test Rig 16 4.2.1 Static Test Methods (Tensile and Compression Tests) 14 4.2.2 Solid Rubb		3.2	Lumped Parameter System	50
3.3.2 Derivation of Wave Effects using Wave Propagation Method 3.3.2.1 Wave Effects in Longitudinal Vibration 3.3.2.1 Wave Effects in Longitudinal Vibration 3.3.2.1 Internal Resonance Behaviour in Rods 3.4 Distributed Parameter Isolator 3.4.1 Basic Assumptions of Isolator Model 3.4.1.2 Assumptions of the Basic Design 3.4.1.3 Dynamic Stiffness of the Isolator 3.4.2 Isolator Model without Embedded Metal Plate 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 3.5.1 Single-Degree-of-Freedom 3.5.2 Multi-Degree-of-Freedom 3.5.3 Results and Discussion 3.5.3 Results and Duscussion 3.5.3 Results and Nulti-Degree-of-Freedom 3.5.3 Higher-Degree-of-Freedom 3.5.3 Higher-Degree-of-Freedom 3.5.3 Single-and Multi-Degree-of-Freedom 3.5.3 Static Test Methods (Tensile and Compression Tests) 4.1 Introduction 4.2 Design and Fabrication of the Test Samples 4.2.1 Static Test Methods (Tensile and Compression Tests) 4.2.3 Fabrica	3.3.2 Derivation of Wave Effects using Wave Propagation Method 6 3.3.2.1 Wave Effects in Longitudinal Vibration 6 3.3.2.2 Internal Resonance Behaviour in Rods 6 3.4 Distributed Parameter Isolator 6 3.4.1 Basic Assumptions of Isolator Model 7 3.4.1.1 Assumptions of the Basic Design 7 3.4.1.2 Assumptions of the Circular Vibration Isolators 7 3.4.1.3 Dynamic Stiffness of the Isolator 7 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 9 3.5 Discrete Lumped Parameter System 11 3.5.1 Single-Degree-of-Freedom 11 3.5.2 Multi-Degree-of-Freedom 13 3.5.3 Results and Discussion 13 3.5.3 Results and Discussion 13 3.6 Summary 14 4.1 Introduction 14 4.2.1 Istic Test Methods (Tensile and Compression Tests) 14 4.2.1 Istic Test Methods (Tensile and Compression Tests) 14 4.2.3 Fabrication of the Sample 15		3.3	Wave Effects in Vibration Isolation	58
Method 3.3.2.1 Wave Effects in Longitudinal Vibration 3.3.2.1 Internal Resonance Behaviour in Rods 3.4 Distributed Parameter Isolator 3.4.1 Basic Assumptions of Isolator Model 3.4.1 Assumptions of the Basic Design 3.4.1.2 Assumptions of the Isolator 3.4.1.3 Dynamic Stiffness of the Isolator 3.4.2 Isolator Model without Embedded Metal Plate 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 3.5 Discrete Lumped Parameter System 1 3.5.1 Single-Degree-of-Freedom 1 3.5.2 Multi-Degree-of-Freedom 1 3.5.3 Results and Discussion 1 3.5.3 Single- and Multi-Degree-of-Freedom 1 3.5.3 Single- and Multi-Degree-of-Freedom 1 3.5.3 Single- and Multi-Degree-of-Freedom 1 3.5.3 Solid Rubber Sample 1 4.1 Introduction 1 4.2.1 4.2 Design and Fabrication of the Test Samples 1 4.2.1 Static Test Methods (Tensile and Compression Tests) 1	Method 3.3.2.1 3.3.2.2 Internal Resonance Behaviour in Rods 6 3.4.1 Distributed Parameter Isolator 6 3.4.1 Basic Assumptions of Isolator Model 7 3.4.1.1 Assumptions of the Basic Design 7 3.4.1.2 Assumptions of the Basic Design 7 3.4.1.3 Dynamic Stiffhess of the Isolator 7 3.4.2 Isolator Model without Embedded Metal Plate 7 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 5 3.5 Discrete Lumped Parameter System 11 3.5.1 Single-Degree-of-Freedom 13 3.5.3 Results and Discussion 13 3.6 Summary 14 4.1 Introduction 14 4.2 Design and Fabrication of the Test Sample <th></th> <th></th> <th>3.3.1 Introduction</th> <th>58</th>			3.3.1 Introduction	58
3.3.2.1 Wave Effects in Longitudinal Vibration 3.3.2.2 Internal Resonance Behaviour in Rods 3.4 Distributed Parameter Isolator 3.4.1 Basic Assumptions of Isolator Model 3.4.1.1 Assumptions of the Basic Design 3.4.1.2 Assumptions of the Circular Vibration Isolators 3.4.1.3 Dynamic Stiffness of the Isolator 3.4.2 Isolator Model without Embedded Metal Plate 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 3.5 Discrete Lumped Parameter System 1 3.5.1 Single-Degree-of-Freedom 1 3.5.2 Multi-Degree-of-Freedom 1 3.5.3 Results and Discussion 1 3.5.3 Results and Discussion 1 3.5.3 Higher-Degree-of-Freedom 1 3.6 Summary 1 4 EXPERIMENTAL WORK AND VALIDATION 1 4.1 Introduction 1 4.2 Design and Fabrication of the Test Samples 1 4.2.1 Static Test Methods (Tensile and Compression Tests) 1 4.2.2 Solid Rubber Sample 1	3.3.2.1 Wave Effects in Longitudinal Vibration 6 3.3.2.2 Internal Resonance Behaviour in Rods 6 3.4 Distributed Parameter Isolator 6 3.4.1 Basic Assumptions of Isolator Model 7 3.4.1.2 Assumptions of the Basic Design 7 3.4.1.3 Assumptions of the Basic Design 7 3.4.1.4 Assumptions of the Circular Vibration Isolators 7 3.4.1.2 Assumptions of the Circular Vibration Isolators 7 3.4.2 Isolator Model without Embedded Metal Plate 7 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 9 3.5 Discrete Lumped Parameter System 11 3.5.1 Single-Degree-of-Freedom 11 3.5.2 Multi-Degree-of-Freedom 13 3.5.3 Results and Discussion 13 3.5.3.1 Single- and Multi-Degree-of-Freedom 13 3.6 Summary 14 4.2 Design and Fabrication of the Test Samples 14 4.2.1 Introduction 14 4.2.2 Solid Rubber Sample 15 4.2.3 Fabrication of the Sample 15 4.2.4 LR-MS Sample 16 4.2.3 Fabrication of the Test Rig 16 4.3 Design and Fabrication of the Test Rig <t< td=""><td></td><td></td><td></td><td>60</td></t<>				60
3.3.2.2 Internal Resonance Behaviour in Rods 3.4 Distributed Parameter Isolator 3.4.1 Basic Assumptions of Ibelasic Design 3.4.1.3 Assumptions of the Basic Design 3.4.1.4 Assumptions of the Basic Design 3.4.1.3 Dynamic Stiffness of the Isolator 3.4.1 Laminated Rubber-Metal Spring with Metal Plate 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 3.5.1 Single-Degree-of-Freedom 3.5.2 Multi-Degree-of-Freedom 3.5.3 Results and Discussion 3.5.3.1 Single- and Multi-Degree-of-Freedom 3.5.3.2 Higher-Degree-of-Freedom 3.5.3.2 Higher-Degree-of-Freedom 3.5.3.2 Higher-Degree-of-Freedom 3.5.3.2 Higher-Degree-of-Freedom 3.5.3.2 Higher-Degree-of-Freedom 3.6 Summary 4 EXPERIMENTAL WORK AND VALIDATION 1 4.1 Introduction 1 4.2.1 Static Test Methods (Tensile and Compression Tests) 1 4.2.2 Solid Rubber Sample 1 4.2.3 Fabrication of the Test Rig 1	3.3.2.2 Internal Resonance Behaviour in Rods 6 3.4 Distributed Parameter Isolator 6 3.4.1 Basic Assumptions of Isolator Model 7 3.4.1.2 Assumptions of the Basic Design 7 3.4.1.3 Dynamic Stiffness of the Isolator 7 3.4.1.3 Dynamic Stiffness of the Isolator 7 3.4.1.3 Dynamic Stiffness of the Isolator 7 3.4.1.4 Isolator Model without Embedded Metal Plate 7 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 9 3.5 Discrete Lumped Parameter System 11 3.5.1 Single-Degree-of-Freedom 11 3.5.3 Results and Discussion 13 3.5.3 Results and Discussion 13 3.6 Summary 14 4 EXPERIMENTAL WORK AND VALIDATION 14 4.1 Introduction 14 4.2.1 Static Test Methods (Tensile and Compression Tests) 14 4.2.2 Solid Rubber Sample 15 4.2.3 Fabrication of the Sample 16 4.2.4 LR-MS Sample 16				61
3.4 Distributed Parameter Isolator 3.4.1 Basic Assumptions of Isolator Model 3.4.1.1 Assumptions of the Basic Design 3.4.1.2 Assumptions of the Isolator 3.4.2 Isolator Model without Embedded Metal Plate 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 3.5 Discrete Lumped Parameter System 1 3.5.1 Single-Degree-of-Freedom 1 3.5.2 Multi-Degree-of-Freedom 3.5.3 Results and Discussion 3.5.3 Results and Discussion 3.5.3.1 Single-Degree-of-Freedom 3.5.3.2 Higher-Degree-of-Freedom 3.5.3.3 Single-Degree-of-Freedom 3.5.3.4 Results and Discussion 3.6 Summary 1 A.1 1.1 Introduction 4 EXPERIMENTAL WORK AND VALIDATION 1 4.1 Introduction 1 4.2.1 Static Test Methods (Tensile and Compression Tests) 1 4.2.2 Solid Rubber Sample 1 4.2.3 Fabrication of the Sample 1 4.2.	3.4 Distributed Parameter Isolator 6 3.4.1 Basic Assumptions of Isolator Model 7 3.4.1.2 Assumptions of the Basic Design 7 3.4.1.2 Assumptions of the Circular Vibration Isolators 7 3.4.2 Isolator Model without Embedded Metal Plate 7 3.4.3 Dynamic Stiffness of the Isolator 7 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 9 3.5 Discrete Lumped Parameter System 11 3.5.1 Single-Degree-of-Freedom 11 3.5.2 Multi-Degree-of-Freedom 13 3.5.3 Results and Discussion 13 3.5.3.1 Single- and Multi-Degree-of-Freedom 13 3.5.3.2 Higher-Degree-of-Freedom 13 3.6 Summary 14 4 EXPERIMENTAL WORK AND VALIDATION 14 4.1 Introduction 14 4.2 Design and Fabrication of the Test Samples 14 4.2.1 Static Test Methods (Tensile and Compression Tests) 14 4.2.2 Solid Rubber Sample 16 4.2.3 Design and F				66
3.4.1 Basic Assumptions of Isolator Model 3.4.1.1 Assumptions of the Basic Design 3.4.1.3 Dynamic Stiffness of the Isolator 3.4.1.3 Dynamic Stiffness of the Isolator 3.4.2 Isolator Model without Embedded Metal Plate 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 3.5 Discrete Lumped Parameter System 1 3.5.1 Single-Degree-of-Freedom 1 3.5.2 Multi-Degree-of-Freedom 1 3.5.3 Results and Discussion 1 3.5.3 Results and Discussion 1 3.5.3.1 Single- and Multi-Degree-of-Freedom 1 3.5.3.2 Higher-Degree-of-Freedom 1 3.5.3.1 Single- and Multi-Degree-of-Freedom 1 3.6 Summary 1 4 EXPERIMENTAL WORK AND VALIDATION 1 4.1 Introduction 1 4.2.1 Static Test Methods (Tensile and Compression Tests) 1 4.2.2 Solid Rubber Sample 1 4.2.3 Fabrication of the Test Rig 1 4.2.4 LR-MS Sample 1	3.4.1 Basic Assumptions of Isolator Model 7 3.4.1.1 Assumptions of the Basic Design 7 3.4.1.2 Assumptions of the Circular Vibration Isolators 7 3.4.1.3 Dynamic Stiffhess of the Isolator 7 3.4.2 Isolator Model without Embedded Metal Plate 7 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 9 3.5.1 Single-Degree-of-Freedom 11 3.5.2 Multi-Degree-of-Freedom 13 3.5.3 Results and Discussion 13 3.6 Summary 14 4 EXPERIMENTAL WORK AND VALIDATION 14 4.1 Introduction 14 4.2.1 Static Test Methods (Tensile and Compression Tests) 14 4.2.2 Solid Rubber Sample 15 4.2.3 Fabrication of the Test Rig 16 4.2.4 LR-MS Sample 16 4.2.5 Modification) 16 <td< td=""><td></td><td>3.4</td><td></td><td>68</td></td<>		3.4		68
3.4.1.1 Assumptions of the Basic Design 3.4.1.2 Assumptions of the Circular Vibration Isolators 3.4.1.3 Dynamic Stiffness of the Isolator 3.4.2 Isolator Model without Embedded Metal Plate 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 3.5.1 Single-Degree-of-Freedom 3.5.2 Multi-Degree-of-Freedom 3.5.3 Results and Discussion 1 3.5.3.2 Higher-Degree-of-Freedom 3.5.3.3 Results and Discussion 1 3.5.3.2 Higher-Degree-of-Freedom 3.5.3.2 Higher-Degree-of-Freedom 3.5.3.2 Higher-Degree-of-Freedom 3.5.3.2 Higher-Degree-of-Freedom 3.5.3.2 Higher-Degree-of-Freedom 3.5.3.2 Higher-Degree-of-Freedom 3.5.3.3 Single- and Multi-Degree-of-Freedom 3.5.3.4 Introduction 4 EXPERIMENTAL WORK AND VALIDATION 4.1 Introduction 4.2.1 Static Test Methods (Tensile and Compression Tests) 4.2.2 Solid Rubber Sample 4.2.3 Fabrication of the Test Rig 4.2.4 LR-MS Sample 4.2.5 Fabrication of the Test Rig 4.4 Experimental Results (Preliminary Results before Test-Rig Modification) 4.5 Modification of Testing Appar	3.4.1.1 Assumptions of the Basic Design 7 3.4.1.2 Assumptions of the Circular Vibration Isolators 7 3.4.1.3 Dynamic Stiffness of the Isolator 7 3.4.2 Isolator Model without Embedded Metal Plate 7 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 9 3.5 Discrete Lumped Parameter System 11 3.5.1 Single-Degree-of-Freedom 11 3.5.2 Multi-Degree-of-Freedom 13 3.5.3 Results and Discussion 13 3.5.3.1 Single- and Multi-Degree-of-Freedom 13 3.5.3.2 Higher-Degree-of-Freedom 13 3.6 Summary 14 4 EXPERIMENTAL WORK AND VALIDATION 14 4.1 Introduction 14 4.2.1 Static Test Methods (Tensile and Compression Tests) 14 4.2.2 Solid Rubber Sample 15 4.2.3 Fabrication of the Sample 15 4.2.4 LR-MS Sample 16 4.3 Design and Fabrication of the Test Rig 16 4.4 Experimental Results (Preliminary Results before Test-Rig 17 Modification) 18 15 4.7 Summary 18 5.1 Introduction 18 5.3 Dimension o				70
3.4.1.2 Assumptions of the Circular Vibration Isolators 3.4.1.3 Dynamic Stiffness of the Isolator 3.4.2 Isolator Model without Embedded Metal Plate 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 3.5 Discrete Lumped Parameter System 1 3.5.1 Single-Degree-of-Freedom 1 3.5.2 Multi-Degree-of-Freedom 1 3.5.3 Results and Discussion 1 3.6 Summary 1 4 EXPERIMENTAL WORK AND VALIDATION 1 4.1 Introduction 1 4.2.2 Solid Rubber Sample 1 4.2.3 Fabrication of the Test Samples 1 4.2.4 LR-MS Sample 1 4.3 Design and Fabrication of the Test Rig 1 4.4 Experimental Results (Preliminary Results before Test-Rig 1 4.5 Modification of Testing Apparatus 1 4.6 Validation of the Results from the Prediction Model 1 4.7 Summary 1 5 PARAMETRIC STUDY	3.4.1.2 Assumptions of the Circular Vibration Isolators 7 3.4.1.3 Dynamic Stiffness of the Isolator 7 3.4.2 Isolator Model without Embedded Metal Plate 7 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 9 3.5 Discrete Lumped Parameter System 11 3.5.1 Single-Degree-of-Freedom 11 3.5.2 Multi-Degree-of-Freedom 13 3.5.3.1 Single- and Multi-Degree-of-Freedom 13 3.5.3.2 Higher-Degree-of-Freedom 13 3.6 Summary 14 4 EXPERIMENTAL WORK AND VALIDATION 14 4.1 Introduction 14 4.2.2 Design and Fabrication of the Test Samples 14 4.2.1 Static Test Methods (Tensile and Compression Tests) 14 4.2.2 Solid Rubber Sample 15 4.2.3 Fabrication of the Sample 15 4.2.4 LR-MS Sample 16 4.3 Design and Fabrication of the Test Rig 17 Modification of 18 5.1 Introduction 18 5.2 Working Load 18 5.3 Dimension of the Isolator 19 5.3.1 Maximum and Minimum Line for LR-MS Model 19 5.3.2 Crossin			1	72
3.4.1.3 Dynamic Stiffness of the Isolator 3.4.2 Isolator Model without Embedded Metal Plate 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 3.5 Discrete Lumped Parameter System 1 3.5.1 Single-Degree-of-Freedom 1 3.5.2 Multi-Degree-of-Freedom 1 3.5.3 Results and Discussion 1 3.5.3 Results and Discussion 1 3.5.3.1 Single- and Multi-Degree-of-Freedom 1 3.5.3.2 Higher-Degree-of-Freedom 1 3.5.3.1 Single- and Multi-Degree-of-Freedom 1 3.6 Summary 1 4 EXPERIMENTAL WORK AND VALIDATION 1 4.1 Introduction 1 4.2 Design and Fabrication of the Test Samples 1 4.2.1 Static Test Methods (Tensile and Compression Tests) 1 4.2.2 Solid Rubber Sample 1 4.2.3 Fabrication of the Test Rig 1 4.3 Design and Fabrication of the Test Rig 1 4.4 Experimental Results (Preliminary Results before Test-Rig 1 Modi	3.4.1.3 Dynamic Stiffness of the Isolator 7 3.4.2 Isolator Model without Embedded Metal Plate 7 3.4.3 Laminated Rubber-Metal Spring with Metal Plates 9 3.5 Discrete Lumped Parameter System 11 3.5.1 Single-Degree-of-Freedom 11 3.5.2 Multi-Degree-of-Freedom 13 3.5.3 Results and Discussion 13 3.5.3.1 Single- and Multi-Degree-of-Freedom 13 3.5.3.2 Higher-Degree-of-Freedom 13 3.6 Summary 14 4 EXPERIMENTAL WORK AND VALIDATION 14 4.1 Introduction 14 4.2.2 Solid Rubber Sample 15 4.2.3 Fabrication of the Test Samples 14 4.2.4 LR-MS Sample 16 4.2.3 Design and Fabrication of the Test Rig 16 4.2.4 LR-MS Sample 16 4.2.5 Solid Rubber Sample 16 4.2.6 Validation of Testing Apparatus 17 4.6 Validation of the Results from the Prediction Model 18 5.3 Dimension of the Isolator 19 5.3 Dimension of the Isolator 19 5.3.1 Maximum and Minimum Line for LR-MS Model 19 5.3 Dimension of the Isolator				75
3.4.3 Laminated Rubber-Metal Spring with Metal Plates 3.5 Discrete Lumped Parameter System 1 3.5.1 Single-Degree-of-Freedom 1 3.5.2 Multi-Degree-of-Freedom 1 3.5.3 Results and Discussion 1 3.5.3 Results and Multi-Degree-of-Freedom 1 3.5.3.1 Single- and Multi-Degree-of-Freedom 1 3.5.3.2 Higher-Degree-of-Freedom 1 3.6 Summary 1 3.6 Summary 1 4 EXPERIMENTAL WORK AND VALIDATION 1 4.1 Introduction 1 4.2 Design and Fabrication of the Test Samples 1 4.2.1 Static Test Methods (Tensile and Compression Tests) 1 4.2.2 Solid Rubber Sample 1 4.2.3 Fabrication of the Sample 1 4.2.4 LR-MS Sample 1 4.3 Design and Fabrication of the Test Rig 1 4.4 Experimental Results (Preliminary Results before Test-Rig 1 Modification) 1 5. Modification of the Results from the Prediction Mod	3.4.3 Laminated Rubber-Metal Spring with Metal Plates 9 3.5 Discrete Lumped Parameter System 11 3.5.1 Single-Degree-of-Freedom 11 3.5.2 Multi-Degree-of-Freedom 13 3.5.3 Results and Discussion 13 3.5.3.1 Single- and Multi-Degree-of-Freedom 13 3.5.3.2 Higher-Degree-of-Freedom 13 3.6 Summary 14 4 EXPERIMENTAL WORK AND VALIDATION 14 4.1 Introduction 14 4.2 Design and Fabrication of the Test Samples 14 4.2.1 Static Test Methods (Tensile and Compression Tests) 14 4.2.2 Solid Rubber Sample 15 4.2.3 Fabrication of the Sample 15 4.2.4 LR-MS Sample 16 4.3 Design and Fabrication of the Test Rig 16 4.4 Experimental Results (Preliminary Results before Test-Rig 17 Modification of Testing Apparatus 17 17 4.6 Validation of the Results from the Prediction Model 18 5.1 Introduction			-	77
3.5 Discrete Lumped Parameter System 1 3.5.1 Single-Degree-of-Freedom 1 3.5.2 Multi-Degree-of-Freedom 1 3.5.3 Results and Discussion 1 3.5.3 Results and Multi-Degree-of-Freedom 1 3.5.3.1 Single- and Multi-Degree-of-Freedom 1 3.6 Summary 1 4 EXPERIMENTAL WORK AND VALIDATION 1 4.1 Introduction 1 4.2 Design and Fabrication of the Test Samples 1 4.2.1 Static Test Methods (Tensile and Compression Tests) 1 4.2.2 Solid Rubber Sample 1 4.2.3 Fabrication of the Sample 1 4.2.4 LR-MS Sample 1 4.3 Design and Fabrication of the Test Rig 1 4.4 Experimental Results (Preliminary Results before Test-Rig 1 Modification) 4.5 Modification of Testing Apparatus 1 4.6 Validation of the Results from the Prediction Model 1 4.7 Summary 1 5.1 Introduction 1 <td>3.5 Discrete Lumped Parameter System 11 3.5.1 Single-Degree-of-Freedom 11 3.5.2 Multi-Degree-of-Freedom 13 3.5.3 Risults and Discussion 13 3.5.3.1 Single- and Multi-Degree-of-Freedom 13 3.5.3.2 Higher-Degree-of-Freedom 13 3.6 Summary 14 4 EXPERIMENTAL WORK AND VALIDATION 14 4.1 Introduction 14 4.2 Design and Fabrication of the Test Samples 14 4.2.2 Solid Rubber Sample 15 4.2.3 Fabrication of the Sample 15 4.2.4 LR-MS Sample 16 4.3 Design and Fabrication of the Test Rig 16 4.4 Experimental Results (Preliminary Results before Test-Rig 17 Modification) 18 18 4.7 Summary 18 5 PARAMETRIC STUDY 18 5.1 Introduction 18 5.2 Working Load 18 5.3 Dimension of the Isolator 19 <td< td=""><td></td><td></td><td>3.4.2 Isolator Model without Embedded Metal Plate</td><td>78</td></td<></td>	3.5 Discrete Lumped Parameter System 11 3.5.1 Single-Degree-of-Freedom 11 3.5.2 Multi-Degree-of-Freedom 13 3.5.3 Risults and Discussion 13 3.5.3.1 Single- and Multi-Degree-of-Freedom 13 3.5.3.2 Higher-Degree-of-Freedom 13 3.6 Summary 14 4 EXPERIMENTAL WORK AND VALIDATION 14 4.1 Introduction 14 4.2 Design and Fabrication of the Test Samples 14 4.2.2 Solid Rubber Sample 15 4.2.3 Fabrication of the Sample 15 4.2.4 LR-MS Sample 16 4.3 Design and Fabrication of the Test Rig 16 4.4 Experimental Results (Preliminary Results before Test-Rig 17 Modification) 18 18 4.7 Summary 18 5 PARAMETRIC STUDY 18 5.1 Introduction 18 5.2 Working Load 18 5.3 Dimension of the Isolator 19 <td< td=""><td></td><td></td><td>3.4.2 Isolator Model without Embedded Metal Plate</td><td>78</td></td<>			3.4.2 Isolator Model without Embedded Metal Plate	78
3.5.1 Single-Degree-of-Freedom 1 3.5.2 Multi-Degree-of-Freedom 1 3.5.3 Results and Discussion 1 3.5.3 Results and Discussion 1 3.5.3 Results and Multi-Degree-of-Freedom 1 3.5.3.2 Higher-Degree-of-Freedom 1 3.6 Summary 1 4 EXPERIMENTAL WORK AND VALIDATION 1 4.1 Introduction 1 4.2 Design and Fabrication of the Test Samples 1 4.2.1 Static Test Methods (Tensile and Compression Tests) 1 4.2.2 Solid Rubber Sample 1 4.2.3 Fabrication of the Sample 1 4.2.4 LR-MS Sample 1 4.3 Design and Fabrication of the Test Rig 1 4.4 Experimental Results (Preliminary Results before Test-Rig 1 Modification) 4 4 4 4.5 Modification of the Results from the Prediction Model 1 4.7 Summary 1 1 5 PARAMETRIC STUDY 1 1	3.5.1 Single-Degree-of-Freedom 11 3.5.2 Multi-Degree-of-Freedom 11 3.5.3 Results and Discussion 13 3.5.3.1 Single- and Multi-Degree-of-Freedom 13 3.5.3.2 Higher-Degree-of-Freedom 13 3.6 Summary 14 4 EXPERIMENTAL WORK AND VALIDATION 14 4.1 Introduction 14 4.2 Design and Fabrication of the Test Samples 14 4.2.2 Solid Rubber Sample 15 4.2.3 Fabrication of the Sample 15 4.2.4 LR-MS Sample 16 4.3 Design and Fabrication of the Test Rig 16 4.3 Design and Fabrication of the Test Rig 17 4.6 Validation of Testing Apparatus 17 4.6 Validation of the Results from the Prediction Model 18 5.3 Dimension of the Isolator 19 5.3.1 Maximum and Minimum Line for LR-MS Model 19 5.3.2 Crossing Point for LR-MS Model 19 5.4 Damping Value 20 5.5			3.4.3 Laminated Rubber-Metal Spring with Metal Plates	94
3.5.2 Multi-Degree-of-Freedom 1 3.5.3 Results and Discussion 1 3.5.3.1 Single- and Multi-Degree-of-Freedom 1 3.5.3.2 Higher-Degree-of-Freedom 1 3.6 Summary 1 4 EXPERIMENTAL WORK AND VALIDATION 1 4.1 Introduction 1 4.2 Design and Fabrication of the Test Samples 1 4.2.1 Static Test Methods (Tensile and Compression Tests) 1 4.2.2 Solid Rubber Sample 1 4.2.3 Fabrication of the Sample 1 4.2.4 LR-MS Sample 1 4.3 Design and Fabrication of the Test Rig 1 4.4 Experimental Results (Preliminary Results before Test-Rig Modification) 1 4.5 Modification of Testing Apparatus 1 4.6 Validation of the Results from the Prediction Model 1 4.7 Summary 1 5.1 Introduction 1 5.2 Working Load 1 5.3 Dimension of the Isolator 1 5.3.1 <td< td=""><td>3.5.2 Multi-Degree-of-Freedom 11 3.5.3 Results and Discussion 13 3.5.3.1 Single- and Multi-Degree-of-Freedom 13 3.6 Summary 14 4 EXPERIMENTAL WORK AND VALIDATION 14 4.1 Introduction 14 4.2 Design and Fabrication of the Test Samples 14 4.2.1 Static Test Methods (Tensile and Compression Tests) 14 4.2.2 Solid Rubber Sample 15 4.2.3 Fabrication of the Sample 15 4.2.4 LR-MS Sample 16 4.3 Design and Fabrication of the Test Rig 16 4.3 Design and Fabrication of the Test Rig 16 4.4 Experimental Results (Preliminary Results before Test-Rig 17 Modification) 18 17 4.5 Modification of the Results from the Prediction Model 18 5.7 Summary 18 5.3 Dimension of the Isolator 19 5.3.1 Maximum and Minimum Line for LR-MS Model 19 5.3.2 Crossing Point for LR-MS Model 19 <!--</td--><td></td><td>3.5</td><td>Discrete Lumped Parameter System</td><td>114</td></td></td<>	3.5.2 Multi-Degree-of-Freedom 11 3.5.3 Results and Discussion 13 3.5.3.1 Single- and Multi-Degree-of-Freedom 13 3.6 Summary 14 4 EXPERIMENTAL WORK AND VALIDATION 14 4.1 Introduction 14 4.2 Design and Fabrication of the Test Samples 14 4.2.1 Static Test Methods (Tensile and Compression Tests) 14 4.2.2 Solid Rubber Sample 15 4.2.3 Fabrication of the Sample 15 4.2.4 LR-MS Sample 16 4.3 Design and Fabrication of the Test Rig 16 4.3 Design and Fabrication of the Test Rig 16 4.4 Experimental Results (Preliminary Results before Test-Rig 17 Modification) 18 17 4.5 Modification of the Results from the Prediction Model 18 5.7 Summary 18 5.3 Dimension of the Isolator 19 5.3.1 Maximum and Minimum Line for LR-MS Model 19 5.3.2 Crossing Point for LR-MS Model 19 </td <td></td> <td>3.5</td> <td>Discrete Lumped Parameter System</td> <td>114</td>		3.5	Discrete Lumped Parameter System	114
3.5.3 Results and Discussion 1 3.5.3.1 Single- and Multi-Degree-of-Freedom 1 3.6 Summary 1 4 EXPERIMENTAL WORK AND VALIDATION 1 4.1 Introduction 1 4.2 Design and Fabrication of the Test Samples 1 4.2.1 Static Test Methods (Tensile and Compression Tests) 1 4.2.2 Solid Rubber Sample 1 4.2.3 Fabrication of the Sample 1 4.2.4 LR-MS Sample 1 4.3 Design and Fabrication of the Test Rig 1 4.4 Experimental Results (Preliminary Results before Test-Rig 1 Modification) 4.5 Modification of Testing Apparatus 1 4.6 Validation of the Results from the Prediction Model 1 4.7 Summary 1 5.1 Introduction 1 5.2 Working Load 1 5.3.1 Maximum and Minimum Line for LR-MS Model 1 5.3.2 Crossing Point for LR-MS Model 1 5.4 Damping Value 2 2	3.5.3 Results and Discussion 13 3.5.3.1 Single- and Multi-Degree-of-Freedom 13 3.6 Summary 14 4 EXPERIMENTAL WORK AND VALIDATION 14 4.1 Introduction 14 4.2 Design and Fabrication of the Test Samples 14 4.2.1 Static Test Methods (Tensile and Compression Tests) 14 4.2.2 Solid Rubber Sample 15 4.2.3 Fabrication of the Sample 15 4.2.4 LR-MS Sample 16 4.3 Design and Fabrication of the Test Rig 16 4.4 Experimental Results (Preliminary Results before Test-Rig 17 Modification) 18 17 4.5 Modification of Testing Apparatus 17 4.6 Validation of the Results from the Prediction Model 18 4.7 Summary 18 5 PARAMETRIC STUDY 18 5.3 Dimension of the Isolator 19 5.3.1 Maximum and Minimum Line for LR-MS Model 19 5.4 Damping Value 20 5.5			3.5.1 Single-Degree-of-Freedom	114
3.5.3.1 Single- and Multi-Degree-of-Freedom 1 3.6 Summary 1 4 EXPERIMENTAL WORK AND VALIDATION 1 4.1 Introduction 1 4.2 Design and Fabrication of the Test Samples 1 4.2.1 Static Test Methods (Tensile and Compression Tests) 1 4.2.2 Solid Rubber Sample 1 4.2.3 Fabrication of the Sample 1 4.2.4 LR-MS Sample 1 4.3 Design and Fabrication of the Test Rig 1 4.4 Experimental Results (Preliminary Results before Test-Rig Modification) 1 4.5 Modification of Testing Apparatus 1 4.6 Validation of the Results from the Prediction Model 1 4.7 Summary 1 5 PARAMETRIC STUDY 1 5.1 Introduction 1 5.2 Working Load 1 5.3.1 Maximum and Minimum Line for LR-MS Model 1 5.3.2 Crossing Point for LR-MS Model 1 5.4 Damping Value 2 5.5 Dynamic Stiffness 2	3.5.3.1 Single- and Multi-Degree-of-Freedom133.5.3.2 Higher-Degree-of-Freedom133.6 Summary144 EXPERIMENTAL WORK AND VALIDATION144.1 Introduction144.2 Design and Fabrication of the Test Samples144.2.1 Static Test Methods (Tensile and Compression Tests)144.2.2 Solid Rubber Sample154.2.3 Fabrication of the Sample154.2.4 LR-MS Sample164.3 Design and Fabrication of the Test Rig164.3 Design and Fabrication of the Test Rig164.4 Experimental Results (Preliminary Results before Test-Rig Modification)174.5 Modification of Testing Apparatus174.6 Validation of the Results from the Prediction Model184.7 Summary185 PARAMETRIC STUDY185.3 Dimension of the Isolator195.3.1 Maximum and Minimum Line for LR-MS Model195.3.2 Crossing Point for LR-MS Model195.4 Damping Value205.5 Dynamic Stiffness205.6 Hardness215.7 Summary216 DISCUSSION ON PREDICTION MODELS21			3.5.2 Multi-Degree-of-Freedom	116
3.5.3.2 Higher-Degree-of-Freedom 1 3.6 Summary 1 4 EXPERIMENTAL WORK AND VALIDATION 1 4.1 Introduction 1 4.2 Design and Fabrication of the Test Samples 1 4.2.1 Static Test Methods (Tensile and Compression Tests) 1 4.2.2 Solid Rubber Sample 1 4.2.3 Fabrication of the Sample 1 4.2.4 LR-MS Sample 1 4.3 Design and Fabrication of the Test Rig 1 4.4 Experimental Results (Preliminary Results before Test-Rig Modification) 1 4.5 Modification of Testing Apparatus 1 4.6 Validation of the Results from the Prediction Model 1 4.7 Summary 1 5 PARAMETRIC STUDY 1 5.1 Introduction 1 5.2 Working Load 1 5.3.1 Maximum and Minimum Line for LR-MS Model 1 5.3.2 Crossing Point for LR-MS Model 1 5.4 Damping Value 2 5.5 Dynamic Stiffness 2	3.6 Summary 13 3.6 Summary 14 4 EXPERIMENTAL WORK AND VALIDATION 14 4.1 Introduction 14 4.2 Design and Fabrication of the Test Samples 14 4.2.1 Static Test Methods (Tensile and Compression Tests) 14 4.2.2 Solid Rubber Sample 15 4.2.3 Fabrication of the Sample 15 4.2.4 LR-MS Sample 16 4.3 Design and Fabrication of the Test Rig 16 4.4 Experimental Results (Preliminary Results before Test-Rig Modification) 17 4.5 Modification of Testing Apparatus 17 4.6 Validation of the Results from the Prediction Model 18 4.7 Summary 18 5.1 Introduction 18 5.2 Working Load 18 5.3 Dimension of the Isolator 19 5.4 Damping Value 20 5.5 Dynamic Stiffness 20 5.6 Hardness 21 5.7 Summary 21				131
3.6 Summary 1 4 EXPERIMENTAL WORK AND VALIDATION 1 4.1 Introduction 1 4.2 Design and Fabrication of the Test Samples 1 4.2.1 Static Test Methods (Tensile and Compression Tests) 1 4.2.2 Solid Rubber Sample 1 4.2.3 Fabrication of the Sample 1 4.2.4 LR-MS Sample 1 4.3 Design and Fabrication of the Test Rig 1 4.4 Experimental Results (Preliminary Results before Test-Rig 1 Modification) 4.5 Modification of Testing Apparatus 1 4.6 Validation of the Results from the Prediction Model 1 4.7 Summary 1 5 PARAMETRIC STUDY 1 5.1 Introduction 1 5.2 Working Load 1 5.3.1 Maximum and Minimum Line for LR-MS Model 1 5.3.2 Crossing Point for LR-MS Model 1 5.4 Damping Value 2 2 5.5 Dynamic Stiffness 2	3.6 Summary 14 4 EXPERIMENTAL WORK AND VALIDATION 14 4.1 Introduction 14 4.2 Design and Fabrication of the Test Samples 14 4.2.1 Static Test Methods (Tensile and Compression Tests) 14 4.2.2 Solid Rubber Sample 15 4.2.3 Fabrication of the Sample 15 4.2.4 LR-MS Sample 16 4.3 Design and Fabrication of the Test Rig 16 4.4 Experimental Results (Preliminary Results before Test-Rig Modification) 17 4.5 Modification of Testing Apparatus 17 4.6 Validation of the Results from the Prediction Model 18 4.7 Summary 18 5 PARAMETRIC STUDY 18 5.1 Introduction 18 5.2 Working Load 18 5.3 Dimension of the Isolator 19 5.4 Damping Value 20 5.5 Dynamic Stiffness 20 5.6 Hardness 21 5.7 Summary 21			3.5.3.1 Single- and Multi-Degree-of-Freedom	131
4 EXPERIMENTAL WORK AND VALIDATION 1 4.1 Introduction 1 4.2 Design and Fabrication of the Test Samples 1 4.2.1 Static Test Methods (Tensile and Compression Tests) 1 4.2.2 Solid Rubber Sample 1 4.2.3 Fabrication of the Sample 1 4.2.4 LR-MS Sample 1 4.3 Design and Fabrication of the Test Rig 1 4.4 Experimental Results (Preliminary Results before Test-Rig Modification) 1 4.5 Modification of Testing Apparatus 1 4.6 Validation of the Results from the Prediction Model 1 4.7 Summary 1 5 PARAMETRIC STUDY 1 5.1 Introduction 1 5.2 Working Load 1 5.3 Dimension of the Isolator 1 5.3.1 Maximum and Minimum Line for LR-MS Model 1 5.3.2 Crossing Point for LR-MS Model 1 5.4 Damping Value 2 2 5.5 Dynamic Stiffness 2	4 EXPERIMENTAL WORK AND VALIDATION 14 4.1 Introduction 14 4.2 Design and Fabrication of the Test Samples 14 4.2 Design and Fabrication of the Test Samples 14 4.2.1 Static Test Methods (Tensile and Compression Tests) 14 4.2.2 Solid Rubber Sample 15 4.2.3 Fabrication of the Sample 15 4.2.4 LR-MS Sample 16 4.3 Design and Fabrication of the Test Rig 16 4.4 Experimental Results (Preliminary Results before Test-Rig Modification) 17 4.5 Modification of Testing Apparatus 17 4.6 Validation of the Results from the Prediction Model 18 4.7 Summary 18 5.1 Introduction 18 5.2 Working Load 18 5.3 Dimension of the Isolator 19 5.3.1 Maximum and Minimum Line for LR-MS Model 19 5.3.2 Crossing Point for LR-MS Model 19 5.4 Damping Value 20 5.5 Dynamic Stiffness 20 </td <td></td> <td></td> <td>3.5.3.2 Higher-Degree-of-Freedom</td> <td>135</td>			3.5.3.2 Higher-Degree-of-Freedom	135
4.1 Introduction 1 4.2 Design and Fabrication of the Test Samples 1 4.2.1 Static Test Methods (Tensile and Compression Tests) 1 4.2.2 Solid Rubber Sample 1 4.2.3 Fabrication of the Sample 1 4.2.4 LR-MS Sample 1 4.3 Design and Fabrication of the Test Rig 1 4.4 Experimental Results (Preliminary Results before Test-Rig Modification) 1 4.5 Modification of Testing Apparatus 1 4.6 Validation of the Results from the Prediction Model 1 4.7 Summary 1 5 PARAMETRIC STUDY 1 5.1 Introduction 1 5.2 Working Load 1 5.3 Dimension of the Isolator 1 5.3.1 Maximum and Minimum Line for LR-MS Model 1 5.3 Dimension of tor LR-MS Model 1 5.4 Damping Value 2 2 5.5 Dynamic Stiffness 2	4.1Introduction144.2Design and Fabrication of the Test Samples144.2.1Static Test Methods (Tensile and Compression Tests)144.2.2Solid Rubber Sample154.2.3Fabrication of the Sample154.2.4LR-MS Sample164.3Design and Fabrication of the Test Rig164.4Experimental Results (Preliminary Results before Test-Rig Modification)174.5Modification of Testing Apparatus174.6Validation of the Results from the Prediction Model184.7Summary185PARAMETRIC STUDY185.1Introduction185.2Working Load185.3Dimension of the Isolator195.3.1Maximum and Minimum Line for LR-MS Model195.3Dynamic Stiffness205.4Damping Value205.5Dynamic Stiffness215.7Summary216DISCUSSION ON PREDICTION MODELS21		3.6	Summary	141
 4.2 Design and Fabrication of the Test Samples 4.2.1 Static Test Methods (Tensile and Compression Tests) 4.2.2 Solid Rubber Sample 4.2.3 Fabrication of the Sample 4.2.4 LR-MS Sample 4.3 Design and Fabrication of the Test Rig 4.4 Experimental Results (Preliminary Results before Test-Rig Modification) 4.5 Modification of Testing Apparatus 4.6 Validation of the Results from the Prediction Model 4.7 Summary 5 PARAMETRIC STUDY 5.1 Introduction 5.2 Working Load 5.3 Dimension of the Isolator 5.3.1 Maximum and Minimum Line for LR-MS Model 5.4 Damping Value 5.5 Dynamic Stiffness 2 	4.2 Design and Fabrication of the Test Samples 14 4.2.1 Static Test Methods (Tensile and Compression Tests) 14 4.2.2 Solid Rubber Sample 15 4.2.3 Fabrication of the Sample 15 4.2.4 LR-MS Sample 16 4.3 Design and Fabrication of the Test Rig 16 4.3 Design and Fabrication of the Test Rig 16 4.4 Experimental Results (Preliminary Results before Test-Rig Modification) 17 4.5 Modification of Testing Apparatus 17 4.6 Validation of the Results from the Prediction Model 18 4.7 Summary 18 5 PARAMETRIC STUDY 18 5.1 Introduction 18 5.2 Working Load 18 5.3.1 Maximum and Minimum Line for LR-MS Model 19 5.3.2 Crossing Point for LR-MS Model 19 5.4 Damping Value 20 5.5 Dynamic Stiffness 21 6 DISCUSSION ON PREDICTION MODELS 21	4	EXP	PERIMENTAL WORK AND VALIDATION	144
4.2.1 Static Test Methods (Tensile and Compression Tests) 1 4.2.2 Solid Rubber Sample 1 4.2.3 Fabrication of the Sample 1 4.2.4 LR-MS Sample 1 4.3 Design and Fabrication of the Test Rig 1 4.4 Experimental Results (Preliminary Results before Test-Rig 1 Modification) 1 1 4.5 Modification of Testing Apparatus 1 4.6 Validation of the Results from the Prediction Model 1 4.7 Summary 1 5 PARAMETRIC STUDY 1 5.1 Introduction 1 5.3 Dimension of the Isolator 1 5.3.1 Maximum and Minimum Line for LR-MS Model 1 5.3.2 Crossing Point for LR-MS Model 1 5.4 Damping Value 2 2 5.5 Dynamic Stiffness 2	4.2.1 Static Test Methods (Tensile and Compression Tests) 14 4.2.2 Solid Rubber Sample 15 4.2.3 Fabrication of the Sample 15 4.2.4 LR-MS Sample 16 4.3 Design and Fabrication of the Test Rig 16 4.4 Experimental Results (Preliminary Results before Test-Rig 17 Modification) 17 16 4.5 Modification of Testing Apparatus 17 4.6 Validation of the Results from the Prediction Model 18 4.7 Summary 18 5.1 Introduction 18 5.2 Working Load 18 5.3 Dimension of the Isolator 19 5.3.1 Maximum and Minimum Line for LR-MS Model 19 5.4 Damping Value 20 5.5 Dynamic Stiffness 20 5.6 Hardness 21 6 DISCUSSION ON PREDICTION MODELS 21		4.1	Introduction	144
4.2.2 Solid Rubber Sample 1 4.2.3 Fabrication of the Sample 1 4.2.4 LR-MS Sample 1 4.3 Design and Fabrication of the Test Rig 1 4.4 Experimental Results (Preliminary Results before Test-Rig 1 Modification) 1 1 4.5 Modification of Testing Apparatus 1 4.6 Validation of the Results from the Prediction Model 1 4.7 Summary 1 5 PARAMETRIC STUDY 1 5.1 Introduction 1 5.2 Working Load 1 5.3 Dimension of the Isolator 1 5.3.1 Maximum and Minimum Line for LR-MS Model 1 5.4 Damping Value 2 5.5 Dynamic Stiffness 2	4.2.2Solid Rubber Sample154.2.3Fabrication of the Sample154.2.4LR-MS Sample164.3Design and Fabrication of the Test Rig164.4Experimental Results (Preliminary Results before Test-Rig Modification)174.5Modification of Testing Apparatus174.6Validation of the Results from the Prediction Model184.7Summary185PARAMETRIC STUDY185.1Introduction185.2Working Load185.3Dimension of the Isolator195.3.1Maximum and Minimum Line for LR-MS Model195.3.2Crossing Point for LR-MS Model195.4Damping Value205.5Dynamic Stiffness205.6Hardness215.7Summary216DISCUSSION ON PREDICTION MODELS21		4.2	•	146
4.2.3 Fabrication of the Sample 1 4.2.4 LR-MS Sample 1 4.3 Design and Fabrication of the Test Rig 1 4.4 Experimental Results (Preliminary Results before Test-Rig 1 Modification) 4.5 Modification of Testing Apparatus 1 4.6 Validation of the Results from the Prediction Model 1 4.7 Summary 1 5 PARAMETRIC STUDY 1 5.1 Introduction 1 5.2 Working Load 1 5.3 Dimension of the Isolator 1 5.3.1 Maximum and Minimum Line for LR-MS Model 1 5.4 Damping Value 2 5.5 Dynamic Stiffness 2	4.2.3Fabrication of the Sample154.2.4LR-MS Sample164.3Design and Fabrication of the Test Rig164.4Experimental Results (Preliminary Results before Test-Rig Modification)174.5Modification of Testing Apparatus174.6Validation of the Results from the Prediction Model184.7Summary185PARAMETRIC STUDY185.1Introduction185.2Working Load185.3Dimension of the Isolator195.3.1Maximum and Minimum Line for LR-MS Model195.3.2Crossing Point for LR-MS Model195.4Damping Value205.5Dynamic Stiffness205.6Hardness215.7Summary21				146
4.2.4LR-MS Sample14.3Design and Fabrication of the Test Rig14.4Experimental Results (Preliminary Results before Test-Rig Modification)14.5Modification of Testing Apparatus14.6Validation of the Results from the Prediction Model14.7Summary15PARAMETRIC STUDY15.1Introduction15.2Working Load15.3Dimension of the Isolator15.3.1Maximum and Minimum Line for LR-MS Model15.4Damping Value25.5Dynamic Stiffness2	4.2.4LR-MS Sample164.3Design and Fabrication of the Test Rig164.4Experimental Results (Preliminary Results before Test-Rig Modification)174.5Modification of Testing Apparatus174.6Validation of the Results from the Prediction Model184.7Summary185PARAMETRIC STUDY185.1Introduction185.2Working Load185.3Dimension of the Isolator195.3.1Maximum and Minimum Line for LR-MS Model195.3.2Crossing Point for LR-MS Model195.4Damping Value205.5Dynamic Stiffness205.6Hardness215.7Summary21			-	156
 4.3 Design and Fabrication of the Test Rig 4.4 Experimental Results (Preliminary Results before Test-Rig Modification) 4.5 Modification of Testing Apparatus 4.6 Validation of the Results from the Prediction Model 4.7 Summary 5 PARAMETRIC STUDY 5.1 Introduction 5.2 Working Load 5.3 Dimension of the Isolator 5.3.1 Maximum and Minimum Line for LR-MS Model 5.3.2 Crossing Point for LR-MS Model 5.4 Damping Value 5.5 Dynamic Stiffness 	 4.3 Design and Fabrication of the Test Rig 4.4 Experimental Results (Preliminary Results before Test-Rig Modification) 4.5 Modification of Testing Apparatus 4.6 Validation of the Results from the Prediction Model 4.7 Summary 5 PARAMETRIC STUDY 5.1 Introduction 5.2 Working Load 5.3 Dimension of the Isolator 5.3.1 Maximum and Minimum Line for LR-MS Model 5.3 Dynamic Stiffness 5.4 Damping Value 5.5 Dynamic Stiffness 5.6 Hardness 5.7 Summary 			-	158
 4.4 Experimental Results (Preliminary Results before Test-Rig Modification) 4.5 Modification of Testing Apparatus 4.6 Validation of the Results from the Prediction Model 4.7 Summary 5 PARAMETRIC STUDY 5.1 Introduction 5.2 Working Load 5.3 Dimension of the Isolator 5.3.1 Maximum and Minimum Line for LR-MS Model 5.3.2 Crossing Point for LR-MS Model 5.4 Damping Value 5.5 Dynamic Stiffness 	4.4Experimental Results (Preliminary Results before Test-Rig Modification)174.5Modification of Testing Apparatus174.6Validation of the Results from the Prediction Model184.7Summary185PARAMETRIC STUDY S.1185.1Introduction185.2Working Load185.3Dimension of the Isolator 5.3.1195.3.2Crossing Point for LR-MS Model195.4Damping Value205.5Dynamic Stiffness205.6Hardness215.7Summary216DISCUSSION ON PREDICTION MODELS21			1	163
Modification)4.5Modification of Testing Apparatus4.6Validation of the Results from the Prediction Model14.7Summary15PARAMETRIC STUDY15.1Introduction5.2Working Load5.3Dimension of the Isolator5.3.1Maximum and Minimum Line for LR-MS Model5.3.2Crossing Point for LR-MS Model5.4Damping Value25.55.5Dynamic Stiffness	Modification)174.5Modification of Testing Apparatus174.6Validation of the Results from the Prediction Model184.7Summary185PARAMETRIC STUDY185.1Introduction185.2Working Load185.3Dimension of the Isolator195.3.1Maximum and Minimum Line for LR-MS Model195.3.2Crossing Point for LR-MS Model195.4Damping Value205.5Dynamic Stiffness205.6Hardness215.7Summary216DISCUSSION ON PREDICTION MODELS21			e e	165
4.6Validation of the Results from the Prediction Model14.7Summary15PARAMETRIC STUDY15.1Introduction15.2Working Load15.3Dimension of the Isolator15.3.1Maximum and Minimum Line for LR-MS Model15.3.2Crossing Point for LR-MS Model15.4Damping Value25.5Dynamic Stiffness2	4.6Validation of the Results from the Prediction Model184.7Summary185PARAMETRIC STUDY185.1Introduction185.2Working Load185.3Dimension of the Isolator195.3.1Maximum and Minimum Line for LR-MS Model195.3.2Crossing Point for LR-MS Model195.4Damping Value205.5Dynamic Stiffness205.6Hardness215.7Summary216DISCUSSION ON PREDICTION MODELS21		4.4		170
4.7Summary15PARAMETRIC STUDY15.1Introduction15.2Working Load15.3Dimension of the Isolator15.3.1Maximum and Minimum Line for LR-MS Model15.3.2Crossing Point for LR-MS Model15.4Damping Value25.5Dynamic Stiffness2	4.7Summary185PARAMETRIC STUDY185.1Introduction185.2Working Load185.3Dimension of the Isolator195.3.1Maximum and Minimum Line for LR-MS Model195.3.2Crossing Point for LR-MS Model195.4Damping Value205.5Dynamic Stiffness205.6Hardness215.7Summary216DISCUSSION ON PREDICTION MODELS21		4.5	Modification of Testing Apparatus	174
5 PARAMETRIC STUDY 1 5.1 Introduction 1 5.2 Working Load 1 5.3 Dimension of the Isolator 1 5.3.1 Maximum and Minimum Line for LR-MS Model 1 5.3.2 Crossing Point for LR-MS Model 1 5.4 Damping Value 2 5.5 Dynamic Stiffness 2	5 PARAMETRIC STUDY 18 5.1 Introduction 18 5.2 Working Load 18 5.3 Dimension of the Isolator 19 5.3.1 Maximum and Minimum Line for LR-MS Model 19 5.3.2 Crossing Point for LR-MS Model 19 5.4 Damping Value 20 5.5 Dynamic Stiffness 20 5.6 Hardness 21 5.7 Summary 21 6 DISCUSSION ON PREDICTION MODELS 21		4.6	Validation of the Results from the Prediction Model	180
5.1Introduction15.2Working Load15.3Dimension of the Isolator15.3.1Maximum and Minimum Line for LR-MS Model15.3.2Crossing Point for LR-MS Model15.4Damping Value25.5Dynamic Stiffness2	5.1Introduction185.2Working Load185.3Dimension of the Isolator195.3.1Maximum and Minimum Line for LR-MS Model195.3.2Crossing Point for LR-MS Model195.4Damping Value205.5Dynamic Stiffness205.6Hardness215.7Summary216DISCUSSION ON PREDICTION MODELS21		4.7	Summary	184
5.2Working Load15.3Dimension of the Isolator15.3.1Maximum and Minimum Line for LR-MS Model15.3.2Crossing Point for LR-MS Model15.4Damping Value25.5Dynamic Stiffness2	5.2Working Load185.3Dimension of the Isolator195.3.1Maximum and Minimum Line for LR-MS Model195.3.2Crossing Point for LR-MS Model195.4Damping Value205.5Dynamic Stiffness205.6Hardness215.7Summary216DISCUSSION ON PREDICTION MODELS21	5	PAR	AMETRIC STUDY	185
5.3Dimension of the Isolator15.3.1Maximum and Minimum Line for LR-MS Model15.3.2Crossing Point for LR-MS Model15.4Damping Value25.5Dynamic Stiffness2	5.3 Dimension of the Isolator195.3.1 Maximum and Minimum Line for LR-MS Model195.3.2 Crossing Point for LR-MS Model195.4 Damping Value205.5 Dynamic Stiffness205.6 Hardness215.7 Summary216 DISCUSSION ON PREDICTION MODELS21		5.1	Introduction	185
5.3.1Maximum and Minimum Line for LR-MS Model15.3.2Crossing Point for LR-MS Model15.4Damping Value25.5Dynamic Stiffness2	5.3.1Maximum and Minimum Line for LR-MS Model195.3.2Crossing Point for LR-MS Model195.4Damping Value205.5Dynamic Stiffness205.6Hardness215.7Summary216DISCUSSION ON PREDICTION MODELS21			•	186
5.3.2Crossing Point for LR-MS Model15.4Damping Value25.5Dynamic Stiffness2	5.3.2Crossing Point for LR-MS Model195.4Damping Value205.5Dynamic Stiffness205.6Hardness215.7Summary216DISCUSSION ON PREDICTION MODELS21		5.3		190
5.4Damping Value25.5Dynamic Stiffness2	5.4Damping Value205.5Dynamic Stiffness205.6Hardness215.7Summary216DISCUSSION ON PREDICTION MODELS21				192
5.5 Dynamic Stiffness 2	5.5Dynamic Stiffness205.6Hardness215.7Summary216DISCUSSION ON PREDICTION MODELS21			e	197
	5.6Hardness215.7Summary216DISCUSSION ON PREDICTION MODELS21				201
5.6 Hardness 2	5.7Summary216DISCUSSION ON PREDICTION MODELS21				205
	6 DISCUSSION ON PREDICTION MODELS 21				210
5.7 Summary 2			5.7	Summary	213
		6			214
					214
	6.2 Discussions on Laminated Rubber-Metal Spring Models 21		6.2	Discussions on Laminated Rubber-Metal Spring Models	214

	6.3 6.4	Discussions on Discrete Lumped Parameter System Models Summary	220 223
7	7 CONCLUSIONS AND FUTURE WORKS		224
	7.1	Introduction	224
	7.2	Conclusions	224
	7.3	Recommendations for Future Work	228
REFERENCES		229	

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Comparison of a Soft Gum Rubber, Filled Rubber, Mild Steel and Water (NR Technical Bulletin, 1992)	30
4.1	Dimensions and Mechanical Properties of the Test Samples (S1: SMR-CV 20, S2: SMR-CV 40, S3: SMR-CV 60 and S4: SMR-CV 80)	147
4.2	Tensile Properties for SMR-CV Compounds (S1: SMR-CV 20, S2: SMR-CV 40, S3: SMR-CV 60 and S4: SMR-CV 80)	148
4.3	Relative Tensile Properties for SMR-CV Compounds (S1: SMR-CV 20, S2: SMR-CV 40, S3: SMR-CV 60 and S4: SMR-CV 80)	150
4.4	Compression Properties Results for SMR-CV Compounds (S1: SMR-CV 20, S2: SMR-CV 40, S3: SMR-CV 60 and S4: SMR-CV 80)	150
4.5	Relative Compression Properties for SMR-CV Types (S1: SMR-CV 20, S2: SMR-CV 40, S3: SMR-CV 60 and S4: SMR-CV 80)	155
4.6	Dimensions and Mechanical Properties of the Test Samples	157
4.7	List of Equipment Used in the Experiment	166
5.1	The Range of Dynamic Stiffness	207
5.2	Three Hardness Samples for LR-MS Model	211
6.1	Transmissibility equations	216
6.2	Summary of Maximum-Line and Minimum-Line for LR-MS Models	217
6.3	New Mathematical Expression by Dimension of the Vibration Isolators	218
6.4	Trigonometric Function involved in Maximum-Line and Minimum-Line	219
6.5	Transmissibility equations for Discrete Lumped Parameter System Models	222

LIST OF FIGURES

FIGURE

TITLE

PAGE

1.1	Dynamic Model of an Isolated Bridge Structure	2
1.2	Overall View of Penang Second Bridge	3
1.3	Location of the Rubber Bearings in Penang Second Bridge	3
1.4	Effects on Laminated Spring (a) A Bulging Effect in a Rubber Isolator due to a Large Preload and (b) Metal Plates added inside the Isolator	5
1.5	Flowchart of the Study	8
2.1	The Basic Concept of Vibration Isolator (a) Horizontal Motion and (b) Vertical Motion. X_0 and Z_0 are Amplitudes for Horizontal and Vertical Motions.	13
2.2	Two Categories of Vibration Isolator: (a) Laminated-Rubber Bearing Isolator and (b) Frictional-Type Sliding Isolator	23
2.3	Location of a Vibration Isolator between Building and Foundations	26
2.4	Rubber Materials Bonded with a Metal Plate	33
2.5	Motor with Supported Elastic Rubber Mount	35
2.6	Single-Degree-of-Freedom System for a Massless Isolator	36
2.7	Free Body Diagram for Transmitted Force for the Single-Degree- of-Freedom System	37
2.8	Performance of the Single-Degree-of-Freedom for a Massless Isolator	40
2.9	Transmissibility of the Single-Degree-of-Freedom for a Mass Isolator when Increasing the Damping Value: $\xi = 0.02$, $\xi = 0.04$, $\cdots \xi = 0.06$.	41
2.10	Motor with Two Supported Elastic Rubber Mounts	42
2.11	Two-Degree-of-Freedom System	43
2.12	Transmissibility of the Two-Degree-of-Freedom System when Increasing the Damping Value: - $\xi = 0.02$, $\xi = 0.04$, $\xi = 0.06$.	45

3.1	Flowchart of Development of Mathematical Modelling	49
3.2	Mass-Damper-Spring Model of a Lumped Parameter System	51
3.3	Lumped Parameter System without a Metal Plate	55
3.4	Lumped Parameter System with a Single Metal Plate	55
3.5	Lumped Parameter System with Two Metal Plates	56
3.6	Lumped Parameter System with Three Metal Plates	56
3.7	Lumped Parameter System with Four Metal Plates	56
3.8	Schematic Diagram of Vibration Isolators: D is Outer Diameter, d is Inner Diameter and L is Total Length of the isolator.	57
3.9	Combined Results for Lumped Parameter Systems	57
3.10	Uniform Non-Dispersive Finite Rod undergoing Longitudinal Force	62
3.11	Longitudinal Wave for Impedance: - $Z_{11} = Z_{22}$, $Z_{12} = Z_{21}$	67
3.12	Longitudinal Wave for Stiffness: - $K_{11} = K_{22}$, $K_{12} = K_{21}$	68
3.13	Basic Elements in a Laminated Rubber-Metal Spring	69
3.14	Working mass at the Top of the Non-Dispersive Finite Rod	70
3.15	Vibration Isolator subjected to Small Excitation Force	73
	(a) Unbonded by metal plate and (b) Bonded by metal plate	
3.16	The correlation of the assumptions verified in BE 1/76	77
3.17	Schematic Diagram for Laminated Rubber-Metal Spring Model in Displacement	78
3.18	Transmissibility Results for a Laminated Rubber-Metal Spring Model without Embedded Metal Plate	80
3.19	Wave Effect in Laminated Rubber-Metal Spring without Embedded Metal Plate	81
3.20	Comparison between Lumped Parameter Systems and LR-0MS Model	82
3.21	Distributed Parameter Isolator (a) Schematic diagram and (b) Free body diagram	84
3.22	General Thevenin Equivalent System	89
3.23	Schematic Diagram of a Single Metal Plate Inserted into a Laminated Rubber-Metal Spring	96
3.24	One Element in the Non-Dispersive Finite Rod	97
3.25	Single Metal Plate Inserted in the LR-1MS Model	100
3.26	Comparison Results by Inserting a Single Metal Plate	101
3.27	Schematic Diagram when Two Metal Plates are inserted into the Laminated Rubber-Metal Spring Model	101

3.28	Two Elements in the Non-Dispersive Finite Rod	103
3.29	Two Metal Plates Inserted into the LR-MS Model	105
3.30	Comparison Results by Inserting Two Metal Plates	106
3.31	Schematic Diagram when Three Metal Plates are Inserted into the Laminated Rubber-Metal Spring Model	106
3.32	Schematic Diagram when Four Metal Plates are Inserted into the Laminated Rubber-Metal Spring Model	107
3.33	Three Metal Plates Inserted into the LR-MS Model	110
3.34	Four Metal Plates Inserted into the LR-MS Model	110
3.35	Comparison Results by Inserting Three Metal Plates	111
3.36	Comparison Results by Inserting Four Metal Plates	111
3.37	Combined Results for the LR-MS Models	112
3.38	Comparison between 1 st and 2 nd Natural Frequencies for the LR-MS Models	113
3.39	Internal Resonance for the LR-MS Models	113
3.40	Roll-Off Rate for the LR-MS Models	113
3.41	Discrete Lumped Parameter Systems (a) Distributed Parameter Isolator and (b) Discrete Lumped Parameter System	114
3.42	Two-Degree-of-Freedom Discrete Lumped Parameter System	117
3.43	Three-Degree-of-Freedom Discrete Lumped Parameter System	119
3.44	Four-Degree-of-Freedom Discrete Lumped Parameter System	124
3.45	Result for single-degree-of-freedom	132
3.46	Comparison results for LR-0MS	132
3.47	Comparison results for LR-1MS	133
3.48	Comparison results for LR-2MS	134
3.49	Comparison results for LR-3MS	134
3.50	Result for Dividing Rubber Mass into 8 Parts (Conventional)	135
3.51	Result for Dividing Rubber Mass into 8 Parts	136
3.52	Characteristic Lines for Dividing Rubber Mass into 8 parts	136
3.53	Result for dividing rubber mass into 12 parts	137
3.54	Characteristic Lines for Dividing Rubber Mass into 12 parts	137
3.55	Result for Dividing Rubber Mass into 16 Parts	138
3.56	Characteristic Lines for Dividing Rubber Mass into 16 Parts	138
3.57	Result for Dividing Rubber Mass into 20 Parts	139
3.58	Characteristic Lines for Dividing Rubber Mass into 20 Parts	139
3.59	Result for Dividing Rubber Mass into 32 Parts	140

3.60	Result for Dividing Rubber Mass into 41 Parts	140
3.61	Result for Dividing Rubber Mass into 68 Parts	141
3.62	Overall Comparison for Discrete Lumped Parameter Systems	143
3.63	Internal Resonance for Discrete Lumped Parameter Systems	143
4.1	Flowchart for Experimental Work	145
4.2	Results of Tensile Stress for SMR-CV Compounds (S1: SMR-CV 20, S2: SMR-CV 40, S3: SMR-CV 60 and S4: SMR-CV 80)	149
4.3	Results of Young's Modulus for SMR-CV Compounds	149
	(1: SMR-CV 20, 2: SMR-CV 40, 3: SMR-CV 60 and 4: SMR-CV 80)	
4.4	Compressive Stress versus the Compressive Strain	153
	(1: SMR-CV 20, 2: SMR-CV 40, 3: SMR-CV 60 and 4: SMR-CV 80)	
4.5	Comparison of the Compressive Stress and Compressive Strain	154
	(1: SMR-CV 20, 2: SMR-CV 40, 3: SMR-CV 60 and 4: SMR-CV 80)	
4.6	Results of Young's Modulus for Compression Test	155
	(1: SMR-CV 20, 2: SMR-CV 40, 3: SMR-CV 60 and 4: SMR-CV 80)	
4.7	Schematic Diagram of the Test Sample	157
4.8	Fabrication Steps for the Test Sample	159
4.9	Natural Rubber Compound	160
4.10	Small Pieces of Natural Rubber Compound	160
4.11	Test Setup of the Vulcanization Process	162
4.12	Rubber Compound Surplus Removed from the Mould	162
4.13	The Final Solid Rubber Sample	162
4.14	Steps for Metal Enhancement for the Vulcanization Process	163
4.15	Dimensions of the Embedded Metal Plate with a Thickness of 3 mm	164
4.16	The Metal Plate after the Sandblasting Process has been Applied	164
	(a) Before and (b) After the Process	
4.17	Metal Plate with Chemlock Layer (a) Primary Chemlock and (b) Secondary Chemlock	164
4.18	Metal Plate Arrangement in LR-MS Samples	165
4.19	Cross-Section Diagram of the Test Rig	167
4.20	The Real Layout of the Rig	168
4.21	Layout of the Test Apparatus	169

4.22	Signal from the Measurement	170
4.23	Transmitted Force	171
4.24	Measured Transmissibility of LR-0MS	172
4.25	Measured Transmissibility of LR-1MS	172
4.26	Measured Transmissibility of LR-2MS	173
4.27	Measured Transmissibility of LR-3MS	173
4.28	Measured Transmissibility of LR-4MS	174
4.29	Minor Modification at Shaker and Rigid Foundation	175
4.30	Shaker Position Evenly in Horizontal Direction	175
4.31	Location of Screws between Shaker and Top Plate	176
4.32	Rubber Rings Used between Shaker and Top Plate	176
4.33	Thick Plate with a Rigid Foundation	177
4.34	Rubber Sheet with a thickness of 20 mm and length of 150 mm used to Isolate the Vibration and Stop it being Transmitted by the Thick and Heavy Metal Plates	177
4.35	Measured Transmissibility of LR-0MS	178
4.36	Measured Transmissibility of LR-1MS	178
4.37	Measured Transmissibility of LR-2MS	179
4.38	Measured Transmissibility of LR-3MS	179
4.39	Measured Transmissibility of LR-4MS	180
4.40	Transmissibility of LR-0MS	181
4.41	Transmissibility of LR-1MS	182
4.42	Transmissibility of LR-2MS	182
4.43	Transmissibility of LR-3MS	183
4.44	Transmissibility of LR-4MS	183
5.1	Transmissibility Results for Working Load	189
5.2	Transmissibility Results for Dimension of the Isolator	192
5.3	Maximum and Minimum Line	197
5.4	Crossing Point	202
5.5	Overall Results for Damping Value (a) LR-0MS and (b) LR-3MS	203
5.6	Natural Frequency Analysis for Damping Value (a) LR-0MS and (b) LR-3MS	204
5.7	Internal Resonance Behaviour for Damping Value (a) LR-0MS and (b) LR-3MS	205
5.8	Axis of LR-MS model (a) schematic diagram and (b) orientation with axis	206
5.9	Overall Results for Dynamic Stiffness (a) LR-0MS and (b) LR-	208
	••	

	3MS	
5.10	Natural Frequency Analysis for Dynamic Stiffness (a) LR-0MS and (b) LR-3MS	209
5.11	Internal Resonance Behavior for Dynamic Stiffness (a) LR-0MS and (b) LR-3MS	210
5.12	Overall Results for Hardness (a) LR-0MS and (b) LR-3MS	212
5.13	Internal Resonance Behaviour for Hardness (a) LR-0MS and (b) LR-3MS	213
6.1	Peak of the LR-MS Model close to Fundamental Resonance for Lumped Parameter System	215
6.2	Maximum-Line, Minimum-Line and Circle	217
6.3	Measured and Predicted Result	219
6.4	General Schematic Diagram for Discrete Lumped Parameter System	221
6.5	Comparison Results for Discrete Lumped Parameter System Model	222

LIST OF ABBREVIATIONS

LR-0MS	Laminated rubber-metal plate without metal plate
LR-1MS	Laminated rubber-metal plate with one metal plate
LR-2MS	Laminated rubber-metal plate with two metal plate
LR-3MS	Laminated rubber-metal plate with three metal plate
LR-4MS	Laminated rubber-metal plate with four metal plate
SMR CV-20	Standard Malaysia Rubber Constant Viscosity - 20
SMR CV-40	Standard Malaysia Rubber Constant Viscosity - 40
SMR CV-60	Standard Malaysia Rubber Constant Viscosity - 60
SMR CV-80	Standard Malaysia Rubber Constant Viscosity - 80

LIST OF SYMBOLS

f_n	Vertical natural frequency
<i>x</i> _y	Static deflection of the spring
1	Distributing frequency
f_e	Internal force
y	Displacement
<i>ỳ</i>	Velocity
ÿ	Acceleration
m	Mass of the motor
С	Damping constant
k	Stiffness constant
ω	Frequency at harmonic motion
F_{e}	Complex amplitude at the excitation force
Y	Complex amplitude at the displacement
f_t	Injected force
T_{F} , T	Transmissibility force
F_t	Transmitted force
F_{e}	Excitation force
\mathcal{O}_n	Natural frequency at harmonic motion
ξ , η	Damping loss factor
ω/ω_n	Normalized frequency
<i>m</i> ₂	Mass of the rigid foundation
D	Outer diameter
L	Height
d	Inner diameter
Κ	Static stiffness

G	Shear modulus
В	Numerical factor
B_{S}	Short numerical factor
B_L	Long numerical factor
E	Young's modulus
A	Area
r	Radius
u_1	Displacement of the loaded mass
<i>u</i> ₂	Displacement of the embedded plate
U	Complex amplitude
M	Working mass
Μ	Mass matrix
С	Damping matrix
K	Stiffness matrix
$\widetilde{\mathbf{U}}$	Vectors of complex displacement amplitude
$\widetilde{\mathbf{F}}$	Vectors of complex force
Α	Matrix A
\mathbf{A}^{-1}	Inverse matrix A
Ν	Layer of metal plates
A, B	Complex wave amplitude
k_l	Longitudinal wavenumber
C_l	Longitudinal wave speed
ρ	Density
$Z_{11}, Z_{12}, Z_{21}, Z_{22}$	Localized impedance
S	Cross sectional area
κ_l	Longitudinal rigidity
Ζ	Impedance matrix
Κ	Stiffness matrix
R	Outer radius
r	Inner radius
$K_{11}, K_{12}, K_{21}, K_{22}$	Localized stiffness
F_{1}, F_{2}, F_{3}	Internal force

Z_1	Input impedance
Z_2	Impedance matrix for non-dispersive finite rod
E^{*}	Complex Young's modulus
k_l^*	Complex longitudinal wavenumber
Ω	Ratio of the driving frequency ω to the system's fundamental natural frequency ω_1
$\omega_{\rm l}$	Fundamental natural frequency
μ_1	Ratio of the mass of the non-dispersive finite rod to the working mass
C_{eq}	Damping coefficient equation
${\cal T}_{x heta}$	Shear stress at x-axis
$ au_{_{y heta}}$	Shear stress at y-axis
U_0	Displacement at the middle of vibration isolator
$ar{ au}_{_{xy}}$	Shear stress at the vibration isolator bonded with metal plate.
ε	Compressive strain
I_0	Modified Bessel function
S_{f}	Shape factor
I_1	Modified Bessel function of order one.

LIST OF PUBLICATIONS

<u>2013</u>

 M.A. Salim, A. Putra, D.J. Thompson, N. Ahmad, M.A. Abdullah, "*Transmissibility* of Laminated Rubber-Metal Spring: A Preliminary Study", Applied Mechanics and Materials, Vol. 393, pp. 661-665, ISSN1660-9336, 2013.
 {Publisher: Trans Tech Publications. Indexed: Scopus, EI Compendex, Cambridge Scientific Abstracts, Chemical Abstracts, Google and Google Scholar, ISI, Institution of Engineers}. {DOI:10.4028/www.scientific.net/AMM.393.661}

<u>2014</u>

 M.A. Salim, A. Putra, M.A. Abdullah, "Analysis of Axial Vibration in the Laminated Rubber-Metal Spring", Advanced Materials Research, Vol. 845, pp. 46-50, ISSN 1662 – 8985, 2014.

{**Publisher**: Trans Tech Publications. **Indexed**: **SCOPUS**, EI Compendex, Cambridge Scientific Abstracts, Chemical Abstracts, Google and Google Scholar, ISI, Institution of Engineers}. {DOI:10.4028/www.scientific.net/AMR.845.46}. <u>PUBLISHED</u>.

 Siti Norfarizan, Azma Putra, Haryanti Samekto and Mohd Azli Salim, "Static Analysis of a Laminated Rubber-Metal Spring using Finite Element Method", Advanced Materials Research, Vol. 845, pp. 86-90, ISSN 1662 – 8985, 2014.
 {Publisher: Trans Tech Publications. Indexed: SCOPUS, EI Compendex, Cambridge Scientific Abstracts, Chemical Abstracts, Google and Google Scholar, ISI, Institution of Engineers}. {DOI:10.4028/www.scientific.net/AMR.845.86}.
 <u>PUBLISHED</u>.

- M.A. Salim, A. Putra, M.A. Abdullah, "Natural Rubber-Metal Plate for Automotive Engine Isolator", The Postgraduate Symposium on Composites Science and Technology 2014 & 4 Postgraduate Seminar on Natural Fibre Composites 2014, Faculty of Engineering, Universiti Putra Malaysia, Page 75 – 79, ISBN 978-983-2408-15-4. <u>PUBLISHED</u>.
- M.A. Salim, A. Putra, M.A. Abdullah, "Predicted Transmissibility of an Experimental Approach for a Laminated Rubber-Metal Spring", American-Eurasian Journal of Sustainable Agriculture, Vol. 8 (4), pp. 104-110, ISSN 1995-0748, 2014.
 {Publisher: AENSI Journals. Indexed: SCOPUS, Thomson Gale, CABI, Ulrich's Periodicals Directory, AGRICOLA, DOAJ, Open J-Gate, Index Copernicus, Electronic Journals Library, EBSCO USA, and Islamic World Science Citation Center (ISC)}. <u>PUBLISHED</u>.
- M.A. Abdullah, M.A. Salim, A. Putra, "Linear and Angular Displacement Relationship of Natural Rubber Engine Isolator", Applied Mechanics and Materials, Vol. 575, pp. 250-253, ISSN 1660-9336, 2014.
 {Publisher: Trans Tech Publications. Indexed: SCOPUS, EI Compendex, Cambridge Scientific Abstracts, Chemical Abstracts, Google and Google Scholar, ISI, Institution of Engineers}. {DOI:10.4028/www.scientific.net/AMM.575.250}. PUBLISHED.
- M.A. Salim, A. Putra, M.A. Abdullah, "Mathematical Formulation for Bending Moment Wave in Non-Dispersive Finite Rod", International Review on Modelling and Simulations, Vol. 7, N. 3, pp. 523-530, ISSN 1974 – 9821, 2014.
 {Publisher: Praise Worthy Prize. Indexed: Cambridge Scientific Abstracts (CSA/CIG), Elsevier Bibliographic Database SCOPUS, Academic Search Complete (EBSCO Information Services, Index Copernicus (Journal Master List): IF 6.46}.
 <u>PUBLISHED</u>.

- M.A. Salim, A. Putra, M.A. Abdullah, N. Ahmad, "Development of Laminated Rubber-Metal Spring using Standard Malaysia Rubber Constant Viscocity-60", Vol. 8, No. 4, pp. 761-765, International Review of Mechanical Engineering, ISSN 1970-8742, 2014. {Publisher: Praise Worthy Prize. Indexed: Cambridge Scientific Abstracts (CSA/CIG), Elsevier Bibliographic Database SCOPUS, Academic Search Complete (EBSCO Information Services, Index Copernicus (Journal Master List): IF 6.46}. <u>PUBLISHED</u>.
- Mohd Azli Salim, Azma Putra, Asyraf Ismail and Mohd Azman Abdullah, "Transmissibility Curve on Laminated Rubber-Metal Spring", ENG-20, Sixth International Conference on Postgraduate Education, ICPE 2014, Universiti Tun Hussein Onn. <u>PUBLISHED</u>.

<u>2015</u>

 Mohd Azli Salim, Mohd Azman Abdullah, Azma Putra, "Mullins Effect on Laminated Rubber-Metal Spring", Applied Mechanics and Materials, Vol. 699, pp. 331-335, ISSN 1660 – 9336, 2015.

{**Publisher**: Trans Tech Publications. **Indexed**: **SCOPUS**, EI Compendex, Cambridge Scientific Abstracts, Chemical Abstracts, Google and Google Scholar, ISI, Institution of Engineers}.

{DOI: 10.4028/www/scientific.net/AMM.699, 331}. PUBLISHED.

 M.A. Salim, A. Putra, M.A. Abdullah, "Horizontal Displacement of Laminated Rubber-Metal Spring for Engine Isolator", ARPN Journal of Engineering and Applied Sciences, Vol. 10, No. 17, ISSN 1819 – 6608, 2015.
 {Publisher: ARPN Journal.coms. Indexed: SCOPUS, EI Compendex, Cambridge Scientific Abstracts, Chemical Abstracts, Google and Google Scholar, ISI, Institution of Engineers}. <u>PUBLISHED</u>.